
Shadle & Ramsay: Multitaper harmonic analysis of fricatives

MULTITAPER ANALYSIS OF FUNDAMENTAL FREQUENCY
VARIATIONS DURING VOICED FRICATIVES

Christine Shadle & Gordon Ramsay

School of Electronics & Computer Science, University of Southampton

ABSTRACT: A method for tracking fundamental frequency variations in speech is proposed, based on multitaper anal-
ysis. Using the multitaper technique, a statistical test is developed for detecting the presence of harmonic components
at multiples of a fundamental frequency, embedded in coloured noise. It is shown that this can be applied to speech to
estimate the fundamental frequency, when present, as well as the amplitude and phase of each harmonic. The method
is validated on synthetic data, to determine accuracy and robustness, and evaluated on a small corpus of real speech
data, comparing simultaneous acoustic and electroglottographic measurements to assess performance. Acoustic mea-
surements are marginally less accurate than electroglottographic measurements, but often continue to provide useful
fundamental frequency estimates in situations where electroglottography fails.

INTRODUCTION

Variations in the fundamental frequency of the voice (F0) are known to provide important perceptual cues in speech. Long-
term fundamental frequency variations associated with different intonation patterns typically indicate higher-level linguistic
or extra-linguistic information. However, short-term perturbations of the F0 contour also occur automatically when a con-
striction is formed in the vocal tract, or when vocal fold vibration is affected by aerodynamic factors; these perturbations are
known to provide acoustic cues for individual consonants (Ohde, 1984; Baken & Orlikoff, 1988). Previous studies have used
both acoustic and electroglottographic measurements to examine short-term fundamental frequency variations and devoicing
phenomena in fricatives (e.g. Chollet & Kahane, 1979; Barry, 1995; Jesus & Shadle, 2003). Direct acoustic analysis of F0
during the production of consonants is often dif cult to carry out reliably using traditional spectral estimation techniques. Ex-
isting methods are typically limited by tradeoffs in time and frequency resolution, and cannot track harmonics robustly in the
presence of noise, which is characteristic of many fricatives and stops where F0 cues are important. Furthermore, mechanical
vibration of the vocal folds may not always show up in the acoustic signal during obstruents. In cases where the vocal folds
are in contact, electroglottography provides a more reliable indicator of voicing. However, it cannot always replace acoustic
analysis for obstruents, since the vocal folds are partially abducted during these sounds, mechanical contact is reduced, and
the EGG signal may be too weak to follow vocal fold vibration. Both acoustic and electroglottographic measurements are
therefore needed, as well as improved signal processing methods for extracting voicing information from these data.

A new spectral analysis technique, multitaper analysis, has been developed recently, which signi cantly out-performs classical
spectral estimators (Perceval & Walden, 1993). It relies on reducing spectral bias and variance through averaging of multiple
eigenspectra, obtained by successively weighting any particular signal by a family of discrete prolate spheroidal sequences. A
key result in multitaper analysis is the derivation of a rigorous statistical test for detecting harmonic signals in coloured noise
(Thomson, 1982). The test involves evaluating the null hypothesis that only coloured noise is present at any frequency, against
the alternative hypothesis that a complex harmonic masked by coloured noise is observed. By thresholding the test statistic
at any desired signi can ce level, harmonic components can be detected automatically across any frequency range of interest,
even when non-white noise is present. The test is particularly appropriate for estimating fundamental frequency during sounds
that are produced from a mixed excitation, such as voiced fricatives occurring in speech, where the time-varying harmonic
structure that carries the pitch cues is buried in a coloured noise spectrum.

The aim of this paper, therefore, is to describe the development of a new technique for pitch tracking, based on multitaper
analysis, which can be used to follow the fundamental frequency contour during fricative consonants. A simple extension
of the basic multitaper harmonic analysis technique is derived, which tests for the presence of a sequence of harmonics at
multiples of a single fundamental frequency. The proposed method is validated on synthetic signals with known F0 contours,
embedded in increasing amounts of noise, in order to provide an estimate of the frequency resolution and assess robustness.
Estimates of the F0 contour are then extracted independently from acoustic and electroglottographic signals recorded for a
corpus of English phrases containing voiced and voiceless fricatives in vocalic contexts, to evaluate performance on real data.

MULTITAPER HARMONIC ANALYSIS

Let X = {Xn : n = 0, . . . , N − 1} be a real-valued random process representing N samples of a speech signal, uniformly
sampled in time. If the signal is assumed to be stationary, the spectral representation theorem indicates that it can always be
decomposed into two components: a singular process with a line spectrum, made up of a series of complex harmonics, and a
regular process with a continuous spectrum, made up of coloured noise. In analysing speech, the singular process represents the
voiced component produced by the glottal source, whereas the regular process represents the unvoiced component, produced
by supraglottal turbulent noise sources. The problem is to separate these two components, and to estimate the frequency,
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amplitude, and phase of each harmonic, and the spectrum of the coloured noise.

A survey of existing approaches for analysing voiced and unvoiced components in speech is given in Jackson & Shadle (2001).
Traditional methods for source separation and fundamental frequency tracking often rely on directly examining the power
spectral density of the process, which can be estimated using the Discrete Fourier Transform (DFT). However, the raw DFT
typically suffers from poor bias and variance properties that can obscure spectral details in sounds such as fricatives. Bias can
be reduced by pre-multiplying the signal by a data window. Variance can be reduced by smoothing the power spectral density
estimates across frequencies or, equivalently, by multiplying the autocorrelation function by a lag window. Using a single data
window and lag window, there is known to be an implicit tradeoff between bias and variance; reducing one typically increases
the other. Better control of bias and variance can be achieved by combining power spectral density estimates obtained using
several different data windows. This is the motivation for the multitaper spectral estimate introduced by Thomson (1982).

To de ne the multitaper estimator, let {hk,n : k = 1, . . . , K; n = 0, . . . , N − 1} be a set of K window functions for X . For
each window function, let Hk : [0, 2π) → C be the spectral kernel of the window, calculated by taking the DFT of hk:

Hk(ω) := 1
N

∑N−1

n=0
hk,ne−jωn, (1)

and let SX
k : [0, 2π) → C be the direct spectral estimator of the signal, formed by taking the DFT of the product of hk and X:

SX
k (ω) := 1

N

∑N−1

n=0
hk,nXne−jωn. (2)

The multitaper estimator SX
MT : [0, 2π) → R is de ned to be the average of the K individual power spectral density estimates:

SX
MT (ω) = 1

K

∑K

k=1
|SX

k (ω)|2. (3)

If the set of window functions can be chosen so that (a) the spectral kernels Hk(ω) are maximally concentrated within a
chosen bandwidth β about the origin, and (b) the direct spectral estimates SX

k (ω) are uncorrelated at each frequency, then
the multitaper estimator can be shown to reduce spectral bias and variance signi cantly with respect to each of the individual
direct spectral estimators. A suitable choice is the family of discrete prolate spheroidal sequences investigated by Slepian &
Pollak (1961); examples are illustrated in Figure 1, and the equivalent spectral kernel is shown in Figure 2.

Blacklock & Shadle (2003) have compared bias and variance properties of traditional and multitaper spectral estimates for
fricative consonants. Both properties (a) and (b) can be exploited further to derive a statistical test for the presence of multiple
harmonics in coloured noise, which is the subject of this paper. To do this, assume as above that the speech signal can be
decomposed into voiced and unvoiced components. Suppose that the voiced component can be modelled as a sum of M
harmonics located at integer multiples of a fundamental frequency ω0, with amplitudes and phases de ned by a set of complex
coef cients {Cm ∈ C : m = 1, . . . , M}. Suppose that the unvoiced component can be modelled as a real-valued Gaussian
coloured noise process W = {Wn : n = 0, . . . , N − 1} with zero mean and continuous spectral density. Then:

Xn =
∑M

m=1
(Cm ejmω0n + C∗

m e−jmω0n) + Wn. (4)

Substituting (4) into (2) yields:

SX
k (ω) =

∑M

m=1
(Cm Hk(ω −mω0) + Cm Hk(ω + mω0)) + SW

k (ω). (5)

If the spectral bandwidth of the set of window functions is chosen to be less than the fundamental frequency, then for ω = mω0:

SX
k (mω0) ≈ Cm Hk(0) + SW

k (mω0). (6)

The resulting set of equations for m = 1, . . . , M and k = 1, . . . , K can be written in matrix form as: SX
1 (ω0) · · · SX

1 (Mω0)
...

. . .
...

SX
K (ω0) · · · SX

K (Mω0)

 =

 H1(0)
...

HK(0)

[
C1 · · · CM

]
+

 SW
1 (ω0) · · · SW

1 (Mω0)
...

. . .
...

SW
K (ω0) · · · SW

K (Mω0)

 , (7)

which is equivalent to a standard complex linear regression model:

X = HC + W. (8)

Since the signal and noise processes are assumed to be Gaussian, the spectral estimates obtained using each window function
will also be Gaussian. If the window functions are discrete prolate spheroidal sequences, then it can further be shown that the
spectral estimates obtained using different window functions will be approximately uncorrelated. Under these assumptions,
the maximum likelihood estimator Ĉ for the complex vector of harmonic coef cien ts C is given by:

Ĉ = (H∗H)−1H∗X. (9)
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The statistics of the maximum-likelihood estimator and the corresponding error covariance matrix can easily be determined,
and used to construct a statistical test for the presence or absence of the harmonic components. Following the argument outlined
in Thomson (1982), it is not dif cult to show that, if all of the M harmonic components are identically zero,

σ :=
(K − 1)

∑M

m=1

∑K

k=1
|Hk(0) Ĉm|2∑M

m=1

∑K

k=1
|SX

k (mω0)−Hk(0) Ĉm|2
∼ F2M,2M(K−1), (10)

where F2M,2M(K−1) is the F -distribution with 2M and 2M(K−1) degrees of freedom. This de nes a standard variance ratio
test (F -test) with test statistic σ. The numerator of the expression for σ represents the total power in the harmonic components,
whereas the denominator represents the total power in the residual coloured noise at the same frequencies, so the test essentially
compares these two quantities. The null hypothesis that only coloured noise is present in the signal, with no harmonic compo-
nents at multiples of the fundamental frequency ω0, can be rejected at signi cance level α whenever σ > F2M,2M(K−1)(α),
leaving the alternative hypothesis that both coloured noise and at least one harmonic of the fundamental are present whenever
σ ≤ F2M,2M(K−1)(α).

The basic test formulated above enables the null hypothesis to be accepted or rejected at a  x ed signi can ce level for a single
predetermined fundamental frequency. In practice, the fundamental frequency is unknown, and must be located by constructing
a series of tests over an appropriate grid of candidate values, sampled  nely-enough at regular intervals along the frequency
axis to guarantee the desired frequency resolution. If none of the resulting test statistics is found to be signi cant, then the
signal is considered to be unvoiced. If one or more of the test statistics is signi cant, then the results of the test with the greatest
signi cance level are taken to indicate the best fundamental frequency value and corresponding harmonic coef cients.

The test also assumes that the signal is stationary, but this is only true over short time-intervals for speech. Temporal variations
in fundamental frequency are speci cally of interest here, and need to be analysed. This can be done in the usual manner by
segmenting the signal into overlapping frames of suitable duration, and applying the multitaper harmonic analysis technique to
estimate the fundamental frequency and harmonic spectrum for each frame in turn. No continuity constraints on the fundamen-
tal frequency contour are necessary, although the F -test typically gives spurious results in the middle of voiceless consonants,
when the signal level drops too far. Performance can be improved if a simple energy threshold is used to disable the test as
soon as voicing can no longer be detected, until the signal energy rises above an appropriate threshold again.

METHOD

Two preliminary studies were conducted to assess performance. The  rst study was designed to validate the behaviour of the
multitaper analysis procedure using a corpus of synthetic test signals. Each test signal was composed of a single frequency-
modulated sinewave of constant amplitude, embedded in Gaussian white noise of variable amplitude. To test the sensitivity
of the procedure to rapid variations in fundamental frequency, the instantaneous frequency of the sinewave was made to vary
sinusoidally in time about a centre frequency ccf , with modulation frequency cmf and modulation amplitude cma. To test
the robustness of the procedure against additive noise, the signal-to-noise ratio csnr was made to vary by altering the noise
amplitude. The default parameter values were ccf =100 Hz, cmf =5 Hz, cma=20 Hz, csnr=∞. To generate the entire corpus,
each parameter was varied independently in six steps from its default value, keeping the other parameters constant, to give a
total of 24 signals, all of which were calculated over a duration of 1 second using a 16 kHz sampling rate. The multitaper
analysis procedure was then applied to each signal in the corpus to determine fundamental frequency estimates with 0.1 Hz
resolution at 1 ms intervals over 35 ms frame lengths, using 3 prolate spheroidal data tapers with an effective bandwidth
of 65 Hz. The results were compared with the original instantaneous frequency trajectories used to generate the test signals,
resampled at corresponding 1 ms intervals. The percentage of samples exhibiting gross errors, where the estimated fundamental
frequency deviated by more than 20% from the true value, was determined. The r.m.s. discrepancy between true and estimated
values was calculated for the remaining samples.

The second study was designed to evaluate the performance of the multitaper analysis procedure on real speech data, comparing
results obtained using both acoustic and electroglottographic measurements. A single male speaker of British English was made
to produce utterances consisting of /CV1CV2C/ nonsense words, with the stress on the  rst syllable, embedded in the carrier
phrase “Say a again”, for all combinations of fricative consonants C ∈ {f, T, s, S, v, D, z, Z} and vowels V1, V2 ∈ {ae, i, u}.
Simultaneous acoustic and electroglottographic recordings were made for ten repetitions of each utterance. The acoustic signal
was recorded using an AKG C419 condenser microphone and sampled at 16 kHz. The electroglottographic signal was recorded
using a laryngograph produced by Laryngograph Ltd (UK), and sampled at 2 kHz, then resampled to 16 kHz. Both signals
were quantized using linear PCM encoding with 12-bit resolution. To provide a reliable reference estimate of the fundamental
frequency contour, the EGG signal was bandpass- ltered between 50 Hz and 750 Hz, and an automatic peak-picking algorithm
was used to detect glottal closure events by locating maxima in the EGG signal and its derivative. Fundamental frequency
estimates were calculated as the reciprocal of the time between two adjacent glottal events during each voiced interval, and
positioned mid-way between each pair of events. Spline interpolation was then used to resample the resulting fundamental
frequency contour uniformly at 1 ms intervals over the intervals in which voicing could be detected, setting values to zero
elsewhere. The multitaper analysis procedure was subsequently applied to both the acoustic and electroglottographic signals to
determine fundamental frequency estimates with 0.1 Hz resolution at 1 ms intervals over 35 ms frame lengths for each utterance
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in the corpus, using 3 prolate spheroidal data tapers with an effective bandwidth of 65 Hz. The fundamental frequency contours
obtained from each type of signal were then compared individually with the reference contour calculated by detecting events
in the EGG signal. The percentage of samples exhibiting gross errors, where the frame-based fundamental frequency estimate
deviated by more than 20% from the event-based estimate, was determined. The r.m.s. discrepancy between frame-based
and event-based estimates was calculated for the remaining samples, and expressed as a percentage of the mean value. Also
calculated were the percentage of samples where the frame-based procedure failed to provide estimates that were provided
by the event-based procedure (omissions), and conversely where the frame-based procedure provided estimates that were not
provided by the event-based procedure (additions).

RESULTS

The results of the  rst study are shown in Figures 3-5. The accuracy of the multitaper analysis procedure approaches the
chosen fundamental frequency resolution of 0.1 Hz for the default parameter values. The error rate increases slightly as the
fundamental frequency of the signal increases, and rises noticeably as the fundamental frequency varies more rapidly relative
to the frame length; this is typical of frame-based estimation procedures, and limits the detection of rapid pitch changes. The
estimates are robust against additive noise; no gross errors are seen until the signal-to-noise ratio approaches -10 dB, when
the r.m.s. discrepancy is around 4% . All of these results con rm that the multitaper analysis procedure performs well, and is
capable of accurately tracking fundamental frequency variations in noise.

Results from the second study are given in Figure 6. The total r.m.s. discrepancy for the frame-based estimates obtained from
the EGG signals was 1.77 Hz (1.83%), compared to 2.38 Hz (2.43%) for the acoustic signals. Very few gross errors were
observed for either signal type; only 0.0224% of samples for the EGG signals, and 0.0288% for the acoustic signals. Estimates
calculated using the laryngograph signal are thus systematically better than estimates obtained using the microphone signal,
as expected, but both methods provide reliable results. Frame-based methods typically underestimate rapid transitions near
voicing boundaries, and results obtained from both signal types were worse for voiceless than for voiced fricatives. Comparing
event-based fundamental frequency estimates using the EGG signal with frame-based estimates obtained from the acoustic
signal, the multitaper analysis procedure was found to omit 9.42% of the samples that were obtained by glottal event detection,
but added 7.89% that were missed. This demonstrates that multitaper analysis of microphone recordings may provide a useful
complement to laryngograph measurements for estimating fundamental frequency contours in sounds such as fricatives.

As an illustratation of the application of multitaper analysis to continuous speech, Figure 7 shows a multitaper power spectro-
gram of the phrase “Weatherproof galoshes are very useful in Seattle”, taken from the TIMIT corpus, with frames calculated
at 1 ms intervals over 10 ms frame lengths; 4 data tapers were used to construct each estimate, with an effective bandwidth
of 250 Hz. Figure 8 shows a multitaper F-test spectrogram for the same phrase, with frames calculated at 1 ms intervals over
35 ms frame lengths; 4 data tapers were used to determine each statistic, with an effective bandwidth of 75 Hz, and tests
were constructed for a single fundamental frequency component over the range 0-2 kHz at intervals of 1 Hz. The multitaper
power spectrogram is comparable to a traditional wide-band spectrogram, except that the reduction in variance afforded by
the multitaper procedure results in a smoother image quality. Typically, spectral details are sharpened but also broadened by
the rectangular spectral kernel, so formant frequencies are clearer but formant bandwidths may be arti cially enlarged. Thus,
multitaper spectral estimates are not usually suitable for locating precise peaks, such as formants or harmonics. On the other
hand, the multitaper F-test spectrogram resembles a traditional narrow-band spectrogram, but the harmonics are much sharper
and the unvoiced portions of speech do not appear; consequently, the F-test statistic is usually better for locating harmonics
than a direct spectral estimate. Figure 9 shows the F0 contour and the amplitudes of the  rst  ve harmonics estimated using
the multitaper harmonic analysis procedure for the same phrase; tests were constructed at the 10% signi cance level for 10
harmonic components of a fundamental frequency lying in the range 0-200 Hz, at intervals of 0.5 Hz. Individual harmonics are
tracked throughout each consonant, and localized perturbations in frequency and amplitude are clearly visible during periods
of oral constriction. The envelope of the harmonic spectrum is determined by the transfer function of the vocal tract and the
glottal source spectrum; higher harmonics often appear to cut off before lower harmonics at fricative boundaries, which may
indicate a change in the spectral slope of the source as vocal fold vibration is inhibited. Information about individual harmonics
is not available when using traditional pitch-tracking algorithms, but can be obtained automatically using multitaper analysis.

CONCLUSIONS

A novel technique has been developed for estimating the fundamental frequency contour in continuous speech, using multi-
taper analysis. Unlike traditional pitch-tracking algorithms, the time-varying amplitudes and phases of individual harmonics
can be obtained using the proposed procedure, and used to analyse voicing. The method has been validated on synthetic data,
and shown to be both accurate and robust. Results from a small corpus of continuous speech data indicate that fundamental
frequency contours extracted from the acoustic signal are comparable to fundamental frequency contours estimated from elec-
troglottographic waveforms; acoustic estimates are typically∼ 1% less accurate than EGG-derived estimates, but EGG-derived
estimates may fail during consonants when glottal abduction occurs. Multitaper harmonic analysis therefore provides a useful
complement to electroglottography. Future work will extend the technique further to provide a comprehensive methodology
for automatically separating and characterizing voiced and unvoiced components of the speech signal.
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Figure 2: Spectral kernel for DPSS tapers, BW=100 Hz.
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Figure 3: Effect of centre frequency.
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Figure 4: Effect of modulation frequency.
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Figure 5: Effect of noise-to-signal ratio.
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Figure 6: Error rates for EGG and microphone data.
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Figure 7: Multitaper spectrogram constructed using the multitaper power spectral density estimate.
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Figure 8: Multitaper spectrogram constructed using the multitaper F-test statistic.
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Figure 9: Multitaper harmonic analysis showing estimated F0 contour and harmonic amplitudes.
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