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Abstract. Many learning algorithms make an implicit assumption that
all the attributes present in the data are relevant to a learning task.
However, several studies have demonstrated that this assumption rarely
holds; for many supervised learning algorithms, the inclusion of irrele-
vant or redundant attributes can result in a degradation in classification
accuracy. While a variety of different methods for dimensionality reduc-
tion exist, many of these are only appropriate for datasets which contain
a small number of attributes (e.g. < 20). This paper presents an alterna-
tive approach to dimensionality reduction, and demonstrates how it can
be combined with a Nearest Neighbour learning algorithm. We present
an empirical evaluation of this approach, and contrast its performance
with two related techniques; a Monte-Carlo wrapper and an Information
Gain-based filter approach.

1 Introduction

The dimensionality of a supervised learning task can be characterised in many
ways. A dataset contains a number of situations or instances, each of which con-
tain several attributes and a class value. The attributes may be considered to
be predictor (relevant) attributes, as they may be used to induce a classification
hypothesis (sometimes represented as a set of rules or a decision tree) which is
later used to predict the class of a new instance. However, other attributes may
be considered as irrelevant attributes, as they contribute nothing to the classifi-
cation task, and may even degrade the accuracy of the resulting classifications.
The time taken to induce a concept description from a training set, and to pre-
dict the class of a new instance, is dependent on both the learning algorithm
used and the number of attributes present (i.e. the number of dimensions used
to describe the data).

Determining which of the attributes are relevant to the learning task (i.e.
identifying attributes which predict the class value) is a central problem in ma-
chine learning. In the past, domain experts selected the attributes believed to
be relevant to the learning task. However, in the absence of such background
knowledge, automatic techniques are required to identify such attributes, as the
presence of irrelevant attributes can reduce the performance of various learning



techniques. Nearest neighbour algorithms are especially prone to the inclusion
of such attributes within datasets, as many utilise distance metrics that calcu-
late an average similarity measure across all of the attributes [1]. In addition
to this, the sample complexity (i.e. the number of instances required to learn
a concept) grows exponentially with the number of irrelevant attributes [11],
indicating that simple nearest neighbour algorithms may not scale up well if
irrelevant attributes are present. For these reasons, various weighting techniques
have been investigated in an attempt to reduce the contribution of irrelevant
attributes within nearest neighbour algorithms [14].

A redundant-attribute set occurs when two or more relevant attributes ex-
ist, such that each makes an equal contribution towards learning some concept
[10]. In general, only a single member of this redundant-attribute set is required
when learning the concept. The inclusion of more than one member will not only
increase the time taken to induce the concept description, but may place em-
phasis on the part of the concept description the attributes in the set represent,
and thus reduce the influence of other relevant attributes [12]. The remaining
attributes in this set are sometimes described as redundant.

In this paper, we present an alternative approach that can be used by ma-
chine learning algorithms to reduce the dimensionality of datasets. The instances
in a dataset are represented as vectors within an instance space. An approxi-
mation of this space is then found, and the vectors are projected into this lower
dimensional space. This is achieved by using the geometric technique, Corre-
spondence Analysis [9], to identify and approximate the lower dimensional space
(or sub-space). This sub-space can then be used by a nearest neighbour learning
algorithm to perform class predictions for new instances. The two learning al-
gorithms, CA and CACP utilise this approach to dimensionality reduction, and
are described below.

2 Dimensionality Reduction for Machine Learning and
Information Retrieval Systems

The dimensionality reduction techniques used by machine learning algorithms
can be grouped into two broad categories: those that are instances of the filter
model, where the selection technique is independent of the learning algorithm
used to learn the concept hypothesis; and those that are instances of the wrapper
model, where the learning algorithm is integral to the selection mechanism [10].
Both models perform a search within a space of attribute subsets to determine
the optimal (or sub-optimal) subset for the classification task. The size of the
search space is exponential; if there are n attributes in the original dataset,
then there are a total of 2" possible states in the search space. This exponential
rise means that exhaustive, optimal searches are infeasible for all but simple
problems involving few attributes. Therefore, most systems perform greedy or
stochastic searches. Several studies have also shown that the wrapper model can
identify better attribute sets, when compared with the filter model [10]. However,
induction is performed at every search state visited. The number of instances, i,



in the training set and the control mechanism used to evaluate each state will
also influence the length of time taken to determine the final attribute subset.

Dimensionality reduction techniques have also been utilised by a variety of
Information Retrieval (IR) systems [18] to reduce the number of terms used to
index documents. These techniques have also been applied to the problem of
reducing the number of terms presented to learning algorithms for text categori-
sation problems [7]. Whilst some studies have omitted this stage, the number
of unique terms (typically in the region of tens or hundreds of thousands) is
prohibitively high for most machine learning algorithms. Many text categorisa-
tion systems employ filter based methods. Latent Semantic Indexing (LSI) [7] is
an alternative approach for reducing the number of dimensions used to repre-
sent documents in many IR systems. LSI utilises an orthogonal decomposition
technique to determine a smaller numeric representation for each document. A
corpus is represented as a term X document matrix, where each row corresponds
to a document, and each column to one of the terms appearing within the cor-
pus. Thus, each document (i.e. row vector) is expressed as a point within some
geometric space. An orthogonal decomposition technique is then applied to this
matrix, resulting in a set of decomposed matrices that describe this space and
the points within it. The space can then be approximated (by approximating
the decomposed matrices) resulting in a lower dimensional representation of the
points [15].

Various studies have demonstrated that LSI improved the performance of
both IR and text categorisation systems. For example, Deerwester et. al. [7]
achieved a reduction from 5000-7000 terms to 100 dimensions. Similar techniques
have also been successfully applied to the problem of reducing the dimensional-
ity of protein sequence data for presentation to neural networks [19]. The size
of the input vectors presented to a backward propagation neural network was
reduced from 9696 to 100, resulting in an overall improvement in the predictive
accuracy of the neural network. These studies have demonstrated that LSI and
the principles behind this method work for specific problems, but LSI’s applica-
bility to a broader range of classification tasks has not yet been investigated. For
this reason, we have investigated a similar technique, based on Correspondence
Analysis [9], and have developed two learning algorithms, CA and CACP, which
combine variations of this technique with a Euclidean nearest neighbour learn-
ing algorithm. These algorithms have been applied to a variety of classification
problems found in the UCI Machine Learning Database Repository [4], and to
artificial data (described in Section 5).

3 Subspace Approximation through Correspondence
Analysis

Correspondence analysis is a mathematical tool that is used to graphically
present multi-dimensional data within low (e.g. two or three) dimensional data
plots [14,15]. This is achieved by identifying an approximation of the Euclidean
space that contains the instances (which are represented as vectors). This ap-



proximation is used to project the vectors from a J-dimensional instance space
into a K-dimensional sub-space, where J is the number of attributes of the
dataset, and consequently the number of components of the vectors, and K
(where K < J) is the rank of the approximated space.

The approximation is achieved by first determining an orthonormal basis for
the instance space, and then removing those dimensions that have low singular
values. Singular Value Decomposition (SVD) [16,9] is normally used to perform
the orthogonal decomposition, although other decomposition approaches, such
as the ULV decomposition [3], can be used to replace SVD for this task. The
SVD of a matrix X of I rows (i.e. instances) and J columns (i.e. attributes) can
be expressed as:

X=LDR'

where LTL = RTR = I (the identity matrix). The orthonormal vectors of R,
called the right singular vectors, form an orthonormal basis for the rows of X.
The diagonal matrix D contains the singular values of X, where the elements
ofD:dy >dy > - >dny >0,and N < min(I,J). A third matrix, L, is also
expressed, which forms an orthonormal basis for the columns of X.

The sub-space approximation framework used by CA and CACP consists of
two main routines: one that generates a mapping function between the original
space and the transformed and approximated sub-space (Figure 1); and a rou-
tine that uses the mapping function to project instances from the original space
into the new space [14, 15]. Data sets are presented to these routines as matrices,
where each row of the matrix corresponds to an instance, and each column cor-
responds to one of the attributes of the dataset. The mapping function' consists
of the basis Rk of the approximated sub-space, and a centroid, y. Instances,
represented as vectors in the matrix Y, are projected into the new space by
translating them with respect to the centroid, ¥, and multiplying the translated
vectors with the basis, Rx). Thus, to determine a K-rank approximation of the
dataset Y:

1. Find the centroid vector ¥ for the training dataset Y.

2. Translate the training dataset by the centroid vector into the matrix X =
Y —1y".

3. Determine the basis R and the diagonal singular matrix D of X using sin-
gular value decomposition.

4. Select the K columns of R (or K rows of RT) that correspond with the
largest K singular values in the diagonal matrix D.

5. Project the instances represented by the matrix X into the space charac-
terised by Rk, by multiplying X with Rky.

Two algorithms have been developed based on the sub-space mapping ap-
proach described above. The first, CA, uses the function generate_mapping which
ignores class information when generating the basis R from the training data.
The second algorithm, CACP, exploits the class labels when determining the

! The details of these functions are described in greater detail in [14].



mapping function. The generate_cpmapping routine generates a single prototype
point for each class, by finding the centroid of all the instances belonging to that
class. Once all the prototype points have been found, they are used to generate
the new basis, R.

1 proc generate_mapping(Y,rank) = 1 proc generate_cpmapping(Y,rank) =

2 y = get_centroid_vector(Y); 2 y = get_centroid_vector(Y);
3 X = translate_data(Y,y); 3 X = translate_data(Y,y);
4 4 P = get_class_prototypes(X);
5 [L,D,R] = SVD(X); 5
6 6 [L,D,R] = SVD(P);
7 R(x) = low_rank(D, R, rank); 7
8 map|basis] = Rx); 8 Rk = low_rank(D, R, rank);
9 map|centroid] = y; 9 mapl|basis] = Rx);
10 return(map). 10 map|centroid] = y;
11 return(map).

Fig. 1. The sub-space mapping algorithms, generate_mapping and generate_cpmapping,
are used by CA and CACP respectively to map dataset Y to a sub-space of rank rank.

4 Experimental Design

Many machine learning systems incorporate, or utilise some form of dimensional-
ity reduction to generate an optimal (or sub-optimal) subset of dimensions prior
to induction. The sub-space approximation techniques described above project
instances (represented as data points within some instance space) into a lower di-
mensional sub-space. To compare the benefits (in terms of predictive accuracy)
of this approach with other attribute selection techniques, a suitable learning
paradigm is required. Instance-based learning algorithms, which are sometimes
referred to as Nearest Neighbour (NN) algorithms [6] are ideal, as the accu-
racy of these techniques degrades in the presence of irrelevant or redundant
data [14]. They store and represent some or all the training instances as data
points within a hyperdimensional instance space. The instance space is usually
described by N dimensions, where each dimension corresponds to a single at-
tribute of the dataset. New (unseen) instances are classified by determining their
location within this instance space, and by identifying their nearest neighbour
using some distance function. The class value of the nearest instance is then used
to predict the class of the unseen instance.

To compare the effects of using correspondence analysis for dimensionality
reduction with more traditional approaches to attribute selection, a wrapper
based attribute selection method was implemented. The search method used
was a stochastic search known as the Monte Carlo method [13]. This method
was chosen as the number of search states visited can be controlled, and, unlike
hill climbing approaches, it is not susceptible to local maxima [14]. It is also
possible to show that as the number of states visited increases, so does the
probability of finding an optimal solution [13]. This method searches for the best
attribute subset by selecting a random subset and evaluating it. The evaluation



was performed using a leave-one-out cross validation with the nearest neighbour
Euclidean distance learning algorithm on the training dataset.

A filter-based attribute selection method was also tested. The learning al-
gorithm, FNN was implemented, which utilises the C4.5 decision tree learning
algorithm [17] to identify relevant attribute subsets and remove the remaining
attributes from the dataset. The modified dataset is then presented to a FEu-
clidean nearest neighbour learning algorithm. C4.5 uses a divide and conquer
approach to inducing decision trees, by recursively determining the attribute
that best splits the data into homogeneously classified clusters of instances. As
a consequence, many decision trees utilise a subset of the available attributes,
which reduces the impact of irrelevant attributes on the target concept?. This
behaviour has been exploited as an attribute selection mechanism in its own
right, with the resulting attributes being tested with other learning algorithms

[5].

5 Experimentation and Results

A 20-fold cross validation strategy was used to evaluate the performance of the
learning algorithms on eleven numerical datasets (Table 1) from the UCI Ma-
chine Learning Database Repository [4]. Several of these datasets each contained
an attribute corresponding to a unique identification value. These attributes were
removed from the datasets to prevent them affecting the classification accuracy.
For example, the glass dataset contains an ordered numeric identifier, which is
highly correlated with the class (using Spearman’s Rank Correlation, the coeffi-
cient is 0.958). To determine the lowest number of dimensions that achieve the
highest accuracy, the CA and CACP algorithms varied the number of dimensions
to approximate the sub-space for each dataset between 1 and n, where n was
the total number of attributes available for the dataset. The results presented
in the tables below refer to those tests that achieved the highest classification
accuracy.

Table 1. UCI datasets used in this study.

balance Balance Scale Weight & Distance |bupa  BUPA liver disorders

ionosp JHU Ionosphere DB glass  Glass Identification DB
pima Pima Indians Diabetes DB iris Iris Plants DB
sonar  Sonar, Mines vs. Rocks wine  Wine Recognition Data

wdbc  Wisconsin Diagnostic Breast Cancer [wiscon Wisconsin Breast Cancer DB
wpbc  Wisconsin Prognostic Breast Cancer

The results of the 20-fold cross validated tests for the five algorithms are given
in Table 2. The results in the second column (NN) represent a baseline result, i.e.
the result of the nearest neighbour algorithm when no dimensionality reduction

2 The selection metrics utilised by decision tree learning algorithms will not necessarily
select the optimal set of attributes [2].



technique is used. The wrapper method, MC, succeeded in reducing the number
of attributes for ten of the eleven datasets. The number of attributes found for
these datasets was typically half that of the original number of attributes. There
was a significant increase in classification accuracy for the iris dataset (at the
5% confidence level) and jonosp dataset (at the 10% confidence level). However,
there was a significant decrease in classification accuracy for the pima and wiscon
datasets. No significant difference in clagsification accuracy was found between
NN and MC for the remaining seven datasets. These results suggest that this
wrapper algorithm can successfully reduce the number of attributes in most
cases, with little or no loss in classification accuracy, and that in some cases the
clagsification accuracy can increase.

Table 2. Classification accuracies for the UCI datasets for the learning algorithms
tested. Results followed by 1 were significantly different at the 5% confidence level to
the baseline (i.e. NN) result, whereas those followed by } were significantly different
at the 10% confidence level (using a one-tailed t-test in both cases). The number of
dimensions selected for each dataset are given in parentheses.

| NN [MC [FNN |CA |CACP |

bupa [|61.98 (6) ||} 60.38 (4) | 61.98 (6) | 61.98 (6) | 61.98 (6)
ionosp ||87.17 (34)||1 90.641 (14)|1 92.601 (9.6)|t 90.90f (22)|t 91.19% (11)
pima |[70.99 (8) ||! 67.961 (4) | 70.99 (8) | 70.99 (8) | 70.99 (8)
sonar ||85.96 (60)||] 83.68 (28)|| 82.32 (14) |t 86.96 (23)[t 86.00 (60)
wiscon [|95.90 (9) ||| 95.031 (5) | 95.90 (6) |t 97.361 (6) |t 96.19 (3)
wdbc ||95.40 (30)||t 96.11 (14)[1 95.43 (8) |t 96.65} (5) |t 96.29 (16)
wpbe  |(69.06 (33)||t 71.17 (15)[ 70.50 (14) |t 71.611 (16)|t 73.06 (15)
balance||78.10 (4) || 78.10 (4) | 78.10 (4) |t 78.12 (4) |t 88.95t (1)
glass |[68.09 (9) ||t 71.00 (5) | 68.09 (9) | 68.09 (8) |t 70.00 (8)
iris 96.16 (4) ||t 98.131 (2) |t 98.13F (2) | 96.16 (4) |+ 96.70 (3)
wine ||94.86 (13)||! 94.79 (7) [+ 96.04 (4) |t 97.08} (6) |t 97.64% (6)

The filter method, FNN, succeeded in improving the classification accuracy
with respect to that achieved by NN for five of the eleven datasets. The iris
dataset is known to contain two relevant attributes (see Figure 2) and two ir-
relevant attributes [8]. The C4.5 decision trees utilised only the two relevant
attributes, and thus FNN succeeded in successfully increasing the classification
accuracy to 98.13%, whilst halving the number of dimensions used. All four rel-
evant attributes in the balance dataset were successfully identified and utilised.
Similarly, all the attributes found in the bupa and pima datasets appeared in
the C4.5 decision trees, and as a result, there was no difference in classifica-
tion accuracy or dimensionality for these datasets. Although there was a drop
in classification accuracy for two of the remaining datasets, these results were
not significant. The rejection of attributes had no effect on the results for the
wiscon and glass datasets. This suggests that not all the attributes are required
to represent the target hypothesis, and that the rejected attributes may be either
irrelevant or redundant.
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Fig. 2. Mapping the two most relevant attributes of the iris dataset into a two dimen-
sion sub-space.

Both CA and CACP reduce the number of dimensions required to repre-
sent the dataset for six of the eleven datasets. The effects of the two algorithms
differed for the balance, iris and sonar datasets: CA failed to reduce the dimen-
sionality of balance or iris; whereas CACP failed to reduce the dimensionality of
sonar. As with FNN, neither dataset succeeded in reducing the dimensionality
of the bupa or pima datasets. The sub-space mappings used by CA and CACP
resulted in an increase in classification accuracy for most of the datasets, in ad-
dition to reducing the dimensionality. Both methods achieved higher accuracies
than either the filter or wrapper methods for six datasets, but in most cases
utilised more dimensions.

The result achieved by CA for the balance dataset suggests that when all
the dimensions are present (i.e. no approximation is generated), the sub-space
mapping may still affect the classification accuracy of the learning algorithm.
This can be illustrated by examining the instance space for the #ris dataset
when only the petal attributes are used, and comparing it with a full rank (i.e.
two dimension) sub-space generated by CA (Figure 2). In this case, the mapping
function performs a rotation and a linear translation. The varying translation
of each dimension has the effect of distorting the sub-space with respect to
the original space, which is analogous to assigning relevance weights to each
dimension.

All four methods (MC, FNN, CA and CACP) succeeded in reducing the
number of attributes required for the majority of the datasets used in this study.
The reductions in dimensionality for each dataset (given as a percentage of the
original number of dimensions) are listed in Table 3. MC reduced the number of
attributes by an average of 44.4%, and FNN by an average of 39.2%. In contrast,
CA and CACP only reduced the dimensionality of the datasets by an average of
30.4%, and 36.4% respectively.

The results for the iris dataset suggest that the performance of CA and CACP
may degrade in the presence of irrelevant attributes. To investigate this hypoth-
esis, two further datasets were created, consisting of 100 instances each. The
datasets each consist of two numeric attributes and a boolean class label. The



Table 3. The number of attributes used by each algorithm and the corresponding re-
duction in dimensionality (given as a percentage of the original number of dimensions).

NN MC FNN CA CACP

attrs|attrs % red.|attrs % red.|attrs % red.|attrs % red.
bupa 6 4  33.3%| 6 —| 6 —| 6 —
ionosp 34 | 14 58.8%| 10 70.6%| 22 39.3%| 11 67.7%
pima 8 4 50.0%| 8 —| 8 —| 8 —
sonar 60 | 28 53.3%| 14 76.7%| 23 61.7%]| 60 —
wiscon 9 5 44.4%| 6 333%| 6 333%| 3 66.7%
wdbc 30 | 14 53.3%| 8 733%| 5 83.3%| 16 46.7%
wpbc 33 | 15 54.6%| 14 57.6%| 16 51.5%| 15 54.6%
balance 4 4 —| 4 —| 4 —| 1 75.0%
glass 9 5 44.4%| 9 —| 8 11.1%| 8 11.1%
iris 4 2 50.0%| 2 50.0%| 4 —| 3 25.0%
wine 13 7 46.2%| 4 69.2%| 6 53.9%| 6 53.9%
Average 10 datasets|7 datasets |7 datasets |8 datasets
Reduction 44.4% 39.2% 30.4% 36.4%

first dataset comprises of two linearly separable partitions. As CACP identifies
and utilises class centroids, the second dataset contains four linearly inseparable
partitions, two per class. Fifty additional irrelevant attributes were constructed,
each containing a single random value for each instance. Various experiments
were performed to investigate the behaviour of CA and CACP in the presence of
irrelevant attributes. For each experiment, the two datasets containing the rel-
evant attributes were combined with a random sample of irrelevant attributes,
where the random sample increased in size from 0 to 50. Each dataset was then
tested with NN, CA and CACP. This was repeated fifteen times for different
combinations of irrelevant attributes.

Figure 3 illustrates the results obtained from experiments on the linearly
separable dataset. The clagsification accuracy of all three algorithms falls ex-
ponentially, as the number of irrelevant attributes increase. The classification
accuracies of both NN and CA are similar for datasets containing small num-
bers of irrelevant attributes. However, once the number of irrelevant attributes
exceeds 14, the difference in classification accuracy between the two algorithms
becomes small but significant (a one-tailed t-test shows significance at the 5%
level), with CA achieving a slightly higher accuracy than NN. The number of di-
mensions used by CA varies as the number of irrelevant attributes in the dataset
increases. There is no reduction in dimensionality for datasets with few irrele-
vant attributes. As the number of irrelevant attributes exceeds 8, the number of
dimensions selected by CA increases slowly from 8 to 29.

The error rate of CACP is much lower than that achieved by either CA or
NN. CACP achieved a mean accuracy of 74.74% with 49 additional attributes,
whereas CA and NN achieved mean accuracies of 57.47% and 55.93% respec-
tively. The presence of additional irrelevant attributes had little effect on the
number of dimensions selected by CACP (three to five dimensions in most cases).



100

% NN —-—
CA -8--
90+ *
"o CACP - 00
X0t
> 809 xxwxxx o
500 i
@ 56 X&XXXXXXX&XXX%XxxxX > 80
3 704 CA Significant at 5% ®
3] " 5
< 3 70
B <
60 <
60 SRR pom e,
50+
50 00004
40 T T T T T T T T T ) CA Significant at 5% °
0 5 10 15 20 25 30 35 40 45 50 40 T T T T T T T T T
Additional Irrelevant Attributes 0O 5 10 15 20 25 30 35 40 45 50

Additional Irrelevant Attributes

Fig.4. The effects of additional irrele-
vant attributes for a linearly inseparable
dataset on three learning algorithms.

Fig. 3. The effects of additional irrelevant
attributes for a linearly separable dataset
on three learning algorithms.

The results for the three algorithms on the linearly inseparable datasets are
shown in Figure 4. Although CACP achieved superior results for these datasets,
the overall performance was much lower than with linearly separable data. How-
ever, this drop in accuracy for CACP may be due to the proximity of the cen-
troids generated for each class. The initial drop in accuracy exhibited by NN is
not surprising, as there is an additional boundary separating the points of the
two classes, and a small number of points lie along this new boundary. However,
the results after the addition of only a few attributes (e.g. 11 attributes) are little
better than that achieved by pure chance, indicating that any contribution that
the relevant attributes have to any classification hypothesis has been obscured
by the effects of the irrelevant attributes. The results show an unusual increase
in accuracy for CACP for datasets containing between 5 and 14 additional at-
tributes. As yet, no explanation has been found for this behaviour.

The above experiments were repeated to investigate the behaviour of both
CA and CACP in the presence of redundant attributes. In this case, 48 addi-
tional attributes were constructed. The values of the additional attributes were
calculated in one of several ways: values were copied from one of the dimensions
of the original datasets; or values were calculated by inverting one of the dimen-
sions using the function f(z) =1 — z. In addition, some of the attribute values
were modified to introduce some variability to the similar dimensions. The func-
tion f(z) ==z X (1 £ rnd(d)) was used, where rnd(d) generates a small random
number between 0 and é; for this study we used § = 0.05.

All three algorithms achieved approximately 100% accuracy for the linearly
separable dataset and 96.00% for the linearly inseparable dataset. A rank of two
was always selected for CA, whereas the mean rank varied between one and four
for CACP.



6 Conclusions

A number of attribute selection techniques that reduce the dimensionality of a
dataset have been investigated in recent years. These techniques not only reduce
the number of dimensions required to learn a hypothesis, but can result in an
increase in clagsification accuracy. Various filter techniques have been proposed,
but studies have shown that by including the learning algorithm in the selection
process, better attribute subsets can be found. However, this wrapper approach
does not scale up well to problems of more than a few attributes, due to the
exponential increase in the size of the search space.

A technique known as Latent Semantic Indexing [7] has been used to reduce
the dimensionality of large text-based corpora for some Information Retrieval
systems. We have studied the underlying principles upon which LSI is based, and
have developed two machine learning algorithms, CA and CACP, that combine
these principles with a nearest neighbour learning algorithm. Both algorithms
were found to reduce the number of dimensions required for the majority of
datasets studied. In addition, the resulting classification accuracy increased for
all but one of these reduced datasets. The techniques used by CA and CACP
identified a new basis for a space that contained the instances in the training
set, and then generated a lower dimension approximation to this space. The
data points are represented by an attribute-by-instance matrix. Once this ma-
trix has been decomposed, the rank of the matrix can be determined by the
resulting diagonal matrix. This rank represents the number of linearly indepen-
dent, orthogonal dimensions within a sub-space. Therefore, the addition of any
duplicate attributes, or any linear combination of attributes will not result in
an increase in rank, and so will be eliminated by the decomposition. If two or
more attributes contain very similar but not identical values, then there will be
additional orthogonal dimensions to express the slight deviations between them.
Because the inertia of such dimensions will be small, a lower rank sub-space that
excludes these dimensions will closely approximate the original sub-space.

CA and CACP appear to be very successful in removing redundant dimen-
sions from the dataset. However, unlike many of the existing attribute selection
techniques, they have little impact in reducing the effects of irrelevant attributes.
The performance of the class projected variant CACP degrades at a slower rate
than either CA or a simple nearest neighbour in the presence of irrelevant at-
tributes. An investigation is required to determine the behaviour of this ap-
proach when used in conjunction with other attribute selection methods, such
as weighted methods that identify and eliminate irrelevant attributes, but retain
redundant ones. Further investigations are also required to compare this ap-
proach with constructive induction techniques, and more traditional statistical
approaches such as Principal Components Analysis.
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