Universal learning curves of support vector machines
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Using methods of Statistical Physics, we investigate the
role of model complexity in learning with support vector ma-
chines (SVMs), which are an important alternative to neural
networks. We show the advantages of using SVMs with ker-
nels of infinite complexity on noisy target rules, which, in
contrast to common theoretical beliefs, are found to achieve
optimal generalization error although the training error does
not converge to the generalization error. Moreover, we find
a universal asymptotics of the learning curves which only de-
pend on the target rule but not on the SVM kernel.
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Powerful systems for data inference, like neural net-
works implement complex input-output relations by
learning from example data. The price one has to pay for
the flexibility of these models is the need to choose the
proper model complexity for a given task, i.e. the system
architecture which gives good generalization ability for
novel data. This has become an important problem also
for support vector machines (SVMs) which are now an
important alternative to multilayer neural networks [1].
The main advantage of SVMs is that the learning task
is a convex optimization problem which can be reliably
solved even when the example data require the fitting
of a very complicated function. A common argument in
computational learning theory suggests that it is danger-
ous to utilize the full flexibility of the SVM to learn the
training data perfectly when these contain an amount of
noise. By fitting more and more noisy data, the machine
may implement a rapidly oscillating function rather than
the smooth mapping which characterizes most practical
learning tasks. Its prediction ability could be no better
than random guessing in that case. Hence, modifica-
tions of SVM training [2] that allow for training errors
were suggested to be necessary for realistic noisy scenar-
ios. This has the drawback of introducing extra model
parameters and spoils much of the original elegance of
SVMs.

Surprisingly, the results of this letter show that the
picture is rather different in the important case of high
dimensional data spaces. Using methods of statistical
physics, we show that asymptotically, the SVM achieves
optimal generalization ability for noisy data already for
zero training error. Moreover, the asymptotic rate of
decay of the generalization error is universal, i.e. inde-
pendent of the kernel that defines the SVM.

The basic idea of SVMs is to nonlinearly transform an
input y into a feature vector ¥(y) which is an element of
a Hilbert space, and an SVM simply defines an oriented

hyperplane P in this space. In the basic application to
binary classification tasks, the input y is then classified
by asking on which side of the hyperplane P the im-
age ¥(y) of y lies. This is analogous to the well known
approach in nonlinear regression to use a model which is
linear in the parameters but nonlinear in the inputs. The
distinguishing aspects of support vector machines, how-
ever, arise from the way the hyperplane is chosen, based
on a training set of m inputs z# and their desired clas-
sifications 7#. SVMs construct the hyperplane P which
classifies the training data correctly and which has max-
imal distance to the images ¥(z*) of the points in the
training set. This maximal distance is called the max-
imal margin, and it is geometrically intuitive that the
maximization tends to improve the odds of classifying a
new input correctly. Just as important, it also helps to
control the computational complexity of the procedure:
The maximal margin hyperplane P can be expressed as
a linear combination of the feature vectors ¥(z*), and to
classify an input y, that is to decide on which side of P
the image ¥(y) lies, one basically has to evaluate inner
products ¥(z*) - ¥(y). One now carefully chooses the
mapping ¥ and the Hilbert space so that inner products
U(z) - U(y) can be evaluated efficiently using a kernel
function k(z,y) = ¥(x) - ¥(y), without having to indi-
vidually calculate the feature vectors ¥(z) and ¥(y). In
this manner it becomes computationally feasible to use
very high and even infinite dimensional feature vectors.
This raises the intriguing question whether the use of
a very high dimensional feature space may typically be
helpful. So far, recent results [3,4] obtained by a Sta-
tistical Mechanics analysis have been largely negative in
this respect. They suggest that it is rather important
to match the complexity of the kernel to the target rule.
The analysis in [3] considers the case of N-dimensional
inputs with binary components and assumes that the tar-
get rule giving the correct classification 7 of an input x
is obtained as the sign of a function ¢(x) which is poly-
nomial in the input components and of degree L. The
SVM uses a kernel which is a polynomial of the inner
product z - y in input space of degree K > L, and the
feature space dimension is thus O(N¥). In this scenario
it is shown, under mild regularity condition on the ker-
nel and for large IV, that the SVM generalizes well when
the number of training examples m is on the order of
NZL. So the scale of the learning curve is determined by
the complexity of the target rule and not by the kernel.
However, considering the rate with which the generaliza-
tion error approaches zero one finds the optimal N /m



decay only when K is equal to L and the convergence is
substantially slower when K > L. So it is important to
match the complexity of the kernel to the target rule and
using a large value of K is only justified if L is assumed
large and if one can use on the order of N examples for
training.

In this Letter we show that the situation is very differ-
ent when one considers the arguably more realistic sce-
nario of a target rule corrupted by noise. Now one can no
longer use K = L since no separating hyperplane P will
exist when m is sufficiently large compared to N*. How-
ever when K > L the SVM exists and we show that it
achieves optimal generalization performance in the limit
that NT/m is small. Remarkably, the asymptotic rate
of decay of the generalization error is independent of the
kernel in this case and a general characterization of the
asymptote in terms of properties of the target rule is
possible. In a second step we show that under mild reg-
ularity conditions these findings also hold when k(z,y)
is an arbitrary function of z - y or when the kernel is a
function of the Euclidean distance ||z — y||- The latter
type of kernels is widely used in practical applications of
SVMs.

We begin by assuming a polynomial kernel k(z,y) =
f(z-y) where f(2) = Ef:o prz* is of degree K. Denoting
by p a multi-index p = (p1,..., pn) with p; € Ny, we set
z, = [, 2 and the degree of z,, is |p| = S~ | p;- The
kernel can then be described by features ¥, (z) = ,/fj,[z,
since k(z,y) = >, ¥,(z)¥,(y), where the summation
runs over all multi-indices of degree up to K. To assure
that the features are real, we assume that the coefficients
i in the kernel are nonnegative. A hyperplane in fea-
ture space is parameterized by a weight vector w with
components w,, and if 0 < 7#w - ¥(z#), a point (z#,7H)
of the training set lies on the correct side of the plane.
To express that the plane P has maximal distance to the
points of the training set, we choose an arbitrary pos-
itive stability parameter x and require that the weight
vector w* of P minimize w - w subject to the constraints
Kk < Thw - U(zH), for p=1,...,m. Statistical Mechanics
is applied by first analyzing a soft version of the optimiza-
tion problem characterized by an inverse temperature f3.
One considers the partition function

Z = /dw e~ 3Pww ﬁ O(ttw - ¥(z") — k), (1)

p=1

where the constraints are enforced strictly using the
Heaviside step function ©. The properties of w* are then
obtained by evaluating In Z and taking the limit 8 — co.

To model the training data, we assume that the ran-
dom and independent input components have zero mean
and variance 1/N. This scaling assures that the variance
of w - ¥(z#) stays finite in the large N limit. For the
target rule we assume that its deterministic part is given

by the polynomial ¢(z) = >_ //, B,z, with real pa-

rameters B,. The magnitude of the contribution of each
degree k to the value of t(z) is measured by the quantities
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where Ny, = (V¥ +,f*1) is the number of terms in the sum.
The degree of t(x) is L and lower than K, so T, > 0
and Tr4+1 = ... = Tk = 0. Note, that this definition
of t(z) ensures that any feature necessary for comput-
ing t(z) is available to the SVM. For brevity we assume
that the constant term in ¢(z) vanishes (Tp = 0) and the
normalization is >, Ty = 1.

In the deterministic case the label of a point x would
simply be the sign of #(x). Here we consider a nonde-
terministic rule and the output label is obtained using a
random variable 7, € {—1,1} parameterized by a scalar
u. The observable instances of the rule, and in partic-
ular the elements of the training set, are then obtained
by independently sampling the random variable (z, () ).
Simple examples are additive noise, 7y, = sgn(t(z)+7),
or multiplicative noise, 7;(,) = sgn(t(z)n), where 7 is a
noise term independent of . In general, we will assume
that the noise does not systematically corrupt the deter-
ministic component, formally

1
1> Prob (7, = sgn(u)) > 2 for all w. (3)

So sgn(t(x)) is the best possible prediction of the out-
put label of z, and the minimal achievable generalization
error is €min = (O(—t(%)7y(z)))z- In the limit of many
input dimensions N, a central limit argument yields that
for a typical target rule egnin = 2(0(—u)O(u))y, Where u
is zero mean and unit variance Gaussian. The function
© will play a considerable role in the sequel. It is a sym-
metrized form of the probability p(u) that 7, is equal to
1, O(u) = 3(p(u) + 1 = p(=u)).

One now evaluates the quenched average of In Z (Eq.
1) for large N in terms of the replica-symmetric order
parameters

Q={(w-¥@)?),), , a=((w), ¥@)") and

T

r=Q (- ¥(@), B-¥), . )

Here the thermal average over w refers to the Gibbs dis-
tribution (1). For the large N limit, a scaling of the
training set size m must be specified, for which we make
the generic Ansatz m = aN;, where [ = 1,...,L. Fo-
cusing on the limit of large 3, where the density on the
weight vectors converges to a delta peak and ¢ — @, we
introduce the rescaled order parameter x = 8(Q — q)/Si,
with

l
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Note that this scaling with S; is only possible since
the degree K of the kernel f(z -y) is greater than [,
and thus S; # 0. Finally, we obtain an expression for
fi = limp 00 impy 00 ({In Z)) S;/(BN;), where the dou-
ble brackets denote averaging over all training sets of size
m. The value of f; results from extremizing, with respect

to r,q and x, the function
K
1—r2v— —) > -
‘\/a u,v

)
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where G(z) = O(2)2z2, and u, v are independent Gaussian
random variables with zero mean and unit variance.

Note that in terms of the stationary value f; one has
({w* - w*)y = —N;fi. So the higher order components of
w* are small, (w})? < 1 for [p| > I, although these com-
ponents play a crucial role in ensuring that a hyperplane
separating the training points exists even for large a. But
the key quantity obtained from Eq. (6) is the stationary
value of r which determines the generalization error of
the SVM via ¢, = (O(—u)O(ru + vV1 — r2v))y 4, and in
particular €; = €min for r = 1.

We now specialize to the case that [ equals L, the de-
gree of the polynomial ¢(x) in the definition of the target
rule. So m = alNj, and for large «, after some algebra,
Eq. (6) yields

- Adg") 1

where B(q) = <é(y)0 (—y+/€/\/§))>y and A(g) =

(008 (~v+r/va) (~y+r/v3)") . Further ¢* =
argming ¢A(q), and considering the derivatives of ¢A(q)
for ¢ — 0 and ¢ — o0, one may show that condition (3)
assures that ¢A(q) does have a minimum.

Equation (7) shows that optimal generalization per-
formance is achieved on this scale in the limit of large a.
Remarkably, as long as K > L, the asymptote is invari-
ant to the choice of the kernel since A(q) and B(q) are
defined solely in terms of the target rule.

Our next goal is to understand cases where the ker-
nel is a general function of the inner product or of the
distance between the vectors. The kernel must be pos-
itive semidefinite so that Mercer’s theorem assures that
k(z,y) = ¥(z)-¥(y) for a suitable mapping of the inputs
into a Hilbert space. We still assume that the target rule
is of finite complexity, i.e. defined by a polynomial and
corrupted by noise and that the number of examples is
polynomial in N. Remarkably, the more general kernels
then reduce to the polynomial case in the thermodynamic
limit.

Since it is difficult to find a description of the Hilbert
space for k(z, y) which is useful for a statistical mechanics
calculation, our starting point is the dual representation:
The weight vector w* defining the maximal margin hy-
perplane P can be written as a linear combination of the
feature vectors ¥(z#) and hence w* - ¥(y) = o(y), where

o(y) =Y Au"k(z",y). ®)

p=1

By standard results of convex optimization theory the \¥
are uniquely defined by the Kuhn-Tucker conditions A# >
0, o(z*) > k (for all patterns), further requiring that for
positive A\* the second of the two inequalities holds as an
equality. One also finds that w* -w* = 377" | A, and for
a polynomial kernel we thus obtain a bound on 3770, A,
since w* - w* is O(m).

We first consider kernels ¢(z - y), with a general con-
tinuous function ¢ of the inner product, and assume that
¢ can be approximated by a polynomial f in the sense
that ¢(1) = f(1) and ¢(2) — f(2) = O(zK) for z — 0.
Now, with a probability approaching 1 with increasing
N, the magnitude of z* - z” is smaller than, say, N—1/3
for all different indices p and v as long as m is poly-
nomial in N. So, considering Eq. (8), for large N the
functions ¢(z) and f(z) will only be evaluated in a small
region around zero and at z = 1 when used as kernels of
a SVM trained on m = aNy, examples. Thus for large N
and K > 3L the solution of the Kuhn-Tucker conditions
for f converges to the one for ¢. So Egs. (6,7) can be
used to calculate the generalization error for ¢ by setting
w = ¢W(0)/1! for I = 1,...,L, when ¢ is analytical .
Note that results in [3] assure that g > 0 if the kernel
¢(x - y) is positive definite for all input dimensions N.
Further, the same reduction to the polynomial case will
hold in many instances where ¢ is not analytical but just
sufficiently smooth close to 0.

We next turn to radial basis function kernels where
k(z,y) depends only on the Euclidean distance between
two inputs, k(z,y) = ®(|z — y|?). For binary input com-
ponents (z; = =N ~'/2) this is just the inner product
case since ®(|z — y|?) = ®(2 — 2z - y). However, for more
general input distributions, e.g. Gaussian input compo-
nents, the fluctuations of |z| around its mean value 1
have the same magnitude as z - y even for large N, and
an equivalence with inner product kernels is not evident.

Our starting point is the observation that any kernel
®(|z — y|?) which is positive definite for all input dimen-
sions N is a positive mixture of Gaussians [5]. More
precisely ®(z) = [;° e %2 da(k) where the transform
a(k) is nondecreasing. For the special case of a sin-
gle Gaussian one easily obtains features ¥, by rewriting
®(|z — y|?) = e lz=v*/2 = ¢=Ie*/2¢2ve=1v°/2 Expand-
ing the kernel e*¥ into polynomial features, yields the
features ¥,(x) = e_|z|2/2mp/\/w for ®(|z — y|?). But,



for a generic weight vector w in feature space,

w-¥(r) = w, ¥, ( = e3laf wp udi 9
(2) ; (2) ; T 9)

is of order 1, and thus for large N the fluctuations of |z|
can be neglected.

This line of argument can be extended to the case
that the kernel is a finite mixture of Gaussians, ®(z) =
>y a;e~"#/2 with positive coefficients a;. Applying
the reasoning for a single Gaussian to each term in the
sum, one obtains a doubly indexed feature vector with
components ¥, ;(z) = e~ % 1217/2(qy 21?1 /| p|1)1/ 2. Tt is
then straightforward to adapt the calculation of the par-
tition function (Eq. 1 - 6) to the doubly indexed features,
showing that the kernel ®(|z—y|?) yields the same gener-
alization behavior as the inner product kernel ®(2—2z-y).
Based on the calculation, we expect the same equivalence
to hold for general radial basis function kernels, i.e. an
infinite mixture of Gaussians, even if it would be involved
to prove that the limit of many Gaussians commutes with
the large N limit.

To illustrate the general results we first consider a sce-
nario where a linear target rule, corrupted by additive
Gaussian noise, is learned using different transcendental
RBF kernels (Fig. 1). While Eq. (7) predicts that the
asymptote of the generalization error does not depend on
the kernel, remarkably, the dependence on the kernel is
very weak for all values of a. In contrast, the general-
ization error depends substantially on the nature of the
noise process. Figure 2 shows the finding for a quadratic
rule with additive noise for the cases that the noise is
Gaussian and binary. In the Gaussian case a 1/a decay
of €5 t0 €min is found, whereas for binary noise the decay
is exponential in a. Note that in both cases the order
parameter r approaches 1 as 1/a.

The general characterization of learning curves ob-
tained in this Letter demonstrates that support vector
machines with high order or even transcendental ker-
nels have definitive advantages when the training data
is noisy. Further the calculations leading to Eq. (6)
show that maximizing the margin is an essential ingredi-
ent of the approach: If one just chooses any hyperplane
which classifies the training data correctly, the scale of
the learning curve is not determined by the target rule
and far more examples are needed to achieve good gen-
eralization. Nevertheless our findings are at odds with
many of the current theoretical motivations for maximiz-
ing the margin which argue that this minimizes the effec-
tive VC-dimension of the classifier and thus ensures fast
convergence of the training error to the generalization
error [1,2]. Since we have considered hard margins, in
contrast to the generalization error, the training error is
zero, and we find no convergence between the two quan-
tities. But close to optimal generalization is achieved
since maximizing the margin biases the SVM to explain

as much as possible of the data in terms of a low order
polynomial. While the Statistical Physics approach used
in this Letter is only exactly valid in the thermodynamic
limit, the numerical simulations indicate that the theory
is already a good approximation for a realistic number of
input dimensions.
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FIG. 1. Linear target rule corrupted by additive Gaussian
noise n ({n) = 0, (n°) = 1/16) and learned using different
kernels. The curves are the theoretical prediction; symbols
show simulation results for N = 600 with Gaussian inputs
and error bars are approximately the size of the symbols. (A)
Gaussian kernel, ®(z) = e™** with k = 2/3. (B) Wiener
kernel given by the nonanalytic function ®(z) = e °V*. We
chose ¢ =~ 0.065 so that the theoretical prediction for this
case coincides with (A). (C) Gaussian kernel with k = 1/20,
the influence of the parameter change on the learning curve
is minimal. (D) Perceptron, ¢(z) = z. Above a. =~ 7.5
vanishing training error cannot be achieved and the SVM is
undefined. (E) Kernel invariant asymptote for (A,B,C).



a=P / N2

FIG. 2. A noisy quadratic rule (71 = 0, 7> = 1) learned
using the Gaussian kernel with £ = 1/20. The upper curve
(simulations ®) is for additive Gaussian noise as in Fig. 1.
The lower curve (simulations m) is for binary noise, 7+ s with
equal probability. We chose s = 0.20 so that the value of €min
is the same for the two noise processes. The inset shows that
€4 decays as 1/a for Gaussian noise, whereas an exponential
decay is found in the binary case. The dashed curves are the
kernel invariant asymptotes. The simulations are for N = 90
with Gaussian inputs, and standard errors are approximately
the size of the symbols.



