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Abstract: This paper presents a new general synthesis method for high-order current 
mode Operational Transconductance Amplifiers and Capacitors, (OTA-C) filters. The 
method is based on the analytical solution of a single, nth-order generic filter transfer 
function and the generation of n, number of realizable transfer functions implemented 
using lossless integrators. The method provides systematic synthesis approach to high-
order OTA-C filters. Furthermore, the method generates circuits that are optimal in terms 
of components count, and without trading off any of the VLSI features of OTA-C filters. 
Simulation results are included validating the synthesis method. 
 
Index Terms---Synthesis, Active filters, Operational transconductance amplifiers 
  

I. INTRODUCTION 
An elegant solution to a filter synthesis problem is to decompose analytically the required 
filter transfer function into a set of equations that can be realized using simple analog 
processing blocks such as integrators. This analytical approach is demonstrated in [1] in 
the case of the well-known 2nd-order Tow-Thomas active RC biquad. Analytical synthesis 
has benefits; for example the ability to generate filter circuits in a systematic and 
structured way, and the ability to obtain filter circuits with different transfer functions 
simply by suitable choice of equations. Also, analytical synthesis offers the designer 
explicit relations that provide insight into the filters behaviour.  
 
Despite the importance of analytical synthesis approach, few methods have been reported 
[2-7, 11]. In [2-6], the synthesis of voltage-mode OTA-C filters was considered, and in [6- 
7, 11], the structure generation of current-mode OTA-C second-order filters was proposed. 
Probably, one of the main reasons for the lack of reported work on analytical synthesis of 
high-order active filters is due to the difficulties involved in developing a coherent 
approach for solving a single complex equation representing an nth-order filter transfer 
function with different responses; under the constraint that the generated set of equations 
should be realizable using simple circuitry. Also, mechanisms need to be developed for 
managing efficiently the intermediate solutions generated throughout the synthesis 
process, and deriving meaningful conclusions from the final solutions. The motivation of 
this work is to develop an efficient analytical synthesis approach for high-order current 
mode OTA-C filters. Such filters have become a creditable alternative to switched-
capacitor filters, recent examples ([8]–[10] and the references cited therein). The main 
contributions of this paper are: firstly a new analytical synthesis method for current mode 
high-order OTA-C filters is proposed. Secondly, generation of OTA-C filter circuits that 
contain the least number of passive and active elements for a given filter order and 
function when compared with some recent previous works.  
  
The paper is organized as follows. Section II, introduces the new synthesis method, 
Sections III and IV, provide design examples and conclusion, respectively.  
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II. NEW SYNTHESIS METHOD 

The method is basically based on the analytical decomposition of a single, nth-order 
generic filter transfer function into n, number of first order current mode transfer functions 
produced following the application of a succession of innovative algebra manipulation 
operations. The simple transfer functions are realized using integrator circuits with 
suitably selected current injection(s) at their inputs and connected using easy-to-follow 
rules, to yield the required filter order and function (low-pass, high-pass, band-pass, band-
reject, all-pass).  
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Fig.1. Nth-order OTA-C generic filter structure of the new synthesis method 

 
The nth-order generic filter structure of the new synthesis method is shown in Fig.1, 
where In, In-1, …… , I0 are the filter input currents whose setting determine the filter 
function (LP, HP, BP, BR, AP) as shown later, and "

outI  is the filter current output. The 
filter structure of Fig.1 was obtained as follows.  
 
The general transfer function of an nth-order filter, where the value of the coefficients (an , 
an-1 , an-2, …., a1, a0) determine the filter function is:   
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Cross multiply Eq. (3), divide by ansn, and re-arrange, we obtain 
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 for i = 1, 2, 3, ……, n-1, n,                                        (5) 

  
the last three terms of Eq. (4) have been re-arranged as 
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Generally, Eq. (4) becomes: 
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Then from Eq. (6), we have the following (n-1) individual equations: 
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Fig.2. OTA-C realization of the integrator given by Eq. (7a) 
 
Eq.(7a) represents an integrator, and can be realized using the circuit shown in Fig. 2, 
where a0 is the transconductance of the OTA, and a1 is the value of the capacitor. 
Implementing Eqs. 7(b) using similar circuits to that shown in Fig.2, the combination of 
the individual circuit yields the generic filter structure shown in Fig.1, a part from the two 
currents, nI  and "

outI , marked bold in Fig. 1. Note that all the OTA’s are single-input 
active elements. The multiple output terminals of the OTA with transconductance an-1 are 
easily obtained by using current mirrors. 
Up to this point, only '

outI  of the general transfer function has been implemented. Now,  
"
outI  of  Eq. (1) is implemented. From Eq. (2),  
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This equation can be re-written as 
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Let,  In-1=In-2=In-3=……=I1=I0=In in Eq. (3) gives 
 

01......3
3

2
2

1
1

01......3
3

2
2

1
1'

asansnansnansnansna

asansnansnansna
nI

outI
+++−

−+−
−+−

−+

+++−
−+−

−+−
−=                          (9) 

 
Substituting Eq. (9) into Eq. (8) yields: 
 

'"
outnout III −=                                                                                                         (10) 

 
Eq.(10) is easily realized as shown marked bold in the circuit of Fig. 1 but "

outI = "outI  
under the only condition: =−=−= 21 nInInI … inIII === 01 . Note if all the input currents of 
the structure in Fig. 1 are equal, i.e., innnnn IIIIIII ======= −−− 01321 .......... , then 
the circuit shown in Fig.1 implements a high-pass filter of nth-order. To generate other 
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filtering functions beside high-pass from the circuit shown in Fig. 1, suitable setting of the 
filter input currents are needed as follows. Substituting Eq. (3) into "

outI '
outn II −= , shown 

in Fig. 1, yields 
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This shows that if an nth-order inverting low-pass filter is required, setting I0=Iin, and 
I1=I2=I3=……=In-2=In-1=In=0 in Eq. (11) will produce a low-pass response.  
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Fig.3. 6th-order band-pass OTA-C filter obtained using the new synthesis method 
 

Other filter transfer functions are obtained according to input current conditions: 
 
(i) Band-pass: If n is even, then I(n/2)=Iin, whilst all the other input currents are zero.  If n is 
odd, then the input current Iin, is applied to either I[(n/2)-(1/2)] or I[(n/2)+(1/2)].  For example, 
Fig.3 shows a 6th-order band-pass filter using the new synthesis technique. The filter 
output is 
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(ii) Band-reject: Set In=In-1=In-2=……=I1=Iin, and I0=0.  

 
(iii) All-pass: If n is even, then In=Iin, In-1=2Iin, In-2=0, In-3=2Iin, In-4=0, …, I2=0, I1=2Iin and 
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I0=0. If n is odd, then In=Iin, In-1=2Iin, In-2=0, In-3=2Iin, In-4=0, …, I2=2Iin, I1=0 and I0=2Iin . 
 
If we  replace the transconductances a0, a1, a2, ……, an-2, and an-1 with g1, g2, g3, ……, gn-

1, and gn, and the capacitors a1, a2, a3, ……, an-1, and an with C1, C2, C3, ……, Cn-1, and Cn 
in Fig. 1. Then the transfer function of the circuit in Fig. 1 is shown as follows. 
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Note that the transfer function shown in Eq. (13) has the same denominator as that 
proposed in [18].  
 
A comparison in terms components count (passive and active) between filters generated 
using the new synthesis method and five recently proposed methods is given. In [12] a 
method for the design of high order OTA based filters using coupled biquads was 
proposed. It was shown that a 5th -order all-pole low-pass filter has seven OTAs and seven 
grounded capacitors. Using the proposed synthesis method, 5th -order low-pass filter has 
five OTAs and five grounded capacitors. Also, it was shown in [12], that a 6th-order band-
pass filter has nine OTAs, and six grounded capacitors, compared with six OTAs and six 
grounded capacitors when the new method is used. Consider the work in [13], it was 
shown that using the inductor substitution method five OTAs, and three grounded 
capacitors are required in the case of a 3rd-order low-pass filter, and six OTAs and three 
grounded capacitors in the case a 3rd-order high-pass filter. Using the new method, 3rd-
order low-pass and high-pass filters have three OTAs and three grounded capacitors. 
Consider the method in [14], it was shown that a 2nd -order notch filter or 2nd -order high-
pass filter has three OTAs, two grounded capacitors and a resistor, compared with two 
OTAs and two grounded capacitors when the proposed synthesis method is used to design 
the same filters. In [15], a method for designing current mode OTA-C filters based on 
simulation of LC ladder was reported. Although, the method produce filters that have n, 
single-ended OTAs and n, grounded capacitors, but they also require current amplifiers 
and buffers, increasing the complexity of the filter circuit. In [16], a general class of 
current-mode high-order OTA-C filters by employing a current-mode integrator and a 
proportional block as basic building units was proposed. It was shown that six OTAs and 
four grounded capacitors are required to realise a fourth-order filter. However, only four 
OTAs and four grounded capacitors are required to realise the same filter by using the 
proposed analytical synthesis method.  

 
III. DESIGN EXAMPLES 

To verify the theoretical analysis of the proposed synthesis method, two filters have been 
synthesized and simulated using P-Spice. All presented simulation results have been 
carried out using the multiple output transistor-level OTA circuit given in [17], with level 
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2 models. The first filter is a 3rd-order all-pass having the normalized transfer 
function, ( ) ( )22/22 2323 +++−+− ssssss , with a centre frequency of 1 MHz. The filter 
components are: a0=95 µS, a1=a2=190 µS for transconductances; and a3=15 pF, a1=a2=30 
pF for capacitor values. The all-pass filter circuit and simulated phase frequency response 
are shown in Figs. 4 and 5 respectively. As can be seen from Fig. 5, there is a close 
agreement between theory and simulation. It should be noted that the all-pass filter has a 
magnitude deviation in the pass-band of -0.593dB (=20log0.934dB), compared to the 
0dB(=20log1dB) deviation in the ideal case. The second filter is a 6th-order band-pass 
filter. The filter circuit and simulated magnitude frequency response are shown in Figs. 3 
and 6, respectively. The filter component values are: a0=a1=a2=a3=a4=a5=95µS for 
transconductances, and a1=a2=a3=a4=a5=a6=15pF for capacitor values. Again, as can be 
seen there is a good agreement between theory and simulation. Note we have used the 
same labelling (ai) to represent the transconductance of the OTAs and the capacitor values 
to ensure consistency with the synthesis method described in Section II. The need for 
using the same symbols for transconductances and capacitors comes from the fact that the 
presented method is an analysis starting from the nth-order transfer function, deriving step 
by step, and then generating n equations realizable for simple OTA-C circuits. Other 
filters with different orders and responses including low-pass, and high-pass, have been 
simulated using the presented synthesis method and found to perform as theory predict.  
 

IV. CONCLUSION 
It has been shown that it is possible to synthesis high-order current mode OTA filters 
using an analytical approach. A new synthesis method and its associated filtering structure 
have been presented. The method produces filters that have the least number of passive 
and active components; indeed they generate canonical structures. A useful feature of the 
synthesis method is that different filter orders and functions can be obtained from the 
general filter structure (Fig.1) by suitable selection of current injection(s) at the filter 
inputs. The presented method should provide valuable addition to the area of analog filter 
synthesis. Whilst this paper has focused on the analytical synthesis of current-mode OTA-
C filters, some of the presented algebra manipulation operations can be applied to voltage-
mode filters. However, there are still some challenging problems in developing a complete 
voltage-mode synthesis approach which is the subject of current research by the authors. 
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Fig. 4. 3rd-order current-mode all-pass OTA-C filter. 
 
 
 
 

  
 

 
Fig. 5. Phase-frequency response of circuit in Fig. 4 (---, theoretical; ooo, simulation.) 
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Fig. 6. Frequency response of circuit in Fig. 3 (---, theoretical; ooo, simulation.). 
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