
ETRAN’2003, Herceg Novi, 9-13 June 2003

A Secure Web-based Framework for Electronic Design
(invited paper)

Tom Kazmierski and Xing Q Yang
Dept of Electronics and Computer Science

University of Southampton
Southampton, SO17 1BJ, United Kingdom

tjk@ecs.soton.ac.uk, xqy199@ecs.soton.ac.uk

Abstract

This contribution presents the concept of a secure im-
plementation of a distributed, web-based electronic design
framework. Our two-tier client-webserver-toolserver archi-
tecture has been extended to support permanent databases
for collaborative, distributed design development. In the
sample application of the framework, developed in Java,
any of the servers can be based on Linux, MS Windows or
Sun-SPARC Java-servlet enabled server. The feasibility of
a secure, web-based design framework has been sufficiently
proved. The technological approach used to do this involves
the use of novel, yet tried and tested methods, taking where
appropriate from the rapidly advancing field of e-commerce
solutions.

1. Introduction

The aim of the work presented in this contribution is to
present the implementation of a secure web framework for
electronic system design. The convergence of the Internet
and distributed-object technologies has facilitated the recent
success of electronic markets and it is this convergence that
our project aims to take advantage of. A keynote presenta-
tion at the DAC 2000 Conference [10] outlined a concept
of how Internet-enabled designs will allow companies to
create global design groups to complete complex system-
on-chip systems. It was stated that ’the most important re-
source needed today is not ideas and it is not capital - it is
people’. The Internet is a great enabler and multiplier of
people resources. Our framework harnesses this concept,
building upon legacy design tool frameworks.

The Internet provides the ability to run multiple web-
browsers that can be used for a number of tasks, all of which

can be truly global. It is possible to run a web-based chat
system, a net-meeting style networked ’whiteboard’ and
web cameras concurrently with a web-based design tool to
allow design engineers based anywhere in the globe to dis-
cuss designs and simulate circuit modules. Having looked
at the current position of the Internet as a design framework
in the Electronic Design Automation world [1] it is clear
that there is a demand for globally accessible tools. Before
the concept will be accepted by tool manufactures, not only
there must be some system to enable charging customers,
either via a subscription or on a per use basis, but above all,
there must an assurance of secure data transfer and access.
Our project considers the development of a secure, session-
based framework to which the addition of some sort of sub-
scriber system should be straightforward.

Parallels can be drawn with the development of frame-
works in the Computer Aided Design environment, where
for many years the number of programs and Application
Programming Interfaces (API’s) have been increasing with
a corresponding rise in the variety of representations for dis-
play, storage and communication. The increasing desire for
flexible frameworks has led to the web being explored in
order to improve traditional areas of weakness in communi-
cation and display of the design process [7].

2 Web-based CAD tools and web technolo-
gies

The feasibility of a web-based CAD tool framework
has been established in a system based on the VHDL-
AMS compiler [4] using the Common Gateway Interface
and returning textual information. After considering the
work done in this area, it was clear that further research
was needed in order to increase the level of functionality
without compromising the system’s basic principles. The



Star-Hspice optimizing analog circuit simulator is Avant!’s
industrial-grade circuit analysis product for the simulation
of electrical circuits in steady-state, transient, and frequency
domains. It is sufficient for the moment to appreciate that
Star-Hspice is a command line driven application that reads
a set of input files and produces a set of output files. This is
a very common structure for legacy electronic design tools
and whilst it would be ideal to assume that tool vendors
would redesign their software with an internet-based frame-
work in mind it is clear that at there is some reluctance to
move in this direction. It is likely that these tool systems
will remain in use for some considerable time (especially
in academic institutions where savings can be made by uti-
lizing older versions of software) and would benefit from a
means of web-based access.

Whilst many solutions for dynamic web page generation
exist, it is clear that these do not provide the advanced nu-
merical processing abilities required for CAD framework.
A strong argument for using Java is that security measures
are an integral part of Java’s design. Other distributed solu-
tions cannot make this claim. The business end of the Java
security model [2] is conveniently described by using the
metaphor of the ’Sandbox’, which ensures that untrusted -
and possibly malicious - applications cannot gain access to
system resources.

2.1 Client to WebServer and Webserver to Tool
Servers Communication

The communication used from the client to the web
server is the standard HTTP (Hypertext Transfer Protocol)
protocol. This is the underlying protocol used by the World
Wide Web. HTTP defines how messages are formatted and
transmitted, and what actions Web servers and browsers
should take in response to various commands.

The communication used from the web server to the
client needs to be more functional then the standard http
protocol. Hence, the Java RMI (Remote Method Invoca-
tion) is used here.

The RMI Java technology is used here for transferring
and receiving files from the tool server and for invoking the
tools on the tool server.

RMI in general works by a client-server method. Our
tool server (server) application creates a remote objects that
contains all the methods we need on the tool server, makes
references to them so that they are accessible, and waits for
clients to invoke methods on these remote objects.

Our web server (client) application gets a remote refer-
ence to the remote objects in the tool server (server) and
then invokes methods on them. RMI provides the mecha-
nism by which the server and the client communicate and
pass information back and forth.

Figure 1. Two-tier web design framework.

3 Java-based implementation of the web
framework

It was clear from an earlier version of this project [4]
that some means of processing data gathered from a user
to launch appropriate code modules would be required. In
previous electronic design tool frameworks, this had come
in the form of proprietary central control software or a com-
mand shell. The Internet, as the environment of choice for
this project requires that a web server handle this function.

Whilst commercial web servers are available and indeed
are simple to administer there are a number of free, open
source web servers available that are written in Java and are
thus platform independent. The block diagram in figure 3
shows how all the Java servlets relate to each other. Web-
database and Groupdatabase are not servlets but Java ob-
jects that are initialized once and used by the Showsession
Servlet whenever it is needed. Since all the pages generated
are dynamic i.e created by a servlet, it is possible for each
and every servlet to perform a security check on the user to
determine whether to generate an appropriate web page or
to automatically redirect output to another page.

The Apache server is a powerful, flexible, HTTP/1.1
compliant web server that implements the latest protocols.
It is also highly configurable and extensible with third-party
modules for example Java Servlet and SSL modules. The
only set back was the lack of wizards and graphical admin-
istration tools for facilitating configuration and administra-
tion tasks. Hence some effort is required to install and con-
figure the server, once running it is very stable.

ApacheJserv is a free, open-source implementation
of Java Servlet and JavaServer Pages technologies.
ApacheJserv is not a stand-alone server and requires the
Apache web server. ApacheJserv works by communicat-
ing with the Apache server through a modjserv module.
Although, ApacheJserv only supports Java Servlet APIs 2.0
specification, this is not a problem, as it proved to be more

2



ShowSession

LoginHandler

WebDataBase

RemoveFileStatus

DeleteFile

GroupDataBase

AddRemoveFile

ShareFile

UploadTest

DeleteFileConfirm

ShareFileStatusShareFile2
(To share file)

ShareRemoveFile
(To unshare file)

DataGrapher

HSpiceEditor

HspiceControlle
r

HspiceConfirm

ShowSession

LoginHandler

WebDataBase

RemoveFileStatus

DeleteFile

GroupDataBase

AddRemoveFile

ShareFile

UploadTest

DeleteFileConfirm

ShareFileStatusShareFile2
(To share file)

ShareRemoveFile
(To unshare file)

DataGrapher

HSpiceEditor

HspiceControlle
r

HspiceConfirm

Figure 2. Java servlet configuration.

reliable then other Servlet containers tested with the Apache
server.

When a JavaServlet is requested from the Apache Web
Server, the server will first parse the request and pass it on
to the modjserv module. This opens a connection to the
ApacheJserv, authenticates the connection, a requests to the
relevant servlet is made and then it waits for a response.
This is possible because the servlet class must extend the
javax.servlet.Http.Servlet Java class that must implement
methods to handle get and post requests. The servlet can
use this information to specify what processing is required
to produce the correct response. When the response arrives,
it is encapsulated with the right http headers (based on web
server information and response information) and sent to
the http client

Once the web server had been installed a range of sim-
ple servlets and web pages were written in order to test the
basic functionality. These ranged from a blank web page
to a servlet to take input from the user in the form of text
and check boxes, process the data and return some derived
output to the user.

The multi-user nature of this framework requires the web
server to have either temporary or persistent (see section
3.1) ’memory’ of what actions users have already under-
taken so that it can prompt for the next stage. HTTP is by
definition a stateless protocol and as such maintains no such
’memory’. Java thankfully provides a session tracking API,
which makes the best use of the facilities available, such

as cookies, url-rewriting or hidden fields to maintain this
’memory’. Simple servlet code was written to implement
this session tracking which could then be integrated later in
the project. Java also provides a suite of classes to support
database applications, which we have used in our imple-
mentation.

The nature of the framework also requires that files (e.g.
netlists) be uploaded from a user’s computer to the web
server for processing. This is not as simple as it first ap-
pears. The file must be streamed through a Java Stream-
Reader classes in order to write out to the file system. Com-
mercial sensitivity of the transmitted information may re-
quire SSL-based secure protocols of data transfers between
both a client and the web server, and the web and tool
servers. Code was written to do this and it was thoroughly
tested to check that no characters were missing or changes
as this could have serious effects on a netlist or listing when
compiling.

Servlets can be combined to give a system, which will
uniquely record a user’s identification when writing the up-
loaded files to the web server file system. A system was
developed to store data about when files were written and
last accessed in order to allow the web server to recover in
the event of a crash and delete expired files.

3.1 Persistent data base for collaborative projects

In order to support collaborative and distributed design
team work, it is clearly important to choose an implementa-
tion that allows the management of persistent data objects,
such as records of design files and libraries. Java provides
the JDBC (Java Database Connectivity [3]) API for con-
necting Java applications, applets and servlets to databases.
This provides classes such as java.sql, which allows for very
simple remote and local database access.

Where a relational database is too complex and intro-
duces a large performance overhead for a given situation
it is advised that XML [6] be used in order to introduce a
standard to the persistent data format. This will allow the
sharing of data with any other tool or application that pro-
vides an XML.

Our current approach uses a system based on standard
java classes as shown in figure 3.1. This sample diagram
shows three registered users and three user files. The web
database is composed of a vector of users. The user objects
in turn comprise two vectors per each user, one of shared
files and one of users’ own files. This example illustrates
a situation where User A has a read-only access to file A,
which belongs to User B. User C owns file B and file C.

The database provides a number of security checks. For
example, whenever a user tries to access a file the UserFile
itself will determine whether the user should be given ac-
cess to it, by checking that the user is listed in the Users

3



User A

Files Owned

Shared Files

User B

Files Owned

Shared Files

User C

Files Owned

Shared Files

WebDatabase

UserFile

Owner User B
File A
Users Accessible:

UserFile

Owner User C
File B
Users Accessible:

UserFile

Owner User C
File C
Users Accessible:

User A

Files Owned

Shared Files

User A

Files Owned

Shared Files

User B

Files Owned

Shared Files

User B

Files Owned

Shared Files

User C

Files Owned

Shared Files

User C

Files Owned

Shared Files

WebDatabase

UserFile

Owner User B
File A
Users Accessible:

UserFile

Owner User B
File A
Users Accessible:

UserFile

Owner User C
File B
Users Accessible:

UserFile

Owner User C
File B
Users Accessible:

UserFile

Owner User C
File C
Users Accessible:

UserFile

Owner User C
File C
Users Accessible:

Figure 3. Web design database structure.

Access Vector.
The example described above only describes how files

can be shared between users. This can become tedious if
working in large groups, as each member of the team will
need to be given access to the same file. Therefore, a Group
database class was also implemented to solve this problem.
The group database comprised of a vector of groups. Each
group contains a user who is the group leader and has the
authority to add members and files to this group. The group
itself is structured so that the only member who is able to
add files to the group is the group leader and everyone else
has a read-only priority. If a member wanted to access a
group file it would first need to gain authorisation from the
group object other wise it is refused.

Our current implementation uses the MS Windows file
system, which for our testing purposes is satisfactory. In
order to stores files permanently on the system a structured
architecture for storing files was needed for each user so
that in case of a crash the Webdatabase and Groupdatabase
could be rebuild with out any loss of file, user and group re-
lationships. Therefore for each user a permanent directory
is kept for them containing configuration files if needed for
rebuilding the Webdatabase and Groupdatabase. These di-
rectories also contain their files that have been permanently
uploaded.

3.2 Waveform Graphing

Once the output file format (e.g. from an HSPICE simu-
lation) has been determined and output files have been dis-
sected and graphed with a spreadsheet package to check that
the algorithm for converting them was correct; methods for
drawing graphs in the user’s web browser were examined.

A suitable applet was developed in order to assess the fea-
sibility of this method. The applet is able to read a graph
data file from a local file system and plot two of the data
series contained within the file, one as the x-axis, the other
the y-axis. The series to plot were specified by initialization
parameters contained in the html that called the applet.

Figure 4. HSPICE results graph applet.

This applet proved the feasibility of the methods and
showed what was required for a networked solution. The
applet allows secure network transmission of the data.
Methods were written enabling the applet to communicate
with the web server (via a servlet) in order to gather the data
it requires from the graph data file stored on the webserver.
This involves the web server to perform the data process-
ing and the applet only needs to deal with plotting this data.
A sample html form created for the purpose of waveform
graphing is shown in figure 3.2. It shows user dialog boxes
and a graph plotted by the graph applet. A number of re-
mote HSPICE sessions were done using the applet in order
to determine what would be needed in terms of input files
and what would be produced. It was at this point that it
was decided that interaction with the file system of the tool
server could not be avoided. The original intention to use
directly streamed input and output to interact with the tools
would clearly not work because many files were being cre-
ated at once. It is possible to select that the output file of
graph data be in an ASCII format. Much work was under-
taken in order to understand the format of this file, which is
complex and contains all the data required to plot a graph
including header labels. A sample web form showing the
HSPICE editor is shown in figure 3.2. It should be noted
that the HSPICE command line invoker allows the passing
of a number of parameters with respect to the amount of
maximum amount of memory that the simulation is allowed
to use and other factors, which provide adequate security in
the case of badly specified netlists.

4



Figure 5. HSPICE results graph applet.

4 Security

Java is designed from the ground up for network-based
computing. Security measures are an integral part of Java’s
design. Other distributed solutions cannot make this claim.
From their inception, other distributed solutions utilizea
traditional execution model. The business end of the Java
security model [5] is conveniently described by using the
metaphor of the ’Sandbox’. The sandbox comprises a num-
ber of cooperating system components, ranging from se-
curity managers that execute as part of the application, to
security measures designed into the Java Virtual Machine
(JVM) and the language itself. The sandbox ensures that
an untrusted - and possibly malicious - application cannot
gain access to system resources. To implement sandboxes,
the Java platform relies on three major components: the
class loader, the byte-code verifier, and the security man-
ager. Each component plays a key role in maintaining the
integrity of the system. Broadly speaking, these compo-
nents serve the following purposes:

• Only the correct classes are loaded.

• The classes are in the correct format.

• Untrusted classes will not execute dangerous instruc-
tions.

• Untrusted classes are not allowed to access protected
system resources.

Also fundamental to the Java security model is the con-
cept of a Java Protected Domain. Their unique characteris-
tics can serve to extend the Java sandbox into the file sys-
tem thereby offering a powerful and independently flexible
facility. Java Protected Domains enable the use of ”per-
missions” by the user or can use a pre-configured default

setting. This type of capability serves to extend Java’s ex-
isting fine-grained control by allowing multiple and unique
permissions for individual applications. Collectively, these
and other integral features provide a highly secure and flex-
ible security model for the Java platform. The security of
the web-server [5] must be considered and in particular the
security of the requests made to the web-server and those
made to the tool servers. Using a Java based approach and
a Java based web server it should be a simple matter to im-
plement the industry standard Secure Sockets Layer (SSL)
technology which using public key cryptography provides a
range of security services:

• Server authentication.

• Client authentication (optional).

• Integrity.

• Confidentiality.

Communication between applets and the web-server can
be controlled by using the ’javakey’ system [3] to ’sign’ the
applet. Data is then only provided to an applet with the
correct signature. Communication links between the Client
and Web-Server, as well as the link between the Web-Server
and the Tool Server have been secured using an SSL (secure
socket layer) protocol, as shown in figure 4.

Client
Web

Check Certificate with
Certificate Authority
and extract WSPK.

Generate session key
and encrypt using

WSPK .

Web

Extract Session Key
using Web Server’s

private key

Request

Certificate [Web Server’s
Public Key (WSPK)]

WSPK [Session Key ]

T
IM

E

Client
Web Browser

Check Certificate with
Certificate Authority
and extract WSPK.

Generate session key
and encrypt using

WSPK .

Web
Server

Extract Session Key
using Web Server’s

private key

Request

Certificate [Web Server’s
Public Key (WSPK)]

WSPK [Session Key ]

T
IM

E

Figure 6. Secure data transfer protocol.

A secure connection ensures privacy, transmission in-
tegrity, authentication and authorization. Generally, all
these points can be achieved by using a combination of key
encryption of data, certificate exchanging and digital signa-
tures. These functions can be implemented at a higher level
but this would be tedious. Instead we have used OpenSSL.
This allows the above program to run normally whiles the
socket handles the algorithms, which are configured for the
security.

5



4.1 Client to Web Server Security

A Java package called Java Secure Socket Extension
(JSSE) is available for producing secure sockets that im-
plement the SSL protocol. However, it would have been
inefficient to add this socket to every servlet on the server.
Another approach, instead, is to use the web server to
produce a secure link with the client and to use it to
tunnel servlet results. OpenSSL and a special module
(ModSSL) for Apache were installed. OpenSSL is an open
source toolkit implementing the Secure Sockets Layer (SSL
v2/v3) and Transport Layer Security (TLS v1) protocols
as well as a full-strength general-purpose cryptography li-
brary. The ModSSL module provides strong cryptography
for the Apache Server with the help of the OpenSSL toolkit.
Once installed and configured a test certificate was created
and self signed to test the connection. ModSSL integrates
into the Apache server. This allows functionality for the
server to use the OpenSSL toolkit to create secured connec-
tions. When a visitor contacts the web server, accessing a
secured URL (indicated by a URL that begins with ”https:”
instead of just ”http:” or by a message from the browser).
The server responds, automatically sending the visitor the
site’s digital certificate, which authenticates the web server.
This certificate also contains the server’s public key. The
visitor’s web browser now generates a unique ”session key”
to encrypt all communications with the site. The visitor’s
browser encrypts the session key itself with the site’s pub-
lic key so only the site can read the session key. This is
how a secure session is established. It all usually takes only
seconds and requires no action by the user. Depending on
the browser, the user may see a key icon becoming whole
or a padlock closing, indicating that the session is secure.
There are a number of security levels that are available for
the server from just authenticating itself using certificates,
to encrypting all the data being transmitted between the user
and the server.

4.2 Web Server to Tool Server Security

Assuming that the whole system is behind a firewall then
the tool servers can be protected from attacks. As only
the Web Server would be viewable from the outside world.
However, if the tool server was not behind a firewall then
some sort of security needs to be applied. In the case of
some one else trying to use the tool server with out go-
ing through the web server, it can be programmed so that
the tool server only accepts connections from certain IP ad-
dresses i.e. the web server IP address. However, the link
still may not be secure and private. Therefore, our system
also implements secure connections by using JSSE (Java
Secure Socket Extension) package with RMI. This allows
us to create RMI sockets to uses the SSL protocol.

5 Conclusions

The constant development of electronic design tools
from standalone simulators through integrated single user
suites to network based systems such as the popular Ca-
dence system shows the continuing importance of these
tools to the electronic design world. The importance of the
Internet as an environment for a global Electronic Design
tool framework is clear. The feasibility of a web-based de-
sign framework has been sufficiently proved. The aim of
this project was to further this proof by providing a platform
independent framework supporting distributed tool servers
that is sufficiently abstracted to make the integration of
other tools a simple task. The technological approach used
to do this will in the most part use tried and tested meth-
ods, taking where appropriate from the rapidly advancing
field of e-commerce solutions. Research has shown that the
electronic design world is centered on command-line tools
that are the result of many years’ iterative growth and as
such it is a requirement of a web-based framework to be
able to integrate these tools and provide interfaces that en-
able internet based communication of parameters and data.

References

[1] C. Ajluni. Internet-enabled tools open doors to new de-
sign strategies.Electronic Design, Penton Media., 8(5), 6th
March 2000.

[2] B. Bettig and J. Shah. An object-oriented program shell
for integrating cad software tools.Advances in Engineer-
ing Software, 30:529–541, October 1 1999.

[3] J. Jaworski.Java 1.1 Developers Guide. Sams.net Publish-
ing, 2nd edition edition, 1997.

[4] T. Kazmierski and N. Clayton. A two-tier distributed elec-
tronic design framework. InProceedings DATE 2002, pages
227–231, Paris, March 2002.

[5] G. McGraw and E. Felten. Secure computing with java:
Now and the future. Whitepaper, Sun Microsystems Inc.,
1997.

[6] J. Morgenthal and B. L. Forge.Enterprise Application In-
tegration with XML and JAVA. Prentice Hall Publishing.,
2000.

[7] A. Newton. Impact of web technologies onEDA system
architectures. InProceedings ISPD’1998, Monterey, CA.
ISPD, April 6 1998.

[8] L. L. Peterson and B. S. Davie.Computer Networks, a
Systems Approach. Morgan Kaufman, 2nd edition edition,
2000.

[9] J. L. Rogers and A. O. Salas. Towards a more flexible web-
based framework for multidisciplinary design.Advances in
Engineering Software, 30:439–444, January 1 1998.

[10] A. Sangiovanni-Vincentelli. The internet: the nextIC design
wnvironment. InDAC’2000 Conference, Keynote presenta-
tion, June 2000.

[11] A. Weissinger. ASP in a Nutshell. O’Reilly & Associates
Inc, 2000.

6


