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Abstract

We present a general method using kernel Canonical Correlation Analysis to
learn a semantic representation to web images and their associated text. The
semantic space provides a common representation and enables a comparison
between the text and images. In the experiments we look at two approaches
of retrieving images based only on their content from a text query. We com-
pare the approaches against a standard cross-representation retrieval technique
known as the Generalised Vector Space Model.

Keywords: Canonical correlation analysis, kernel canonical correlation
analysis, partial Gram-Schmidt orthogonolisation, Cholesky decomposition,
incomplete Cholesky decomposition, kernel methods.
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1 Introduction

During recent years there have been advances in data learning using kernel
methods. Kernel representation offers an alternative learning to non-linear
functions by projecting the data into a high dimensional feature space to
increase the computational power of the linear learning machines, though this
still leaves open the issue of how best to choose the features or the kernel func-
tion in ways that will improve performance. We review some of the methods
that have been developed for learning the feature space.

• Principal Component Analysis (PCA) is a multivariate data analysis proce-
dure that involves a transformation of a number of possibly correlated variables
into a smaller number of uncorrelated variables known as principal components.
PCA only makes use of the training inputs while making no use of the labels.

• Independent Component Analysis (ICA) in contrast to correlation-based
transformations such as PCA not only decorrelates the signals but also reduces
higher-order statistical dependencies, attempting to make the signals as inde-
pendent as possible. In other words, ICA is a way of finding a linear not only
orthogonal co-ordinate system in any multivariate data. The directions of the
axes of this co-ordinate system are determined by both the second and higher
order statistics of the original data. The goal is to perform a linear transform
which makes the resulting variables as statistically independent from each other
as possible.

• Partial Least Squares (PLS) is a method similar to canonical correlation
analysis. It selects feature directions that are useful for the task at hand,
though PLS only uses one view of an object and the label as the corresponding
pair. PLS could be thought of as a method, which looks for directions that are
good at distinguishing the different labels.

• Canonical Correlation Analysis (CCA) is a method of correlating linear
relationships between two multidimensional variables. CCA can be seen as us-
ing complex labels as a way of guiding feature selection towards the underling
semantics. CCA makes use of two views of the same semantic object to extract
the representation of the semantics. The main difference between CCA and
the other three methods is that CCA is closely related to mutual information
(Borga 1998 [3]). Hence CCA can be easily motivated in information based
tasks and is our natural selection.

Proposed by H. Hotelling in 1936 [12], CCA can be seen as the problem of find-
ing basis vectors for two sets of variables such that the correlation between the
projections of the variables onto these basis vectors are mutually maximised.
In an attempt to increase the flexibility of the feature selection, kernelisation of
CCA (KCCA) has been applied to map the hypotheses to a higher-dimensional
feature space. KCCA has been applied in some preliminary work by Fyfe &
Lai [8], Akaho [1] and the recently Vinokourov et al. [19] with improved results.
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During recent years there has been a vast increase in the amount of mul-
timedia content available both off-line and online, though we are unable to
access or make use of this data unless it is organised in such a way as to
allow efficient browsing. To enable content based retrieval with no reference
to labeling we attempt to learn the semantic representation of images and
their associated text. We present a general approach using KCCA that can
be used for content [11] to as well as mate based retrieval [18, 11]. In both
cases we compare the KCCA approach to the Generalised Vector Space Model
(GVSM), which aims at capturing some term-term correlations by looking at
co-occurrence information.

This study aims to serve as a tutorial and give additional novel contribu-
tions in the following ways:

• In this study we follow the work of Borga [4] where we represent the
eigenproblem as two eigenvalue equations as this allows us to reduce the com-
putation time and dimensionality of the eigenvectors.

• Further to that, we follow the idea of Bach & Jordan [2] to compute a
new correlation matrix with reduced dimensionality. Though Bach & Jordan
[2] address a very different problem, they use the same underlining technique of
Cholesky decomposition to re-represent the kernel matrices. We show that by
using partial Gram-Schmidt orthogonolisation [6] is equivalent to incomplete
Cholesky decomposition, in the sense that incomplete Cholesky decomposition
can be seen as a dual implementation of partial Gram-Schmidt.

• We show that the general approach can be adapted to two different types
of problems, content and mate retrieval, by only changing the selection of
eigenvectors used in the semantic projection.

• To simplify the learning of the KCCA we explore a method of selecting
the regularization parameter a priori such that it gives a value that performs
well in several different tasks.

In this study we also present a generalisation of the framework for canoni-
cal correlation analysis. Our approach is based on the works of Gifi (1990) and
Ketterling (1971). The purpose of the generalisation is to extend the canonical
correlation as an associativity measure between two set of variables to more
than two sets, whilst preserving most of its properties. The generalisation
starts with the optimisation problem formulation of canonical correlation. By
changing the objective function we will arrive at the multi set problem. Ap-
plying similar constraint sets in the optimisation problems we find that the
feasible solutions are singular vectors of matrices, which are derived the same
way for the original and generalised problem.

In Section 2 we present the theoretical background of CCA. In Section 3
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we present the CCA and KCCA algorithm. Approaches to deal with the com-
putational problems that arose in Section 3 are presented in Section 4. Our
experimental results are presented In Section 5. In Section 6 we present the
generalisation framework for CCA while in Section 7 draws final conclusions.

2 Theoretical Foundations

Proposed by H. Hotelling in 1936 [12], Canonical correlation analysis can be
seen as the problem of finding basis vectors for two sets of variables such that
the correlation between the projections of the variables onto these basis vectors
are mutually maximised. Correlation analysis is dependent on the co-ordinate
system in which the variables are described, so even if there is a very strong
linear relationship between two sets of multidimensional variables, depending
on the co-ordinate system used, this relationship might not be visible as a cor-
relation. Canonical correlation analysis seeks a pair of linear transformations
one for each of the sets of variables such that when the set of variables are
transformed the corresponding co-ordinates are maximally correlated.

Consider a multivariate random vector of the form (x,y). Suppose we are
given a sample of instances S = ((x1,y1), . . . , (xn,yn)) of (x,y), we use Sx to
denote (x1, . . . ,xn) and similarly Sy to denote (y1, . . . ,yn). We can consider
defining a new co-ordinate for x by choosing a direction wx and projecting x

onto that direction
x → 〈wx,x〉

if we do the same for y by choosing a direction wy we obtain a sample of the
new x co-ordinate as

Sx,wx = (〈wx,x1〉, . . . , 〈wx,xn〉)

with the corresponding values of the new y co-ordinate being

Sy,wy = (〈wy,y1〉, . . . , 〈wy,yn〉)

The first stage of canonical correlation is to choose wx and wy to maximise
the correlation between the two vectors. In other words the function to be
maximised is

ρ = max
wx,wy

corr(Sxwx, Sywy)

= max
wx,wy

〈Sxwx, Sywy〉
‖Sxwx‖‖Sywy‖

If we use Ê [f(x,y)] to denote the empirical expectation of the function f(x,y),
were

Ê [f(x,y)] =
1

m

m
∑

i=1

f(xi,yi)
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we can rewrite the correlation expression as

ρ = max
wx,wy

Ê[〈wx,x〉〈wy,y〉]
√

Ê[〈wx,x〉2]Ê[〈wx,x〉2]

= max
wx,wy

Ê[w′
xxy′wy]

√

Ê[w′
xxx′wx]Ê[w′

yyy′wy]

follows that

ρ = max
wx,wy

w′
xÊ[xy′]wy

√

w′
xÊ[xx′]wxw

′
yÊ[yy′]wy

.

Where we use A′ to denote the transpose of a vector or matrix A.
Now observe that the covariance matrix of (x,y) is

C(x,y) = Ê

[

(

x

y

)(

x

y

)′
]

=

[

Cxx Cxy

Cyx Cyy

]

= C. (2.1)

The total covariance matrix C is a block matrix where the within-sets covari-
ance matrices are Cxx and Cyy and the between-sets covariance matrices are
Cxy = C ′

yx

Hence, we can rewrite the function ρ as

ρ = max
wx,wy

w′
xCxywy

√

w′
xCxxwxw

′
yCyywy

(2.2)

the maximum canonical correlation is the maximum of ρ with respect to wx

and wy.

3 Algorithm

In this section we will give an overview of the Canonical correlation analysis
(CCA) and Kernel-CCA (KCCA) algorithms where we formulate the optimisa-
tion problem as a generalised eigenproblem.

3.1 Canonical Correlation Analysis

Observe that the solution of equation (2.2) is not affected by re-scaling wx or
wy either together or independently, so that for example replacing wx by αwx

gives the quotient

αw′
xCxywy

√

α2w′
xCxxwxw

′
yCyywy

=
w′

xCxywy
√

w′
xCxxwxw

′
yCyywy

.

Since the choice of re-scaling is therefore arbitrary, the CCA optimisation prob-
lem formulated in equation (2.2) is equivalent to maximising the numerator
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subject to

w′
xCxxwx = 1

w′
yCyywy = 1.

The corresponding Lagrangian is

L(λ,wx,wy) = w′
xCxywy −

λx

2
(w′

xCxxwx − 1) − λy

2
(w′

yCyywy − 1)

Taking derivatives in respect to wx and wy we obtain

∂f

∂wx

= Cxywy − λxCxxwx = 0 (3.1)

∂f

∂wy
= Cyxwx − λyCyywy = 0. (3.2)

Subtracting w′
y times the second equation from w′

x times the first we have

0 = w′
xCxywy − w′

xλxCxxwx − w′
yCyxwx + w′

yλyCyywy

= λyw
′
yCyywy − λxw

′
xCxxwx,

which together with the constraints implies that λy − λx = 0, let λ = λx = λy.
Assuming Cyy is invertible we have

wy =
C−1

yy
Cyxwx

λ
(3.3)

and so substituting in equation (3.1) gives

CxyC−1
yy

Cyxwx

λ
− λCxxwx = 0

or

CxyC−1
yy

Cyxwx = λ2Cxxwx (3.4)

We are left with a generalised eigenproblem of the form Ax = λBx. We can
therefore find the co-ordinate system that optimises the correlation between
corresponding co-ordinates by first solving for the generalised eigenvectors of
equation (3.4) to obtain the sequence of wx’s and then using equation (3.3) to
find the corresponding wy’s.

As the covariance matrices Cxx and Cyy are symmetric positive definite
we are able to decompose them using a complete Cholesky decomposition
(more details on Cholesky decomposition can be found in section 4.2)

Cxx = Rxx · R′
xx

where Rxx is a lower triangular matrix. If we let ux = R′
xx

· wx we are able to
rewrite equation (3.4) as follows

CxyC−1
yy

CyxR−1′

xx
ux = λ2Rxxux

R−1
xx

CxyC−1
yy

CyxR−1′

xx
ux = λ2ux.

We are therefore left with a symmetric eigenproblem of the form Ax = λx.
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3.2 Kernel Canonical Correlation Analysis

CCA may not extract useful descriptors of the data because of its linearity.
Kernel CCA offers an alternative solution by first projecting the data into a
higher dimensional feature space

φ : x = (x1, . . .xn) 7→ φ(x) = (φ1(x), . . . , φN (x)) (n < N)

before performing CCA in the new feature space, essentially moving from the
primal to the dual representation approach. Kernels are methods of implicitly
mapping data into a higher dimensional feature space, a method known as the
”kernel trick”. A kernel is a function K, such that for all x, z ∈ X

K(x, z) =< φ(x) · φ(z) > (3.5)

where φ is a mapping from X to a feature space F . Kernels offer a great deal
of flexibility, as they can be generated from other kernels. In the kernel the
data only appears through entries in the Gram matrix, therefore this approach
gives a further advantage as the number of tuneable parameters and updating
time does not depend on the number of attributes being used.

Using the definition of the covariance matrix in equation (2.1) we can rewrite
the covariance matrix C using the data matrices (of vectors) X and Y , which
have the sample vector as rows and are therefore of size m × N , we obtain

Cxx = X ′X

Cxy = X ′Y.

The directions wx and wy (of length N) can be rewritten as the projection of
the data onto the direction α and β (of length m)

wx = X ′α

wy = Y ′β.

Substituting into equation (2.2) we obtain the following

ρ = max
α,β

α′XX ′Y Y ′β√
α′XX ′XX ′α · β′Y Y ′Y Y ′β

(3.6)

Let Kx = XX ′ and Ky = Y Y ′ be the kernel matrices corresponding to the two
representation. We substitute into equation (3.6)

ρ = max
α,β

α′KxKyβ
√

α′K2
xα · β′K2

yβ
. (3.7)

We find that in equation (3.7) the variables are now represented in the dual
form.
Observe that as with the primal form presented in equation (2.2), equation (3.7)
is not affected by re-scaling of α and β either together or independently. Hence
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the KCCA optimisation problem formulated in equation (3.7) is equivalent to
maximising the numerator subject to

α′K2
xα = 1

β′K2
yβ = 1

The corresponding Lagrangian is

L(λ, α, β) = α′KxKyβ − λα

2

(

α′K2
xα − 1

)

− λβ

2

(

β′K2
yβ − 1

)

Taking derivatives in respect to α and β we obtain

∂f

∂α
= KxKyβ − λαK2

xα = 0 (3.8)

∂f

∂β
= KyKxα − λβK2

yβ = 0. (3.9)

Subtracting β′ times the second equation from α′ times the first we have

0 = α′KxKyβ − α′λαK2
xα − β′KyKxα + β′λβK2

yβ

= λββ′K2
yβ − λαα′K2

xα

which together with the constraints implies that λα − λβ = 0, let λ = λα = λβ.
Considering the case where the kernel matrices Kx and Ky are invertible, we
have

β =
K−1

y K−1
y KyKxα

λ

=
K−1

y Kxα

λ

substituting in equation (3.8) we obtain

KxKyK
−1
y Kxα − λ2KxKxα = 0.

Hence

KxKxα − λ2KxKxα = 0

or
Iα = λ2α. (3.10)

We are left with a generalised eigenproblem of the form Ax = λx. We can
deduce from equation 3.10 that λ = 1 for every vector of α; hence we can
choose the projections wx to be unit vectors ji i = 1, . . . ,m while wy are the
columns of 1

λ
K−1

y Kx. Hence when Kx or Ky is invertible, perfect correlation can
be formed. Since kernel methods provide high dimensional representations such
independence is not uncommon. It is therefore clear that a naive application of
CCA in kernel defined feature space will not provide useful results. In the next
section we investigate how this problem can be avoided.
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4 Computational Issues

We observe from equation (3.10) that if Kx is invertible maximal correlation is
obtained, suggesting learning is trivial. To force non-trivial learning we intro-
duce a control on the flexibility of the projections by penalising the norms of
the associated weight vectors by a convex combination of constraints based on
Partial Least Squares. Another computational issue that can arise is the use
of large training sets, as this can lead to computational problems and degener-
acy. To overcome this issue we apply partial Gram-Schmidt orthogonolisation
(equivalently incomplete Cholesky decomposition) to reduce the dimensionality
of the kernel matrices.

4.1 Regularisation

To force non-trivial learning on the correlation we introduce a control on the
flexibility of the projection mappings using Partial Least Squares (PLS) to
penalise the norms of the associated weights. We convexly combine the PLS
term with the KCCA term in the denominator of equation (3.7) obtaining

ρ = maxα,β

α′KxKyβ
√

(α′K2
xα + κ‖wx‖2) · (β′K2

yβ + κ‖wy‖2))

= maxα,β

α′KxKyβ
√

(α′K2
xα + κα′Kxα) · (β′K2

yβ + κβ′Kyβ)
.

We observe that the new regularised equation is not affected by re-scaling of α
or β, hence the optimisation problem is subject to

(α′K2
xα + κα′Kxα) = 1

(β′K2
yβ + κβ′Kyβ) = 1

The corresponding Lagrangain is

L(λα, λβ, α, β) = α′KxKyβ

−λα

2
(α′K2

xα + κα′Kxα − 1)

−λβ

2
(β′K2

yβ + κβ′Kyβ − 1).

Taking derivatives in respect to α and β

∂f

∂α
= KxKyβ − λα(K2

xα + κKxα) (4.1)

∂f

∂β
= KyKxα − λβ(K2

yβ + κKyβ). (4.2)

Subtracting β′ times the second equation from α′ times the first we have

0 = α′KxKyβ − λαα′(K2
xα + κKxα) − β′KyKxα + λββ′(K2

yβ + κKyβ)

= λββ′(K2
yβ + κKyβ) − λαα′(K2

xα + κKxα).
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Which together with the constraints implies that λα−λβ = 0, let λ = λα = λβ.
Consider the case where Kx and Ky are invertible, we have

β =
(Ky + κI)−1K−1

y KyKxα

λ

=
(Ky + κI)−1Kxα

λ

substituting in equation 4.1 gives

KxKy(Ky + κI)−1Kxα = λ2Kx(Kx + κI)α

Ky(Ky + κI)−1Kxα = λ2(Kx + κI)α

(Kx + κI)−1Ky(Ky + κI)−1Kxα = λ2α

We obtain a generalised eigenproblem of the form Ax = λx .

4.2 Cholesky Decomposition

We describe some background information on direct factorisation methods on
triangular decomposition [13].

LU = A (4.3)

in which the diagonal elements of L are not necessarily unity. We consider
L ≡ (lij) then equation (4.3) implies

lkkukk = akk −
k−1
∑

p=1

lkpupk for k ≥ 2 (4.4)

ukj =
1

lkk



akj −
k−1
∑

p=1

lkpupj



 for j > k ≥ 2 (4.5)

lik =
1

ukk



aik −
k−1
∑

p=1

lipupk



 for i > k ≥ 2 (4.6)

Theorem 1. Let A be symmetric. If the factorisation LU = A is possible,
then the choice lkk = ukk implies lik = uki, that is, LLT = A.

Proof. Use equation (4.4) and induction on k.

A simple, non-singular, symmetric matrix for which the factorisation is not
possible is

(

0 1
1 0

)

On the other hand, if the symmetric matrix A is positive definite (i.e., x′Ax > 0
if x′x > 0), then the factorisation is possible. We have
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Theorem 2. Let A be symmetric, positive definite. Then, A can be factored in
the form

LL′ = A

Proof. If we define lkk = ukk =
√

bkk then we will obtain from the previous
equations LU = A where lik = uki

Incomplete Cholesky Decomposition

Complete decomposition of a kernel matrix is an expensive step and should be
avoided with real world data. Incomplete Cholesky decomposition as described
in [2] differs from Cholesky decomposition in that all pivots, which are below
a certain threshold are skipped. If M is the number of non-skipped pivots,
then we obtain a lower triangular matrix Gi with only M nonzero columns.
Symmetric permutations of rows and columns are necessary during the factori-
sation if we require the rank to be as small as possible (Golub and loan, 1983).

We describe the algorithm from [2] (with slight modification) :

Input NxN matrix K
precision parameter η

1. Initialisation: i = 1, K ′ = K, P = I, for j ∈ [1, N ], Gjj = Kjj

2. While
∑N

j=1 Gjj > η and i! = N + 1
• Find best new element: j∗ = argmaxj∈[i,N ]Gjj

• Update j∗ = (j∗ + i) − 1
• Update permutation P :

Pnext = I, Pnextii = 0, Pnextj∗j∗ = 0, Pnextij∗ = 1, Pnextj∗i = 1
P = P · Pnext

• Permute elements i and j∗ in K ′:
K ′ = Pnext · K ′ · Pnext

• Update (due to new permutation) the already calculated elements
of G: Gi,1:i−1 ↔ Gj∗,1:i−1

• Permute elements j∗, j∗ and i, i of G:
G(i, i) ↔ G(j∗, j∗)

• Set Gii =
√

Gii

• Calculate ith column of G:
Gi+1:n,i = 1

Gii

(

K ′
i+1:n,i −

∑i−1
j=1 Gi+1:n,jGij

)

• Update only diagonal elements: for j ∈ [i + 1, N ], Gjj = K ′
jj −

∑i
k=1 G2

jk

• Update i = i + 1
3. Output P , G and M = i

Output: an N × M lower triangular matrix G and a permutation matrix
P such that ‖P ′KP − GG′‖ ≤ η (appendix 1.2 for proof).

The algorithm involves picking one column of K at a time, choosing the
column to be added by greedily maximising a lower bound on the reduction
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in the error of the approximation. After l steps, we have an approximation of
the form K̃l = Gi

lG
′i
l, where Gi

l is N × l. The ranking of the N − l vectors
can be computed by comparing the diagonal elements of the remainder matrix
K − Gi

lG
′i
l.

Partial Gram-Schmidt Orthogonolisation

We explore the Partial Gram-Schmidt Orthogonolisation (PGSO) algorithm,
described in [6], as our matrix decomposition approach. ICD could been as
equivalent to PGSO as ICD is the dual implementation of PGSO. PGSO
works as follows; The projection is built up as the span of a subset of the
projections of a set of m training examples. These are selected by performing
a Gram-Schmidt orthogonalisation of the training vectors in the feature space.
We slightly modify the Gram-Schmidt algorithm so it will use a precision
parameter as a stopping criterion as shown in [2].

Given a kernel K from a training set, and precision parameter η:

Initialisations:

m = size of K, a N × N matrix
j = 1
size and index are a vector with the same length as K
feat a zeros matrix equal to the size of K
for i = 1 to m do

norm2[i] = Kii;

Algorithm:

while
∑

i norm2[i] > η and j! = N + 1 do
ij = argmaxi(norm2[i]);
index[j] = ij ;
size[j] =

√

norm2[ij ];
for i = 1 to m do

feat[i, j] =

“

k(di,dij
)−

Pj−1
t=1 feat[i,t]·feat[ij ,t]

”

size[j] ;

norm2[i] = norm2[i]− feat(i, j)· feat(i, j);
end;
j = j + 1

end;
return feat

Output:

‖K − feat · feat′‖ ≤ η where feat is a N × M lower triangular matrix
(appendix 1.2 for proof)

We observe that the output is equivalent to the output of ICD.

To classify a new example at location i:
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Given a kernel K from a testing set

for j = 1 to M
newfeat[j] = (Ki,index[j] −

∑j−1
t=1 newfeat[t] · feat[index[j], t])/size[j];

end;

The advantage of using the partial Gram-Schmidt orthonogolisation (PGSO) in
comparison to the incomplete Cholesky decomposition (as described in Section
4.2) is that there is no need for a permutation matrix P .

4.3 Kernel-CCA with PGSO

So far we have considered the kernel matrices as invertible, although in prac-
tice this may not be the case. In this Section we address the issue of using
large training sets, which may lead to computational problems and degeneracy.
We use PGSO to approximate the kernel matrices such that we are able to
re-represent the correlation with reduced dimensiality.

Decomposing the kernel matrices Kx and Ky via PGSO, where R is a lower
triangular matrix, gives

Kx =̃ RxR′
x

Ky =̃ RyR
′
y

substituting the new representation into equations (3.8) and (3.9)

RxR′
xRyR

′
yβ − λRxR′

xRxR
′
xα = 0 (4.7)

RyR
′
yRxR′

xα − λRyR
′
yRyR

′
yβ = 0. (4.8)

Multiplying the first equation with R′
x and the second equation with R′

y gives

R′
xRxR′

xRyR
′
yβ − λR′

xRxR′
xRxR′

xα = 0 (4.9)

R′
yRyR

′
yRxR′

xα − λR′
yRyR

′
yRyR

′
yβ = 0. (4.10)

Let Z be the new correlation matrix with the reduced dimensiality

R′
xRx = Zxx

R′
yRy = Zyy

R′
xRy = Zxy

R′
yRx = Zyx

Let α̃ and β̃ be the reduced directions, such that

α̃ = R′
xα

β̃ = R′
yβ

substituting in equations (4.9) and (4.10) we find that we return to the primal
representation of CCA with a dual representation of the data

ZxxZxyβ̃ − λZ2
xxα̃ = 0

ZyyZyxα̃ − λZ2
yyβ̃ = 0.
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Assuming that the Zxx and Zyy are invertible. We multiply the first equation
with Z−1

xx and the second with Z−1
yy

Zxyβ̃ − λZxxα̃ = 0 (4.11)

Zyxα̃ − λZyyβ̃ = 0. (4.12)

We are able to rewrite β̃ from equation (4.12) as

β̃ =
Z−1

yy Zyxα̃

λ

and substituting in equation (4.11) gives

ZxyZ
−1
yy Zyxα̃ = λ2Zxxα̃ (4.13)

we are left with a generalised eigenproblem of the form Ax = λBx. Let SS′

be equal to the complete Cholesky decomposition of Zxx such that Zxx = SS′

where S is a lower triangular matrix, and let α̂ = S′ ·α̃. Substituting in equation
(4.13) we obtain

S−1ZxyZ
−1
yy ZyxS−1′ α̂ = λ2α̂

We now have a symmetric generalised eigenproblem of the form Ax = λx.

KCCA Regularisation with PGSO

We combine the dimensiality reduction introduced in the previous Section 4.3
with the regularisation parameter (Section 4.1) to maximise the learning. Fol-
lowing the same approach in the previous section we can rewrite equations (4.1)
and (4.2) with the approximation of Kx and Ky as formulated in equations (4.7)
and (4.8) respectively, in the following manner

RxR′
xRyR

′
yβ − λ(RxR′

xRxR
′
x + κRxR′

x)α = 0

RyR
′
yRxR′

xα − λ(RyR
′
yRyR

′
y + κRyR

′
y)β = 0

Multiplying the first equation with R′
x and the second equation with R′

y gives

R′
xRxR′

xRyR
′
yβ − λR′

x(RxR′
xRxR′

x + κRxR′
x)α = 0 (4.14)

R′
yRyR

′
yRxR′

xα − λR′
y(RyR

′
yRyR

′
y + κRyR

′
y)β = 0 (4.15)

rewriting equation (4.14) with the new reduced correlation matrix Z as defined
in the previous Section 4.3, we obtain

ZxxZxyβ̃ − λZxx(Zxx + κI)α̃ = 0

ZyyZyxα̃ − λZyy(Zyy + κI)β̃ = 0.

Assuming that the Zxx and Zyy are invertible. We multiply the first equation
with Z−1

xx and the second with Z−1
yy

Zxyβ̃ − λ(Zxx + κI)α̃ = 0 (4.16)

Zyxα̃ − λ(Zyy + κI)β̃ = 0. (4.17)
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We are able to rewrite β̃ from equation (4.17) as

β̃ =
(Zyy + κI)−1Zyxα̃

λ

substituting in equation 4.16 gives

Zxy(Zyy + κI)−1Zyxα̃ = λ2(Zxx + κI)α̃

We are left with a generalised eigenproblem of the form Ax = λBx. Performing
a complete Cholesky decomposition on Zxx + κI = SS′ where S is a lower
triangular matrix. and let α̂ = S′α̃, substituting in equation (4.18)

S−1Zxy(Zyy + κI)−1ZyxS−1′ α̂ = λ2α̂.

We obtain a symmetric generalised eigenproblem of the form Ax = λx .

5 Experimental Results

In the following experiments the problem of learning semantics of multimedia
content by combining image and text data is addressed. The synthesis is ad-
dressed by the kernel Canonical correlation analysis described in Section 4.3.
We test the use of the derived semantic space in an image retrieval task that
uses only image content. The aim is to allow retrieval of images from a text
query but without reference to any labeling associated with the image. This
can be viewed as a cross-modal retrieval task. We used the combined multime-
dia image-text web database, which was kindly provided by the authors of [15],
where we are trying to facilitate mate retrieval on a test set. The data was di-
vided into three classes (Figure 1) - Sport, Aviation and Paintball - 400 records
each and consisted of jpeg images retrieved from the Internet with attached
text. We randomly split each class into two halves which were used as training
and test data accordingly. The extracted features of the data were used the
same as in [15] (detailed description of the features used can be found in [15]:
image HSV colour, image Gabor texture and term frequencies in text.

We compute the value of κ for the regularization by running the KCCA with the
association between image and text randomized. Let λ(κ) be the spectrum with-
out randomisation, the database with itself, and λR(κ) be the spectrum with
randomisation, the database with a randomised version of itself, (by spectrum
it is meant that the vector whose entries are the eigenvalues). We would like
to have the non-random spectrum as distant as possible from the randomised
spectrum, as if the same correlation occurs for λ(κ) and λRκ then clearly over-
fitting is taking place. Therefor we expect for κ = 0 (no regularisation) and
let j = 1, . . . , 1 (the all ones vector) that we may have λ(κ) = λR(κ) = j, since
it is very possible that the examples are linearly independent. Though we find
that only 50% of the examples are linearly independent, this does not affect the
selection of κ through this method. We choose κ so that the κ for which the
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Figure 1 Example of images in database.

difference between the spectrum of the randomized set is maximally different
(in the two norm) from the true spectrum.

κ = argmax‖λR(κ) − λ(κ)‖

We find that κ = 7 and set via a heuristic technique the Gram-Schmidt preci-
sion parameter η = 0.5 .

To perform the test image retrieval we compute the features of the images
and text query using the Gram-Schmidt algorithm. Once we have obtained
the features for the test query (text) and test images we project them into the
semantic feature space using β̃ and α̃ (which are computed through training)
respectively. Now we can compare them using an inner product of the semantic
feature vector. The higher the value of the inner product, the more similar the
two objects are. Hence, we retrieve the images whose inner products with the
test query are highest.

We compared the performance of our methods with a retrieval technique
based on the Generalised Vector Space Model (GVSM). This uses as a seman-
tic feature vector the vector of inner products between either a text query and
each training label or test image and each training image. For both methods we
have used a Gaussian kernel, with σ = max. distance/20, for the image colour
component and all experiments were an average of 10 runs. For convenience
we separate the content-based and mate-based approaches into the following
Subsections 5.1 and 5.2 respectively.

5.1 Content-Based Retrieval

In this experiment we used the first 30 and 5 α̃ eigenvectors and β̃ eigenvectors
(corresponding to the largest eigenvalues). We computed the 10 and 30 images
for which their semantic feature vector has the closest inner product with the
semantic feature vector of the chosen text. Success is considered if the images
contained in the set are of the same label as the query text (Figure 3 - retrieval
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example for set of 5 images).

Image Set GVSM success KCCA success (30) KCCA success (5)

10 78.93% 85% 90.97%

30 76.82% 83.02% 90.69%

Table 1 Success cross-results between kernel-cca & generalised vector space.
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Figure 2 Success plot for content-based KCCA against GVSM

In Tables 1 and 2 we compare the performance of the kernel-CCA algorithm and
generalised vector space model. In Table 1 we present the performance of the
methods over 10 and 30 image sets where in Table 2 as plotted in Figure 2 we
see the overall performance of the KCCA method against the GVSM for image
sets (1 − 200), as in the 200′th image set location the maximum of 200 × 600
of the same labelled images over all text queries can be retrieved (we only have
200 images per label). The success rate in Table 1 and Figure 2 is computed as
follows

success % for image set i =

∑600
j=1

∑i
k=1 countjk

i × 600
× 100

where countjk = 1 if the image k in the set is of the same label as the text query

present in the set, else countjk = 0. The success rate in Table 2 is computed as
above and averaged over all image sets.

As visible in Figure 4 we observe that when we add eigenvectors to the seman-
tic projection we will reduce the success of the content based retrieval. We
speculate that this may be the result of unnecessary detail in the semantic
projection. and as the semantic information needed is contained in the first
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Figure 3 Images retrieved for the text query: ”height: 6-11 weight: 235 lbs
position: forward born: september 18, 1968, split, croatia college: none”

Method overall success

GVSM 72.3%

KCCA (30) 79.12%

KCCA (5) 88.25%

Table 2 Success rate over all image sets (1 − 200).

few eigenvectors. Hence a minimal selection of 5 eigenvectors is sufficient to
obtain a high success rate.

5.2 Mate-Based Retrieval

In the experiment we used the first 150 and 30 α̃ eigenvectors and β̃ eigenvectors
(corresponding to the largest eigenvalues). We computed the 10 and 30 images
for which their semantic feature vector has the closest inner product with the
semantic feature vector of the chosen text. A successful match is considered if
the image that actually matched the chosen text is contained in this set. We
compute the success as the average of 10 runs (Figure 5 - retrieval example for
set of 5 images).

Image set GVSM success KCCA success (30) KCCA success (150)

10 8% 17.19% 59.5%

30 19% 32.32% 69%

Table 3 Success cross-results between kernel-cca & generalised vector space.

In Table 3 we compare the performance of the KCCA algorithm with the GVSM
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Figure 4 Content-Based plot of eigenvector selection against overall success
(%).

over 10 and 30 image sets where in Table 4 we present the overall success over
all image sets. In figure 6 we see the overall performance of the KCCA method
against the GVSM for all possible image sets.
The success rate in Table 3 and Figure 6 is computed as follows

success % for image set i =

∑600
j=1 countj

600
× 100

where countj = 1 if the exact matching image to the text query was present in
the set, else countj = 0. The success rate in Table 4 is computed as above and
averaged over all image sets.

Method overall success

GVSM 70.6511%

KCCA (30) 83.4671%

KCCA (150) 92.9781%

Table 4 Success rate over all image sets.

As visible in Figure 7 we find that unlike the Content-Based (Section 5.1)
retrieval, increasing the number of eigenvectors used will assist in locating the
matching image to the query text. We speculate that this may be the result
of added detail towards exact correlation in the semantic projection. Though
we do not compute for all eigenvectors as this process would be expensive
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Figure 5 Images retrieved for the text query: ”at phoenix sky harbor on july
6, 1997. 757-2s7, n907wa phoenix suns taxis past n902aw teamwork america
west america west 757-2s7, n907wa phoenix suns taxis past n901aw arizona at
phoenix sky harbor on july 6, 1997.” The actual match is the middle picture in
the first row.

and the reminding eigenvectors would not necessarily add meaningful semantic
information.

It is visible that the kernel-CCA significantly outperformes the GVSM method
both in content retrieval and in mate retrieval.

5.3 Regularisation Parameter

We next verify that the method of selecting the regularisation parameter κ
a priori gives a value performed well. We randomly split each class into two
halves which were used as training and test data accordingly, we keep this
divided set for all runs. We set the value of the incomplete Gram-Schmidt
orthogonolisation precision parameter η = 0.5 and run over possible values
κ where for each value we test its content-based and mate-based retrieval
performance.

Let κ̂ be the previous optimal choice of the regularisation parameter κ̂ = κ = 7.
As we define the new optimal value of κ by its performance on the testing set,
we can say that this method is biased (loosely its cheating). Though we will
show that despite this, the difference between the performance of the biased κ
and our a priori κ̂ is slight.

In table 5 we compare the overall performance of the Content Based (CB)
performance in respect to the different values of κ and in figures 8 and 9
we view the plotting of the comparison. We observe that the difference in
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Figure 6 Success plot for KCCA mate-based against GVSM (success (%) against
image set size).

κ CB-KCCA (30) CB-KCCA (5)

0 46.278% 43.8374%

κ̂ 83.5238% 91.7513%

90 88.4592% 92.7936%

230 88.5548% 92.5281%

Table 5 Overall success of Content-Based (CB) KCCA with respect to κ.

performance between the a priori value κ̂ and the new found optimal value
κ for 5 eigenvectors is 1.0423% and for 30 eigenvectors is 5.031%. The more
substantial increase in performance on the latter is due to the increase in the
selection of the regularisation parameter, which compensates for the substantial
decrease in performance (figure 6) of the content based retrieval, when high
dimensional semantic feature space is used.

κ MB-KCCA (30) MB-KCCA (150)

0 73.4756% 83.46%

κ̂ 84.75% 92.4%

170 85.5086% 92.9975%

240 85.5086% 93.0083%

430 85.4914% 93.027%

Table 6 Overall success of Mate-Based (MB) KCCA with respect to κ.

In table 6 we compare the overall performance of the Mate-Based (MB) per-
formance with respect to the different values of κ and in figures 10 and 11 we
view a plot of the comparison. We observe that in this case the difference in
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Figure 7 Mate-Based plot of eigenvector selection against overall success (%).
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Figure 8 Content-Based. κ selection over overall success for 30 eigenvectors.
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Figure 9 Content-Based. κ selection over overall success for 5 eigenvectors.
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Figure 10 Mate-Based. κ selection over overall success for 30 eigenvectors.
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Figure 11 Mate-Based. κ selection over overall success for 150 eigenvectors.

performance between the a priori value κ̂ and the new found optimal value κ
is for 150 eigenvectors 0.627% and for 30 eigenvectors is 0.7586%.

Our observed results support our proposed method for selecting the regu-
larisation parameter κ in an a priori fashion, since the difference between the
actual optimal κ and the a priori κ̂ is very slight.

6 Generalisation of Canonical Correlation Analysis

In this section we follow A. Gifi’s book “Nonlinear Multivariate Analysis” (1990)
and partially J. R. Ketterling “Canonical analysis of several sets of variables”
(1971).

6.1 Some notations

For an n × n square matrix A having elements {aij}, i, j = 1, . . . , n we can
define the trace by the formula

Tr(A) =
∑

i

aii (6.1)

the norm ‖ ‖F , so called the Frobenius norm, defined by

‖A‖F = Tr
(

A′A
)

=
∑

ij

a2
ij (6.2)

and if ai denotes the ith column(row) of A then we have

‖A‖F =
∑

i

‖ai‖2
2 =

∑

i

〈ai, ai〉 (6.3)

the notation ‖ ‖2 means the Euclidean, l2, norm of a vector.
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6.2 Some propositions

Proposition 3. Let an optimisation problem be given in the form

min
x,y

f(x, y) (6.4)

subject to (6.5)

g(y) = 0, (6.6)

x ∈ Rm, y ∈ Rn. (6.7)

Let the set Y ⊆ Rn the feasibility domain for y determined by the constrain
g(y) = 0.

Assume the function f is convex in both variables x and y, the optimal solution
of x can be expressed by the function h(y) of the optimal solution of y, where
the function of h is defined on the whole set Y and the functions f, g, h are
twice continuously differentiable on Rm × Y .

Then the optimisation problem with the same constrain

min
y

f(h(y), y) (6.8)

subject to (6.9)

g(y) = 0, (6.10)

y ∈ Rn, (6.11)

has the same optimal solution in y than equation (6.4) has.

Proof. Let the optimal solution of equation (6.4) be denoted by x1, y1 and for
equation (6.8) be denoted by y2.

Based on the condition of the proposition we have x1 = h(y1). Because
y1 is a feasible solution for equation (6.8) thus f(x1, y1) = f(h(y1), y1) ≥
f(h(y2), y2), but the objective function of equation (6.4) is not restricted in
the first variable, thus the inequality f(x1, y1) ≤ f(h(y2), y2) holds, hence
f(x1, y1) = f(h(y2), y2).

From the convexity of f and the same feasibility domains the optimum solutions
have to be the same.

6.3 Formulation of the Canonical Correlation

Let H(1),H(2) be matrices with size m × n1,m × n2 respectively and assume
the sum of the elements in the columns of these matrices are equal to 0, they
are centralised and they are linearly independent vectors within one matrix.
We consider arbitrary linear combinations of the columns of these matrices in

the form H(1)a
(1)
i ,H(2)a

(2)
i , i = 1, . . . , p. Let A(1) = a

(1)
1 , . . . , a

(1)
n1 and A(2) =

a
(2)
1 , . . . , a

(2)
n2 be matrices comprising the vectors of the linear combinations as
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columns. Introducing notations for the product of the matrices to simplify the
formulas:

Σij = H ′
(i)H(j), i, j = 1, 2. (6.12)

We are looking for linear combinations of the columns of these matrices such

that the first pair of the vectors (a
(1)
1 , a

(2)
1 ) are optimal solution of the optimi-

sation problem:

max
a
(1)
1 ,a

(2)
1

a
(1)′

1 Σ12a
(2)
1 (6.13)

subject to (6.14)

a
(1)′

1 Σ11a
(1)
1 = 1, (6.15)

a
(2)′

1 Σ22a
(2)
1 = 1. (6.16)

The meaning of this optimisation problem is to find the maximum correlation
between the linear combinations of the columns of the matrices H(1),H(2),
subject to the length of the vectors corresponding to these linear combinations
normalised to 1.

To determinate the remaining pairs of the vectors, columns in A(1) and A(2),
a series of optimisation problems are solved successively. For the pair of the

vectors (a
(1)
r , a

(2)
r ), r = 2, . . . , p we have

max
a
(1)
r ,a

(2)
r

a(1)′

r Σ12a
(2)
r (6.17)

subject to (6.18)

a(k)′
r Σkka

(k)
r = 1, (6.19)

a(k)′
r Σkka

(k)
j = 0, (6.20)

a(k)′
r Σkla

(l)
j = 0, (6.21)

k, l = 1, 2, j = 1, . . . , r − 1. (6.22)

The problem (6.13) expanded by the orthogonality constrains (6.17), namely
the components of every new pair in the iteration have to be orthogonal to the
components of the previous pairs.

The upper limit p of the iteration has to be ≤ min(rank(H(1)), rank(H(2))).

Applying the Karush-Kuhn-Tucker conditions we can express the optimal
solutions of the problem (6.13) and the problems (6.17) for r = 2, . . . , p. Let’s
begin with the problem (6.17).

First we apply a substitution such that

a
(k)
i = Σ

− 1
2

kk y
(k)
i , (6.23)

Dkl = Σ
− 1

2
kk ΣklΣ

− 1
2

ll , (6.24)

k, l = 1, 2, i = 1, . . . , p, (6.25)
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Thus we have the problem

max
y
(1)
1 ,y

(2)
1

y
(1)′

1 D12y
(2)
1 (6.26)

subject to (6.27)

y
(k)′

1 y
(k)
1 = 1, k = 1, 2. (6.28)

(6.29)

The Lagrangian of this problem has the form

L1 = y
(1)′

1 D12y
(2)
1 +

1

2
λ1(1 − y

(1)′

1 y
(1)
1 ) +

1

2
λ2(1 − y

(2)′

2 y
(2)
2 ), (6.30)

where λ1 and λ2 are the Lagrangian multipliers. The vectors of the partial

derivatives of L1respect to the vectors y
(1)
1 , y

(2)
1 are equal to 0 by the KKT

conditions, thus we get

∂L1

∂y
(1)
1

= 2D12a
(2)
1 − 2λ1y

(1)
1 = 0, (6.31)

∂L1

∂y
(2)
1

= 2D21y
(1)
1 − 2λ2y

(2)
1 = 0. (6.32)

Multiplying equation (6.31) by y
(1)′

1 and equation (6.32) by y
(2)′

1 and dividing
by the constant 2 provides

y
(1)′

1 D12y
(2)
1 − λ1y

(1)′

1 y
(1)
1 = 0, (6.33)

y
(2)′

1 D
′

12y
(1)
1 − λ2y

(2)′

1 y
(2)
1 = 0. (6.34)

Based on the constrains of the optimisation problem (6.26) and the identity
D

′

21 = D12 we have

λ1 = λ2 = y
(1)′

1 D12y
(2)
1 . (6.35)

After replacing λ1 and λ2 with λ the following equality system can be formulated

(

−λI D12

D21 −λI

)

(

y
(1)
1

y
(2)
1

)

= 0. (6.36)

It is not too hard to realise this equality system is a singular vector and value

problem of the matrix D12 having y
(1)
1 and y

(2)
1 are a left and a right singular

vectors and the value of the Lagrangian λ is equal to the corresponding singular
value. Based on this statements we can claim that the optimal solutions are
the singular vectors belonging to the greatest singular value of the matrix D12.

Considering the successive optimisation problem and applying similar sub-

stitution for the all variables a
(k)
i as introduced in equation (6.23), a problem

with the greatest r singular values and the corresponding left and right singular
vectors arises.
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6.4 The simultaneous formulation of the canonical correla-

tion

Instead of using the successive formulation of the canonical correlation we can
join the subproblems into one. The simultaneous formulation is the optimisation
problem

max
(a

(1)
1 ,a

(2)
1 ),...,(a

(1)
p ,a

(2)
p )

p
∑

i=1

a
(1)′

i Σ12a
(2)
i (6.37)

subject to (6.38)

a
(1)′

i Σ11a
(1)
j =

{

1 if i = j,
0 otherwise,

(6.39)

a
(2)′

i Σ22a
(2)
j =

{

1 if i = j,
0 otherwise,

(6.40)

i, j = 1, . . . , p, (6.41)

a
(1)′

i Σ12a
(2)
j = 0, (6.42)

i, j = 1, . . . , p, j 6= i. (6.43)

Based on equation (6.37) and the definition of the Frobenius norm we have a
compact formulation of the canonical correlation problem:

max
A(1),A(2)

Tr
(

A(1)′Σ12A
(2)
)

(6.44)

subject to (6.45)

A(k)′ΣkkA
(k) = I, (6.46)

a
(k)′

i Σkla
(l)
j = 0, (6.47)

k, l = {1, 2}, l 6= k, i, j = 1, . . . , p, j 6= i. (6.48)

where I is the identity matrix with size p × p.

Repeating the substitution in equation (6.23) the set of feasible vectors for
the simultaneous problem is equal to the left and right singular vectors of ma-
trix D12, hence the optimal solution is compatible to the successive problems.

6.5 Correlation versus Distance

The canonical correlation problem can be transformed into a distance problem
where the distance between two matrices is measured by the Frobenius norm.

min
A(1),A(2)

∥

∥

∥
H(1)A(1) − H(2)A(2)

∥

∥

∥

F
(6.49)

subject to (6.50)

A(k)′ΣkkA
(k) = I, (6.51)

a
(k)′

i Σkla
(l)
j = 0, (6.52)

k, l = 1, . . . , 2, l 6= k, i, j = 1, . . . , p, j 6= i. (6.53)
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Unfolding the objective function of the minimisation problem (6.49) shows the
optimisation problem is the same as the maximisation problem (6.44).

6.6 The generalisation of canonical correlation

Exploiting the distance problem we can give a generalisation of the canoni-
cal correlation for more than two known matrices. Given a set of matrices
{H(1), . . . ,H(K)} with dimension m × n1, . . . ,m × nK . We are looking for
the linear combinations of the columns of these matrices in the matrix form
A(1), . . . , A(K) such that they gives the optimum solution of the problem

min
A(1),...A(K)

K
∑

k,l=1

∥

∥

∥
H(k)A(k) − H(l)A(l)

∥

∥

∥

F
(6.54)

subject to (6.55)

A(k)′ΣkkA
(k) = I, (6.56)

a
(k)′

i Σkla
(l)
j = 0, (6.57)

k, l = 1, . . . ,K, l 6= k, i, j = 1, . . . , p, j 6= i. (6.58)

In the forthcoming sections we will show how to simplify this problem.

6.7 Total Distance versus Variance

Given a set of vectors X = x1, . . . , xm ⊆ Rn. The notation xki means the ith
component of the vector xk.

The total squared distance, the sum of the squared Euclidean distance of
all possible pairs of vectors in X is equal to

1

2

m
∑

k=1

m
∑

l=1,l 6=k

‖xk − xl‖2
2 = (6.59)

as for any k, ‖xk − xk‖ = 0 we can drop the constrain l 6= k, thus we have

=
1

2

m
∑

k=1,l=1

‖xk − xl‖2
2 = (6.60)

=
1

2

m
∑

k=1,l=1

n
∑

i=1

(xki − xli)
2 = (6.61)

=
1

2

m
∑

k=1,l=1

n
∑

i=1

(x2
ki + x2

li − 2xkixli) = (6.62)

=
1

2

n
∑

i=1





m
∑

k=1,l=1

x2
ki +

m
∑

k=1,l=1

x2
li −

m
∑

k=1,l=1

2xkixli



 (6.63)

=
1

2

n
∑

i=1

(

m

m
∑

k=1

x2
ki + m

m
∑

l=1

x2
li − 2

m
∑

k=1

xki

m
∑

l=1

xli

)

(6.64)
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to simplify the formula we introduce

M
(i)
1 =

1

m

m
∑

k=1

xki, M
(i)
2 =

1

m

m
∑

k=1

x2
ki, (6.65)

we can reformulate equation (6.64)

=

n
∑

i=1

(

m2M
(i)
2 − m2(M

(i)
1 )2

)

= (6.66)

applying the well-known identity of the variance for the vectors
(x11, . . . , xm1), . . . , (x1n, . . . xmn) gives

= m2
n
∑

i=1

m
∑

k=1

(xki − M
(i)
1 )2. (6.67)

Hence the total squared distance turns to be equal to the sum of the component-
wise variances of the vectors in X multiplied by the square of the number of
the vectors.

Another statement about the variance is introduced. If we have the following
optimisation problem

min
z

‖z − xk‖2
2, xk ∈ X and z ∈ Rn, (6.68)

then the optimal solution can be expressed by

zi =
1

n

m
∑

k=1

xki. (6.69)

The components of the optimal solution are equal to the mean values of the
corresponding components of the known vectors.

6.8 General form

Let H(1), . . . ,H(K) be a set of known matrices with size m × n1, . . . ,m × nK

and X be an unknown matrix with size m × p. The columns of the matrices
H(1), . . . ,H(K) are centralised, i.e. the mean of every column in every matrix
is equal to 0. We assume the columns of every matrix H(k), k = 1, . . . ,K
are linearly independent. A notation to simplify the formulas, is introduced;
Σkl = H(k)T H(l). We are looking for linear combinations of the columns of the
known matrices and a corresponding X such that they are the optimal solution
of the optimisation problem given by

min
X,A(1),...,A(K)

1

K

K
∑

k=1

∥

∥

∥X − H(k)A(k)
∥

∥

∥

F
(6.70)

subject to (6.71)

a
(k)′

i Σkla
(l)
j =

{

1 if k = l and i = j,
0 if (k = l and i 6= j) or (k 6= l and i 6= j),

(6.72)

k, l = 1, . . . ,K, i, j = 1, . . . , p, except when k 6= l and i = j, (6.73)
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where a
(k)
i denotes the ith column of the matrix A(k) containing the possible

linear combinations.

Applying substitutions for all k = 1, . . . ,K, i = 1, . . . , p

a
(k)
i = Σ

− 1
2

kk y
(k)
i , (6.74)

where we can compute the inverse because the columns of the matrix H(k) are
independent meaning Σkk has full rank. We can transform this optimisation
problem into a more simply form. First, we modify the set of constrains. To
make this modification readable the notation is introduced

Σ
− 1

2
kk ΣklΣ

− 1
2

ll = Dkl, k, l = 1, . . . ,K, (6.75)

where we exploit the symmetricity of the matrices Σ
− 1

2
kk .

Thus the constrains get the form

y
(k)′

i y
(k)
j =

{

1 if i = j,
0 if i 6= j,

(6.76)

k = 1, . . . ,K, i, j = 1, . . . , p, (6.77)

y
(k)′

i Dkly
(l)
j = 0, (6.78)

k, l = 1, . . . ,K, k 6= l, i, j = 1, . . . p, i 6= j, (6.79)

for which we can recognise the singular decomposition problems of the matrices
{Dkl}. If we consider the matrix Dkl for a fixed pair of the indeces k, l and
apply the singular decomposition we have

Dkl = Y (k)ΛklY
(l)′ , (6.80)

the matrices Y (k) and Y (l) have columns being equal to the vectors y
(k)
i and y

(l)
i

respectively, where i = 1, . . . , p. The singular decomposition Λkl is a diagonal
matrix and Y (k)′Y (k) = I, Y (l)′Y (l) = I. The constrains do not contain the
items having indeces with the properties k 6= l and i = j. They give the singular
values of the matrix Dkl

y
(k)′

i Dkly
(l)
i = Λii. (6.81)

The consequence of the singular decomposition form is that the set of the
feasible solutions of the optimisation problem with constrains (6.76) are equal
to the set of the singular vectors of the matrices {Dkl, k, l = 1 . . . ,K}.

To express the objective function of the optimisation problem (6.70) we use
the notations

Qk = H(k)Σ
− 1

2
kk , (6.82)

Dkl = QT
k Ql. (6.83)
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We can derive another statement about the optimal solution of the problem.
Exploiting the definition of the Frobenius norm the objective function (6.70)
can be rewritten as a sum of the Euclidean norm of the column vectors, where
xi denotes the ith column of the matrix X,

1

K

K
∑

k=1

∥

∥

∥
X − H(k)A(k)

∥

∥

∥

F
= (6.84)

=
1

K

K
∑

k=1

p
∑

i=1

∥

∥

∥xi − H(k)a
(k)
i

∥

∥

∥

2

2
= (6.85)

=
1

K

K
∑

k=1

p
∑

i=1

∥

∥

∥
xi − Qky

(k)
i

∥

∥

∥

2

2
= (6.86)

=
1

K

K
∑

k=1

p
∑

i=1

〈xi − Qky
(k)
i , xi − Qky

(k)
i 〉. (6.87)

The constrains are formulated in equation (6.76).

For the Lagrangian function of the optimisation problem we have:

L =
K
∑

k=1

p
∑

i=1

〈xi − Qky
(k)
i , xi − Qky

(k)
i 〉+ (6.88)

+

K
∑

k

p
∑

i

λk,ii

(

1 − y
(k)′

i y
(k)
i

)

+ (6.89)

+

K
∑

k

p
∑

i,j

i6=j

λk,ij

(

−y
(k)′

i y
(k)
j

)

+ (6.90)

+

K
∑

k,l

k 6=l

p
∑

i,j

i6=j

λkl,ij

(

−y
(k)′

i Dkly
(l)
j

)

. (6.91)

We disregard the constant 1
K

from the objective function (6.70).

After computing the partial derivatives, where xi signs the ith column of
the matrix X, we get

∂L

∂xi
=

K
∑

k=1

(

2xi − 2Qky
(k)
i

)

= 0, i = 1, . . . , p, (6.92)

∂L

∂y
(k)
i

= 2Dkky
(k)
i − 2Qk′

xi − 2λk,ij

p
∑

j

y
(k)
j − 2

K
∑

l

l 6=k

p
∑

j

j 6=i

λkl,ijDkly
(l)
j = 0,

(6.93)

k = 1, . . . ,K, i = 1, . . . , p. (6.94)
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We can express xi for any i = 1, . . . , p from (6.92)

xi =
1

K

K
∑

l=1

Qly
(l)
i , i = 1, . . . , p. (6.95)

Based on the proposition (3) we can replace the variable X in equation (6.70)
by an expression of the other variables without changing the optimum value
and the optimal solution. Thus we have the variance problem.

7 Conclusions

Through this study we have presented a tutorial on canonical correlation
analysis and have established a novel general approach to retrieving images
based solely on their content. This is then applied to content-based and mate-
based retrieval. Experiments show that image retrieval can be more accurate
than with the Generalised Vector Space Model. We demonstrate that one
can choose the regularisation parameter κ a priori that performs well in very
different regimes. Hence we have come to the conclusion that kernel Canonical
Correlation Analysis is a powerful tool for image retrieval via content. In the
future we will extend our experiments to other data collections.

In the procedure of the generalisation of the canonical correlation analysis
we can see that the original problem can be transformed and reinterpreted as a
total distance problem or variance minimisation problem. This special duality
between the correlation and the distance requires more investigation to give
more suitable description of the structure of some special spaces generated by
different kernels.

These approaches can give tools to handle some problems in the kernel space,
where the inner products and the distances between the points are known but
the coordinates are not. For some problems it is sufficient to know only the
coordinates of a few special points, which can be expressed from the known
inner product, e.g. to do cluster analysis in the kernel space and to compute
the coordinates of the cluster centres only.
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1 Proof ‖K − GiGi′‖ ≤ η

1.1 Some notation

Lemma 4. Let A and B be an square matrices such that Trace(A) =
∑n

i aii

then we have Trace(AB) = Trace(BA)
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Proof.

Trane(AB) =

n
∑

i

(ab)ii

=

n
∑

i,j

aijbji

=
n
∑

j,i

bjiaij

=

n
∑

j

(ba)jj

= Trace(BA)

Lemma 5. Let A be a symmetric matrix having eigenvalue decomposition equal
to A = V ′ΛV (we are able to write Λ = V ′AV ) and using Lemma 4, then
Trace(Λ) = Trace(A).

Proof.

Trace(Λ) = Trace(V ′AV )

= Trace((V ′A)V )

= Trace(V (V ′A))

= Trace(V V ′A)

= Trace(A)

Hence we show that the following holds

n
∑

i

aii =
n
∑

i

λi

Lemma 6. If we have a symmetric matrix A, the Euclidian norm is equal with
the maximum eigenvalue of A

Proof.

‖A‖ = max
x 6=0

‖Ax‖
‖x‖ .

For any c ∈ R the scaling does not change

‖cAx‖
‖cx‖ =

c‖Ax‖
c‖x‖ =

‖Ax‖
‖x‖
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Hence we obtain

max
x 6=0

‖Ax‖
‖x‖ = max

‖x‖=1
‖Ax‖

‖Ax‖ =
√

(x′A′Ax)

‖Ax‖2 = x′A′Ax

Let UDU ′ be the eigenvalue decomposition of AA′ such that D is a diagonal
matrix containing square of the eigenvalues of A

A′A = UDU ′

‖Ax‖2 = x′UDUx

Setting w = U ′x and as U is orthognoal we can rewrite ‖x‖ = 1 to ‖w‖ = 1

‖A‖2 = w′Dw

=
∑

λ2
i w

2
i

We can see that the following holds

max
(
P

w2
i =1)

∑

λ2
i w

2
i = max

i
λ2

i

Hence we obtain

‖A‖ = max
i

λi

1.2 Proof

Theorem 7. If K is a positive definite matrix and GG′ is its incomplete
cholesky decomposition then the Euclidian norm of GG′ subtracted from K is
less than or equal to the trace of the uncalculated part of K. Let ∆Ki be the
uncalculated part of K and let η = Trace(∆Ki) then ‖K − GiGi′‖ ≤ η.

Proof. Let GG′ be the being the complete cholesky decomposition K = GG′

where G is a lower triangular matrix were the upper triangular is zeros.

G =

[

A 0
B C

]

.

Let GiGi′ to be the incopmlete decomposition of K where i are the iterations
of the Cholesky factorization procedure

Gi = G1:n,1:i =

[

A
B

]

such that GiGi′ = K̃i, where K̃i is the approximation of K subject to a sym-
metric permutation of rows and columns. Assuming that the rows and columns



Proof ‖K − GiGi′‖ ≤ η 35

of K are ordered and no permutation is necessary (this is only for convenience

of the proof). Let ∆Ki = K − K̃i.
Let A ∈ G1:i,1:i , B ∈ Gi+1:n,1:i and C ∈ G1+i:n,1+i:n

K = GG′ =

[

AA′ AB′

BA′ BB′ + CC ′

]

K̃i = GiGi′ =

[

AA′ AB′

BA′ BB′

]

∆Ki =

[

0 0
0 CC ′

]

We show that CC ′ is positive semi-definite

CC ′ = Ki+1:n,i+1:n − K̃i
i+1:n,i+1:n

= Ki+1:n,i+1:n − BB′

= Ki+1:n,i+1:n − B · A−1A · B′

= Ki+1:n,i+1:n − B · A−1 · (AB′)

= Ki+1:n,i+1:n − Gi+1:n,1:i · G−1
1:i,1:i · K1:i,i+1:n

= Ki+1:n,i+1:n − Gi
i+1:n · Gi

1:i
−1 · K1:i,i+1:n

therefore

xCC ′x = < xC, (xC)′ >

≥ 0

λc ≥ 0

CC ′ is a positive semi-definite matrix, hence ∆Ki is also a positive semi-definite
matrix. Using Lemma 6 we are now able to show that

‖K − K̃i‖ = ‖∆Ki‖
‖K − GiGi′‖ = ‖∆Ki‖

=

n
∑

i

λiwi

= max
i

λi

As the maximum eigenvalue is less than or equal to the sum of all the eigenval-
ues, using Lemma 5, we are able to rewrite the expression as

‖K − GiGi′‖ ≤
n
∑

i

λi

≤ Trace(Λ)

≤ Trace(∆Ki
ii).

Therefore,
‖K − GiGi′‖ ≤ η.
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