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Abstract: A computationaly tractable finite word
length (FWL) closed-loop stability measure is derived
which is applicable to fixed-point, floating-point and
block-floating-point representation schemes. Both the
dynamic range and precision of an arithmetic schemeare
considered in this new unified measure. For each arith-
metic scheme, the optimal controller reaization prob-
lem is defined and a numerical optimization approach is
adopted to solve it. Two examples are used to illustrate
the design procedure and to compare the optimal con-
troller realizations in different representation schemes.
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1 Introduction

In recent years, there has been a growing interest in dig-
ital controller implementation which reduces the FWL
effects on closed-loop stability. It is well known that a
control law can be accomplished with different realiza-
tions and that the parameters of a controller realization
are represented by a digital processor of finite bit length
in a particular format, namely fixed-point, floating-point
or block-float-point format. Previousworks[1]-{4] have
derived some FWL closed-loop stability measures for
these three formats, respectively, and defined the corre-
sponding optimal controller realization problems based
onthese measures. However, all these previous measures
areonly linked to the precision bit lengths of the respec-
tive representation schemes used and do not consider the
dynamic range bit lengths. Arguably, a better approach
is to consider some measure which has a direct link to
the total bit length required. The main contribution of
this paper is to derive a unified FWL closed-loop sta-
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bility measure that can accommodate both the dynamic
range and precision requirementsand is applicableto al
the three schemes.

2 Number Representation Schemes

When z € R is represented in the fixed-point scheme of
bit length 8 = 1 + 8, + B¢, the bits are assigned as fol-
lows: one bit for the sign, 3, bits for theinteger part and
By bits for the fraction part. Assuming that no overflow
occurs, which meansthat |z| < 2%+, x is perturbed to

Qi(z) =a+d1, |0|< 27D, (1)

Any z € R can be expressed uniquely asz = (—1)°% x
w x 2¢, wheres € {0,1} isthesignof z, w € [0.5, 1)
is the mantissa of z, e = |log, |z|] + 1 € Z isthe
exponent of x, Z denotesthe set of integers and the floor
function | z | isthe closest integer less than or equal to z.
When z isstored in the floating-point format of bit length
B =1+ By + Be, the bits consists of three parts. one
bit for s, 3, bitsfor w and 3. bitsfor e. Let e and € be
the lower and upper limits of the exponent, respectively.
Clearly, 8 — e = 28 — 1. Denote the set of integers
e < e < easZ 5. Assuming that no underflow or
overflow occurs, which means that the exponent of z is
within 2., 5, z is perturbed to

Qy(z) =z 4 20y, |6y] < 27 Bt 2

In the block-floating-point format, a set of real numbers
S isfirst divided into some blocks. For an illustrative
purpose, consider the case of dividing S into the two
non-empty and non-overlapped subsets S; and S». Let
m € S betheelementin S; that hasthe largest absolute
value, and , € S, be the element in S, that has the
largest absolutevalue. Then, any z € S can be expressed
uniquely asz = (—1)® x u x 2", whereu € [0, 1) isthe
block mantissa of x, and the block exponent of z is

o [ [logy|m|| +1, for
llogy [n2|] + 1, for

.77681,

T € Ss. (3)



When all the elementsin S are presented in the block-
floating-point format of bit length 8 = 1 + B, + B,
the bits are assigned as follows: 1 bit for the sign, 3,
bits for u which is represented in fixed-point with the
two’s complement system, and 3, bitsfor h. Let A and
h be the lower and upper limits of the block exponent,
respectively. Obviously, h — h = 2%» — 1. Denote

r(x)é{ 2y, for z €Sy,

T € Ss.

212, for “)
Assuming no underflow or overflow, i.e. the block expo-
nent of z iswithin Z[h ) L is perturbed to

Qs(z) =z +r(x)ds, |63 <2 PFV. (5)

For the notational conciseness, we introduce the “gen-
eralized” dynamic range bit length 3, and precision bit
length /3, for the three representation schemes. It is un-

derstood that Br = Bga Be or Bp, and /81) = va Buw OF Bu,
depending on which format is actually used.

3 Problem Statement

The discrete-time linear time-invariant plant P is de-
scribed by

x(k +1) = Ax(k) + Be(k)
{ y(k) = Cx(k) ©)

with A € R™*™ B € R™*P and C € R7*"; and the
generic digital controller C' is described by

v(k +1) =Fv(k) + Gy(k) + He(k) -
u(k) = Iv(k) + My(k) )

with F € R™*™ G € R™*1, J € RP*™ M €
RP*4 and H € R™*P. Let e(k) = q(k) + u(k)
with the command input q(k). Then P and C' form
a closed-loop control system. Assume that a rediza
tion (Fy, Go,Jo, My, Hp) of C has been designed. It
is well-known that the realizations of C' are not unique.
All therealizations of C' form the realization set

SC é {(F,G,J,M,H) :F = T_lFOT’ G = T_IGO,

J=J,T,M =M, H=T"H} (8)

where T € R™*™ is any nonsingular matrix. Let
wr = Vec(F), where Vec(-) denotes the column stack-
ing operator, and Wy WGy WGy W, Wiy, WAL, Wi,
w and w g, besimilarly defined. Denote
A T
w=[w;-wy]" = (Wi wé wi wiy wi 9
AreT T T T T 17 ©)
Wo = [WFO WGO WJO WMO WHO]
where N = (m + p)(m + ¢) + mp and 7 is the trans-
pose operator. We also refer to w as aredlization of C.

The stability of the closed-loop system depends on the
eigenvalues of the matrix

(w)= | A+BMC  BJ
~|GC+HMC F+HJ

I 0 |— I 0
= [0 T—l] A(wy) [0 T} . (10)
All the different realizations w have the same set of
closed-loop poles if they are implemented with infinite

precision. Since the closed-loop system is designed to
be stable, the eigenvalues

INi(A(w))| = [\i(A(wo))| < 1, Vi€ {1, -+, m+n}.
(11)

>

Define

A
|W/lmax = maxjeqi,... Ny [wjl, (12)
A
m(w) = minjeg .. nyflws] s wj # 0},

and the index « of representation formats adopted

L,
a= 2,
3,

The controller realization w is implemented in format
a of 3, dynamic range bits, /3, precision bits and one
sign bit. In the remainder of this paper, it is assumed
that if w is stored in the block-floating-point format, itis
divided into “natural” blocks of w ¢, wg, wy, wjr and
wi. Let np € wp be the element in F which has the
largest absolute value. The elementsnq, 15, Ny and ng
are similarly defined. Denote

fixed-point format,
floating-point format, (13)
bl ock-floating-point format.

z2w)Ee ne ns o nelt. (1)

4 Optimization of an FWL Closed-
L oop Stability Measure

Firstly, the dynamic range bit length of 3, bits must be
large enough to accommodate w. We define a dynamic
range measure for redlization w in format o as

||W||maxa a=1,
yiw,a) 24 logy Wz a—2 (15)
log, Weost o _ g
2 w(z(w))

Proposition 1 The realization w can be represented in
the fixed-point format of 3, integer bits without over-
flow, if 289 > ||W||max; W Can be represented in the
floating-point format of 3. exponent bits without under-

flow or overflow, if 25 > log, %) + 2; w can

be represented in the block-floating-point format of 3,
block exponent bits without underflow or overflow, if

2 > logs () + 2



Let 3mi" be the smallest dynamic-range bit length that,
when used to implement w with format «, does not
cause overflow or underflow. [B™"(w,«) can eas
ily be computed by: [log, ||W|lmax] When a = 1,
[log, ([10gs [[Wllmax ] — [log, 7(w)] +1)] whena = 2
and [log, (|10gs [12(W) lmax) — [log, w(z(w))| + 1)]
when a = 3, where the ceiling function [z] denotes
the closest integer greater than or equal to € R. Note
that the measure v(w, «) defined in (15) providesan es-
timate of 87" as

Aamin JAN

B (w,a) = [logy y(w, a)]. (16)
It can easily be seen that 3™ > gmin and, when the
fixed-point format is adopted, fmin = gmin,

For avector x, let d(x) be the vector of the same dimen-

sion whose elements are all 1s and denote
0, xisa zero vector,
A{ (17)

1, xis a nonzero vector.

For two vectors x = [z;] and y = [y;] of the same

dimension, define the Hadamard product of x and y as
A .

x oy = [z;y;]. When the dynamic range of represen-

tation format « is sufficient, according to the results of

Section 2, w is perturbed to w + r(w, «) o A dueto the

effect of finite 3, where

(

Each element §; of A is bounded by +2~(%+1) | that
is, [[Allmax < 271, With the perturbation A,
Xi(A(w)) is moved to \;(A(w + r(w,a) o A)). If
an eigenvalue of A(w + r(w,a) o A) is outside the
open unit disk, the closed-loop system, designed to be
stable, becomes unstable with the finite-precision imple-
mented w in format «. It is therefore critical to know
when the FWL error will cause closed-loop instability.
From afirst-order approximation, Vi € {1,---,m + n}

i (A(w +r (W a) o A))| = [Ai(A(w))|

Z s,
=%

5 (19)

] define

225

(20)

Then

i (A(w + A))| = [Ai(A(w))]

r(w,a)o

< |A[lmax (21)

oA A=0111

This leads to the following precision measure for real-
ization w in format «

(22)

Obvioudly, if ||Allmax < p(w,a), then |X;(A(w +
r(w,a) o A))| < 1 which means that the closed-loop
remains stable under the FWL error A. In other words,
for a given w implemented in format o with a suffi-
cient dynamic range, the closed-loop can tolerate those
FWL perturbations A whose norms ||A||max &€ less
than u(w, ). It is easy to see that

O\
0A A o

= w0 L o)

and from the results of [2], it can be shown that the value
of u(w, a)) can be computed explicitly.

Under the condition that the dynamic range is sufficient,
that is, 3, > B™i", the perturbation || A || max and there-
fore the precision bit length 5, determines whether the
closed-loop remains stable. Let 37" be the smallest
precision bit length that, when used to implement w with
format a, guarantees the closed-loop stability. From the
precision measure u(w, «v), an estimate of 6;”i" isgiven
as

Brin(w,a) £ —|logy p(w, )] — 1. (24)

Define the minimum total bit length required in the im-
plementation of w with format o« as

Clearly, w implemented with a bit length 3 > ™" can
guarantee a sufficient dynamic range and closed-loop
stability. Combining the measures y(w, o)) and u(w, @)
results in the following true FWL closed-loop stability
measure for the given realization w with format «

B 41, (25)

= p(w,a)/v(w,a). (26)

An estimate of 3™i" isgiven by p(w,a) as

p(w,a)

Bmin(w,a) = ~|logy p(w,a)] +1.  (27)

The measure p(w, «) provides the FWL characteristics
of aredlization w in agiven format «. The optimal con-
troller realization problem in format « is formally de-
fined as

v(a) 2 max p(w,a). (28)

weSe



Define the following optimization criterion in format «:

1—[Xi(A(wo))|

OIXi]
ow

A
T, a) = min
g( ) i€{l,---,m+n} ’}/(W,Oé)
1

|r(w,a) o

= p(w,a). (29)
The optimal realization problem (28) can then be posed
as the following optimization problem:

v(a) = max &(T,aq). (30)

TeERM XM
det(T)#0

Given Topt (), the optimal realization wp () can
readily be computed. By setting o« = 1, 2 and 3, respec-
tively, in the optimization problem (30), we can attain
the optimal fixed-point realization w (1), the optimal
floating-point realization w . (2) and the optimal block-
floating-point realization w op (3).

5 Two Design Examplesand Result
Comparison

In Example 1, the closed-loop system contained a plant
with n = 5 and a reduced-order observer-based con-
troller with m = 2. Based on the proposed unified FWL
closed-1oop stability measure, the optimization problem
(30) was formed. Using the MATLAB routine fmin-
search.m, this optimization problem was solved for a =
1, 2 and 3, respectively, to obtain the optimal realiza-
tions wopt (1), Wopt(2) and wopt(3). In Example 2, the
closed-loop system contained a plant with n = 4 and
a output-feedback controller with m = 4. Using the
same procedure for Example 1, the optimal realizations
Wopt (1), Wopt(2) and wope(3) were obtained. Table 1
lists the values of the measures p, © and v in the three
different representation schemes together with the cor-
responding estimated minimum bit lengths for w and
Wopt (@) Of Example 1. Table 2 does the same thing for
Example 2. As far as the robustness of FWL closed-
loop stability is concerned, given an arbitrary realiza-
tion, floating-point representation is not necessarily bet-
ter than fixed-point or block-floating-point one. For ex-
ample, floating-point is the best format to implement the
initial realization wo of Example 1 while fixed-point is
the best format to implement w of Example 2. How-
ever, as expected, the optimal floating-point realization
Wopt (2) implemented in floating-point format is always
the best in terms of robustness to FWL errors. Also the
results in Table 1 show that fixed-point format is better
than block-floating-point format to implement w o, ()
of Example 1 for 1 < a < 3, while the results of Ta-
ble 2 indicate that the opposite is true for Example 2.
This simply confirms the fact that the performance of
block-floating-point scheme critically depends on how

to divide w into blocks. With a proper division, block-
floating-point scheme should beat fixed-point schemein
terms of robustness to FWL errors. Table 3 compares
the true minimum required bit lengths 3, 5" and
™" of wy implemented in the three different schemes
with those of fixed-pointimplemented w o, (1), floating-
point implemented w o, (2) and block-floating-point im-
plemented w,, (3) of Example 1, respectively. Table 4
does the same thing for Example 2.

6 Conclusions

We have proposed a design procedure for optimal con-
troller realizations in different representation schemes.
The procedure provides designer with useful quantita-
tive information regarding robustness to FWL errors and
estimated minimum bit length for guaranteeing closed-
loop stability. This alows designer to choose an opti-
mal controller realization in an appropriate representa
tion schemeto achieve best computational efficiency and
closed-loop performance.
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Wo Wopt (1) Wopt (2) Wopt (3)
p(w, 1) 25150e — 9 | 1.1386e — 7 | 2.7728¢ —8 | 1.086le—7
Bmin (w 1) 30 25 27 25
w(w,1) 2.5569¢ —6 | 5.0795e — 7 | 2.5937¢ —5 | 1.7450e — 7
B (w, 1) 18 20 15 22
v(w,1) 1.0167e + 3 | 4.4612e+0 | 9.3543¢+2 | 1.6066¢ + 0
Bmin (w, 1) 10 3 10 1
p(w,2) 1.3134e — 7 | 1.9204e—5 | 1.9593e — 5 | 3.3365¢ — 7
Bmin(w, 2) 24 17 17 23
w(w,2) 3.1118e — 6 | 4.3127e—4 | 4.3127e — 4 | 5.4490e — 6
Bmin (w, 2) 18 11 11 17
y(w,2) 2.3692e +1 | 2.2458¢+1 | 2.2012e+1 | 1.6332e+ 1
Bmin (w, 2) 5 5 5 5
p(w,3) | 9.2976e — 10 | 5.3779¢ —9 | 2.8185e—9 | 1.3362e — 8
Bmin (w, 3) 32 29 30 28
w(w,3) 2.1343¢ — 8 | 5.7385¢ —8 | 5.7266e — 8 | 5.4549¢ — 8
Bt (w, 3) 25 24 24 24
v(w,3) 2.2955e +1 | 1.067le+1 | 2.0318¢+1 | 4.0823e +0
Bt (w, 3) 5 4 5 3
Table 1: Measures and estimated minimum bit lengths
of example 1.
Wo Wopt (1) Wopt (2) Wopt (3)
p(w,1) [ 1.2312¢— 10 | 1.2003e — 6 | 1.0580e — 7 | 1.1321e—6
Bmin(w, 1) 34 21 25 21
pw(w,1) 3.3474e — 8 | 2.3082e —4 | 9.6673e—5 | 2.2287¢ —4
B (w, 1) 24 12 13 12
v(w,1) 2.7188e+2 | 1.9231e+2 | 9.1370e+2 | 1.9687¢+ 2
Bmin (w, 1) 9 8 10 8
p(w,2) | 2.9062¢ — 11 | 7.6826e—6 | 9.5931e — 6 | 8.5778¢ — 6
Bmin (w, 2) 37 18 18 18
w(w,2) | 2.2389e —10 | 9.5628¢ —5 | 1.5229¢ — 4 | 1.1822¢ — 4
B (w, 2) 32 13 12 13
v(w,2) 7.7038¢+0 | 1.2447e+1 | 1.5875e+1 | 1.3782¢+ 1
Bmin (w, 2) 3 4 4 4
p(w,3) | 1.4347e —11 | 3.2975e— 6 | 3.6938¢—7 | 3.5012¢ — 6
Bmin(w, 3) 38 20 23 20
w(w,3) | 6.5127e —11 | 2.7666e—5 | 2.9985¢—6 | 3.0083e — 5
Bt (w, 3) 33 15 18 15
v(w,3) | 4.5395e+0 | 8.3902¢+0 | 8.1176e+0 | 8.5923e+ 0
Bmin (v, 3) 3 4 4 4
Table 2: Measures and estimated minimum bit lengths
of example 2.
Redlization | Format | g™™ | g | g Realization | Format | g™ | g»" | g
Wwo fixed | 23 | 12 | 10 Wo fixed | 31 | 21 9
Wopt (1) fixed | 22 18 3 Wopt (1) fixed | 19 | 10 8
Wo floating | 16 10 5 wo floating | 33 29 3
Wopt(2) | floating | 12 6 5 Wopt(2) | floating | 13 8 4
Wo block 28 22 5 wo block 33 30 2
Wopt (3) block 23 20 2 Wopt (3) block 16 12 3

Table 3: True minimum bit length results of example 1. Table 4: True minimum bit length results of example 2.



