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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING

ELECTRONICS AND COMPUTER SCIENCE DEPARTMENT

Doctor of Philosophy

Hypermedia Interoperability: Navigating the Information Continuum

by David Edward Millard

Open Hypermedia Systems are designed to allow links to be authored and followed

on top of any media format. The link structures are held separately from the documents

in a software component called a Link Server. As hypermedia has matured as a research

topic attention has turned to standardising the way in which components talk to Link

Servers in order to provide interoperability.

The Open Hypermedia Systems Working Group took up this challenge and proposed

an Open Hypermedia Protocol (OHP). However, the scope of this proposal proved to be

too large and the protocol was divided into domain specific parts (Navigational, Spatial

and Taxonomic Hypermedia), tackling each domain differently, but consistently. It is

questionable whether this step was the correct one, as the domains share many similar

features.

In this thesis I present a detailed examination of the information spaces that the OHP

was attempting to model (from all these considered hypertext domains), which incorpo-

rates notions of both behaviour and context. This examination looks at what it means to

navigate around the many dimensions of information, across these domains, and reveals

a cohesive and continuous structure that I call the Information Continuum.

The Fundamental Open Hypermedia Model (FOHM) is presented, which is capa-

ble of representing the structures of this continuum in a consistent and meaningful way.

FOHM is coupled with an agent infrastructure to produce an implementation that demon-

strates the model being used for cross-domain interoperability.
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Chapter 1

Introduction

“Far from being economic and demonstrably advantageous, the immense

number and variety of human idioms, together with the fact of mutual in-

comprehensibility, is a powerful obstacle to the material and social progress

of the species.”

GEORGE STEINER, AFTER BABEL

Hypermedia systems were first described hypothetically in Vannevar Bush’s land-

mark 1945 paper ‘As We May Think’ (Bush, 1945). Bush describes machines designed

to help people think and communicate. Machines that bridge the physical, social and

intellectual gaps that otherwise divide us, by helping people locate, navigate and absorb

information.

Due to the tremendous technical challenges involved it wasn’t until the advent of

the electronic computer and the work of Engelbart some two decades later that a real

system, NLS/Augment, was developed (Engelbart, 1963). During the same period Ted

Nelson was developing his system, Xanadu, with the aim of creating a global literary

environment. It was Nelson who first coined the term ‘hypertext’ to refer to non-linear

text, a method with which to present and navigate this environment (Nelson, 1987).

The early 1990’s saw the emergence of a dichotomy of approaches to creating these

hypertext systems. One approach resulted in the development of Open Hypermedia Sys-

tems (OHSs) (see Section 2.6 for an overview). These systems maintain links as first

class objects which are stored separately from documents. This enables the system to

be applied to an open set of file formats (including video and audio media) and also

enables powerful searching and indexing of the information held in the system, as well

as assurance of link consistency. The other approach resulted in the World Wide Web

1
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(WWW) (Berners-Lee et al., 1994) a distributed file retrieval system (Nürnberg & Ash-

man, 1999) that uses embedded link information to enable a browser to follow hyperme-

dia pathways through documents.

Although far further from the vision of Bush, it is this latter system that has en-

joyed unimagined popularity over the last few years, while the functionally more ad-

vanced OHSs have enjoyed only limited commercial success. This is because of two

overwhelming factors that support the WWW, distribution and interoperation. Because

the system is distributed, many people can access the same pool of information. This is

aided by the standard formats employed in the WWW, both the file format (HTML) and

networking protocols (http) are standard across all browsers and platforms. This results

in network effects, where the value of the system grows proportionally to the number of

users (Whitehead, 1999).

In recognition of the importance of interoperation the Open Hypermedia Systems

Working Group (OHSWG), of which the author is a part, has been working to create a

standard Open Hypermedia Protocol (OHP) that will enable different OHSs to commu-

nicate (Davis et al., 1996). This has brought many different approaches to hypermedia

together in a common research effort. It was quickly realised that to successfully create

a standard protocol for interoperability a standard data model was required, which could

represent all the structures that the various systems required in a sensible and compli-

mentary fashion.

To complicate matters further it was realised that some OHSs operated in a totally dif-

ferent paradigms then others. This resulted in the definition of several hypertext domains,

the most frequently discussed of which are:

1. Navigational Hypertext : Point and click navigation between documents.

2. Spatial Hypertext : The spatial organisation of information, where implicit colour,

shape and size structure is managed explicitly by the system.

3. Taxonomic Hypertext : The structuring of information into related categories, form-

ing taxonomies, such that the information can be easily reasoned about.

1.1 Overview of Research

The interoperability work of the OHSWG was originally based on a simple text based

version of OHP that enabled clients to retrieve link information from servers. Much

work was undertaken by the group, including myself, to implement and test this basic

protocol, resulting in the first demonstration of Open Hypermedia interoperability at the

1998 ACM Conference on Hypertext.
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However, the OHSWG is a diverse group with varied research interests and the OHP

grew as a result of different peoples concerns. While other researchers worked on is-

sues such as collaborative hypertext and workflow I concentrated on extending the ba-

sic definition of services that existed in the early protocol into a more powerful generic

mechanism for the dynamic discovery and invocation of functionality, enshrined in OHP-

Service a parallel protocol to the OHP. At the same time the groups understanding of

protocol design was growing and OHP was redefined using XML and split into a suite of

complimentary protocols, OHP-Nav, OHP-Space and OHP-Tax. Initially only OHP-Nav

was defined.

To start with the OHP was concerned only with the domain of Navigational Hypertext

and it was assumed that other protocols for other domains would be created at a later

date (Davis et al., 1999). However, I and a few other researchers took the view that since

the relational information represented in all three domains has approximately the same

form, it would be appropriate to consider the commonalties of the domains and explore

the possibility of creating a single unifying data model. This would allow a navigational

browser to explore information generated in a spatial editor, or a taxonomic ‘crawler’ to

reason about the information it found on a variety of servers, whatever the domain the

information was authored in. To do this required an investigation into not only the scope

and form of each domain but also the nature of hyperstructure and information spaces.

The result of my work in this area was the Fundamental Open Hypermedia Model

(FOHM) (Millard et al., 2000). FOHM builds on the data model that was developed for

OHP-Nav, but excludes the communication and formatting information that complicated

the OHP suite. FOHM takes the approach that the hypertext model should be general

enough to support all the structures in the three supported domains, but specific enough

that performance does not suffer.

Each of the domains contains structure not found in the others, but to enable a com-

mon model FOHM has to incorporate all structures. This results in some surprising con-

sequences, as many advanced features peculiar to specific hypertext systems emerge. For

example, MEMOIR (Pikrakis et al., 1998) is a system that, on request, records the paths

that users travel throughout the system. These ‘trails’ are then available to other users

as first class objects in the system. Structures found in Spatial hypertext (such as lists

and queues) would appear in Navigational hypertext in much the same way. Conversely

a Navigational trail would appear as a Spatial list in a Spatial browser.

This cross-fertilisation of domains results in a powerful generic model, where struc-

tures from one domain appear sensibly and consistently in the others.
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The earlier work that had been undertaken on OHP and later the OHP-Nav and OHP-

Service protocols was moving towards an advanced infrastructure for communication

between components. In particular it was becoming apparent that the dynamic discovery

and invocation properties of OHP-Service would be useful to many different kinds of

application; indicating that it might be better located in some form of infrastructure layer.

Independently of the OHP effort other researchers within the IAM group at Southamp-

ton were working on agent frameworks and developing a prototype system known as So-

FAR (Moreau et al., 2000). This system fitted in very well with ideas of service discov-

ery at the application level and after an investigation into the communication paradigm

of autonomous agents and their proposition based languages, a proof of concept imple-

mentation of FOHM was created using the SoFAR agent framework.

1.2 Contributions

The work presented in this thesis contributes to the area of hypermedia interoperability,

more specifically it looks independently at both how hypermedia systems communicate

and also what they communicate.

This contribution has taken form in three ways :

1. The Work of the OHSWG : As part of the OHSWG I was a major contributor to the

development and implementation of OHP and the subsequent creation and defini-

tion of OHP-Nav.

2. A Conceptual Model of the Information Continuum : The work of the OHSWG

became a foundation for my own exploration of the different hypermedia domains.

The development of the 6D Model and notion of the Information Continuum repre-

sents an advance in the understanding of how hypermedia can be used to navigate

information spaces and how the various domains of hypermedia relate to one an-

other.

3. The Development of FOHM : This cross-fertilisation of hypermedia domains re-

sulted in the definition of FOHM as a cross-domain model for communication. An

implementation has been constructed based on the SoFAR agent framework, main-

taining a clean separation between the mechanisms and content of communication

that was not present in the OHP suite of protocols.

1.3 Outline of this Document

This thesis describes the evolution of the OHP draft proposal into the OHP suite of pro-

tocols, of which OHP-Nav, the navigational protocol, is only one part. It then uses that
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work as a basis to consider the semantic content and syntactic form of any interoper-

ability attempt. Finally it describes the FOHM model and presents the FOHM SoFAR

implementation.

Chapter 2 presents a review of past hypermedia research and systems in order to

provide a context for the following interoperability work.

Chapter 3 describes the OHP definition that I first worked on and helped evolve into

OHP-Nav. It also describes the implementation and subsequent demonstration of inter-

operability at Hypertext’98 in Pittsburgh, PA.

Chapter 4 builds on this OHP-Nav definition to present OHP-Service, a parallel proto-

col developed by Sigi Reich and myself for the dynamic discovery and invocation of ser-

vices. It also looks at parallel work in the field of Structural Computing. Together these

two research threads throw up questions about the nature of hypermedia functionality

and the place of the OHP suite in a world where generic communication infrastructures

are beginning to emerge.

Chapter 5 tackles the issues of communication and syntax. In particular exploring

the separation of semantic content from syntactic constraints and turning to the agent and

human worlds of communication for inspiration.

Chapter 6 examines what it means to navigate through information systems. Exam-

ining the different roles of hypermedia domains in the information world and producing

a conceptual model of the information continuum.

Chapter 7 builds on this conceptual model to produce FOHM, a Fundamental Open

Hypermedia Model, capable of consistently and sensibly encoding the structures from

any of the three domains explored. This involves examining what unique properties each

domain brings to the hyperstructure, including internal link structure and a dependance

on context.

Chapter 8 presents the SoFAR agent framework developed by other researchers within

the IAM group and explains how this infrastructure facilitated a prototype FOHM imple-

mentation. The lessons of this implementation are explored and the FOHM approach is

compared to that of Structural Computing to see in which ways they are compatible.

Chapter 9 concludes this thesis, drawing together the various threads of research and

evaluating the interoperability possibilities in future information, or structural systems. It

also describes some of the future work possibilities including the exploration of context

and behaviour within FOHM.
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1.4 Declaration

Although this entire thesis is the author’s personal view of the hypermedia field, the work

described has been conducted within the common research efforts of the OHSWG. The

original contributions are described in Chapters 5, 6, 7 and 8, while Chapter 4 describes

work undertaken with the assistance of Sigi Reich and Jon Griffith. The exceptions to

this are Sections 5.3 and 8.2 which draw on other research fields and Section 7.3.2 which

describes work undertaken alongside Sigi Reich and Luc Moreau within the research

group at Southampton.



Chapter 2

Background

2.1 Introduction

In this chapter I will explore the historical and technical background upon which this

thesis builds. Firstly I will describe the pioneering work undertaken in the hypertext field

and the systems that were subsequently developed in the following decades.

Using Frank Halasz’s excellent dissection of hypermedia issues as a starting point

I will then go on to describe modern hypermedia and open hypermedia systems and

models. Which, while evidently more advanced than their early counterparts, still do not

address all of Halasz’s points.

Finally I will reflect on recent trends in hypermedia research and in particular con-

centrate on the interoperability efforts that were beginning to emerge at the start of the

work associated with this thesis.

2.2 Pioneers

When they first appeared computing machines were applied to problems of a mathemati-

cal nature, complex calculations and data analysis tasks. In Bush’s landmark 1945 paper

‘As We May Think’ (Bush, 1945), he describes how this computing power could be used

to manage and store the increasing volume of information that a complex civilisation

generates. He calls for a post-war effort to mechanise the scientific literature system.

Bush describes the ‘memex’ a theoretical device in which an individual may store all

of their books, records and communications; a device that is mechanised to allow rapid

and flexible consultation of that material. He also describes the associative nature of

human memory and how, by mimicking this ability in a machine, we may assist thinking.

7
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He envisages trails, recorded non-linear paths though this information, trails that can be

amended, annotated and shared easily with others.

Although the memex is described as being implemented with mechanical machinery

and microfiche it is still a remarkable vision; one that, even with the electronic computing

power we have today, has not yet been fully realised.

Engelbart developed the ideas for such a real system some two decades later at the

Stanford Research Institute. In 1963, they had been implemented in NLS (oN Line Sys-

tem)/Augment (Engelbart, 1963). NLS was a sophisticated system that included the use

of television images and the first appearance of the mouse. Files in NLS were struc-

tured as a hierarchy of statements. Links could exist between any two files or between

statements in a file.

NLS was implemented in three major parts; a database of non-linear text, view filters

that took selected information from this database and views that structured and displayed

this information. The viewing filters could clip the hierarchy at a particular level (depth)

or truncate the number of items displayed. The system also allowed the construction of

customised filters (defined in a ‘high level content analysis language’) that would display

only statements containing a certain content.

During the same period Ted Nelson was developing his system, Xanadu, with another

idea in mind: to create a global literary environment. The long-term goal, described in his

book ‘Literary Machines’ was to place the entire world’s literary corpus on line (Nelson,

1987). It was here that Nelson coined the term ‘hypertext’ to refer to non-linear text.

Xanadu was designed to save space via the heavy use of links (known as transclusions),

only original documents and changes are saved, the system reconstructing any version of

a document for display. Emphasis was placed on maintaining copyright and dealing with

accounting and royalty distribution.

In 1985 Yankelovich and Meyrowitz considered the differences between printed and

electronic media (Yankelovich et al., 1985), formulating a set of capabilities that elec-

tronic document systems should posses to maximise the advantages of electronic media

while overcoming some of the disadvantages.

For example, they make the point that printed media is more aesthetically pleas-

ing then electronic media and not subject to inevitable technological change. It is also

portable and produced using well-defined and accepted standards. While electronic doc-

uments have the advantage of being able to deal with three dimensional subjects and

temporal media as well as allowing the construction of associative webs of links that al-

low rapid browsing of information. They also allow the same information to be stored in
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a variety of versions and displayed in a variety of styles.

Considering these differences Yankelovich and Meyrowitz require a system to pro-

vide tools for:

� Promoting connectivity
� Promoting audio visualization
� Creating and revising documents
� Browsing, searching, customising, and retrieving information
� Preserving the historical integrity of information

In his classic survey (Conklin, 1987), Conklin maintains that links are the essential

feature of a hypertext system and that other common features (such as text processing

facilities and windowed views) are merely an extension of this basic concept. He also

acknowledges the extension of hypertext to other media (hypermedia) in which the ele-

ments that are networked together can be text, graphics, digital sound, animations or any

other type of data.

Conklin also discusses the advantages and disadvantages of hypertext. He concludes

that there are two fundamental problems in hypertext systems. The first is described as

disorientation or the ‘lost in space’ problem (van Dam, 1988). This results from having

to deal with a non-linear path, the reader must know both where they are within the

network and where they are going. As hypertext offers more degrees of freedom then

linear text, more dimensions in which one can move, it is easier for a reader to become

lost or disorientated.

The second problem involves the cognitive overhead needed to create, name and keep

track of links. This is described as the ‘cognitive overload’ problem. It is important in

a hypertext system that the system itself does not distract the reader from the actual

material.

However, Conklin also summarises the advantages of hypertext:

� The ease of tracing reference material either forward to a referent or backward to

the reference.
� The ease of creating new references and the ability of a user to generate their own

networks or annotate someone else’s.
� The information structuring abilities of hypertext tools, both hierarchical and non-

hierarchical.
� The facility to support global views on a large amount of data, supporting easy

reconstructing of large or complex documents.
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� The ability to thread text segments together in many ways, creating customised

documents that can serve many functions.
� There is modularity of information since the same text segment can be referenced

from several places, creating less overlap and duplication.
� References move with the associated text creating a consistency of information.
� The user can have several paths of enquiry open at any one time (task stacking)

such that any given path can be unwound to the original task.
� Support for collaboration. Several authors can collaborate on the creation (or an-

notation) of any document.

2.3 Early Systems

The early hypertext systems that followed the work of these pioneers were monolithic

in nature, in that they used their own proprietary formats and were constructed as sin-

gle large applications. They did however allow experimentation with different forms of

hypertext and allowed researchers to address the problems identified by Conklin.

2.3.1 ZOG and KMS

ZOG, described as a ‘general purpose human-computer interface system’ (McCracken &

Akscyn, 1984), was developed at Carnegie-Mellon University (CMU) in the late 1970’s

and early 80’s. It was the first hypertext system to be used and evaluated extensively in

the field.

ZOG is based around a basic unit of representation called a frame; a screen full of

information. ZOG itself was implemented with purely textual frames although graphics

were considered in the design. The frames are represented in a hierarchy and contain

both information and possible selections. The user can make selections with a pointing

device (e.g. mouse or touch screen) or via the keyboard. The selection is associated

with an action, where an action is a sequence of commands in the ZOG language. This

language contains commands for traversing the network, invoking utilities and entering

an editor.

The ZOG system was written with a broad set of principles in mind known as the

‘Philosophy of ZOG’. These ideas involved the use of a consistent, total user environ-

ment to avoid the cognitive overhead of dealing with multiple interfaces. The system

was flexible and allowed the user to directly manipulate data and automate complex op-

erations that were often repeated. There was a concerted attempt to create a low learning

curve and provide a safe environment suitable for exploring and learning by doing.



11

In essence the ZOG system was designed to provide simple structure to information

that could be used by both novices and experts with little effort. This was put to the test

in 1980 when a project began to put an implementation of ZOG onboard the U.S.S. Carl

Vincent (a U.S. Navy Aircraft Carrier). Early in 1983 a complete ZOG-based system was

installed onboard the ship. Running over 28 networked PERQ computers, it contained

(initially) over 20,000 frames.

The system was used to both write and display the Ship Organisation and Regula-

tion Manual (SORM). In addition Technical manuals where created for the aircraft and

weapons elevators. The online version of these manuals were integrated with videodisk

material, the ZOG frames imposing structure on what would otherwise be an essentially

flat format.

During the first month of installation there were approximately 500 sessions of ZOG

use on board the carrier. After six months usage had increased considerably with 30

serious users and the involvement of over 85 percent of the ship’s departments.

ZOG was a robust real system that was operationally tested and proved to be useful.

It was capable of assimilating many different types of application due to the generality

of the frame model. However its authors criticise it for depending on high network and

disk speeds for efficient use and also for its lack of graphical ability or of a fast database

query language. ZOG’s dependence on a consistent, total interface prevented them from

making the leap to open hypermedia.

In 1981 the team from CMU behind ZOG formed the company ‘Knowledge Systems’

and began work on the successor to ZOG, known as KMS (Akscyn et al., 1988). KMS

built on the successes of the previous system, using a database of frames that could

contain any combination of text and graphics. ZOG only allowed the display of a single

frame on screen at any one time. KMS allows a single card taking the entire screen or

two taking half each.

In addition to the more graphical nature of the product, KMS was also different to

ZOG in that it made no distinction between editing and browsing, preferring a single

consistent interface across both modes of use. The KMS team likens KMS to a reduced

instruction set computer (RISC) in that it achieves performance through simplicity.

They also make the important observation that a systems data model impacts sig-

nificantly on system behaviour. For example in KMS, where the browsable units are

screen-sized frames, collaboration becomes easier as only small segments of any single

document (the frames) need to be locked at any one time. Versioning is similarly simpli-

fied, as only different versions of frames need to be stored, the system compiling them
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into the chosen cohesive document at runtime.

KMS continued the simplicity of the ZOG system while involving more complex

data types. Although the system itself became more complex, it had the advantage of

faster hardware and they were able to keep link following times down to sub-second

standards. In combination with the simple nature of the data model this meant that KMS

became appropriate for a number of tasks related to hypertext browsing. Bulletin boards

were easily implemented using public writable frames and e-mail was implemented using

frames with access restricted to the parties involved in the conversation.

Using KMS as a general file management and communication framework was very

advantageous as it led to a much higher level of system integration. In fact the KMS team

even suggested that given some standardisation of hypermedia, perhaps built around the

data model, hypermedia may eventually replace the desktop metaphor as the reigning

human-computer interaction paradigm.

2.3.2 Notecards

Notecards was a hypermedia system developed by Randall Trigg, Thomas Moran and

Frank G. Halasz at Xerox Parc. It is general hypermedia environment run on desktop

workstations, designed for use by small workgroups.

It is implemented within the Xerox Lisp programming language and is designed

around two primitive constructs, notecards and links. A notecard is an electronic rep-

resentation of a standard paper notecard. Each one can contain text or images and is

displayed in a windowed environment so that many notecards can be shown at once. A

link is used to interconnect these notecards. Each link is a typed directional connection

between a source and destination notecard. Links are anchored in a specific location in

the source notecard but the destination is always an entire notecard.

In addition there are special cases of notecards. Browsers contain a structure diagram

of a network of notecards, represented via the title of each notecard contained in a box

with the links between notecards represented as lines between these boxes. The user

can actually use these browsers to edit the underlying hypermedia structure directly. The

system also contains fileboxes that are used to organise or categorise large collections of

notecards. The system requires that all notecards (including fileboxes) must be filed in a

filebox.

In 1989 Notecards was extended to include a guided tour facility. The aim was to

make hypertext more intelligible for readers as there were no conventions at the time as

to how a hypertext should be presented.
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Marshall et al, describe how a hypertext, although network-like in structure, is still

viewed in a linear fashion by the reader through the following of a series of links or

relationships (Marshall & Irish, 1989). This introduces problems such as maintaining

coherence and keeping track of context.

In Notecards a guided tour is a series of nodes linearly linked together using links of

type ‘GuidedTour’. The author uses a graph-based editor to construct the tour and add

it to the system. At each point of the tour the user has access to five special options,

presented as links, one to take them to the start of the tour, one to take them to the next

and previous nodes, another to jump to any point in the tour and the last to reset the tour.

The paper identifies four types of meta-information required for a guided tour:

� Expository text referring to the original network;
� Instructions to the reader on how to interpret the current display;
� Descriptions of the structure of the tour;
� Textual and annotative devices that offset the effects of fragmentation;

This meta-information forms a narration of the tour that acts as a presentation vehicle.

In this case the display indicates which order cards should be read in and when and why

they referred to each other.

A spine is the primary path through a tour with minimal branching and it is along this

path that an author can assure coherence.

Marshal et al (Marshall & Irish, 1989) conclude that a guided tour is a valuable way

of presenting a trail (as identified by Bush) through information in a way that it becomes

understandable and accessible to a general audience.

2.3.3 Intermedia

Intermedia was developed in 1988 at Brown University (Yankelovich et al., 1988). Es-

sentially a hypermedia system for a University setting, it differed significantly from its

peers in that it dealt in lengthy documents and not small sections that could be displayed

on screen in a single chunk (like a card). To enable efficient hypermedia in such an en-

vironment it became necessary to allow links to be made to anchor points (called blocks)

within a document as well as entire documents. In fact Intermedia allows bi-directional

links from any block in any document to any other block in any other.

The definition of a block was very flexible, representing the user selection at the point

of link creation. Thus a block could be a character, word, sentence, paragraph or indeed

an entire text.
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A further major distinction between Intermedia and other existing systems of the time

was that Intermedia did not store link and block information within the document. Instead

maintaining a web of these objects externally to the data. The web and the document were

combined at runtime to construct the user view with the Intermedia system maintaining

consistency between the data and meta-data.

Intermedia was built on top of an object-oriented application framework with the aim

of easy extensibility. It also aided the Intermedia developers in creating a consistent user

interface across Intermedia’s five main browsers.

2.3.4 Neptune/Hypertext Abstract Machine

Developed at the Tektronix Laboratory in 1986, Neptune was a serious attempt to apply

hypertext to the world of CAD, concentrating on versioning and configuration manage-

ment (Delisle & Schwartz, 1986). The developers identified CAD systems as those that

would particularly benefit from hypertext, in that they had to deal with a variety of related

data types (e.g. IC layouts, logic descriptions, timing descriptions etc.).

Their original argument was that hypertext could provide an excellent storage mech-

anism for all this information.

Neptune was designed as a layered architecture, based on a transaction based server

known as the Hypertext Abstract Machine (HAM). This presents a generalised storage

model for nodes and links and presents distributed access across a network, synchronising

multi-user activity and providing transaction-based crash recovery.

An application layer is then built on top of the HAM and an interface layer on top of

that to create a new hypertext application. The HAM doesn’t care about the contents of

nodes (considered at this low level to be simply binary data). It defines operations for

creating, deleting and updating nodes and links and maintains a complete version history

of this web (the hypergraph). At runtime it can provide access to the hypergraph at any

level of this version history.

Like Intermedia, links can be made to offsets within files. They can also refer to

specific versions of nodes within the hypergraph or can refer to the latest version. Appli-

cation layers can add unrestricted numbers of attribute/value pairs to any link or node, the

lists of which are managed by the HAM. Semantic understanding is therefore not needed

in the HAM itself.

Neptune provides three main browsers. A Graph Browser to view a sub-graph of the

hypergraph in a pictorial way. A Document Browser allows users to view hierarchical
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documents in a sensible manner and a Node Browser allows the viewing of single nodes

within the system.

Specialist commands are available within the system to allow Neptune to function as

a practical CAD system. For example the ‘linearizeGraph’ function flattens a hierarchical

document so that it is suitable for producing hard copies for distribution.

Neptune’s version control did not stretch to branching, a feature that the authors ac-

knowledged was important in a real world setting.

The functioning of the HAM was further explained in the 1988 Communications of

the ACM (Campbell & Goodmann, 1988). The HAM offers seven categories of opera-

tions that can be applied to a variety of objects:

� Create operations. These create new HAM objects, each object is given a unique

identifier and is also given a creation time (the first entry in its version tree);
� Delete operations mark objects as deleted, but the objects themselves remain as

historical entities. The last version entry being the time of deletion;
� Destroy operations free all the space previously required for an object;
� Change operations modify data within an existing object again making an entry in

that objects version history;
� Get operations retrieve data from existing objects. The operation takes both a

unique identifier and a version time for the object to be retrieved;
� Filter operations selectively retrieve information from a given graph. It takes a

predicate, a version time and a list of attributes and returns objects that fulfil the

appropriate conditions for the specified version time;

In addition there are several operations that do not quite fit into these categories.

These include string-searching functions, context merging algorithms and transaction

management.

The team behind the HAM hoped that it represented a first step toward a standard

terminology and storage model that would form the basis for future hypermedia systems.

2.4 Issues for Second Generation Systems

In 1988 Frank Halasz, one of the creators of Notecards, drew a line under the successes

of these earlier works and proposed ‘Seven issues for the next generation of Hypermedia

Systems’ (Halasz, 1988). He describes NLS/Augment and ZOG as first generation sys-

tems, originally mainframe based, with support for large teams of collaborating knowl-

edge workers. He also defines second generation systems such as Notecards, Intermedia,
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KMS and Neptune as similar in concept but with more advanced user interfaces, dealing

with media other then text and primarily designed for single users or small workgroups.

The issues he proposes were based on the areas where he thought Notecards (and the

other second-generation systems) showed weaknesses. He believed that they represented

an agenda for hypermedia research for the next generation. These issues were:

2.4.1 Search and Query in a Hypermedia Network

Halasz recognised navigational access of data to be the defining feature of hypertext,

however he claimed that experience with Notecards had indicated that navigational access

alone was not enough. He claims that effective access to the data is only achieved when

query-based access is added to navigational access.

He proposes two classes of query/search mechanisms: content search and structure

search. In content search all the objects in the network are considered separately and are

examined independently for a match to a given query. In structure search the hypermedia

network is examined for subsets of objects that match a given pattern. He suggests that a

standard language is needed in which to formulate structural queries, and that work must

be undertaken to develop engines to process these queries quickly and efficiently.

Halasz also suggests that, once developed, search and query facilities will become

critical parts of a hypermedia system, acting as filters so that users can describe the in-

formation that interests them and the network can be displayed accordingly.

2.4.2 Composites - Augmenting the Basic Node and Link Model

In Notecards Halasz had noticed many attempts to utilise existing mechanisms to imple-

ment the composition of individual nodes (cards) and link into higher level entities. For

example a ‘head card’ used to gather a group of associated cards together. He suggests an

important step in hypertext design would be to add composition as a primitive construct

to the basic hypermedia model. This enables structures to be constructed and referenced

in the hypermedia system on a par with other primitives.

He also identifies a number of problems and issues regarding composites;

� Can a given node be included in more then one composite?
� Do links refer to a node, or a node in the context of a given composite?
� How does one handle the versioning of composite nodes? Does a new version of

the node result in a new version of the composite?
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� Should composites be implemented using typed links or is a different mechanism

necessary?

2.4.3 Virtual Structures for Dealing with Changing Information

A Virtual structure is one that does not exist statically in the structure server, instead the

concept or conditions for the structure are stored and it is only instantiated when needed

by the system or a user. Otherwise it is identical to a real structure and can be treated

identically by all external programs and people. Halasz identifies the need for virtual

structures having watched how people construct Notecard sub-networks.

He realised that they constantly revised the structure of the network as it was develop-

ing and that they had no real idea of the structure until the network was almost complete.

He envisaged virtual structures of being of use when designing such networks, they could

represent concepts not yet finalised in reality. For example a virtual node could represent

the supporting evidence of a claim, even when that evidence had not yet been found or

added to the system. The system resolves these at runtime as they become exposed to the

user.

He adds that coupled with a query mechanism and composite structures, virtual struc-

tures become even more powerful. For example a virtual link could associate a real source

anchor with a query which would be resolved at runtime (e.g. link to evidence if it exists,

else link to another node, perhaps explaining the absence of that evidence).

Halasz argues that virtual structures allow hypermedia systems to adapt to changing

information in a way that is not possible with the current static models.

2.4.4 Computation in (over) Hypermedia Networks

Hypermedia systems were typically passive systems, in that they allowed the retrieval

and storage of hypermedia structures and data but did not actually process or analyse that

data. Halasz recognised the importance of active computational engines and commented

on their use externally with Notecards. He draws a parallel between knowledge based

systems, which involve AI processing of the data, and hypermedia systems.

Acknowledging the generality of the external computational engine approach, Halasz

comments that it would be much more efficient if the computational engine were built

into the hypermedia system itself. He concludes that whichever approach is taken the

hypermedia system of the future must take into account the integration of hypermedia

with computation.
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2.4.5 Versioning

The Notecards hypermedia system did not support versioning, only one copy of each card

was maintained with changes written directly to it. Yet Halasz records several requests

for a versioning system and notes that one is almost essential for some tasks (his example

is software configuration). Thus he identifies versioning as an important feature that

hypermedia systems should support.

He identifies two possible levels of versioning. The first is done at the lower level by

keeping a complete version history for all the objects in the system. Whenever an object is

changed its version history is updated. The second involves considering the hypermedia

network as a whole, in this case an author may decide to collect several changes into one

version change.

Another issue is that an objects version history may branch, one object evolving into

two or more with the same original ‘parent’. Dealing with branched version histories

raises some interesting questions regarding references between objects. An anchor can

now be a particular version of an object or the latest version of that object. In a branched

version environment what constitutes the latest version is not entirely obvious.

Composites add the complication of how a sub-objects versioning (and branching)

should propagate to the composite(s) it is contained within.

2.4.6 Support for Collaborative Work

Halasz identifies collaborative work as one of the most important and under-supported

feature of a hypermedia system. He identifies two areas of collaborative systems in need

of attention. The first involves the actual mechanics of a system where multiple authors

are allowed access to the same area of data. The second involves the social interactions

between people in the process of collaborative work.

The mechanics of a collaborative system essentially involve the locking of data while

a user has access. Typically, better locking has been achieved through increased gran-

ularity of the system, e.g. locking sections of a document rather then the entire node.

Halasz points out the further granularity can be obtained by classing different types of

access. For example one user could still modify links within a document while another

user was actually editing the text.

Support for social interactions between authors is less supported. This social support

includes early notification of important events (such as the locking of some data). Halasz
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describes how previous work has identified three types of collaboration. Substantive ac-

tivity with involves the actual creation of data, annotative activities involve annotating the

substantive work using comments, questions etc. The last type of collaborative activity is

the least supportive and comes under the banner of social interaction. It is the procedural

activities evolved in collaboration, e.g. discussions, decisions and other actions focusing

of the use of the collaborative system.

Halasz concludes that future systems need to concentrate not only on finer locking

and notification mechanisms and systems but also on improving the social interactions

between collaborators.

2.4.7 Extensibility and Tailorability

The last of the seven issues regards the difficulty hypermedia systems having in balancing

their generic nature with the specific tasks they are prepared to do in the real world.

Halasz regards the generic nature of the hypermedia system as a problem to users as each

is required to undertake a major design task before using the system.

To overcome the lack of support for specific tasks, Halasz believes that future hyper-

media systems need to be extensible and tailorable, to enable them to cope with specific

problems more effectively and also those that lie outside the domains for which the sys-

tems were originally designed.

He identifies the use of interpreted languages as being of particular value and draws

upon experience with GNU Emacs to show how a language such as LISP can be extended

to deal with a particular domain, enhancing the effectiveness of the tools in that domain

considerably. The key is that such extensions should be available to every user not only

those who are technically trained with the system.

He concludes his paper with a call to the community to address these seven issues

and produce the next generation of hypermedia systems.

2.5 Hypermedia Models

Towards the end of the 1980’s it was realised by hypertext researchers that a major failing

of the current hypertext systems was their inability to inter-operate. They could neither

interact at a system level nor exchange data easily. To start toward a solution to this

problem several Hypermedia models were proposed. These models were supposed to

provide a common vocabulary for hypertext discussions in the coming years and act as a

basis for emerging hypertext metrics. In this section we shall take a look at three of the

better known proposals.
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Figure 2.1: Dexter Hypertext Model

2.5.1 The Dexter Model

In December 1990 a workshop (Moline et al., 1990) was held on hypertext standardi-

sation at which various models of hypertext were discussed. One of the results of this

workshop was the ‘Dexter Reference Model’ (Halasz & Schwartz, 1994) the goal of

which was to allow easy comparison between systems and thus work towards interoper-

ability standards.

The model divides systems into three layers. The Runtime Layer contains all the

facilities a user requires for constructing and browsing a hypertext. The Storage Layer

represents the actual structures of the hypertext (e.g. links and nodes). The Within-

Component Layer represents the content of the particular node or document.

There are also two interfaces within the model. The Presentation Specifications In-

terface lies between the Runtime and Storage layers. It represents information on how

the runtime layer is to process (represent) the objects in the storage layer. For example

whether a viewer should open a file for viewing or editing. The Anchoring Interface is

a mechanism for addressing locations or items within the content of an individual com-

ponent. This maintains a clean separation between the Storage and Within Component

layers.

The Within Component layer is responsible for maintaining the position of the an-

chors within the various components (which remain opaque to the storage layer). While

the storage layer deals with maintaining anchors within the node link structure.

The Within Component Layer is purposefully not elaborated on in the model. This

is because of the range of possible contents that can be included as components. The
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model assumes that other reference models will be used that are specific to a particular

application or data type.

The Dexter model was a major step forward, both technically in the sense that it

allowed for n-ary links and composite nodes (no system at the time supported both these

features) and also as it represented a major collaboration between hypertext researchers

and institutions. It’s impact on interoperability work, the limitations identified and the

ways in which it has been extended are discussed in Section 2.9.

2.5.2 The Amsterdam Model

One of the concerns voiced about the Dexter Model was the lack of consideration it

showed for emerging multimedia systems. The Amsterdam Hypermedia Model (AHM),

developed by Lynda Hardman and Dick Bulterman at CWI (Hardman et al., 1994), at-

tempted to marry the hyperstructures of the Dexter model with these new systems.

One of the biggest problems they came across was deciding on how a multimedia

presentation ordered itself in Dexter terms. There are two aspects to this: Collection,

where several items are presented together as one, and Synchronisation where those items

are ordered in a presentation relative to one another. The authors suggest three Dexter

based possibilities:

1. Hidden Structures: All the information is placed in the content, i.e. inside Dexter’s

within-component layer. The problem with this is that it does not scale very well

to more complex multimedia presentations.

2. Separate Structures: Each multimedia item is defined as a separate block. This

makes all the structure transparent but synchronisation must be done explicitly and

can become a big issue for large presentations.

3. Composite Structures: This combines the two approaches above; internalising

complex relationships but leaving more basic ones exposed. Although this would

work, it requires a specific solution for each presentation and does not provide a

uniform solution.

The AHM was produced by combining the Dexter model with the CWI Multimedia

Interchange Format (CMIF) multimedia model and adding extensions to cover what was

left. It is based on atomic and composite components as shown in Figure 2.2.

In the AHM the presentation information in atomic components has been expanded

to include temporal and higher level presentation attributes. In contrast the composite
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Figure 2.2: Amsterdam Hypermedia Model Atomic and Composite Components

component contains no temporal information as this can all be calculated from the com-

ponents it contains. Instead it contains collections of Synchronisation Arcs, structures

that define fine grained relative ordering information about the contained components.

The model also defines Channels. These are abstract devices for defining global

presentation attributes. By abstracting this information out of components the AHM

allows the same document to be presented in different ways simply by respecifying which

channel to use for a particular component.

Lastly the AHM has a notion of anchor context. The Context object is a composite

that contains a collection of components that are effected by a linking operation. Contexts

allow specific display options to be associated with each link; in particular the source

component can be retained or replaced, enabling a finer granularity of control over the

presentation.

The AHM was implemented in the form of the CMIF editor (CMIFed) (Hardman &

Bulterman, 1995) which allowed users to construct presentations using the AHM model.

The authors found that although the model coped well with the users’ requirements, a lot

of authoring effort was still required on their behalf to produce a complex multimedia

presentation.
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2.5.3 The Trellis Model

While the Dexter and Hypermedia models attempt to provide a framework against which

to compare existing systems and aid in the creation of new ones, other researchers have

pursued models that aid the formal analysis of hypertexts. The Trellis hypertext model

(Stotts & Furuta, 1989) (Furuta & Stotts, 1990b) was developed by P. David Stotts and

Richard Furuta at the University of Maryland. Hypertext is often depicted as a directed

graph of nodes and connections. Trellis extends this notion to Petri nets. A Petri net

permits the specification of a hypertext’s browsing semantics, attaching meaning to the

connections between nodes.

This Petri net structure can be viewed in two ways. Firstly it can appear as a for-

mal language; describing a set of strings of symbols where each symbol represents a

transition in the net. Secondly it can be thought of as an automata where the Petri net

represents a state transition system. This means that semantics of the Petri net are defined

mathematically as opposed to residing in any code that manipulates a directed graph.

A hypertext is built up of a Petri net structure, a set of document contents, a set of

components (windows, buttons etc.) and collection of mappings between them.

The Trellis team point out that the model could be used to provide a basis for solving

several hypertext problems:

1. Display Parameters: Certain characteristics of the display can be calculated, e.g.

the maximum number of simultaneously required windows;

2. Concurrent Browsing Paths and Synchronisation: The model lends itself naturally

to multiple browsing paths, in addition an author can specify that several paths are

concurrent and also that they must be synchronised at certain points;

3. Node Reachability and Unreachability: It is possibly to verify that all the nodes

within the hypertext can be reached and also discover which nodes can be reached

from different starting points (this can vary according to access control and tailored

hypertext semantics);

Using the Trellis model as their formalisation, the Trellis team extended their work

to describe a hypertext ‘meta-structure’ that can be used as a reference model in a similar

way to Dexter and AHM. They called this the Trellis hypertext reference model, or Trellis

r-model (Furuta & Stotts, 1990a).

The r-model is separated into five levels:
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1. Abstract Component Level: This contains the components that will be associated

together to form the hypertext;

2. Abstract Hypertext Level: This contains the connections between the components

of the Abstract Component Level;

3. Concrete Context Level: This contains the mapping from the hypertext’s abstract

representation (the two levels described above) to its physical representation and

presents a physically based description of the hypertext;

4. Concrete Hypertext Level: This level maps the concrete representations generated

in the layer described above into a set of windows for display;

5. Visible Hypertext Level: This level represents the display and interaction of the

hypertext with one or more users;

It is important to realise that the r-model does not enforce any particular data or link

model. These distinctions are recognised by the model but specific details are encapsu-

lated within the Abstract Levels. Likewise content and presentation is modeled separately

from this structure and itself is hidden within the Concrete Levels.

Thus the r-model is less operational than Dexter. Rather than being an abstract ma-

chine it is a functional organisation showing relationships between elements in the vari-

ous different layers, that might be used to serve as a high-level design guide for system

implementers.

2.6 Open Systems

At the beginning of the 1990’s it was realised that the closed systems of previous years

would not be sufficient in the future, particularly for industrial scenarios where compa-

nies wished to continue using existing data and products (Davis et al., 1992). In partic-

ular it was thought that hypermedia functionality should be available to all applications

across the desktop, this meant a complete separation of link information from content.

This approach gave birth to Open Hypermedia Systems.

By separating out the link structures, Open Hypermedia Systems (OHSs) gain the ca-

pability to process these structures more easily. This allows advanced queries to be made

across the hyperstructure, enables systems to maintain link consistency and provides for

more powerful linking functionality within individual systems.

2.6.1 Microcosm

In 1990 researchers at the University of Southampton identified four problems common

to the hypertext systems of the time and designed a system, Microcosm, to overcome
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them (Fountain et al., 1990).

1. Authoring effort required; Documents become available far faster then they can be

converted for a hypertext system. This can limit the data that a user has access to.

2. Hypertext systems are closed; Usually run as stand-alone systems that will not

communicate with other software packages. This results in a lack of extensibility

that means it can be difficult to cope with new data formats.

3. Proprietary document formats; it is not possible to take documents present in one

system and use them in another, for example documents written in a proprietary

word processor would have to be reformatted for the hypertext system. This actu-

ally makes the ‘Authoring’ problem worse.

4. Problems with read-only media; Many hypertext systems use tags or pointers within

the data to represent links. When that data is read only (e.g. a CDROM) then this is

not possible unless the links are already on the medium, in which case they cannot

be updated or removed.

Microcosm was designed with a strict set of guiding principles:

� No distinction between author and user; All users can also be authors, and authors

can browse their material in the same way as users.
� Loosely coupled system; Microcosm is a set of communicating tasks, open in struc-

ture. It should be possible to add further components to the system to increase its

functionality.
� Separation of links from data objects; Information about relationships between

documents is separate from the documents themselves. Thus we have two levels

of information; data (text, graphics, sound) and meta-data (relationships and links

between data).

In 1993 Microcosm had become a mature hypertext system; the separation of links

from data allowed Microcosm to let users navigate in a variety of ways (Davis et al.,

1992).

� Specific Links: Links an object at a specific point in a source document that con-

nects to a particular object in a destination document.
� Dynamic Links: As Microcosm uses a database of links and nodes it is possible to

dynamically try and create associations between nodes. For example based on a

user selection in a source text document the system could do a grep for the same

text in other documents.
� Local Links: A dynamic link from a given object at any point in a specific document

that connects to a particular object in a destination document.
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� Generic Links: A dynamic link from a given object at any position in any document

that connects to a particular object in a destination document. Thus new documents

added to the system may already contain links.
� Relevance Links: Alternatively the node set could be pre-indexed to assist this pro-

cess. In which case it is possible to cluster documents according to their relevance

to each other. It is possible for a user to then request all relevant documents (those

in the same cluster).

Because of its open nature Microcosm could be used with any viewer. This could be

a problem as the viewer may not actually be aware of Microcosm, particularly since at

the time hypertext functionality was not common in off the shelf applications.

Microcosm thus works with three types of viewers. Fully aware Microcosm viewers

were written explicitly with Microcosm in mind and allow the user to access the full

range of Microcosm functionality. Partially aware viewers were applications that were

tailorable in some respect, which enables them to become Microcosm aware, although the

full range of features may not have been accessible. Unaware viewers were applications

that could not be adapted. These could not natively use any Microcosm features but could

still act as destination points of link traversal.

Microcosm also incorporated a feature that allowed MS Windows users to use Micro-

cosm from Unaware viewers by communicating through the clipboard. Microcosm was

then responsible for reading the information and constructing an appropriate message for

the application.

Experience with Microcosm allowed a general reflection on open systems.

Advantages:

� Ability to cope with large numbers of documents with the added value of link

following devices.
� Data remains accessible to the applications that originally created it.
� Ability to process the links. E.g. keep separate sets of links for different users and

manipulate those sets.
� Authoring effort is reduced via the use of local and generic links
� Allows links to be authored to and from media other than text (e.g. sound, video,

etc.)

Disadvantages:
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� Position of Anchors. When a user follows a link into a large document the viewer

is normally required to move the view to the exact endpoint of the link within

that document. This is not possible with unaware viewers, although it is less of a

problem in partially aware viewers.
� Editing problem. Because the links are not kept within the documents, if the docu-

ments are edited away from the Microcosm system then the links may no longer be

accurate. Similarly if the file is deleted then the link will dangle. This is combated

in Microcosm be recording a time stamp on all links and nodes, when these change

in relation to each other then Microcosm can either try and repair the link or will

warn the user (Davis, 1995).

Experiments were also undertaken to see if Microcosm could be distributed (Hill &

Hall, 1994) using TCP/IP as a transport mechanism for the messages. These were suc-

cessful using a peer to peer and client/server approach due to the openness of the system,

with only a small performance hit. These experiments included multiple users accessing

the same linkbase (database of links) however true collaboration was not supported.

2.6.2 DeVise Hypermedia (DHM)

In 1992 researchers at the University of Aarhus, Denmark decided to build a new Hyper-

text system based firmly on the Dexter model. Both to prove the validity of that model

but also to demonstrate its flaws and suggest improvements. The DeVise project resulted

in the first version of DeVise Hypermedia (DHM) (Grønbæk & Trigg, 1994) an open and

extensible architecture based around an Object Oriented Database (OODB).

The major revision that the DHM team made to the model was the inclusion of dan-

gling links, i.e. links with zero or one endpoint were allowed in the system. They point

out that this is a natural extension of the model, which allows incremental construction

of links within the system and lazy updating and garbage collection when endpoints or

nodes are deleted from the system.

DHM also explored the notion of link directionality. They identify three main no-

tions:

1. Semantic direction: A semantic relationship between one endpoint and another, for

example A ‘Supports’ B.

2. Creation direction: The direction corresponds to the order of creation of endpoints

within the link. The first becomes the source anchor and the second becomes the

destination.
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3. Traversal direction: In this case the user, during the creation process, explicitly

gives the link a direction. The link can only be traversed in this direction, relying on

a menu of ‘back-links’ as a mechanism to traverse them in the opposite direction.

The Dexter model allows for the specification of direction in a link but does not

explain which of these notions it actually assumes. In DHM they tried to avoid this

question by specifying all links as bi-directional at creation and allowing the user to

modify this if they so wish.

Another problem they identified with the model concerned the use of Anchors as

an abstraction between content and the actual hypermedia structures within the storage

layer. The problem is caused when composites are used within the storage layer. An-

chors to these composites are not defined, even though both composites and anchors are

transparent to the model. DHM includes composites as first class objects alongside nodes

and links as defined in the Dexter model but it also extends the notion of composites to

include virtual composites, computed components and structured composites.

DHM was extended to include support for collaboration (Grønbæk et al., 1997). This

was seen as an important area as many large design projects that could benefit from hyper-

media also had requirements in the collaboration area. The DHM researchers identified

six modes of collaboration, describing the various ways in which users could utilise the

same hypermedia system together.

1. Separate responsibilities. The material is split into several parts, each part is ma-

nipulated by at most one user (although viewing another’s material is possible).

This was seen as a very loose form of collaboration mainly consisting of one user

making use of material controlled by another.

2. Turn taking. This is the same as ‘Separate responsibilities’ but each part may

alternate between users. At most one user is allowed to modify a given part. This

requires some support in the system to manage the part to user relationship.

3. Dynamic exchange. During a session, users may exchange parts dynamically. Thus

a user who wishes to modify a part controlled by another user may request that user

to transfer their lock.

4. Alternative versions. Different users may develop different versions of the same

part. These may be merged later.

5. Mutual sessions. Two or more users may work on the same part at the same time,

changes being immediately updated on any shared sections of the part. A co-

operative commit is required to update the part in the OODB.

6. Fully synchronous. This is identical to ‘mutual sessions’ except that all users have

an identical view of the data through a global window.
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DHM included support for the first four of these. Other projects in the same depart-

ment concentrated on the last two outside of DHM itself.

2.6.3 Hyper-G

Hyper-G was an ambitious system that came out of the Graz University of Technology in

the early 1990s (Kappe et al., 1993). It was an attempt to write an open hypermedia sys-

tem for a particular distributed application, in this case a modern University Information

System.

It was written to specifically deal with four areas:

1. Research. Giving individual scientists immediate access to the results of other

researchers, accessing publications, libraries and databases of interest.

2. Teaching. Supporting the process of teaching and learning

3. Administration. Access and maintenance of relevant legal documents minutes of

meetings, rules, records and timetables.

4. Communication. Communication and collaboration of groups and individuals (in-

cluding inter-communication between individuals within the above groups)

The system was envisaged to import data in a variety of ways, from direct entry

to allowing users to fax documents that would then be submitted to an optical charac-

ter recognition (OCR) process. It was also a criterion that existing systems within the

University would have to be incorporated. Unlike other distributed information systems

being developed at the time including Wide Area Information Server (WAIS), the Gopher

project and the World Wide Web (WWW) (described in Section 2.7), the Hyper-G server

kept its links separately from the documents.

The designers envisaged that Hyper-G would be built upon a vast store of information

(gigabytes of data on hard disk and CDROM) and would be accessed remotely over a

Wide Area Network (WAN) using remote terminals.

The actual hypermedia objects stored in the server would be highly structured, be-

longing at the very least to a hierarchy of nodes. This way the database can ensure the

integrity of all links by removing those that become broken (no node will become inac-

cessible as it belongs to at least one structure). They include ‘Tours’ and ‘Lessons’ as

complicated structures created by a teacher for use by students.

Another interesting aspect of Hyper-G is its support for different user modes. A user

can log onto the system in one of four modes:
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1. Identified. The user gives their username and password and enters the system as

themselves, thus others in the system can identify the user (i.e. when mail is sent).

Users in this mode can also set up preferences and retrieve data previously saved

(e.g. their trails).

2. Semi-identified. The user selects a pseudonym and a password. The system still

knows who the user is but other users do not, although they will see the pseudonym.

3. Anonymously Identified. As semi-identified but the system does not record the true

identity of the user. This avoids the big brother problem and still enables the user

to maintain their own information on the system.

4. Anonymous. Used when any user identification is too time-consuming for the job

(e.g. public terminals at museums) No user preferences can be stored and access

rights are set up per terminal.

Hyper-G was also forward thinking in regards to language. The system was designed

to contain primitive translations between languages and to convert queries using these

translations to search a variety of documents in a variety of languages, whatever the

language of the original query. It was imagined that these kinds of facilities could be

added (experimentally) at a later date.

2.6.4 SEPIA

In 1990 researchers at GMD-IPSI Darmstadt, Germany were beginning work on a new

Hypertext System designed to give extra support to authors. The system was known as

SEPIA (Structured Elicitation and Processing of Ideas for Authoring). The group decided

that the storage layer of the system was best built on top of an object oriented database

and that they needed to define a data model that could be implemented in that database

with software to interface with it. They called this type of software a Hypermedia Engine

and named their implementation HyperBase (Schutt & Streitz, 1990).

The goal was to keep HyperBase application independent with the aim of making it

open enough to cope with different data types in the future. Because of these application

dependant semantics there are the following side effects:

� The applications are responsible for the interpretation of a nodes contents, they

simply store a Binary Large Object (BLOB)
� Definition of point to point links must be done at the application layer, as only the

application understands how to reference into the nodes.
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� Although the hypermedia engine stores versioning information about the various

hypermedia objects in the system, it is the application that must deal with version-

ing at the node level as only the application understands what actually constitutes

a version of a particular document type.

Hyperbase was built with the intention of describing a hypertext data model that

could be used for common storage and as a basis for the development of a Hypertext

Query Language (HTQL). The Hyperbase system was built around a data model for

Navigational Hypertext. This model was formed out of five different objects:

1. HB Nodes : Represent some content (i.e. a document) and the history of that

content

2. HB Links : Connect two HB Node objects

3. HB Composite Objects: Contains sub-objects and a history

4. HB Attributes : Are attached to the other objects, they have a name unique to that

object, an attribute value and a history.

The distinction between HB Links and HB Composite Objects is made on two levels.

Firstly HB Links connect exactly two HB Nodes while HB Composite Objects associate

many, and secondly HB Composite Objects are designed to function as virtual objects as

described by Halasz (see Section 2.4.3) as well as statically stored structure.

SEPIA was built on top of HyperBase with the aim of creating a hypermedia system

that enabled authors to create hypertexts more easily (Streitz et al., 1992). It acknowl-

edges authoring as a design problem and provides four activity spaces to make authoring

easier.

1. The Content Space. The design objects and operations of this space are meant to

facilitate the development of a domain model. SEPIA uses the structuring facility

of hypertext to support ‘idea dumping’. Grouping ideas by topic and linking them

to relevant external sources.

2. The Rhetorical Space. It is in this space that the author creates the final, reader-

oriented, article. This can either be a conventional linear text or a hypertext. The

space provides a special ‘construction kit’ that ensures that authors create a text

that appears as a coherent entity.

3. The Planning Space. Used by the author to externalise their writing plans and to

construct an agenda for the authoring activity. It is a meta-space for coordinat-

ing the activity in the other three spaces and for controlling the progress of the

document.
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4. The Argumentation Space. This supports the development of an argumentative

structure by providing the appropriate design objects and operations. This space

was added as argumentation is a crucial cognitive activity that appears in a wide

variety of document types and it was felt that it was important to support it directly.

The designer can switch design spaces seamlessly and also bring hypermedia objects

across spaces. SEPIA allows automatic transfer of design objects, the reuse of specific

design objects and also the indication and control of references across activity spaces.

SEPIA also supports multiple authors working on the same set of design spaces. In

this case their browsers are loosely coupled and users are made aware of each other via

a list of all concurrent users displayed on the screen, highlighting of objects locked by

other users and also a relaxed WYSIWYG view.

It also supports a tightly coupled mode where all coupled browsers show a WYSI-

WYG view of the content. In addition to the functionality of the loosely coupled mode,

browsers also receive scrolling and resizing events from other users.

To support meta-communication SEPIA implements a channel (audio/video) between

users and allows gesturing using concurrent telepointing.

SEPIA was extended to include an advanced version server known as CoVer (The

Contextual Version Server) (Haake, 1992). The group at GMD realised that for a version

system to be useable the effort spent on version management should be outweighed by

the benefits and this meant automating the system as much as possible.

Because the system versions everything silently in the background, the user is free

to concentrate on the hypertext, while still having access to a full range of versioned

hypertext objects. They identified five version creation requirements:

1. Versioning is an all or nothing approach, versioned and non-versioned documents

have to be managed in the same system together.

2. It must be possible to maintain the states of the hypermedia objects. Tracking

incremental changes, enabling the system to create many past versions.

3. It must be possible to maintain alternatives. E.g. alternative proposals, or alterna-

tive subdocuments.

4. Ability for an author to fix a part of a document and refer to it later.

5. A general versioning service should create versions automatically in the context of

tasks (e.g. an original version of a document submitted for a review).

CoVer enhanced the basic version mechanism by adding context information in the

form of tasks and annotations. This enables task tracking through the version history
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providing meaningful, automatic version creation. For example a task is described and

decomposed into several sub-tasks. Now when a document is created in the context of

that task it can be ‘frozen’ by the version server at each of the points separating the

sub-tasks.

2.6.5 Multicard

In 1992 researchers at Euroclid, France noticed that there were two distinct kinds of

hypermedia system evolving, both easily describable using the Dexter model.

The first focused largely on the Runtime and Presentation layers of the Dexter model,

concerning themselves with the management of hypertext objects and their storage. These

systems usually offered basic document processing functionality with no regards to stan-

dards or sophistication.

The second breed of system concerned themselves with the Within Component layer

of the Dexter model, developing hypermedia extensions to existing content-based appli-

cations (e.g. CAD systems). Typically however these provided only an elementary link-

ing facility between two endpoints in the content data. What they decided was lacking

was a clear specification of the interface between these two approaches; a specification

and implementation of the Anchoring interface described in Dexter.

They presented Multicard, a system that unifies these two approaches by offering the

basic set of hypermedia tools accessible via a standard interface known as the M2000

protocol (Rizk & Sauter, 1992).

Multicard presents a familiar set of hypermedia objects (nodes, anchors, groups and

links) but links are treated rather differently. In Multicard links are viewed as event

or message channels between objects. A variety of messages can be sent through the

link including the standard activate request which causes the ‘following’ of a link and

the opening of an associated object. The team felt that this approach allowed scripting

languages to more easily reconfigure the behaviour of the system.

M2000 editors can conform to M2000 at a variety of different levels. The most basic

support includes only two requests (Open and Close node) and returns an error message

for all other requests. Multicard does not define any user interface features for the editors,

it merely provides the mechanism for them to communicate with the Multicard system.

The protocol itself devolves into four basic areas:

1. Requests concerning nodes. E.g. open, close, print etc.

2. Requests concerning anchors. E.g. create, delete etc.
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3. Requests concerning editable objects. E.g. create, cut/paste, select etc.

4. Requests concerning menu management. These allow scripts to modify the menus

on the M2000 editors when in reader/author mode. E.g. add, delete, activate etc.

M2000 also provides custom messages by providing a basic operation that takes an

application dependant string to be processed as a series of commands.

2.6.6 Chimera

In 1994 researchers at the University of California, Irvine, combined hypertext technol-

ogy with software development environments (SDEs) and created the Chimera hypertext

system (Anderson et al., 1994). Chimera allows developers to freely associate different

objects in the system regardless of type, with the aim of both capturing and visualising

those relationships.

Heterogeneity was a major concern for the Chimera team as SDEs contain a wide

variety of development tools and management software. In addition SDE viewers often

supported multiple views of the same objects. Thus Chimera provides anchors that are

specialised to particular views (rather than objects) and allows n-ary links across hetero-

geneous object managers.

The system itself was based on a client server model, where the components commu-

nicated via a shared API using a remote procedural call (RPC) mechanism. The server is

responsible for maintaining and storing the collections of hypermedia objects (known as

a Hyperweb) and serving that structure to the clients. The clients in turn were responsible

for presenting the structure to the user, although there was no restriction on how this was

done.

Chimera is a useful application of hypertext to an existing real-world problem. It

also identifies the problems of integrating with existing management systems, some of

which support limited linking technology in parallel to the hypertext system, and also the

problem of providing a consistent interface over heterogeneous viewers.

2.7 The World Wide Web

Without doubt the most popular hypertext system is the World Wide Web (WWW) cre-

ated by Tim Berners-Lee while he was working at CERN in Switzerland in 1989 (Berners-

Lee et al., 1994). The Web allows users to access distributed documents and navigate be-

tween them by following links, actually references embedded in the document currently

being viewed.
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The power of the Web lies in its simplicity. The Uniform Resource Locator (URL)

allows any object on the Internet to be identified via a relatively simple text string. The

first half of this string resolves via a Domain Name Service (DNS) lookup to the Inter-

net Protocol (IP) number of a particular machine and the remaining text acts as a local

identifier for the web server waiting on that machine (normally a path and file name).

Coupled with the Hypertext Markup Language (HTML) which allows URLs to be

embedded in text and images, this creates a basic framework in which to provide hy-

pertext. However, it has been argued that the Web is nothing more then a distributed

file system (Nürnberg & Ashman, 1999) and that its hypermedia functionality does not

match up with that specified by early pioneers as being fundamental to a hypermedia

system (Bush, 1945; Engelbart, 1963; Nelson, 1987).

Common problems include a lack of support for hyperstructures (i.e. all HTML files

hold their links in isolation and cannot be easily processed), a lack of support for naviga-

tion (only binary, one-way links are supported) and the problem of broken links, where

pages are deleted or moved and their references become invalid.

However the fundamental simplicity of the Web has provided a springboard for a vast

array of more sophisticated tools that add functionality to the Web as a whole. Search

engines index web pages and provide easy, if non-exhaustive, starting points to seek

information. Web crawlers trawl over thousands of pages, either compiling, or searching

and indexing data. Web servers have been extended to provide for server side processing

which enables HTML to be used as a delivery mechanism for non-hypertext applications,

such as on line shopping and banking.

The Web has grown to become much more that a basic hypertext system, it is a

cultural phenomenon that forms a cornerstone of information delivery over the Internet

on a par socially with television and radio; one that promises to do much more in the

future. It is perhaps ironic then, that it still does not fully achieve the goals set down by

those early pioneers.

2.8 Movement within Information Spaces

Hypermedia systems are based on the notion that people wish to move through the in-

formation stored on their computer systems. However the methods of movement, ori-

entation and travel (collectively referred to here as ‘Navigation’) have altered over the

years. Transforming from early ideas on linking (as an analogy of associational thought)

to more comprehensive structural provision.
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In this section we shall look at the different mechanisms that researchers have pro-

vided to facilitate movement within their systems.

2.8.1 Linking

Throughout the development of hypermedia, linking has developed as a concept from

the simple point to point linking of early systems to more complex, typed n-ary links of

modern systems (Young, 1990). These allow more accurate representation of a variety of

relationships within information space.

The separation of links from data that occurred in OHSs allowed systems like Micro-

cosm to let users navigate in a variety of ways (see Section 2.6.1).

In addition the advent of hypermedia allowed for the possibility of dynamic linking

across a whole range of different document types. This process depends on analyses of

the appropriate media into some form of comparable metric, thus media-based naviga-

tion (Hirata et al., 1993), is navigation where the query takes the same form as the desired

results, e.g. ‘Find images similar to the one I am currently viewing’.

The analyses and indexing of media documents also opens up the possibility of

generic media-based links (Lewis et al., 1996). E.g. ‘Link anything that sounds like

this song to this document’.

Any form of media-based navigation or content based retrieval depends on a powerful

query mechanism. Powerful navigation of any sort depends on this type of mechanism

to be available, to supplement the traditional link navigation model (as described by

(Halasz, 1988), see Section 2.4.1).

Whilst data query is relatively simple in the case of text and is being explored in

media-based navigation systems, Halasz also identified a second important query type,

structural query. These queries are based on the structure of the meta-information itself,

e.g. ‘Find all links containing three bi-directional anchors’. Several appropriate structure-

based query languages exist including SQL and O2-Query (Christophides & Rizk, 1994)

but these are difficult for users to use and often require knowledge of the storage back

end of a system.

2.8.2 Spaces

Visual display of hypertext structure has always been popular and was present in systems

such as Notecards (Halasz, 1988) and Neptune (Delisle & Schwartz, 1986) in the form

of graphical browsers. However another form of hypertext can be achieved by promoting
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spatial layout to primacy, such as with the VIKI spatial hypertext system (Marshall et al.,

1994).

In these systems the actual structure of the information is created spatially. Objects

placed near each other are automatically grouped by the system by a process known as

spatial parsing. These groups may themselves have structure depending on their layout,

e.g. lists, heaps or matrixes.

Spatial hypertext systems not only provide their users with an easy overview of an

information space they also assist in the creation of that space, modelling the way in

which human beings naturally collate information into associative groups (Marshall &

Shipman, 1997). A more detailed description of spatial systems appears in Section 6.2.2.

2.8.3 Context

One of the more interesting concepts in hypermedia, aimed at reducing the complexity

of navigation, is the idea of a context. Unfortunately what exactly constitutes context has

been the subject of much debate (Dervin, 1997).

In hypermedia research there have been three main views:

1. Source and Destination Context for a Link (Hardman et al., 1993). This is the

view that the source and destination of a link should not be a node but rather have

context within a node (linking to a specific point in a file rather then just the file

itself). E.g. linking to the third minute of a sound file.

2. Contexts as Workspaces (Delisle & Schwartz, 1987). This uses the idea of au-

thoring hypermedia structure in a particular context that cannot be seen from other

contexts, providing a user specific workspace. When the changes made are com-

mitted the contexts are merged into the true information space.

3. Contexts Altering the View of Information Space (Casanova & Tucherman, 1991).

This envisages context as filtering which information the user can currently see.

This is used to assist users to find specific information they need by removing ir-

relevant data from the information presented to them. E.g. Looking at information

on an air-conditioning system, either in the context of a user trying to use the unit

or in the context of an electrician attempting to repair it.

In many ways the first two views of context have been addressed in modern hyper-

media systems. Anchors provide for linking context (point one) while spatial systems or

composites provide the functionality associated with workspaces (point two). However
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the third notion of context is neglected in many systems, although some work on alterna-

tive open hypermedia linkbases (collections of links) has been conducted (Crowder et al.,

1997).

Some systems have exploited context successfully, although often with some user

cognitive overhead. In particular Computer Integrated Documentation (CID) (Boy, 1991)

an adaptive hypermedia system. In CID users try and describe their objective using de-

scriptors. E.g. you are a designer, you are interested in the air conditioner system, and

you have little knowledge of the circuitry involved. When the system produces results it

allows the user to specify which results they considered a success and which were fail-

ures. The system adjusts its internal metrics as a result and as a consequence if the same

query is made with a similar context (set of descriptors) then the system is better able to

prioritise its results (or even exclude some of them altogether).

Such a system could be said to dynamically adapt the view of the information accord-

ing to the context of the current user.

2.8.4 Composites

Composites themselves afford us another way of reasoning about the information in a

system. If we regard composites as particular types of links (relationships between nodes

represented as sets) then we can navigate from node to node by moving between inter-

secting sets; this is known as Taxonomic Reasoning (Dyke, 1991).

This categoristic treatment of composites also allows for intelligent set-based query-

ing, e.g. give me the set of all the company reports written in Italy.

Together all of these form a rich collection of navigation methods that attempt to

make it as easy as possible for a user to move through an information space and home in

on the data that they are particularly interested in.

2.9 Interoperability Efforts

Interoperability has been an important goal throughout hypertext history. The creation

of standards was mentioned in Frank Halasz’s Closing Plenary at Hypertext ’91 where it

formed one of several technical issues for future systems (Halasz, 1991). Unfortunately

as the support for different navigational methods varies from system to system it has

proved very difficult to turn into a reality. Despite these difficulties interoperability has

long been identified as a requirement for industrial strength hypermedia (Malcolm et al.,

1991), and several attempts at rationalising the differences between systems have been

made.
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2.9.1 Dexter Revisited

The Dexter Hypermedia Reference model (Halasz & Schwartz, 1994) (discussed in Sec-

tion 2.5.1) represents a firm basis for interoperability but has been criticised for failing to

address some of the requirements of large-scale distributed hypermedia (Malcolm et al.,

1991). In particular by assuming that the applications making up the within-component

layer are known to the system and that they all model their data on the same Dexter

storage layer.

In addition experiments with Dexter implementations (Grønbæk & Trigg, 1994) have

highlighted problems with the model itself, most noticeably the lack of support for ei-

ther embedded links (such as within the WWW) or dynamic links (such as Microcosm’s

generic links). In 1996 Trigg and Grønbæk extended the Dexter model to cope with

these (Grønbæk & Trigg, 1996). However other problems remain, including the lack

of support for dangling links, incomplete specification of composites and the lack of a

notion of context (Malcolm et al., 1991).

2.9.2 Standard Protocols

In 1989 Sun’s Link Protocol developed by Amy Pearl (Pearl, 1989) presented a standard

protocol for desktop applications to access hypertext functionality. Pearl concludes that

‘We hope to see linking, and attendant hypertext capabilities, as much a standard part of

the computer desktop as the cutting and pasting of text are today.’

Multicard, developed by Antoine Rizk and Louis Sauter (Rizk & Sauter, 1992), is

an OHS that connects to its applications through a published open protocol known as

M2000 (discussed in Section 2.6.5).

Unfortunately neither the research community nor commercial organisations took up

either of these interfaces. This may have been due to the immaturity of the field at the

times they were published (1989 and 1992 respectively). Halasz makes the point in his

revisited speech that any standards need to be based on well-articulated models due to

the changing nature of the hypertext field which necessitates change within any standard.

Perhaps this change overtook these particular protocols.

Work on the requirements of interoperability has been much more recent. In 1996

Østerbye and Wiil presented the Flag Taxonomy of Open Hypermedia Systems (Østerbye

& Wiil, 1996). The flag taxonomy (named because of its similarity to the Danish national

flag) was a framework within which to compare and classify OHSs. It described each

system in terms of the Storage Manager, the Data Model Manager, the Session Manager,

the Viewer and the interfaces between them. In 1998 they extended the model to describe
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the interactions between separate OHSs and presented the T3 protocol (Østerbye & Wiil,

1998), which enabled intra-application integration (for instance, one application could

ask another to display a particular file or node), to augment traditional application/server

integration.

2.9.3 Open Hypermedia Protocol

In 1996 Davis and Rizk proposed a basic protocol to enable linking, known as the Open

Hypermedia Protocol (OHP) (Davis et al., 1996). The authors had acknowledged a prob-

lem with system development within the research community. Because each OHS re-

quired its own set of proprietary clients it was difficult to implement either a new OHS

(because the researchers were forced to spend a great deal of time writing clients) or a

new type of client (as they were then required to write an underlying hypermedia system).

OHP answered this problem by presenting a standard interface between clients and

servers. The vision was for existing clients to be reusable across many hypermedia plat-

forms, therefore reducing development times. It was envisaged that software could be

written to ‘shim’ communications of the server format to OHP and then back to the

client format and vice versa.

However the protocol was criticised, both for inconsistencies within the protocol def-

inition itself (Anderson et al., 1997) and also for its lack of an underlying data model

and architecture (Anderson, 1998). In addition other areas of interoperability have been

identified and remained to be addressed, such as the interface between a server and its

storage back-end (Goose et al., 1997).

2.10 Summary

In this chapter I have presented a broad range of hypermedia systems, the issues associ-

ated with these systems and described how different models and protocols have attempted

to achieve interoperability between them.

The most recent of these efforts has been the evolving OHP effort, in which I have

played a major role. In the following chapters I will explain how the work involved in

the development of OHP has led to a greater understanding of inter and intra system

communication and also the information worlds that we are attempting to create and

model.

Interoperability has been identified as an important part of a larger research effort

into Open Hypermedia (Nürnberg et al., 1998). Along with emerging component-based
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systems and the examination of structure and navigation within such systems, it forms a

cornerstone of future hypermedia research.



Chapter 3

Development of OHP-Nav

3.1 Introduction

At the first workshop on Open Hypermedia Systems (OHS 1) in Edinburgh at ECHT’94,

Antoine Rizk proposed the standardization of a lightweight protocol that would allow a

client program to talk to a link server. The benefit that was expected was that the Open

Hypermedia Systems Working Group (OHSWG) would be able to start experimenting

with interoperability between link servers and reduce the overhead of re-implementing

viewers. It was intended that this protocol would be simple enough that a third party

application such as Word for Windows could be simply adapted using the built in macro

programming facilities. A first draft of the Open Hypertext Protocol (OHP) (Davis et al.,

1996) was presented at OHS 2 at Hypertext ’96, two subsequent meetings of the OHSWG

refined and altered the protocol significantly (Davis et al., 1997).

The original protocol had attempted to capture that common set of navigational ‘point

and click’ actions that are embodied in most traditional hypertext systems. The proto-

col was intended to represent a common subset of that functionality. At OHS 3.5 in

September 1997 the working group decided that the protocol should attempt to become

a superset that could express the actions that occur in all structure processing systems.

It was thought that we would develop a set of ‘hypertext objects’ which are stored on

structure servers, and a set of interfaces that allow us to manipulate these objects.

It was also envisaged that less well-understood models of hypertext should also be

supported, such as Spatial Hypertext (Marshall & Shipman, 1995; Reinert et al., 1999)

and Taxonomic Hypertext (Nürnberg et al., 1996; Dyke, 1991; Dyke, 1993) (these other

‘domains’ are explained more fully in Section 6.2). In this world the original OHP be-

comes the ‘navigational hypertext interface’ (a subset of the OHP protocol) referred to

from this point onwards as OHP-Nav and the objects in the data model (links, nodes etc),

42
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Figure 3.1: Hypertext Data Model

are ‘navigational hypertext objects’ which are a subclass of the set of all objects (although

it was envisaged that some of these objects, such as nodes, might be re-useable across

other domains).

In this chapter I shall describe the OHP-Nav protocol developed and in particular

focus on the data model, architecture and message syntax. I was heavily involved in

an early demonstration of OHP-Nav at the Hypertext ’98 conference in Pittsburgh, PA,

where several OHP-Nav speaking components showed interoperation between hyperme-

dia systems for the first time. I will describe this demonstration, the system that we

developed and finally explore some of the protocol related issues that were raised.

3.1.1 A Common Data Model

The hypertext community has invested much time and effort in attempting to define

hypermedia, and probably the most successful result is the Dexter model (Halasz &

Schwartz, 1994; Grønbæk & Trigg, 1996) described in section 2.5.1. In this section we

define the terminology and model that is assumed by the OHS working group.

This description attempts to be as inclusive as possible in the sense that the model

is capable of representing the link models assumed by most existing hypertext systems.

However, this model does not attempt to model the systems that have particular features

such as transclusions in Xanadu (Nelson, 1987) or other domains such as spatial hypertext

(see Section 2.8.2). These systems were expected to design their own interfaces.

Figure 3.1 depicts the basic entities of the hypertext data model, and their relation-

ships.

The model of hypertext assumed consists of servers which hold links, endpoints,

datarefs and nodes. Each of these objects have unique identifiers within the system.

Servers which manage these objects are known as link servers.
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Figure 3.2: Example of Data Model

A link is an object which represents a connection between zero or many endpoints. A

link may, or may not, have a type (e.g. ‘defines’). In many systems traversing a link may

cause some process to run, as well as, or instead of, causing the focus to move to some

point at the end of the link.

An endpoint is an object which holds the attributes of the end of a link. Typically

an endpoint will hold a traversable direction which might be source, destination or bi-

directional. For example Figure 3.2 shows two links, one of which has source and desti-

nation endpoints and the type ‘defines’, and the other which has two bi-directional end-

points and the type ‘supports’. Thus the link ‘supports’ may be traversed from Endpoint4

to Endpoint3 and vice versa, while the link ‘defines’ can only be traversed from End-

point1 to Endpoint2.

A dataref references a node and defines the point within that node at which the ap-

plication which shows the data should indicate some kind of persistent selection which

will be a hypertext ‘hotspot’. The words ‘anchor’ and ‘button’ were deliberately avoided

as those terms have been somewhat overloaded in the past. A dataref therefore consists

of a node identifier and a location specifier or LOCSPEC. A dataref may be associated

with zero or more endpoints. For example, a user may make a number of datarefs before

associating any of them with any endpoint of any link. Also, one dataref might be shared

amongst more than one endpoint, and these endpoints might belong to different links.

A node identifier (nodeID) uniquely identifies one node.

A node is a wrapper object which holds the meta-data about some content data in-

cluding the information about where to find the file or files which make up that content

data. This content data is defined by a content specification or CONTENTSPEC.

A location specifier (LOCSPEC) holds the information that defines the position at
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which the persistent selection should be displayed as well as any presentation informa-

tion.

A presentation specifier (or PSPEC) may be associated with any hypertext object and

defines how that object should be displayed at run time.

Sometimes a link or dataref may have an associated script specifier (SCRIPTSPEC)

which is executed when the link or reference is used.

In the above definitions, the terms CONTENTSPEC, LOCSPEC, SCRIPTSPEC and

PSPEC have all been shown in uppercase. This is to signify that their definition is out-

side the scope of the navigational hypertext protocol and that they are therefore opaque,

whereas all terms shown in lowercase are fully defined within the data model. However,

some proposals for possible realizations of these opaque objects were created and are

detailed below in Section 3.1.5.

If a link server stores the content data as well as the hypertext objects, then it may be

referred to as a hyperbase, since it is a database storing the entire set of objects involved

in the hypertext.

A link server is expected to provide a core set of link services which involve the

creation, retrieval and use of links, endpoints, datarefs, nodes, scripts and presentations.

It will also be expected to provide some level of document management, for example,

informing the client the name of the file it must load and display in order to complete a

link traversal.

Many link servers provide extra services, which assist the user in navigation, such

as Microcosm’s integrated search engine which creates dynamic links (as explained in

Section 2.6.1).

3.1.2 The Assumed Architecture

While developing OHP-Nav it was thought that addressing interoperability not only re-

quired some common understanding of the data model but also the underlying architec-

ture should be investigated and agreed upon. This was because a data model usually

makes assumptions about architecture and because functionality and behaviour are to a

large extent based on the architecture. In many ways later work on OHP dropped this as-

sumption, or at least became far more flexible, preferring a vision in which information

systems can communicate regardless of architecture.

In this section I will discuss general assumptions about the underlying architecture

of open hypermedia systems made during the development of OHP-Nav. This was never
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an attempt to define a reference architecture, although promising work was happening in

parallel (Goose et al., 1997; Grønbæk & Wiil, 1997; Wiil & Whitehead, 1997), instead

it was thought of as the minimum that was necessary to allow an implementation of the

data model described above.

There is a problem that impedes the simplicity of a model which has the application

program communicating directly with the link server. In practice all those who have

implemented link servers have identified the need for some component on the client side

which is present throughout the hypertext session.This has previously been called the

‘Runtime’ (Goose et al., 1997). the ‘Tool Integrator’ (Wiil & Leggett, 1996) and in the

original version of OHP it was called the ‘Communication Protocol Shim’ (Davis et al.,

1996). In order to prevent any further naming problems the OHSWG agreed to call it

the CSF. (This acronym might be said to stand for ‘Client Side Functions’; actually it

originally stood for ‘Client Side Foo’, which was the ‘stub’ name adopted by the group

in order to prevent any further argument about the name). Figure 3.3 gives a graphical

representation.

The responsibilities of the CSF will always include starting an application (with its

data) when required to by the link server (e.g. as the result of traversing a link to a

document which must be handled by some application which is not currently running).

This function is necessary as in heterogeneous systems it is not always possible for a

server application to start a client on a remote machine.

There are many other tasks that might need to be carried out on the client side:

� communicating with a document management system for lightweight clients
� providing client side tools for such activities as joining endpoints to links and

datarefs to endpoints
� providing facilities for establishing and maintaining connections to servers
� caching of documents
� user information and client side security
� managing default scripting facilities

For the above reasons we believed that it is necessary that some of the communica-

tions between client side applications and link servers were routed through the CSF. The

exact routing of the messages is irrelevant from the point of view of the link server, which

simply receives the messages and sends replies. However, if we want to allow third party

viewers to plug in to a CSF, there will need to be some standardization so that the viewer

can know which services to expect the CSF to provide. For example some systems may

want the CSF to intercept and handle all requests to produce content so that they can

proxy for the document management system.



47

Figure 3.3: Assumed Architecture

Figure 3.3 gives an example of the kind of architecture we were assuming. In this

figure there are two client side applications. One is Word, which has been adapted as a

OHP aware viewer using its macro language, and one is a special purpose picture viewer

which was written to work with OHP. Both these communicate with the link servers via

the CSF using the OHP protocol. One of the servers is a native OHP server, whereas

the other might be a DHM (DeVise Hypermedia) server, and a shim has been inserted in

order to convert the OHP protocol to the DHM native protocol.

Besides the components application program, link server and CSF there is a fourth

component, the Document Management System (DMS). We always thought that an ad-

ditional protocol - a document management protocol (DMP) - should allow standardized

communication to document management systems. The Open Document Management

API (odm, 1997) could serve as a good example and some of the concepts in the hyper-

text data model described here, e.g. the definition of a node id as a unique document

identifier, follow this proposal.

Figure 3.3 shows the client communicating with multiple servers. At this stage we

had not defined whether this is on a ‘one server per session’ basis, or whether we expected

the client to be able to send requests to distributed servers, as a web browser talks to

multiple servers.

3.1.3 Message Definitions (EBNF vs. XML)

OHP messages consist of text strings. In the following examples the messages are shown

formatted on multiple lines for ease of presentation. However, the messages themselves

are one continuous stream of ASCII text, unbroken by line feeds.
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Originally the protocol was loosely based on the Microcosm message passing format

and was defined using an Extended Backus-Naur Form (EBNF), with messages consist-

ing of tags, which were proceeded by a backslash (‘
�
’) and succeeded by a white space.

The characters that followed, up to the next tag or the end of the message were the tag

contents. A tags content could be empty. In addition some tags denoted a block of the

message with some particular relevance. E.g.
�
LocSpec and

�
EndLocSpec. The com-

plete description of OHP-Nav in this form can be found in Appendix A

However, early implementations of the protocol as described above raised several is-

sues regarding the parsing of the tagged ASCII protocol definition. These issues included

some inconsistencies in the definition. Among them the naming of tags and the handling

of objects. Also, the message header contained insufficient information about the content

of the message to allow efficient routing. Most importantly, the message definition was

non deterministic which made message parsing difficult.

For these reasons we decided to define an XML conformant document type definition

(DTD). As well as updating the protocol definition, XML had the advantage of being a

well supported standard which allows us to re-use a variety of existing tools and pack-

ages. The complete description of OHP-Nav as a DTD can be found in Appendix B.

3.1.4 Message Header

As opposed to the earlier draft of OHP (Davis et al., 1996), which defines a channel

as an identifier for messages, here we defined a dedicated message header. As already

mentioned above, OHP-Nav abstracts from the network layer so the header does not

include any host, port or other communication specific information.

Every message will have a message header. A message header will contain informa-

tion about the transaction that both sides of the communication channel may from time to

time need to examine. It is not immediately clear that all of this information is essential,

but there is a general consensus that parts of this information will, at times, be necessary.

MID a unique identifier for the particular message.

RMID the ID of the message this message is a reply to.

VID current version of the protocol.

SID a system dependant string which uniquely identifies some ‘transaction’ or ‘session’.

UID a system dependant string uniquely identifying the user.

FID the name of the message of which this is a header.

The MID would probably be realised by a time stamp. The RMID allows applications

and link servers to keep track of sent and received messages and by that keep state. The
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field can be left empty in case a message is sent that is not a reply to a previous message.

As OHP was at that stage often being revised and amended a VID field was thought

essential. E.g. ‘2.1.Southampton’ would indicate version 2.1 of the OHP protocol with

Southampton extensions.

At the time this definition was written the OHSWG had not yet defined what a session

was but we envisaged that such a notion would become significant when we attempted to

deal with collaboration issues. It was thought important for the protocol to provide basic

support and thus we provide the SID and UID.

When early prototypes were being produced it was also discovered that in some cases

the type of the message also needed to be provided in the message header. E.g. in the

case where the body of a message is encrypted but that message needs to be routed based

on its type. For this reason the XML version contains an additional ‘function id’, or FID,

that was always set to the type of the message.

3.1.5 Opaques

There are certain entities within OHP that are treated as opaque (these appear within the

protocol in uppercase). This means that their definition is unimportant for the specifica-

tion of OHP itself although they will need to be understood by the applications using

OHP. There are four opaques within the OHP definition, LOCSPEC, PSPEC, CON-

TENTSPEC and SCRIPTSPEC). We expect a situation where a general definition of

an opaque is needed (to allow interoperability) but where the protocol must be flexible

enough to allow specialist applications to define their own standards for these opaques

and to insert an appropriate byte stream. In order for such a byte stream to be placed

within in ASCII protocol, it would be necessary to MIME encode the bytes.

So that an application (or the CSF) can parse all opaques, each opaque is accompanied

by a version ID and enclosed within a begin and end tag. Thus a parser can check the

version and skip the opaque if it is not one that is understood.

A complete definition for these opaques can be found in Appendix A.

Location Specifications (LOCSPEC)

Locations Specifiers (LOCSPECS) describe a position in a document or piece of media.

The definition of the location specifications was quite a controversial issue during the de-

velopment of the proposal. The two main camps being the ‘opaque’ people on one side

and the ‘HyTime’ people on the other. The argument towards opaque location specifica-

tion is that for the link server location specifications should be opaque because the link
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server does not actually deal with them but rather wants to handle them as uninterpreted

byte blocks. The HyTime (Newcomb et al., 1991) followers on the other hand argue that

at some point you actually have to have a specification so that an application is able to

locate a specific position within a document’s multimedia content. If you have to define

it use an existing standard, in order to deal with location specifications in an abstract,

platform independent way.

We tried to learn from both viewpoints and concluded that both had valid points.

Therefore location specifications are treated as opaque, but a definition was made that

should be used within the opaque block if possible.

A number of additional criteria influenced our decision for the definition of location

specifiers:

� A full HyTime implementation was considered to put too much onus on the appli-

cation and also would be rather difficult to implement in a macro-like language.

We thus agreed on a subset of location specifications as defined in HyTime;
� The protocol is assumed to develop, thus in the first instance the focus was on

establishing the protocol and later on improving and enhancing it;

It should be stressed that the standardisation of location specifications was not directly

a part of OHP. This can be compared to the situation with the document management pro-

tocol; strictly speaking this should not be part of the definition of OHP. However, if OHP

was going to work there had to be some common assumptions about both location speci-

fications and document management functionality. For OHP-Nav we therefore provided

these features so that OHP-Nav as a protocol could be implemented.

In actual fact we realised that there were several different kinds of LOCSPEC and

although they shared some common attributes they differed in the way in which they

specified a location. We named these different specifications LOCS and came up with

several possibilities.

Name Space Locations These are used to reference an object by its name. It was en-

visaged that this would be useful in systems were parts of the data were already

named (i.e. a CAD system). In these cases simply recording the name would be

sufficient.

DataLoc These are co-ordinate locations, i.e. objects are addressed by their relative po-

sition to another object. Data locations are heavily used by OHP as most systems

define datarefs by relative positioning, for instance by keeping an offset from the

beginning of a text file. In order to know how this dimension specification should
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be interpreted, i.e. to get its data type, a quantum tag is defined. The DataLoc fol-

lows the HyTime semantics of defining a dimension list. In particular, two markers

define beginning and end of a node on an axis thus resulting in (number of axes *

2) markers.

A reverse counter is kept in order to do cross checking of validity of data references.

In case the expected object still can not be found an overrun behaviour can be

specified; the error can simply be ignored, the markers can be truncated to the last

unit on the axis, or an error can be raised.

TreeLoc These can be used for addressing a single object within a tree. The addressing

is done such that on each level of the tree an object is selected by its position.

E.g. a list of ‘1 2 3’ applied to an object referencing a book would get the third

section of the second chapter of the book (assuming that a book has a structure

with chapters and sections).

ScriptLoc OHP does not define a specific query mechanism for addressing locations (as

does HyTime with the standard DSSSL Query Language, SDQ). However, by al-

lowing script locations we define a way for those hypertext systems that use scripts

to identify and address locations at the client side. Scripts are also treated as opaque

to OHP and are dealt with below in Section 3.1.5.

NALoc Another idea borrowed from HyTime is to allow the addressing of data that

is currently not accessible. This could be a printed book which is not available

on-line, a live radio broadcast or even a person or an organisation. The point is

that it might in some cases make sense to reference these nodes without having a

application program for them. Instead, a client could display a notification string,

stating for example where to find the book on a shelf or in a library. We call this

location specification NALoc for ‘Not Accessible’ location.

Presentation Specifications (PSPEC)

Presentation Specifiers (PSPECS) were always considered an important feature of the

protocol, but became increasingly difficult to define. Eventually the OHSWG agreed on

a simple PSPEC with the understanding that it might be replaced at a later date. PSPECS

were designed to store, and thus re-apply a required presentation for any hypertext ob-

ject that a client may wish to display. A client might store a PSPEC as a byte stream,

which would then later be retrieved and interpreted by the same client. We were aware

that strictly speaking presentation styles should not be defined within OHP (Anderson,

1997). However, if we hope to achieve interchangeable client programs, then there must

be some standard vocabulary for describing these presentation attributes, perhaps in a

similar fashion to style sheets in the web community.

Name the name of this style.
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Colour one of several basic assumed colours.

Style one of several basic assumed styles.

Visibility ‘true’ or ‘false’.

Originally the PSPEC was intended only for anchors and therefore a triplet of colour,

style and visibility were used, each of which was optional. A more advanced PSPEC

was planned that would include appropriate presentation information for the other data

objects as well, but it was never finalised.

Content Specifications (CONTENTSPEC)

Within the protocol there was also a need to reference external documents. The spec-

ification of their position was called a CONTENTSPEC and, similarly to PSPEC, was

defined with the understanding that it would probably be improved at a later date. At the

very least it was understood that the CONTENTSPEC would need to reference both local

files and distributed resources.

Name the content’s name, typically a file name, a URL or a DMS handle.

Location ‘FileSystem’, ‘Internet’ or ‘DMS’.

Attributes list of name
�
value pairs.

As far as the link server was concerned the CONTENTSPEC information was opaque.

It stores the string, and when the node is required it sends this back. The client side is

expected to provide some component which will be able to interpret this string in the

cases where the client is asked to display a document. It was envisaged that typically

this would be the CSF, which would then have the responsibility of actually getting the

document from the file system, the Internet or the document management system that it

is using (which may actually be the link server itself if the link server is a hyperbase).

Script Specifications (SCRIPTSPEC)

OHP was hoped to be able to cope with many possible scripting languages, but the

OHSWG had no particular ones in mind. Because of this the SCRIPTSPEC definition

remains extremely general and is little more than a wrapper for a script.

Language name of the script language, e.g. JavaScript, etc.

Data the actual script.

Attributes list of name
�
value pairs.

This is a simple definition, designed to allow scripting to be added to an application

with little extra complication.
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Create Get Update Delete Execute Notification

Endpoint X X X X X
DataRef X X X X

Link X X X X
Node X X X X X ClosingNode
Script X X X X X
PSpec X X X X

Services

Table 3.1: OHP Client Message Table

Definition Display Execute Close

Endpoint X X
DataRef X X

Link X
Node X X X
Script X X
PSpec X

Services X

Table 3.2: OHP Server Message Table

3.1.6 Messages

There are two main classes of messages that we should considered; those sent by the

application program (the client) and those sent by the link server. The messages sent by

the link server are always answers to messages that have been sent by a client. However,

in a co-operative working environment we cannot rule out the possibility that the server

sends a message to client B in response to a message from client A (an update message

for example).

Tables 3.1 and 3.2 give an overview of the basic messages that form the OHP pro-

tocol. The very left-hand column defines the basic entities we have identified, i.e. link,

endpoint, dataref, node, script, presentation specification (PSPEC) and services; the top

line, i.e. the columns’ labels, define the basic functions that can be processed on these

entities. The functions are create, get, update and delete. Lists are introduced as a means

to allow aggregation of entities. An endpoint table for example would be dealt with in

OHP as a list of endpoints.

In addition an ‘Error’ message might be sent by any component being involved in an

OHP session.

I will now present the messages in detail and also give examples or additional com-

ments where necessary to understand the semantics of the protocol.
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MESSHEADER
"\Subject CreateNode"
"\NodeName " <A title that the application may choose to display>
"\MimeType " <MimeType>
"\PreferredApp " <The name of the application which we would prefer

to use with this data>
"\ContentSpecVID " <ContentSpecVersionID>
"\ContentSpec "
CONTENTSPEC
"\EndContentSpec "
"\Attributes "
{"\Name " <the attribute’s name>
"\Value " <its value>}*

"\EndAttributes "

Figure 3.4: EBNF Definition for a CreateNode Message

Note that some of the messages might be rarely used, some even never. However, for

reasons of consistency and symmetry of the protocol they were defined and kept as part

of the standard.

An Example Message

It can be seen from Tables 3.1 and 3.2 that the definition of OHP is rather large and con-

tains many different kinds of message. These are all detailed fully in Appendix A and

Appendix B in the respective notations used for the definitions. Below is as example def-

inition and resulting message for the operation ‘CreateNode’ expressed firstly in EBNF

and then the later XML form.

This message will create a new node in the link server. It is perhaps the one message

related to nodes that might be used by an application program, in the case where a client

side program had just loaded or created some new data content and wished to register it

with the link server.

Figure 3.4 and figure 3.5 show a CreateNode using the EBNF notation. Notice the

opaque CONTENTSPEC that has been expanded using the recommendations above.

This might result in the following example message, attempting to create a new node

based on a local file. Notice the first five tags, comprising the message header.

When the protocol moved into the prototyping stage and XML became the syntax

some minor changes were introduced. As well as the FID mentioned above that appears

in the header, the CONTENTSPEC has been simplified to just a URL. Figure 3.6 and

figure 3.7 show the same message defined and written using the XML notation.
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\MID 70873498573
\RMID
\VID OHP1.2
\SID 23
\UID 1
\Subject CreateNode
\NodeName Thesis Document
\MimeType text/html
\PreferredApp Mozilla
\ContentSpecVID CS1.0
\ContentSpec

\Name H:\THESIS\THESIS.HTM
\Location FileSystem
\Attributes

\Name owner
\Value dem

\EndAttributes
\EndContentSpec "
\Attributes

\Name timecreated
\Value 2000-07-06 04:12:15.0000

\EndAttributes

Figure 3.5: EBNF Example for a CreateNode Message

<!-- CREATENODE -->
<!ELEMENT createnode (node)>

<!-- NODE -->
<!ELEMENT node (nodeid, nodename, mimetype, preferredapp,

contentspec, attributes)>

<!-- CONTENTSPEC -->
<!ELEMENT contentspec (version, url, attributes)>

<!-- FIELDS -->
<!ELEMENT version (#PCDATA)>
<!ELEMENT url (#PCDATA)>
<!ELEMENT nodeid (#PCDATA)>
<!ELEMENT nodename (#PCDATA)>
<!ELEMENT mimetype (#PCDATA)>
<!ELEMENT preferredapp (#PCDATA)>

<!-- ATTRIBUTES -->
<!ELEMENT attributes (attribute*)>
<!ELEMENT attribute (name, value)>

Figure 3.6: XML DTD Extract for a CreateNode Message
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<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE OHPNav SYSTEM "ohpnavxmlJune10.dtd">
<OHPNav>

<messageheader>
<mid>70873498573</mid>
<rid></rid>
<vid>OHP1.2</vid>
<sid>23</sid>
<uid>1</uid>
<fid>createnode</fid>

</messageheader>
<createnode>

<node>
<nodeid></nodeid>
<nodename>Thesis Document</nodename>
<mimetype>text/html</mimetype>
<preferredapp>Mozilla</preferredapp>
<contentspec>

<version>cs1.0</version>
<url>file://H:/THESIS/THESIS.HTM</url>
<attributes>

<attribute>
<name>owner</name>
<value>dem</value>

</attribute>
</attributes>

</contentspec>
<attributes>

<attribute>
<name>timecreated</name>
<value>2000-07-06 04:12:15.0000</value>

</attribute>
</attributes>

</node>
</createnode>

</OHPNav>

Figure 3.7: XML Example of CreateNode Message

3.2 Demonstration at HT’98

At OHS 3.5 in September 1997 the working group also decided that a demonstration of

the OHP protocol would be a good goal for the Hypertext ’98 conference, to be held in

Pittsburgh, PA the following year.

Two systems were developed for the demonstration. One at the University of Aarhus,

Denmark, and the other developed by the author, Jon Griffiths and Dave Chandler at the

Multimedia Research Group (MMRG) at the University of Southampton.



57

The Danish system was based on an Emacs implementation. A wrapper was writ-

ten for Emacs that communicated directly with the Danish OHP server. This wrapper

handled all aspects of hypermedia, including link creation across applications and also

application launching.

The Southampton system in contrast used a CSF to encapsulate hypermedia function-

ality common to all client side components. The CSF acted as a nexus for all client traffic

and was responsible for launching applications and maintaining a link editor that could

create links.

3.2.1 The Southampton CSF

The system developed in Southampton comprised of an OHP-Nav aware image viewer,

a link editor, the CSF itself and the link server, the relationship between these is shown

in Figure 3.8. All communication is done through TCP/IP sockets with the XML syntax

described in Appendix B, using a 19 byte leading integer to indicate the length of the

message stream.

The image viewer is an application that supports file system and Internet retrieval of

documents, the following of links and the creation of new endpoints. It does not have

a cache or any editing facilities. The link server uses JDBC into an Access Database,

storing OHP-Nav objects (endpoints, nodes etc).

The CSF implemented uses a toast-rack architecture of slot in communication mech-

anisms to talk a variety of network protocols, either to client or server sides. For the

demonstration at Hypertext ’98 a TCP/IP sockets mechanism was implemented. These

mechanisms were independent of the OHP-Nav and thus could be reused for other pro-

tocols such as the CSF protocol described in Section 3.2.2.

3.2.2 Findings and Issues

In completing the specifications and prototype implementations the OHSWG encoun-

tered a number of issues that needed to be resolved.

OHP-Nav Traffic

We found that using the last OHP specification (Davis et al., 1997) the number of mes-

sages being sent was disproportionately high in comparison with the task being carried

out. This was because the protocol had been written to handle ID values (so as to mimic

the ‘pass by reference’ structure of component frameworks such as CORBA (OMG,

1991)). This means that ID values were continually having to be resolved and re-resolved.
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Figure 3.9 shows the messages sent during a simple following link process. In this

case the link is only binary. Notice that whenever a DisplayNodeContent is sent it must

be immediately resolved by the recipient sending a GetNode message. When the CSF

receives the first DisplayNodeContent message it does not know the mimetype of the

Node and must resolve it before it can choose an appropriate application to launch. It

then remembers the Node details so that when it sends the DisplayNodeContent on, and

the new application subsequently requests the Node details, it does not have to query the

server again.

One possible solution might be to enable the link server to pass entire objects to the

client (which would then not need to be resolved) while allowing the client to send object

IDs to the server (which already knows all the objects and their IDs). In this way the

overhead of sending messages for ID resolution could be avoided.

Routing

Another issue we encountered was within the routing system of the CSF. We found that

the CSF needed to record which applications sent which message IDs, so that when a

message was answered the RID value of the return message could be used to find the

original application. As OHP messages no longer carry any channel information (as

defined in the original proposal (Davis et al., 1996)) we needed to ‘hijack’ the message

ID on the way out so that it included the necessary information to identify it on its return

as an RID. This avoided the problem of having to maintain possibly lengthy tables with

time outs for all the values.

Although this was successful I felt at the time that the inclusion of an Origin field

within the header of a message would make things simpler.

The CSF Protocol

One of the things that became apparent when designing the CSF was that there was an

enormous amount of information about the system, the users and the client applications

that the CSF would need to know about. The user (or administrator) will not be able to

enter all this information in by hand, there is simply too much of it.

To cope with this, a new set of messages was needed, so that an application could

communicate information about itself and its users to the CSF. This would not be a part

of OHP, rather it would be a parallel protocol that dealt in users and systems. This is

called the CSF Protocol (CSFP). The protocol also builds towards a more modular client

system, using CSFP to communicate between components.
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The CSF must know the following things per system:

� Security information
� Application to Mime type map

The CSF must know the following things per application:

� Security information
� Caching settings
� Presentation settings
� Mime types supported
� Internet awareness
� Supported scripting
� Multiple or single document view

The CSF must know the following things per user:

� Security information
� Presentation settings
� Application to mime type map

The exact nature of the Security information was never defined. It was accepted

however that some security information would need to be stored and so it is included

above.

It was important that the CSF knew if each application supported single documents

(e.g. Netscape Navigator) or multiple documents (e.g. Microsoft Word) so that it knew

if it needed to launch a separate instance of that application should a second document

come through to it. Also, although an application may be Internet aware, the CSF may

choose never to allow it to retrieve its own documents (e.g. for caching reasons).

One of the problems that we faced while developing the CSF was the correct launch-

ing of applications with documents. The process involved launching the required pro-

gram and then waiting for it to connect back to the CSF. Once it had connected the

DisplayNodeContent message could then be sent to cause it to load the document.

The problem is how does the CSF know which connecting application is the one it just

launched. In OHP it is possible to follow n-ary links, creating the need to launch multiple

documents at once. Thus it is not sufficient to expect the next connecting application to

be the one just launched. Short of adopting a peer to peer architecture the best solution

is for the launched application to send a CSF protocol message to the CSF, letting the
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CSF know that it has been launched. This message includes the mime types that the

application supports. This should be enough information for the CSF to then send the

DisplayNodeContent message although errors could still arise.

In the system developed for the Hypertext ’98 demonstration the CSFP developed

supported only a limited subset of the functionality listed above. There were three mes-

sages:

SystemMapDef: This is designed to be sent by a system program to inform the CSF

about the entire set of Application to MimeType mappings.

GetSystemMapDef: This is sent by an application when it needs to know the current

settings of the CSF, it is answered by a SystemMapDef message

Ready: The Ready message is sent by every application when it is launched. It allows

the CSF to know which of the applications that may have contacted it are which. It

does this based on the mimetype sent.

Naming

Although we had not adopted any particular naming policy for objects in the Hypertext

’98 demonstration (relying on an arbitrarily generated unique identifier, usually based on

the time of object creation) it was always thought that a common naming system should

be supported by the OHP suite of protocols.

The adoption of a global naming system would produce many benefits. In the same

way that a URL can uniquely identify any ‘document’ on the Web, an OHP unique iden-

tifier could identify uniquely any of the hypertext objects used in OHP, e.g. nodes, end-

points, pspecs, etc. The identifier would be used as the OHP ID for the object. Thus we

would have the situation where an OHP unique ID within a global distributed hypertext

system could be sent via e-mail and still be valid.

Unfortunately a URL is far from being the perfect mechanism for such a task. Sec-

tion 4.2.3 looks in more detail at the requirements for a naming scheme.

3.3 Architectural Assumptions (the CSF)

When we began to work on the OHP proposal we believed that addressing interoperabil-

ity not only required some common understanding of a data model but that there must

also be some underlying architecture that is jointly understood by all involved. This is

because the data model usually makes assumptions about the architecture and because

functionality and behaviour are to a large extent based on the architecture. Promising
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Figure 3.10: OHP-Nav Architecture

work in this area already existed (Goose et al., 1997; Grønbæk & Wiil, 1997), how-

ever an assumed architecture grew alongside OHP-Nav. Figure 3.10 shows this current

architecture.

From the diagram it is obvious that the architecture is not balanced. Why do we have

a Client Side Foo (CSF) and not a Server Side Foo (SSF)? Many scenarios generated by

the OHSWG have shown the CSF communicating with a single link server. In this case

there is no need for a nexus similar to the CSF on the server side as no routing is needed.

However in the situation where several link servers are all residing on a single machine or

network then the role of a potential SSF becomes clearer, many of the functions it should

perform are analogous to those on the client side.

� Message Routing
� Support of (Multiple) Protocols
� Synchronization and Compilation of Results
� Transaction Handling
� Concurrency Control
� Notification Control

This list could be optionally extended to include scripting engines, versioning control,

configuration tools and security and user components. It can be reasonably assumed that

since a protocol or interface is required on the client side (i.e. the CSFP) to organise these

modules, one will also be required on the server side (e.g. an SSF Protocol, SSFP).

The problem with making these architectural assumptions is that they bring a great

deal of baggage to every system that intends to implement OHP-Nav. The Danish system

brought to Hypertext ’98 showed that it was possible to implement an OHP compliant
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client without having to use a CSF. Instead it redistributed the functionality around other

client side components. The same process could be applied to the SSF proposed above.

A more balanced role for a CSF (or CSF functionality) was summarised well by

Anderson (Anderson, 1998). He identified the following important client side roles:

1. Process Invocation. Invoking clients as they are required (e.g. by cross application

linking).

2. Session Management. Keeping track of users and their preferences. The CSF is

also in a good position to keep track of how compliant each application actually is

(e.g. does it only understand launch requests or does it know the entire OHP suite).

3. Protocol Shim. The original OHP draft included the notion of a shim that converted

proprietary protocols to OHP and vice versa. Rather then implementing this for

each client this functionality could be provided by the CSF once and used by all

applications that spoke that particular protocol.

4. Service Provision. Providing tools for link creation and displaying link endpoints

for user selection. Again useful to prevent each client from having to provide that

functionality itself.

5. Proxy Support. The CSF is in an ideal position to provide caching to the system,

both of files and also of meta-data.

The result of all this work with the CSF was to regard it not as a single application

but as a collection of components that may or may not be present. Therefore it would

be possible to provide all the services required using a single CSF process (as in the

Southampton system), or to distribute that functionality amongst the clients themselves.

Either implicitly (as in the Danish system) or by using some agreed client to client pro-

tocol for launching and caching (such as the proposed T3 protocol (Østerbye & Wiil,

1998)).

3.4 The Definition of OHP-Nav in IDL

One of the things that became clear from the OHSWGs experiences with tagged messages

and later XML was that there was a need for an independent definition of OHP-Nav, one

that could be translated into any particular syntactic language. With respect to this idea,

the OHSWG also worked on an Interface Definition Language (IDL) definition which

maps the existing OHP-Nav XML DTD to a CORBA compliant IDL. The full definition

can be found in Appendix C.

There are basically three different ways of implementing a mapping of the asyn-

chronous ASCII based navigational protocol to a CORBA interface definition.
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1. OHP-Nav messages passed as ASCII strings: ASCII messages could be passed

between communication objects that would support the navigational interface. The

advantage of this approach is a precise mapping of messages between the XML

definition and the IDL definition. Only the communication mechanism would be

different. The disadvantages of this approach include the need for message parsing

and the additional overhead for naming. Additionally, we lose many of CORBA’s

benefits such as typed objects and regular flow of execution.

2. OHP-Nav messages as typed method calls on communication objects: This ap-

proach requires that OHP-Nav messages are mapped onto IDL method definitions.

The advantage of this approach is that the IDL mapping is still very close to the

XML specification and that at the same time we receive the benefits of CORBA

such as typed objects and a high level of communication abstraction. The disadvan-

tage is that dedicated communication objects are still needed for communicating

messages. These objects have to be ‘exported’ and ‘known’ by all the participating

components.

3. Pure CORBA implementation: This approach takes full advantage of CORBA. It

is characterised by defining all hypertext objects and their behaviour as interfaces

and by implementing a set of components that publish and support those interfaces.

Therefore OHP-Nav clients, link servers, CSFs and SSFs (if present) will all sup-

port a different set of interfaces. For example, a server would support all hypertext

object interfaces, the notificational interface, etc. While a client would support

only the notificational interface.

In this definition of the OHP-Nav IDL we mapped OHP-Nav messages to IDL meth-

ods. However, in CORBA we can return objects from method calls. This means, for

many of the methods, that we do not have to rely on a return message. For example, a

‘createEndPoint()’ call will return an endpoint object directly to the caller. This is dif-

ferent to the purely asynchronous way ASCII messages are being communicated over

sockets. In this case the ‘createEndPoint()’ message would be sent from a client to a

server and the server would answer it with an ‘endPointDef()’ message.

By using this technique we are somewhere in between the second and third ap-

proaches. This enables us to imitate the XML definition without sacrificing all of CORBA’s

benefits. Before we can follow the third approach entirely we, as a community, would

have to agree on further issues such as the naming of objects and the structure of the

object model.



65

3.5 Summary

The development of OHP into OHP-Nav and the subsequent demonstration at Hypertext

’98 provided a focus of work for the OHSWG with the objective of showing interop-

erability between systems and to help eventually refine the specification to a releasable

standard.

In this chapter I have explored this evolution, seen the definitions that were made and

examined some of the problems that became evident during the development of the early

prototype. With this work completed the OHSWG began to concentrate on particular

areas of the protocol and the research effort became much less focused.

In the next chapter I will look at some of the missing areas of OHP-Nav, including

Naming and Communication Infrastructure, and describe my work on the evolution of the

SCRIPTSPEC opaque into a first class Computation object, deserving of its own OHP

subset.



Chapter 4

Development of OHP-Service

4.1 Introduction

The Open Hypermedia Protocol (OHP) was originally designed to encompass the area of

hypermedia navigation as well as several others that were deemed too important to ignore,

these included collaboration and services. As work on the protocol progressed it became

apparent that these sub-areas were more complex then one might expect. In addition,

other domains had been identified e.g. Spatial and Taxonomic hypermedia (Nürnberg,

1997). To include this complexity in a general OHP protocol would give people a strong

disincentive for using it, and yet the subjects were to important to exclude.

One possible approach would be to divide OHP into a suite of similar, related pro-

tocols, all using the same meta-information and delivery mechanism. Thus OHP Navi-

gational (OHP-Nav), OHP Taxonomic (OHP-Tax) and OHP Space were born (although

OHP-Nav is currently the only mature definition, containing most of the functionality in

the original OHP definition). It was also decided to remove dynamic services from the

Navigational protocol and place them into a package of their own that could be applied

to any domain (The Service Package).

In this chapter we shall look at some of the work that evolved from the OHP effort

and in particular examine the Service Package that was created by Sigi Reich and I. The

software that I developed to test these definitions is presented and the new issues that the

process of development uncovered are explored.

66
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Figure 4.1: Evolution of Hypermedia Systems

4.2 The Evolving Interoperability Effort

After the Hypertext ’98 demonstration (described in Section 3.2) the OHSWG’s interop-

erability effort evolved in two complimentary directions. Firstly, the notion of multiple

domains and a set of protocols to support them helped to spawn a new systems approach

known as Structural Computing. This approach treats hypertext as a special case of a

general philosophy of computing in which structure is more important than data.

Secondly, the OHSWG continued to develop OHP-Nav, but with a more formal and

focused approach.

4.2.1 Structural Computing

During the OHP development period a new approach to hypermedia research started to

emerge. Structural Computing ‘asserts the primacy of structure over data’ (Nürnberg

et al., 1997), as such it is concerned with looking at how structure can be discussed and

managed at all levels of computing. In this world view, OHP-Nav is simply one protocol

of many that facilitates different processes operating across structure, in this case the

processing of navigational structure.

Figure 4.1 shows the evolution of hypermedia systems over time (Nürnberg et al.,

1997) from left to right, where Be stands for Behaviour, LS stands for Link Server and

SS stands for Structure Server. Early hypermedia systems were monolithic but gradually

parts of the system were abstracted away into separate processes. The third iteration, the

abstraction of stores, represents many of the OHS systems developed to date (as described

in Section 2.6).
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The two further abstractions represent the evolution of these systems into Component-

Based Hypermedia Systems (CB-OHSs). These systems further abstract their middle-

ware. The abstraction of behaviour deals with the idea that arbitrary computations should

be possible over the structure served from a Link Server while the last abstraction allows

for arbitrary computations over the structure served from arbitrary Structure Servers. It

is this last stage that finally provides a framework that supports Structural Computing.

In OHP terms, the different Structure Servers would serve the different structures

from the various hypermedia domains (Nürnberg et al., 1998). Thus a Navigational

Structure Server would be developed that provided an OHP-Nav interface to clients.

Other OHSWG developed protocols, such as OHP-Space, would be supported via sepa-

rate Structure Servers.

4.2.2 The Data Model

One of the concerns about a multi-domain suite of protocols was that, where necessary,

they should share the same data model. For example, nodes from the Navigational Do-

main might be reusable elsewhere. This was a problem as up to that point there had been

no separate data model definition; all the structures were defined implicitly within the

protocol (see Section 3.1.6).

It had also been recognised that as well as run-time interoperability a useful outcome

of the work of the OHSWG would be a standard interchange format and that this would

also require a standard data model that was separate from the protocols (Grønbæk, 1998).

For both these reasons the hierarchical data model shown in Figure 4.2 was de-

fined (Grønbæk & Sloth, 1999). The model shows Presentation Specifiers (PSpecs),

Service Objects (Computations) and Contexts, even though at that point they were not

well understood.

4.2.3 Naming

Another facet of the protocol that had not been fully explored was the problem of naming.

It has been said that naming is a critical feature of a hypermedia system (Tzagarakis et al.,

1999) and that to crack the naming problem is to move significantly closer to solving the

distributed information systems problem as well.

Naming as an issue in Open Hypermedia Systems, in particular those using the OHP

suite of protocols, has been raised many times during the development of the suite (Mil-

lard et al., 1998; Nürnberg & Leggett, 1997; Nürnberg et al., 1998). However, from an

OHP point of view it is not so much an issue to develop our own naming system as it is
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Figure 4.2: OHP Suite Data Model

to rely on existing systems and agree on naming conventions. Despite this it is entirely

possible that some aspects of a proposed naming scheme might influence the architecture

and/or operation of OHP. For instance, we might need a standardised ‘lookup service’.

4.2.4 Hypertext Requirements

All the objects derived from AbstractObject (shown in Figure 4.2) are subject to naming.

OHP makes no assumption about the naming system used to create it’s IDs and has

always defined the IDs to be opaque strings. As with naming in any distributed system

there are a number of issues to be addressed by OHSs. Sigi Reich and I did some initial

work in this area and identified the following ones (Reich et al., 1999a):

� Scope: names should be globally valid, their meaning should not depend on the lo-

cation (Sollins & Masinter, 1994), i.e. a resource’s name should not give any hint

as to where the resource is (physically) located (which provides location trans-

parency (Tanenbaum, 1995)).
� Uniqueness: names should be globally unique. I.e. the same name will never be

assigned to two or more different resources. Furthermore, the lifetime of a resource

is potentially unlimited so that names have to be persistent (Sollins & Masinter,

1994).
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� Readability: names should be readable and interpretable by humans and they

should be easily transcribable (Berners-Lee, 1994; Engelbart, 1990).
� Scalability: there are different aspects to scalability such as number of accesses,

number of resources, etc. With respect to the number of accesses it can be said that

a central broker dealing with name resolution will scale badly even when repli-

cated; with respect to the number of resources it has to be said that resources might

conceivably be available on the network forever, i.e. the number will be very high.
� Mobility: resources might be subject to re-location at other places (Guenther,

1999). For instance, a set of links might be imported from a different linkbase

(and naming clashes will have to be resolved) or also services might be mobile and

have different locations over time. Naming should be location independent, i.e.

resources should be relocatable without affecting their names (Tanenbaum, 1995).
� Querying: often users will not know the exact name of a resource so that it can be

looked up. However, they will know some attributes such as author, type, etc. In

this case it should be possible to provide the user with a mechanism to look up a

name given a set of attributes.

At the same time Tzagarakis et al. were investigating naming as a mechanism of dis-

tribution at the University of Patras, Greece, using their system Callimachus (Tzagarakis

et al., 1999). Along with Sigi Reich they have since applied their naming philosophy to

OHSs and produced some promising first drafts of a naming standard for Open Hyper-

media (Tzagarakis et al., 2000).

4.2.5 Collaboration

Human collaboration on a hypertext has always been an important issue in hypermedia

research, it was a part of Bush’s early vision (Bush, 1945) and formed one of Halasz’s

seven issues (discussed in Section 2.4.6). The idea of cooperative hypertext has also been

explored in later generation systems such as SEPIA (described in Section 2.6.4).

The interoperability work of the OHSWG has always been based around the notion

of system components working together and thus might be regarded as a different kind

of co-operation to that described above. However the difference between a component

and a user can be ambiguous in a sophisticated system, furthermore the ability to control

simultaneous human access to a hypertext is always desirable. For this reason support

for collaboration was thought of as an important part of the OHSWG’s work.

Haake and Wang identify five characteristics of a cooperative environment (Haake &

Wang, 1998):
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1. Management of shared objects

2. Management of shared user interfaces

3. Support for group awareness

4. Support for coordination

5. Support for communication

Thus to provide collaboration on an OHS they believe it is necessary to make the

OHS ‘group aware’ by adding the notion of sessions to the system and providing ac-

cess to shared hyperstructures through group aware applications. A session manager is

responsible for managing the access to the system in one of several cooperation modes.

Wiil and Nürnberg point out that with a CB-OHS, sharing and interaction can take

place at both the hyperstore and structure service levels (Wiil & Nürnberg, 1998). While

sharing at the hyperstore level allows multiple users to access the information, sharing

at the structure server level enables more powerful collaboration modes and requires

session management. It has been proposed that this provision of session management

and coordination should form a Workflow protocol for the OHP suite (OHP-Wf) (Wang

& Haake, 1999).

While other members of the OHSWG concentrated on collaboration, I began looking

at how the Service definition from OHP-Nav could be expanded into a protocol in its own

right.

4.3 Services

Services first appeared in the original OHP definition (Davis et al., 1996), although they

were never completely defined. A Service is a ‘black box’ of functionality, known only by

name to a client, that can be invoked and its results understood, even though its workings

are completely opaque. A Server can supply a description of this ‘black box’ to its

clients and in this way a generalised client gains access to complex functionality that

would otherwise be unavailable.

I spent some time developing the OHP-Service protocol and model with the help

of Sigi Reich. We had the initial objective of re-examining the old OHP-Nav view of

Services and producing a more sophisticated definition (Millard et al., 1999). Although

we achieved this we also came to view the entire OHP-Nav approach in a new light,

questioning not only if it was appropriate to define a dynamic service mechanism within

a hypertext suite, but also whether or not the hypertext suite was not itself merely another

type of service.



72

We began by considering the different ways in which it is possible to examine the

data in an OHP-Nav system. Effectively there are three:

1. By using the operations defined in OHP-Nav, i.e. Create, Delete etc;

2. By utilizing a separate query facility based on the data model, i.e. ‘get all Nodes

where Attribute “Author” equals “D.Millard” ’;

3. By using a Service Package to dynamically discover what services a server has to

offer and then dynamically invoking them. This has the advantage that it allows us

to use functionality stored on the server as well as data (for example, an effective

search algorithm that depends on system knowledge to operate);

The confusion over these three possibilities goes right back to the older definitions of

OHP-Nav (Davis et al., 1997) where there were four standard services that had defined

semantics:

1. Follow Link - returns all the other endpoints (not the original input endpoint) which

are associated with the input endpoint via any link structure;

2. Show Endpoints - returns all the endpoints within the input node;

3. Show Links - returns all the links that connect to the input node;

4. Get Relevant Nodes - returns a list of nodes managed by the link server that may

act as starting points for the user;

In the subsequent revisions of OHP-Nav (1.2 and 1.3) services were removed from

OHP-Nav as they were believed to belong in a sub-protocol of their own. As a result these

standard services have become operations. This has a few advantageous side effects. It

means that any server that is OHP-Nav compliant must understand and implement all four

operations, as opposed to standard services which a server may or may not offer. Also it

means that the messages that deal with this functionality can be much more specifically

tailored for the task (rather than being generalised to cope with any service).

We concluded that anything beyond these four standard services should be repre-

sented as Service Objects within the system and I spent some time examining the re-

quirements for such services and defining a mechanism through which they could be

provided.

4.3.1 Services as Objects - The Computation

In networking the word ‘service’ means a facility that is available on the network (Tanen-

baum, 1995). To avoid overloading names the objects that represent services in the OHP

data model are known as Computations. A Computation stores the information about
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a service in the same way that a Node represents a document, it is a meta-information

object.

Although Computations are defined in the Service Packages it was always intended

that they may be referenced from other domains. For example in OHP-Nav all hyperme-

dia objects have a field that represents the ID of an attached Computation. The semantics

of this attachment are not defined, i.e. if a Computation is attached to a Node it may

be executed when that Node is opened, activated, played, closed or on any other event.

Without a complete event model this is impossible to implement in a generalised way.

However Computations can still be associated with objects, it is merely up to the client

to decide when to invoke the service.

Computations are complete objects in the system and can be referenced by ID and

even linked to, although the actual behaviour of following a link to a Computation is

undefined. A Computation contains information for the user (name and explanation of

the functionality) and also the input and output parameters of the service. In this way

a generalised client can understand how to call the Computation and what to expect in

return.

4.3.2 Progress and Feedback

In experimenting with services it became apparent that one of the problems is that a

service may actually take a long time to complete. This becomes a problem if once the

service has been initiated the only related message a client can expect is the completion

message.

Thus our major conclusion from experimenting with services was that some mecha-

nism was needed to either let the user/viewer know the time that a service takes to com-

plete or to send progress messages to give some progressive feedback. We considered

two options, adding an ‘expected time to completion’ field to the Computation definition

or adding progress messages to the message set.

The problem with adding an approximate time to complete to a service’s definition

is that the time actually taken is very dependent on the load on the processor at the time

of execution and also varies with other users activity and processor load on the machine.

On the other hand the problem with progress messages is they do not convey to the user

at the time of invocation the actual speed of the service. Thus a user could select a slow

service believing it to return instantaneously.

As a compromise we decided to combine both approaches. The service definition

contains (as an XML attribute) the Expected Time to Completion (ETC) which is given
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Figure 4.3: Combining Services

the value of one of the five recommended bands. In addition a service progress mes-

sage provides the necessary information for a client to track progress once it has started.

However there is no assumption about the frequency of progress messages or even that a

server will send any at all.

4.3.3 Composite Services

The simple black-box system of Computations described above handles many different

cases of Service (including all four found in the original definition). However there are

cases when the opaque nature of the approach becomes a problem.

Take the example of the service ‘Find Similar Music’ (FSM), that analyses a section

of music and produces a contour (Blackburn & De Roure, 1998). It then checks that con-

tour against the ones in a database to produce a list of nodes representing musical scores

similar to the selection. This is an ideal candidate for a service; a complicated operation

with well defined input and output parameters that could be used by a generalised client.

There is a problem. Because the service needs to examine the music file to produce

the contour, it must either move the music file to the service (which could potentially take

a very long time) or it has to move the service to the music file. The first option becomes

unrealistic with files larger then a few tens of Kbytes, the second has to deal with the

problems associated with mobile code.

We could still provide the service to a specialised client that knew how to produce a

contour, if we broke the FSM service into two. The first part, ‘Produce Contour’ (PC),

takes a selection and produces a contour. The second, ‘Look-up Contour’ (LuC), takes a

contour and checks it against the database. If the client supported the PC service and the

server supported the LuC service, then by combining the two, we get the original FSM

service (see Figure 4.3. In this way the idea for a Composite Service was born.

Composite Services contain similar information to computations with the addition
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Figure 4.4: The ‘Find Similar Images’ Composite Service

of a computation graph. The computation graph describes how computations can be

combined. It allows computations to be called in serial or in parallel (see Figure 4.4). By

having a non-cyclic graph we avoid a lot of the problems with managing the flow of data

(such as getting stuck in loops) while retaining most of the power of the concept.

A Client that wishes to use a Composite Service has the option of invoking it with

a single execute message as long as the Composite Service has its own identifier (this

would put the onus on the server to combine the services). If there is no identifier then

the server expects that the client must know where to find each of the sub computations

(either from the server, itself or a third system component) the client may then call an

execute message in turn on each service, passing the output of each into the next, until it

has finished.

Composite computations represents a way of a component ‘imparting knowledge’

to the rest of the system about how computations can be combined. This leaves plenty

of scope for the development of more sophisticated systems which learn about particu-

lar combinations of computations and also provides a framework for the exploration of

mobile code within a CB-OHS environment.

4.3.4 The OHP-Service Package

There is a complete set of operations for manipulating Services, most of which reflect

those already defined in OHP-Nav (Create, Delete etc.) However there are several oper-

ations unique to the Service Package. These are presented in Table 4.1:

EXECUTESERVICE provides a means to invoke a service with a set of parameters

resulting in a SERVICEEXECUTED message containing ranked results.

The full DTD for OHP-Service can be found in Appendix D.
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Operation Description

RETRIEVESERVICES Requests a list of all appropriate services from
the server

SERVICESRETRIEVED Gives information about all relevant Computa-
tions to the recipient

RETRIEVECSERVICES Requests a list of all appropriate Composite
Services from the server

CSERVICESRETRIEVED Gives information about all relevant Composite
Services to the recipient

SERVICEPROGRESS Gives information about how near completion
an invoked service actually is

EXECUTESERVICE Invokes a given Service with a set of parameters
SERVICEEXECUTED Returns the result of a given service via a set of

results

Table 4.1: Computation Operations

Service Definition

For each service object (Computation), we are interested in its definition, how to call it

and its result. The DTD extract shown in Figure 4.5 describes how the Computation is

defined. A Computation is comprised of a globally unique service id, a specification id

(SPECID) which uniquely identifies the functionality of the service (i.e. ‘Follow Link’).

The name and function name (NAME and FUNCTIONNAME) give a brief description

suitable for display to a user and a more comprehensive definition of what the service

actually does. The following three element types describe in turn what parameters the

service takes, what results it produces and which mime types it is applicable to. The

codespec field was never used but was intended to be a location for mobile code (i.e. a

client side script) and the expected time to arrival field (ETC) appears as discussed in

Section 4.3.2

Each template contains a type entry that defines what that parameter is. Any OHP

component can define its own types which can be anything that can be represented as a

string. However we do assume some standard types, including the OHP objects them-

selves (ohpObject from the OHP-Nav DTD) and some basic types (INTEGER (4-byte),

DOUBLE (8-byte), BOOLEAN (TRUE — FALSE), STRING and LOCALFILE (the

local representation of a file)). Although it is much more specific then the others the

LOCALFILE is necessary and is used a great deal. For example, multimedia objects

are often very large and ideally should be processed at their current location (to reduce

file transfer overheads). In these cases a node is not sufficient as it does not inform the

client that the file used should be a local one. Without this knowledge the client might try

and invoke the Service on a remote file which would then have to be downloaded before
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<!ELEMENT COMPUTATION ((ID, SPECID, NAME?,
FUNCTIONNAME?, INTEMPLATESET?,
OUTTEMPLATESET?, MIMETYPESET?, CODESPEC?, ETC?)>

<!ELEMENT MIMETYPESET (MIMETYPE, MIMETYPE) >
<!ELEMENT MIMETYPE (#PCDATA)>

<!ELEMENT INTEMPLATESET (INTEMPLATE, INTEMPLATE*)>
<!ELEMENT OUTTEMPLATESET (OUTTEMPLATE, OUTTEMPLATE*)>

<!ELEMENT INTEMPLATE (((HRANGE, LRANGE) | POSSIBLEVALSET?),
DEFAULT, NAME, TYPE)>

<!ELEMENT POSSIBLEVALSET (VALUE, VALUE, VALUE*)>

<!ELEMENT OUTTEMPLATE (NAME, TYPE) >

<!ELEMENT HRANGE (#PCDATA)>
<!ELEMENT LRANGE (#PCDATA)>
<!ELEMENT DEFAULT (#PCDATA)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT VALUE (#PCDATA)>
<!ELEMENT ID (#PCDATA)>
<!ELEMENT FUNCTIONNAME (#PCDATA)>
<!ELEMENT ETC (#PCDATA)>
<!ELEMENT SPECID (#PCDATA)>
<!ELEMENT CODESPEC (#PCDATA)>
<!ELEMENT TYPE (#PCDATA)>

Figure 4.5: XML DTD definition of a Service

processing could take place.

This definition does not support arrays and structures as these made defining and

sending parameters overly complex and we didn’t want to re-invent RPC with XML

(although attempts to do exactly that are being made (xml, 2000)). Instead we assume that

a service that wishes to produce a list of results will simply produce multiple outparams

with the same name. Alternatively the component can use its own container types.

Composite Services

As discussed in Section 4.3.3, services can be composed of other services. For instance

a ‘Look Up By Contour’ service that can be applied to a piece of music consists of a

‘Feature Extraction’ service and a ‘Contour Matching’ service. Each composite service

has its own description and name. It may also have an ID, in which case components
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<!ELEMENT CC (ID, COMPUTATIONGRAPH, FUNCTIONNAME?,
NAME, SPECID)>

<!ELEMENT COMPUTATIONGRAPH ((PARALLEL | SPECID), (PARALLEL | SPECID)*)>
<!ELEMENT PARALLEL (SPECID, SPECID, SPECID*)>

<!ELEMENT ID (#PCDATA)>
<!ELEMENT FUNCTIONNAME (#PCDATA)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT SPECID (#PCDATA)>

Figure 4.6: XML DTD definition of a Composite Service

may execute the composite service directly by giving it the input parameters of the first

service and expecting the output parameters of the last service.

The DTD extract in Figure 4.6 shows the definition of a Composite Service. This

contains a unique id, specification id, user name and description like a normal service. It

also contains a list of service ids that represent which services are to called and in which

order (the computation graph). If the service ids are surrounded by the parallel tag then

they must have the same input and output parameters and are executed in parallel. This

means that the output results of the services before them are sent to all services in the

parallel segment, then the output results of all of those services are combined and sent to

the next service in the list. This is useful in situations such as those where different feature

extracting algorithms need to be applied at the same stage and the results compiled later.

There are cases where the component offering composite services does not actually

offer one of the sub services. These composite services do not include an ID and therefore

cannot be called directly. It is the responsibility of the calling component to call each sub

service directly and chain them together. To do this it obviously must know of other

components that do offer the sub services, or offer them itself!

This is especially useful in cases where the actual location of where a service is to be

performed can play a crucial role (e.g. services applied to large multimedia documents).

For instance, a Feature Extraction service on a huge .wav file should at best happen at the

file’s location so that the file does not have to be copied (see definition of LOCALFILE in

Section 4.3.4). In this case the component offering the composite service may not actu-

ally offer the Feature Extraction. Instead it has to be offered by a client side component,

maybe even the calling application itself.
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4.3.5 A Descending Order of Complexity

I also realized that it could sometimes be the case that a service designer would be faced

with a decision. Either they use their own parameters and offer a more powerful service

or they use standard parameters and offer a reduced service. For example the FSI service

described in Figure 4.4 returns a set of ranked nodes. This ranking value is only one of

many outputs from a FSI algorithm, many of which also offer standard deviation from

the input node and comparison to the mean values of all the images processed (Rui et al.,

1999).

We could have created a more powerful service by defining our own output parameter,

of type FSI RESULT, that would have included all this extra information. Unfortunately

this would have meant that only viewers that understood the FSI RESULT could use

the service. To rectify this it would have been possible to implement a second service,

identical to the first other then the return type. In this case a viewer that did not understand

the FSI RESULT would only display the simpler service. But this would have meant that

a viewer that understood both would be offering two identical services to its users, which

could lead to confusion.

In Section 4.3.4 we described the Spec ID a field that is universal to a particular piece

of functionality, whatever the implementation. In the case of our multiple FSI services,

both would have identical Spec ID so a simplistic approach would be to allow the viewer

to pick one to offer to the user. It may well have chosen the FSI RESULT as this is

the more complex object and therefore probably the more powerful service. But it is

important at this stage to differentiate between knowing what a service is (e.g. the Spec

ID) and knowing what the parameter types are.

Any viewer which understands what the FSI service is could be written to offer and

use a particular implementation of that service, throwing away all the other offered ser-

vices with the same Spec ID. However if the viewer understands what the FSI RESULT

is but not the service then it may become confused, what if three services are offered all

with the same Spec ID but all with different parameters, which one should it use?

In this case a possible solution would be to amend the service definition to include a

descending order of services. These are all services with the same Spec ID but different

object IDs that are ranked in the order in which the viewer should consider them. If the

viewer cannot understand the first it moves on to the second and then the third and so

on, until it finds a service that it does understand. In this way a link server may offer

a service in several stages of complexity without worrying about how the viewers will

interpret them.
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The problem with this approach is that it adds complexity, both to the messages them-

selves and the interpretation that must take place at the client end. For this reason the

descending order of services has never been added to the definition, although it remains

a possible future addition.

4.4 Demonstration at HT’99 : The Solent System

At the OHSWG’s meeting at Southampton (OHS 4.5) it was decided that as the Hyper-

text ’98 demonstration (see Section 3.2) had formed such a positive focus point for the

group the same should be attempted for Hypertext ’99 in Darmstadt, Germany. It was

also decided that since we had demonstrated interoperability at Hypertext ’98 we should

concentrate on showing some of the features of the protocol.

Some of the more successful parts of the Hypertext ’98 demonstration were the col-

laboration aspects. It was thus decided that the Danish contribution to the Hypertext

’99 demonstration would be to extend this simple support into a more advanced sys-

tem and define a collaboration extension to OHP (as discussed in Section 4.2.5). The

Southampton contribution would be to finalise the computation definition (as described

in Section 4.3) and create a more complete working example.

This software, developed by myself and Jon Griffiths at the Multimedia Research

Group, was a Component-Based Open Hypermedia System (CB-OHS) which we refer

to as the ‘Solent’ system (Reich et al., 1999b), named after the waters around Southamp-

ton. The system was designed to address the many issues posed to hypermedia middle-

ware and to serve as a platform for the development of the OHP-Services interface, in

particular in its support of advanced multimedia applications such as content-based re-

trieval (Christodoulakis & Triantafillou, 1995), content-based navigation (Lewis et al.,

1996) and navigation in audio (Blackburn & De Roure, 1998).

4.4.1 Description of the Architecture

The architecture of the Solent system builds on the experiences of the IAM research group

at Southampton, gained in developing the open hypermedia systems Microcosm (Davis

et al., 1992), Microcosm TNG (Goose et al., 1996), MEMOIR (De Roure et al., 1998)

and others. It also builds on the CSF components that I developed as part of the earlier

Hypertext’98 demonstration (described in Section 3.2). Figure 4.7 depicts the conceptual

architecture.
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Figure 4.7: The Component Architecture of the Solent System

The Figure shows the separation of components into front-end (i.e. the applications),

middleware services, and the storage back end. This is in similar to other CB-OHSs such

as Microcosm TNG (Goose et al., 1996) or Construct (Wiil & Nürnberg, 1999).

Key to the system is the notion of an ‘engine’, which is a software process managing

a certain subset of functionality within the system. The most essential engine, present

in every component, is the registration engine (‘Reg’ in Figure 4.7). The purpose of

this engine can be compared to that of an information broker in CORBA. This engine

is tightly coupled to the hosting component. Its job is to receive registration requests

from other components in the system. When one component registers with any other

it sends its connection details (the protocol and version it speaks as well as the host

and other location information that it resides on). The registration engine then creates

a proxy engine (depicted as grey boxes in Figure 4.7) in its own component and sends

its own registration information back. Registration and de-registration can thus be truly

dynamic.

A proxy engine appears to the outside world as would any other engine of the com-

ponent but in actual fact it proxies all requests to a real engine in a separate component.

When a component registers it sends details of all its engines, including any current proxy

engines. Because the proxy engine retains the connection information of the genuine en-

gine, when it registers it sends this information rather then that of the proxy. This means

that messages are only ever re-directed once (client to proxy to engine). Any component
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can be treated as if it contained an appropriate engine as long as it knows the location of

such an engine in another component.

The communication objects are currently configured to work using messages repre-

sented in XML over plain TCP/IP sockets. Other communication mechanisms such as

CORBA’s IIOP or Java’s RMI have been investigated as well; however, due to reasons of

platform independence and standardisation within the OHSWG, XML over plain Sockets

has remained the communicating mechanism of choice. Each incoming message is of-

fered to each engine in the component, it is up to the engine to decide if it wishes to deal

with a particular request. Each engine does this based on the protocol and version of the

message being sent (if it can differentiate between them) and also the name of the engine

that the message was intended for. As a result, concurrent support of multiple versions

of a particular interface is possible.

This architecture results in a group of communicating components that can be dy-

namically configured and distributed over multiple platforms and at the same time act

together cohesively as a whole. Even though currently only two core hypertext inter-

faces are supported, namely the navigational and the service interfaces, the architecture

allows for an easy integration of interfaces to other hypertext domains such as spatial

hypertext (Reinert et al., 1999) or workflow applications (Wang & Haake, 1999).

4.4.2 Sample Applications: Generic Media Player and Car Stereo

A number of hypermedia applications have been built using the Solent system. In this

section I will briefly describe two examples, a software Car Stereo and a generic Media

Player. The Car Stereo Viewer replicates a car CD system which can play files encoded

in the MP3 standard, it was built specially for use within the Solent system. The second

application, a generic media player, is an adapted client of the windows media player

which has been developed for content based navigation in audio (Blackburn & De Roure,

1998); it demonstrates how services can be dynamically discovered using the computa-

tional interface. Figure 4.8 shows the setup.

As can be seen in Figure 4.8, the adapted generic Media Player communicates using

both the navigational and computational interfaces, whereas the purpose-built Car Stereo

client only uses the computational interface. The Car Stereo has a built-in set of requests

it understands and these can be invoked by users by pressing a button. E.g. users might

want to ask for ‘similar songs’ to the one that they are currently listening to.

The Media Player on the other hand, is a generic application that supports the com-

putational interface. As a result this application is able to negotiate with a computational

engine about the set of services it is offered. The Media Player understands the basic
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Figure 4.8: Media Player and Car Stereo as Sample Applications of Solent

mechanisms on how to call a computation and how to parse its results, i.e. it knows how

to deal with input and output parameters. In doing so it can dynamically discover the

set of computations available, offer them to the user, perhaps ask the user to provide it

with some additional parameters and finally execute the computation. By supporting the

navigational interface the Media Player not only allows users to retrieve tracks by exe-

cuting a computation, but also to navigate from a track to some other destination, e.g. a

description in the form of a HTML file on the Web.

4.4.3 Lessons learned from Solent

The Solent system successfully demonstrated not only the point of dynamic computations

but that the OHP-Service protocol described in Section 4.3 is capable of implementing

them. The experiences we gained during the design, implementation and prototyping

were manifold.

� The modular design clearly helped in restructuring the system to the different ap-

plication areas and allowed us to better select the components to support various

functionalities (Shackelford et al., 1993);
� Furthermore, this flexibility helped to address the problems encountered in serving

different versions of protocols and interfaces that we needed to support during
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the development of standardised interfaces within the OHSWG’s interoperability

effort;
� The modularity of the system allowed us to run different interfaces simultaneously

assisting interoperability, in particular at the front-end (Wiil & Nürnberg, 1999);

However it was the storage layer and our arbitrary XML-based storage component

that provided some of the most important lessons about communicating structure between

components.

4.5 Experiences with XML

During the development of the Solent system we discovered that one of the problems

with working with an evolving protocol is that it is very difficult to build software around

it. The development time for the software is generally greater then the version time of

the protocol. To combat this problem in Solent a separate component is responsible for

all the storage and retrieval of hypermedia objects, represented in XML. The advantage

of XML is that there is a discernible structure, even though the storage component does

not understand the hypermedia object that the structure describes. Because of this the

component is able to store arbitrary objects, as long as they conform to an XML hierarchy.

Because of this, we could change the structure of the hypermedia objects without

having to change either the parsers or the storage back-end of the system. Unfortunately

it also meant that we have had to develop algorithms that can search an XML hierarchy

quickly and efficiently.

4.5.1 Storing Arbitrary XML Structured Objects

The Solent System stored the XML structures within a relational database, with the So-

lent storage component acting as an interface. This storage component was capable of

storing any XML hierarchy and searching that hierarchy using pattern matching.

Figure 4.9 shows an OHP-Nav node, defined in XML that might have been stored in

the database and Figure 4.10 shows the same object represented graphically.

Figure 4.11 shows the way in which it would have been stored in the Solent database.

The SETS table stores the element (branches), the VALUES tables stores the values

(leaves) and the HIERARCHY table records the order of the elements and leaves within

a parent element.
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<NODE>
<ID> id12345 </ID>
<CONTENTSPEC>

<URL> C:\\archive\\All Saints\\1 - Never Ever.mp3 </URL>
<VERSION> OHPNav-1.3 </VERSION>

</CONTENTSPEC>
</NODE>

Figure 4.9: XML Object to be Stored

NODE


ID
 CONTENTSPEC


URL
 VERSION


C:\archive\All Saints - All

Saints\Never Ever.mp3


OHP-Nav1.3


ID12345


Figure 4.10: XML Object Hierarchy

4.5.2 Pattern Matching Algorithms

A consequence of storing all (structured) objects as flat relations in the database is that

the retrieval of objects involves building XML elements composed of smaller entities:

sub-elements and values. Given a particular node of the tree, it is relatively trivial to

write code that constructs the XML model in memory. A more difficult task is searching

the XML hierarchy for patterns while it is still stored in the database. We considered

several approaches to address this problem (shown in Figure 4.12):

Breadth-First Retrieval

Firstly, data was retrieved using a breadth-first approach. This method begins at the

element root and works its way down the tree. The problem with this approach is that

when storing similarly structured objects in the database the difference between objects

meant for retrieval and ones that are not may only be perceivable when examining the

values of the leaves of the retrieved XML structure. Therefore there may be a lot of

retrieval activity within the database, which is retrieving structure that is not associated

with the database objects meant for retrieval and this is not discovered until late into

the retrieval process. This is an inherent flaw when retrieving XML structure using a
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SETS Table

ID Name Belongs To ID
S1 NODE -
S2 CONTENTSPEC S1

VALUES Table

ID Name Belongs To ID Version Value
V1 ID S1 OHPNav-1.3 id12345
V2 URL S2 OHPNav-1.3 C:

�
archive

�
All Saints

�
1 -

Never Ever.mp3
V3 VERSION S2 OHPNav-1.3 OHPNav-1.3

HIERARCHY Table

ID Order Belongs To ID
S1 1 -
V1 1 S1
S2 2 S1
V2 1 S2
V3 2 S2

Figure 4.11: The XML Object Stored in the Solent database

top-down approach, where the discerning information is located at the bottom of the

structure.

Depth-First Retrieval

In a next step, data was retrieved using a depth-first approach. This involved retrieving

the value at the bottom of the branch for each unexplored sub-element of an element.

A major problem concerned with this approach occurs when there are lots of objects

in the database which match the object meant for retrieval. By retrieving objects from

the bottom-up, the retrieval algorithm may begin constructing objects which comprise

the same structure as one of those objects meant for retrieval, but may actually contain

the values and/or sub-elements which belong to different objects. This is an inherent

flaw when retrieving XML structure using a bottom-up approach, where the discerning

information is located at the top of the structure.

Combining Depth-First and Breadth-First Retrieval

Thirdly, we investigated a combination of depth-first and breadth-first retrieval methods.

It follows the same steps as the depth-first retrieval technique until the first branch is en-

countered within the template object. Then instead of searching the database for the value
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Figure 4.12: Retrieval Algorithms at Work

at the end of that branch, it performs the breadth-first technique for retrieving database

entries down that branch.

Utilising Semantic Knowledge

We also investigated query optimisation at the application level. This involved modifying

the client application that was sending the database retrieval requests. It was modified

to change the order of the elements in the pattern (XML structure) sent to the storage

component in such a way that the most unique values would be seen by the algorithm

first, this meant that the initial set from which objects were retrieved from the database

was minimised.

The interesting thing about this optimisation is that, unlike the algorithms, it re-

quires knowledge about the structure beyond the simple XML hierarchy. Knowledge

that, strictly speaking, should not be available in an arbitrary storage component.

4.5.3 Lessons Learned

In actual fact all of these retrieval algorithms were disappointingly slow. With the breadth

first approach being particularly unusable as it took five times as long as either of the other

two. Adding some semantic knowledge to the retrieval process did improve matters, but

not enough to prevent us from abandoning the generic database retrieval of XML for

practical reasons and relying on pre-caching of structures in memory instead. The exact

results and a more complete discussion of the Solent System can be found in (Reich et al.,

1999b).

I believe that this experience with XML shows the power of a generic approach but

also demonstrates the need to carefully examine a particular problem domain and engi-

neer a solution that, while still as generic as possible, encompasses only those structures
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that are needed and thus preserves the level of performance required in real systems.

4.6 Summary

In this chapter I have described the broadening coverage of the OHP suite of protocols

and presented the work undertaken to define OHP-Service, a protocol for the dynamic

discovery and invocation of information services.

This work raised some interesting questions with regard to the hypermedia function-

ality normally associated with a hypermedia system, i.e. the functionality enshrined in

the OHP-Nav protocol. Consider the Follow Link operation from OHP-Nav, this could

be implemented in the suite of protocols in one of three ways:

1. An Operation : Currently the Follow Link is implemented as an explicit operation

on the data structures defined for OHP-Nav, as such it forms part of that protocol;

2. A Query : An alternative view states that since a Follow Link is effectively a process

across structure then it should simply be implemented as a specific case of a general

query language. Either such a language would be part of the OHP-Nav definition,

or contained in a separate protocol for the generic querying of structure;

3. A Service : Arguably the Follow Link is opaque and thus should not be formed

by such an open query mechanism. In this case an alternative to the operation

approach is to encode a Follow Link as a Service and export it using the OHP-

Service protocol;

In the OHP-Nav definition the Follow Link was included as an operation. In this way

we left open the other two possibilities, such that a server could export a Follow Link

Service, or a client could ignore any service or operation and undertake the Follow Link

itself using a query mechanism.

Clearly however, there are systems based issues here that are separate from purely

hypermedia concerns, such as whether we regard hypermedia as a delivery mechanism

for Services as opposed to a target application. In addition since this work began, other,

more general service discovery technologies have begun to mature. In particular, research

undertaken in agent systems (Wooldridge & Jennings, 1995) points at a component based

future where components undertake ‘meta-communication’ on some standard level en-

tirely separate from application level concerns. For example Sun’s Jini project (Waldo,

1999) is very well placed to become the de facto standard for service discovery frame-

works. It is in this general layer that such things as Progress and Feedback (discussed in

Section 4.3.2) actually belong.
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Placing the OHP suite into this larger picture of general services poses a problem that

is only made worse by the fact that the scope of the original proposal has increased out of

all proportion compared to its original intent. The OHP has grown from a simple protocol

that would allow standardized clients to talk to any OHS into a mammoth undertaking

that involves all of the components of a system and which includes multiple domains

of hypertext and many levels of functionality. The resulting problems would seem to

indicate that the scope of the protocol should be dramatically reduced.

The goals of the protocol had been moving since its inception and in my opinion it

was time that they were re-examined. When OHP was conceived the OHS architecture

considered was a client/server one, ideal for intra-LAN systems. As technology has

moved on, and we move into an age of distributed information and ‘intelligent’ agents,

it is possible that by placing the OHP functionality more accurately into a more general

dynamic service discovery, or agent, framework, we may actually offload many of the

problems.

In other words, by accepting that the scope of OHP is specifically the presentation

and navigation of information, we no longer have to deal with any of the communication

infrastructure issues that have caused this ‘feature creep’. Instead we have to build OHP

on top of existing networks and prototype frameworks that support the dynamic exchange

of knowledge between distributed components.



Chapter 5

Infrastructure and Communication

5.1 Introduction

In Chapter 3 and Chapter 4 I have described the progression of OHP into OHP-Nav and

OHP-Service. This was somewhat of a natural evolution with new ideas incorporated

in an ad-hoc fashion as they were considered, the best of which have remained in the

formal definition. However, certain things have become evident as the protocol has been

implemented and further considered.

Firstly there has been the continuous issue of the definition of OHP. This has moved

from the purely message based document described in Appendix A, through a more well

defined standard (XML) described in Appendix B to the implementation independent

IDL described in Appendix C. However, this IDL still reflects a message passing idiom

and does not utilise the distributed object advantages of the component frameworks that

IDL is typically used with (such as CORBA, JavaBeans etc.)

In this chapter I shall examine the issues of syntax and infrastructure in an effort to

explore how components might communicate. In particular I shall look at how the order

of communication, discourse, is managed and examine how principles from linguistics,

human conversation and agent-based technology might influence this development.

5.2 The Languages of Communication

It has already been mentioned that the purpose of OHP has changed a great deal since

the protocol first appeared. Initially a basic client-server communication protocol it has

grown to reflect the concerns of a large community of researchers. Even given that we

understand what functionality we are going to standardize there is still the question of

90
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what actually will become standard in the system. I.e. how will components actually talk

to one another? There are two approaches (Millard et al., n.d.):

1. A programming API : The OHSWG could decide on a standardised API that appli-

cations could use to communicate. This way source code compatibility is preserved

and changes on-the-wire do not require applications to be re-written. This requires

specifying:

(a) the system calls,

(b) the callbacks to be used,

(c) the data to be exchanged.

Examples of available systems include CORBA (and it’s interface definition lan-

guage IDL), Microsoft DCOM or Java component technologies (Java Beans). One

disadvantage of the API approach is that the definition is dependant on the bind-

ing (i.e. a particular definition language and implementation of the communication

module).

2. An on-the-wire communication model : The alternative approach is to define a

message language in which components can converse. This involves defining:

(a) the syntax of the messages (e.g. an XML hierarchy),

(b) a set of requests, associated responses and their syntax,

(c) the data and its syntax,

(d) how to setup the transport medium (e.g. opening a socket on a port, etc.).

At one time or another both approaches have been argued for. However, the need to

produce communicating systems that actually work has resulted in the group returning

to the on-the-wire approach, even though the API approach seems cleaner and would

allow us to concentrate on the hypertext issues rather than the networking ones. The

API approach also preserves source code compatibility. The implementers just need to

implement two APIs, one for the client and another for the server. If they then find that a

new on-the-wire protocol should be used, they can change their implementation without

altering the source code of the components involved.

However it is still not a perfect solution as it may require recompiling applications

when a different medium is required. This is indeed the case with CORBA where binary

applications are ORB dependent. This does not give a lot of freedom to the final user as

a binary is typically compiled for a fixed communication medium.

As the on-the-wire communication model is typically adopted for Internet protocols

(normally ASCII and socket based), there is a simple argument that says that since it

works for the World Wide Web and the Internet it can work for OHP to. Unfortunately

this approach has several disadvantages:
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� Writing efficient socket communications is a very difficult task, involving threads,

polling, etc. It is very easy to produce inefficient communication systems.
� Such libraries have to be rewritten for every application. This results in the risk

of a bad implementation, where data is not properly formatted or parsed. The

CORBA approach with a stub compiler avoids this problem by generating code

automatically.
� It becomes extremely difficult to deal with non-protocol data and requests, such as

routing information for mobile agents, garbage collection or session management.

Both approaches to interoperability have their advantages and disadvantages. An

on the wire protocol has the ‘taste’ of the Internet community and a simplicity that is

very appealing, while the programming API allows further techniques to be transparently

added (i.e. mobility, etc.). In both cases, a data model has to be adopted. The data model

specifies the type of data and its associated meaning (in terms of primitives) exchanged

during communications. The data model does not specify the syntax of data (this depends

on the approach: e.g. XML over sockets).

Even given a data model and some communication medium, there remains the need

for some type of infrastructure over which that model can be discussed by a variety of

components. This infrastructure is different from the network and itself may run inde-

pendently over different lower network protocols (sockets, rmi, etc.). It could be imple-

mented either in a message passing form or as an API. In effect it is a framework in which

components can discover each other and exchange data.

OHP-Nav, as described in Chapter 3, managed to achieve a framework effect via a

standard message header and an understanding about the transport layer across which

the messages flow (in this case the number of header bytes on a TCP/IP stream). But at

the Hypertext ’98 demonstration it became apparent that this was not powerful enough

to deal with the communication requirements between components. For example, there

was no way to register your existence or notify others of events.

What was needed was a communications layer below OHP that would add some

communicative context to messages. If this was defined separately from OHP-Nav then

it may be shared by the entire OHP set and therefore allow components of many different

domains to converse. E.g. an OHP-Nav client could talk to an OHP-Space server.

We basically envisaged a layered protocol architecture for OHP as shown in Fig-

ure 5.1.

This involves taking the current definition and dividing it into two parts (the upper

two layers). The uppermost layer is the content of the message, an object from the data
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Transport Layer

(TCP/IP Sockets, CORBA or RMI)


Communication Infrastructure

(General Hypermedia Message Primates)


Different Hypermedia Domains

(OHP-Nav, OHP-Space etc...)


Figure 5.1: Layered Protocol Architecture

model and an operation to apply to it. The middle layer is the message header and cradle

for the operations; this is also the place to define composite messages, where multiple

operations are sent in a single communicative act.

I believe that the argument between the message based approach and the API based

approach is concerned with this middle infrastructure layer. Since we have concluded

that both approaches have positive and negative aspects, the choice between them seems

a mute point. Instead we should look at what we can expect from this framework. For

example, do we require it to be asynchronous? Most importantly, is it just a transport

mechanism for managing ‘conversations’ or does it contain a set of semantics of its own,

i.e. do different communication primitives convey any meaning about their content?

5.3 Communication and Meaning

The communication framework, or infrastructure, described above poses different prob-

lems then when we were concerned with a single protocol, as it has to be able to convey

meaning about a wide range of topics, of which OHP-Nav is only one. Inspiration can be

drawn from the world of human communication. We do this with the aim of rising above

current idioms of message passing and function completion, to a more powerful view of

sophisticated components ‘discussing’ data.

The first thing we must do is to examine how meaning is conveyed in a conversation.

5.3.1 Semiotics

Semiotics is the study of signs. More particularly it is the study of anything that stands

for anything else. This includes words, images and sounds. It can be broken down into

three further subjects:

� Syntactics. The analyses of the structure that exists between signs.
� Semantics. The meaning of signs (there relationship to what they represent).
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� Pragmatics. The way in which signs are interpreted.

The relationship of semiotics to hypertext is only recently being explored (Neumüller,

n.d.). In particular the fact that links can be seen as references or signs that represent their

destinations. However, we are concerned here with the relationship semiotics holds with

communication; conventionally communication between human beings but equally as

applicable between components of a system. In this case we can regard syntax as being

beyond the scope of our exploration, as it very much dependant on the communication

system being used. However, we can look into the semantic and pragmatic considerations

of OHP and try to learn from the semiotic field.

Signification

Signification is regarded as the process of creating and interpreting signals. This involves

two parts:

1. SIGNIFIER. The sign itself, which may be one of three types:
� Icon. There is similarity between the signifier and signified. E.g. a portrait of

a person.
� Index. The signifier is closely related to the signified. E.g. in a causal rela-

tionship such as smoke being the index of fire.
� Symbol. A conventional link exists between the signifier and signified. E.g.

insignia that denotes military rank.

2. SIGNIFIED. The object represented.

Words may be thought of as verbal symbols. In a similar vein the hypertext objects of

component communication can be thought of as structural symbols, perhaps even icons,

as they often reflect the informational make-up of the real or virtual objects that they

signify. However it is important to remember that semantics, the meaning of signs, is not

only about signification.

Meaning

The referential nature of language would seem to indicate that the meaning of a proposi-

tion is encompassed in the references it contains, the signifiers mentioned above. How-

ever, there are examples that show this to be incorrect (the following examples are based

on (Saeed, 1997)).

Firstly, consider the more familiar case of human language. Here, there are definitely

words that refer to real objects. Proper nouns denote individuals, verbs denote actions
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etc. However, there are plenty of words that by our referential standards would have

no meaning; words such as ‘and’ or ‘but’. However, it remains obvious to us that these

words do have meaning.

The second problem is that it is possible in real language to refer to things that do not

exist, something that is still an issue in hypertext. Consider a sentence such as:

‘The Dragon was slain by St. George.’

In this case there is no real world referent for ‘The Dragon’ only other signifiers.

Despite this it is obvious that the sentence above makes sense and that people have a

notion of ‘Dragon’ even though they have never seen one in reality.

The third problem is that several expressions share the same referent but have differ-

ent meanings. For example ‘Polaris’ is also known as ‘The North Star’. However the two

sentences below clearly have different meanings, the second being a tautology:

‘Polaris is the North Star’

‘Polaris is Polaris’

All this points to the fact that there is more to meaning than reference. A complete

study of meaning is beyond the scope of this thesis. However, we can accept that an extra

dimension of meaning does exist and we can refer to this as sense.

What is interesting is to examine the way in which we convert the concepts that

humans hold as thoughts, or that software components store as data, into words that

convey some sense.

As Saeed observes, “It has become clear that meaning is richer than language at both

ends, so to speak, of the communication process. Speakers compress their thoughts, and

hearers fill out their own version of the intended meaning from the language presented to

them.”

To do this hearers must have some understanding of not only the communication

process but also the context in which discourse occurs.

5.3.2 Contextual Discourse

To help understand a particular utterance, a listener often has to perform one of several

contextual tasks (Saeed, 1997) :
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1. Fill in deitic expressions (words or phrases whose meaning changes from one dis-

course to another)

2. Fix the reference of nominals

3. Access background knowledge

4. Make inferences

The question is, which of these is applicable to component communication? We will

now examine each task in turn:

Fill in Deitic Expressions

Deixis are words or phrases whose meaning depends on the perspective of participants

in a discourse, they must be evaluated in terms of the context of that discourse to make

sense. For example:

� Spatial Deixis. This is the implicit division of space around a speaker. E.g. ‘It’s

too hot here lets go over there’. In software components’ conversations these refer-

ences become less useful (unless we are considering mobility), however they might

be employed either in a physical or virtual way in the future.
� Person Deixis. The roles of participants. E.g. ‘I was asleep while you were work-

ing’. In its current form OHP acts as a conversational tool between only two com-

ponents at a time. However a conversation between multiple participants could

well be valid (for example in the collaborative field described in Section 4.2.5) and

in these cases shorthand references for other participants would become important.
� Social Deixis. The social identities and relationships of participants. E.g. Familiar

versus polite pronouns such as tu and vous in French. Although the social roles of

components is not explicitly explored in the OHP suite, there has always been a

notion of client and server. In addition other work has identified roles that govern

competitive verses cooperative behaviour in component systems (Gibney & Jen-

nings, 1998; Lesser, 1991) and social deixis could provide cues in a discourse that

help each component establish their role.
� Textual Deixis. Orientation within the discourse itself. E.g. ‘At this point we have

to re-examine the evidence’. This is analogous to the management of messages

being sent between components. For example the message identifiers that allow

referencing of the discourse itself and thus provide a framework for session man-

agement.



97

Fix the Reference of Nominals

This essentially involves the resolution of references. In language, where metonymy

(associated referencing) and synecdoche (parts representing wholes) are common this

can be a complex problem. The software world offers unique identifiers as a solution, but

this itself builds to form a complex naming problem (as discussed in Section 4.2.3).

Access background knowledge

Knowledge can act as a context for the understanding of utterances. In discourse there

are three types of knowledge:

1. knowledge computable from physical context

2. knowledge available from what has been already said

3. knowledge available from background/common knowledge

Without a true virtual world, or interface to the real world, there can be no knowledge

computable from physical context. However it is certainly true that software communi-

cations could include references to what had already been said (this is done in OHP via

the message identifiers) and that communicating components share mutual background

knowledge described in a common vocabulary.

Make Inferences

As described in Section 5.3.1 listeners actively participate in the construction of meaning

by making inferences to preserve coherence in what they are told. Importantly, speakers

are aware that their listeners will do this and take advantage of it to speak less explicitly

than they otherwise might. E.g. ‘I’m sorry I’m late, the train was delayed.’ The listener

can infer that the speaker was on the train and that is the reason why they were late.

It is perfectly feasible for components to make inferences based on what they are told.

E.g. a component tries to create a node but is told that they do not have write permissions

on this hyperbase. The component can infer from the reply that their creation request

failed.

Inference is possible because of the ‘co-operative principle’, a tacit agreement by

speakers and listeners to cooperate in the process of communication (Grice, 1975). This

principle lays down four maxims:

1. Maxim of Quality speakers try to make their contributions true

2. Maxim of Quantity speakers try to make their contributions as informative as re-

quired for the current exchange. Not more or less so.
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3. Maxim of Relevance speakers try and make their contributions relevant

4. Maxim of Manor speakers avoid ambiguity and obscurity and make their contribu-

tions brief and orderly

These maxims form a base-line for talking. Software components often make the

same assumptions and we should embrace these as an opportunity to gain more expres-

sive and flexible communication, where by not only allowing the listening components

to make inferences but actually expecting it, we actually could impart more knowledge

more elegantly than with more explicit but stilted communications.

5.3.3 Performatives

Performatives, or speech acts, are actually abstractions in the field of linguistics. The

terminology was introduced by Austin (Austin, 1975) and defines the process by which

people distinguish different types of communication (e.g. questions vs. statements),

effectively a special class of actions that correspond to the basic building blocks of dia-

logue. The view that all utterances are in fact speech acts has led to the popular belief

that there are two basic parts to meaning:

1. the conversational meaning (or proposition)

2. the speakers intended speech act

For example, take the following four sentences:

1. David is writing his thesis

2. Is David writing his thesis?

3. David, write your thesis!

4. If only David would write his thesis!

These sentences contain the same proposition but are altered by their speech acts,

observe the following breakdown into their corresponding parts:

1. DAVID IS WRITING HIS THESIS + declarative = statement

2. DAVID IS WRITING HIS THESIS + interrogative = question

3. DAVID IS WRITING HIS THESIS + imperative = order

4. DAVID IS WRITING HIS THESIS + operative = wish

This is obviously of interest to computer scientists involved in computer communica-

tion as by applying different performatives to the same operations the meaning of those

operations could be altered, creating a powerful vocabulary of actions. An added ad-

vantage is that if all components understand the performative operations then they could
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draw some meaning from a message even if they did not understand the accompanying

operation. For example a component might not understand a particular creation request,

but it still understands that it is a request of some sort. This could be useful for return-

ing sensible error messages to unknown operations and enabling components to forward

messages intelligently whatever their contents.

OHP Performatives

Sigi Reich and I tried to apply this philosophy to the OHP suite. For inspiration we

investigated KQML (Labrou & Finin, 1997), and FIPA’s Agent Communication Lan-

guage (FIPA, 1997), existing performative based standards. Both of these define a set of

general primitives (or performatives) that define how communication takes place rather

what is actually communicated.

Both the FIPA and KQML ACLs define a large set of possible performatives, these

can be found listed in Appendix E. Taking these sets as a starting point we created a

list of performatives that were relevant to the hypertext components that OHP-Nav was

envisaged to serve. We implemented these performatives as a part of a general OHP

message header that adds communicative context to the OHP-domain messages. This was

the message header then used with OHP-Nav 1.3 and the Solent system (see Section 4.4).

There were twelve performatives in all:

Registering:

register Informs another component of this component’s existence. Message body is

empty.

unregister Informs another component that this components is leaving or shutting down.

Message body is empty.

Requesting Operations:

ask Return all results of this operation in one message.

ask-stream Return all results of this operation in a series of messages, ended by an eos

message.

eos End of stream marker for ask-stream request. Message body is empty.

cancel Cancel the ask request referred to by the reply-id tag in the message header.

Subscription to Messages:

advertise Lets other components know that this component could inform them of all

messages of the same type as the message body sent with this performative.
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unadvertise Lets other components know that this component can no longer inform

them of all messages of the same type as the message body (which must previously

have been advertised)

subscribe Sets up a subscription where the recipient informs the sender of all messages

of the same type as the message body (which must previously have been adver-

tised).

unsubscribe Cancels a previous subscription set up with the ‘subscribe’ performative

We considered it important to include an advertisement mechanism. Without it any

component can subscribe to the activities of any other component. This makes it very

difficult to write light components. However, if you include the advertise performatives

then any component that does not wish to deal in subscribe messages merely ensures that

it advertises nothing.

Notification:

notify Notifies the recipient that the operation in the message body has occurred as a

result of the message in the reply-id.

Error Handling:

error Notifies the recipient that an error occurred (reason and diagnostics is given in the

domain specific message body)

There was a great deal of disagreement within the OHSWG as to whether performa-

tives should be added to the OHP-Nav definition. While Sigi Reich and I were convinced

that they added value, particularly on a message management level (such as subscription

and streaming), other members of the group thought that they only added an unnecessary

layer of complexity and were in many cases only re-stating semantics that were already

present. In addition they believed that many combinations of messages and performatives

were meaningless (such as an ask performative combined with an Error message).

In an effort to keep the OHP definitions as simple as possible performatives were

never formally added to the OHSWGs description of OHP-Nav. However I have never

lost the belief that they are useful. In fact I now believe that the disagreements within

the group regarding performatives were a symptom of a much larger and fundamental

problem. In the OHSWG definitions of OHP and OHP-Nav we have never separated the

propositional content of the messages from the communication part. In other words, OHP

does not assume a communicative infrastructure but attempts to implement one itself.
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As a result of this confusion, many of the OHP-Nav messages already enshrined par-

ticular speech acts within them (for example, a CreateNode message is already implicitly

an ask request). Without a ‘pure’ set of propositions, it is impractical to apply a per-

formative set. Hence the group’s problems with duplicate semantics and meaningless

combinations.

5.4 Summary

In this chapter I have examined the different approaches to communication and turned

to the fields of linguistics and agent technologies to provide some suggestions for future

direction.

In particular I have concluded the following about interoperability and communica-

tion:

1. A Communication Infrastructure is needed to allow the OHSWG to concentrate on

the contents of communications rather than their packaging.

2. This infrastructure might be implemented as an API or a message based protocol.

Although each approach has positive and negative aspects these are separate to

issues concerning the way in which conversations are conducted.

3. We could learn much from human conversational technique to help express mean-

ing within this infrastructure, including the use of inference and contextual dis-

course.

4. Performatives allow content to be expressed as single propositions and help to form

a concise, flexible and powerful infrastructure layer.

Having decided that it would be best to define OHP ‘above’ an existing performative

based infrastructure it is now necessary to examine exactly what is to be the subject

of communication; both to construct a common vocabulary of propositions but also to

reconcile the various hypertext domains, or at least understand them in common terms.



Chapter 6

The Information Continuum

6.1 Introduction

In Chapter 5 I described how a proposition based communication infrastructure could

form a basis for an interoperability protocol. Having addressed the issue of how we talk

it is now time to turn to the issue of what we say and look at the semantic content of the

propositions themselves.

This is necessary as over time there has been a gradual diversification of the OHP.

Initially this was manifest via the inclusion of opaque ‘Script’ type objects that could be

used to implement any system’s particular peculiarity. This was extended to the notion of

Services, and I spent some time exploring this idea and defining Service objects (as de-

scribed in Section 4.3). However the idea that Hypermedia might exist in several different

domains (OHP-Nav, OHP-Space etc.) has brought forward the notion that Navigational

Hypertext is itself only one Service amongst many.

In this chapter I shall examine the issues of semantic content. In particular I shall

define more precisely what is meant by Navigational, Spatial and Taxonomic Hypertext

and examine how these different hypertext domains can be incorporated into a single

information world view and what that means for our current ideas of linking.

6.2 Hypertext Domains

The realisation that a communications infrastructure releases OHP from tangential con-

cerns about communication, leaves us free to concentrate on the propositions themselves.

Effectively a semantic language in which to discuss hypertext. We already have a sepa-

rate data model for OHP (see Section 4.2.2) and it could be argued that this data model

102
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forms a common vocabulary for hypertext. But when one looks at the breadth of hy-

pertext work it becomes clear that, although powerful, the OHP model is not expressive

enough.

Hypertext is often seen as a way of navigating information spaces by selecting hotspots

in documents which move the user through the information space, with the World Wide

Web serving as a prominent example. However, there are many more hypertext domains,

each with their own specific needs and requirements, which are not served by the data

model. These domains include spatial hypertext, argumentation support, taxonomic hy-

pertext, hypermedia art, hypermedia literature and others (for an overview see Nürnberg,

1997 (Nürnberg, 1997)).

These hypertext domains and the systems supporting them rely on different concep-

tual models (Dyke, 1991). However the ultimate overall objective common to all these

conceptual models is to help users understand and engage with information via naviga-

tion (Thüring et al., 1995). Different criteria for measuring this objective may apply, e.g.

metrics borrowed from software engineering such as ‘cohesion’ and ‘coherence’ (Lowe

& Hall, 1999), and the cognitive requirements of these domains differ, but common

ground does exist and can be explored.

In the following sections we will briefly describe some of the most important do-

mains and reflect on their specific properties. The domains described are Navigational

Hypertext, Spatial Hypertext and Taxonomic Hypertext.

6.2.1 The Navigational Domain

Navigational hypertext is concerned with partitioning information spaces into nodes and

establishing relationships between them such that users can move their applications’

‘view’ between them. Links store connections between ‘hot spots’ in documents. By

clicking on one hotspot the user navigates to the one at the other end of the link.

Navigational Hypertext is probably the oldest conceptual model of hypertext, envis-

aged as it was by the pioneers (Bush, 1945; Engelbart, 1962; Nelson, 1967). OHP was

designed initially to operate within this domain, reflecting the functionality of many of

the systems developed at that time. Chapter 2 gives a comprehensive overview of those

systems.

The model of navigational hypertext presented here follows closely the data model

specified by the OHSWG (Reich et al., 2000) and detailed in Section 4.2.2. It is based

firmly on the definition of several important objects that make up a link structure. Con-

sider the two links shown in Figure 6.1.
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Link 1
 Link 2


Endpoint 1
 Endpoint 2
 Endpoint 3
 Endpoint 4


Anchor 1

(LocSpec)


Anchor 2

(LocSpec)


Anchor 3

(LocSpec)


Node 1

(ContentSpec)


Node 2

(ContentSpec)


Figure 6.1: The OHP Node Link model

In this diagram there are two node objects. These represent the systems notion of a

document or a file. Each node may have several anchors associated with it. These are

objects that define a region inside the node to use as a hotspot (for example there could be

an anchor from word twelve to word seventeen). The endpoint objects bind an anchor to

a particular link. As an anchor can be bound to several links (see Anchor 2 in the Figure)

the endpoint contains all the information that is relevant to this anchor in the context of

one particular link (such as its direction).

Operations applied to objects include creation and deletion primitives for all the ob-

jects in the system as well as a Follow Link function that returns a set of endpoints based

on a single input endpoint parameter according to the underlying link structures. As

described in Section 4.6 this may be more then merely a query on the structures stored.

Navigational Hypertext was thought by the pioneers to mimic the associational way

in which human beings think and reason. As a result navigational systems tend to be

ad hoc and unstructured. This leads to many of the common problems associated with

hypertext, such as cognitive overload and disorientation (Conklin, 1987). There is even

one school of thought that describes ad hoc linking as harmful to the comprehension of

information (Young, 1990).

6.2.2 The Spatial Domain

The opposite approach to ad-hoc linking, Spatial Hypertext relies on the organisation of

nodes into logical composites or spaces, in a process referred to as ‘Information Analy-

sis’ (Lowe & Hall, 1999) or ‘Information Triage’ (Marshall & Shipman, 1997).

While Navigational Hypertext is concerned with links between nodes in an unstruc-

tured information space, Spatial Hypertext allows movement only by following the struc-

ture that makes up that information space. This restricts the movement but allows a user
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to become familiar with areas within the space and organise themselves accordingly. The

key characteristic is to leave structure implicit and informal (at least as presented to the

user) (Marshall & Shipman, 1995).

Relationships between nodes are simply expressed by their visual characteristics such

as spatial proximity, colour or shape. This results in some interesting properties. If

for instance a node is slightly misaligned with other nodes then this might express an

uncertainty about whether this node is actually part of this relationship. In other words

it expresses classification within relationships, where some nodes are ‘more’ related then

others. Spatial hypertext systems are therefore inherently flexible.

Examples of spatial hypertext systems include VIKI (Marshall & Shipman, 1995)

and CAOS (Reinert et al., 1999). The following conceptual model summarizes spatial

hypertext:

1. Nodes are visual symbols serving as wrappers to documents, therefore they have

characteristics such as colour, location and shape.

2. Nodes can be aggregated (visually) thus building collections of related objects.

3. Composites are the visual representations of these collections, they also have visual

characteristics and therefore can also be aggregated into other composites, although

this relationship may not be circular.

4. These collections are typed, i.e. they may form lists, matrixes, sets, stacks etc. This

effects their visual presentation but also acts as an organizational aid, adding both

order and internal structure to the collections (i.e. one node may be placed before

another, or the proximity of one node to another could reflect the strength of their

association).

Any spatial system has to make all of these relationships explicit in the system so

that queries can be made of the information and that visual information can be stored

economically. To this end many systems use spatial parsers to convert the implicit spatial

relationships manipulated by the user into explicit associations within the system. It is

this parser that recognizes the way in which nodes have been lain down and decides on

an appropriate structure to store the information such as a list or a set.

Spatial systems are also unusual in that they hold the potential for fuzzy membership

of a composite. For example take Figure 6.2. Here, documents describing different dan-

gerous animals have been organised into a ‘dangerous animals’ space. Colour is used to

represent exactly how dangerous each animal is, i.e. a rabbit is not very dangerous, while

a human or a tiger are extremely dangerous. Interestingly, it is possible to have different
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Figure 6.2: Fuzzy Membership of a Composite

degrees of fuzzy membership within the same composite. In this instance the slight mis-

alignment of the human composite indicates that we are unsure as to its membership of

the dangerous animals set.

Operations on objects include creation and deletion, adding and removing objects to

composites. In addition to reduce the complexity of the users view, spatial systems often

restrict the depth into the spacial hierarchy that a user can see. Thus there is also a ‘zoom’

function that allows a user to zoom into a composite’s sub-components, unveiling new

depths of structure.

6.2.3 The Taxonomic Domain

Taxonomic hypertext applies hypertext concepts such as non-linear information access

and individualized views to the domain of reasoning about taxonomies, e.g. in biology,

linguistics and other application areas (Nürnberg et al., 1996; Dyke, 1991; Dyke, 1993).

For this kind of knowledge task a model based on set theory is used (Dyke, 1991).

Users sort artifacts (the equivalent of nodes) into categories, based on their characteris-

tics, forming a taxonomic hierarchy. Different users may have different views of how

the artifacts are partitioned. Taxonomic reasoning is the process of moving around the

hierarchies by crossing the boundaries between overlapping sets.

Figure 6.3 gives an example of a taxonomy. Here two people have categorized three

artifacts, in this case documents about three species; lions, platypus’ and ducks. They

both agree that all three lie within the category of ‘Animals’ but they disagree on how
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Mammalia
 Aves (birds)
 Beaked


By Genus
 By Features


Animals


Jaws


Figure 6.3: Example Taxonomy

they should be further sub-divided. The first view is that this should be done by Genus,

grouping the lion and the platypus together as mammals and the duck on its own as a

bird. The second view disagrees and believes instead that they should be categorised

according to their features. So the platypus and the duck are grouped together, as they

have beaks, and the lion on its own as it has jaws.

There are two important rules that govern the shape of taxonomies.

1. Whenever a taxonomy splits via perspectives the same artifacts can be reached

down each branch, it is merely their categorization that changes.

2. All categories are single parented within a single taxonomy (i.e., an artifact may be

in two categories only when each parent category is within a different taxonomy as

demonstrated in Figure 6.4).

Artifacts can be added to categories and also removed. Categories are organized

hierarchically so categories may be added and removed as well. Categories cannot be

circular, as this is semantically meaningless (Dyke, 1991). In addition some set like

operations are also required so as to reason about multiple taxonomies, such as set union

and intersection.

6.3 Information Spaces

The partitioning of systems into hypertext domains, as described above, seems very natu-

ral, as does the division of OHP into a suite of similar protocols. In Chapter 5 I described
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Figure 6.4: Rules for Taxonomy Parenting

how all the protocols within that suite should operate over a common infrastructure. The

question I would like to tackle now is whether or not those protocols should in fact op-

erate over the same information space, which itself calls into question whether or not the

division of OHP into separate domains is necessary at all.

To begin answering these questions we need to consider to what degree these infor-

mation spaces actually overlap? For example, an early observation is that the concept of

a node and the resource it wraps is universal to all domains. But to what extent are the

other objects in each domain compatible with each other?

Further questions arise when we consider the notion of context (see Section 2.8.3). If

context partitions an information space how does this effect the browsing of that space.

Do contexts themselves form part of the space and are they analogous to objects in the

various domains?

To answer these questions it is important to begin to understand the information

spaces that we are modelling and crucially look at how they relate to one other. This

will help us discover if the boundaries we have drawn between the different OHP proto-

cols, reflect the reality of the information spaces or if they are artificially imposed.

6.3.1 The 6D Model

To start understanding the information spaces it is helpful to visualise them. Figure 6.5

shows a three dimensional rendering of a single finite information space. This rendition
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Figure 6.5: Visualising an Information Space

is analogous to that of a Spatial Hypertext system, but extended logically into the third

dimension. Nodes are represented as spheres, grouped together in composites within

the space (with colour representing the structure of the composite, i.e. lists, matrixes

etc.). Links are shown as lines between the nodes. Notice that they are in addition to the

composite structures and may pass seamlessly through them.

It is important to distinguish between our three basic rendering dimensions and a

three dimensional reality. In the case of the rendering space it is possible for an object to

exist in more than one location, i.e. a node may belong inside more than one composite.

Indeed in many systems a node may exist several times within a single composite, for

example a slide may appear several times within a single presentation.

With some thought it soon becomes apparent that such a representation is incomplete.

What about situations where the structure around the nodes varies according to context?

For example in adaptive hypermedia systems different links may become visible on a

users second visit to a node than on their first. In addition how do we represent the

change in the system over time and how do we represent the different domains? In fact

we need to extend the dimensionality of our model to include these other aspects.

As our rendering space occupies three dimensions already we must resort to a hyper

cube in order to represent the other axes. Figure 6.6 shows the six apparent dimensions of

hypermedia by displaying them in a six dimensional hyper cube. In this hyper cube each

of the inner dimensions, the three sides of cubes 1, 2, 3 and 4, represent the 3D rendering

spaces. The three extra dimensions represent behaviour, time and context respectfully.

A user’s view on a system depends not only on what area their viewers are currently
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Figure 6.6: The 6D Model of Hypermedia

looking at (their position within a rendering space) but also on their position on the other

three axes:

� Time. This represents how the space has changed over time. In Figure 6.6 we see

that in the past (space 2) the list only contained two nodes rather then the present

three (in space 1). This axis essentially represents versioning in hypermedia. The

model is not concerned about how that versioning is done, or even at what granu-

larity, only that it is there.
� Behaviour. The same space could exist elsewhere with different behaviour. This

axis represents an information space spread across different types of systems, or

domains of hypertext. For example, space 3 could exist within a Navigational

system while space 4 could exist within a Spatial System.
� Context. This represents the different contexts that you could view the same space

in. In the figure a user in one context would see space 2 which contains a list and
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Figure 6.7: Cross Dimensional Links within the 6D Model

a matrix while in another context they would see space 3 which contains a list and

set.

It is important to remember that these dimensions can be mutually exclusive for some

spaces. Most existing navigational systems for example do not have a representation in-

side a spatial one. A more interesting example is the consideration of mutually exclusive

contexts. In this case each context could represent a different linkbase (Crowder et al.,

1997), maybe on a different machine.

Figure 6.7 shows the same information spaces but this time also includes four differ-

ent types of link, drawn as lines between nodes:

� Link A - Across Space. This is a normal link that takes a user from one point in a

rendering space to another point in the same space.
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� Link B - Across Time. This is a link that takes a user from a point in rendering space

to the same point but in a past or future rendering space. It could be compared to

moving up or down a version history.
� Link C - Across Context. This is a link that moves a user from a point in rendering

space to the same point but in a different rendering space. It is similar to Parunak’s

moving between overlapping sets, where the set in question is a perspective.
� Link D - Across Behaviour. This is a link to a different type of system. E.g.

following a link from an OHS to the WWW or from a Spatial to a Navigation

system.

Combinations of these types of hyperspatial navigation are also possible. For example

linking across time and space, or linking across context, space and behaviour. Strictly

speaking a link causes the user to navigate to a node, which may subsequently exist in

several places within a rendering space, but for purposes of clarity only a single line is

shown on the diagram.

Unfortunately this six dimensional model is a simplification. In actual fact there are

n context dimensions, which possibly include time and behaviour as well as n rendering

dimensions (limited to three here for simplicity). As an example an employee’s view on

their companies information could change according to their technical ability, time with

the company, current position, security clearance etc. Each of which forms a new context

axis. To specify their view on the information a user has to specify their position on each

axis.

In devising this model we have made some basic assumptions. We have assumed

that information structure in one domain is mappable (although perhaps only in a limited

fashion) to another. We have also assumed that it is possible to create links across all

dimensions although not necessarily within all information spaces.

We have thus changed our notion of the information spaces. Rather than thinking

of them as independent domains along the behavioural axes we now consider them part

of a larger continuous structure represented by all the spaces in the 6D Model. Indeed,

each contextual information space also forms part of that structure and allows us to tackle

issues like versioning and context uniformly across all domains.

The union of all these information spaces is therefore both exhaustive, meaning it

contains all information and domains, and consistent, meaning that all the spaces exist

simultaneously. I call this super space of spaces the Information Continuum.
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6.3.2 The Information Continuum

There are two important things that arise out of this consideration of a single continuum

of information:

1. Navigation is common to all information spaces and hyperspatial linking (i.e. link-

ing across the dimensions of the continuum) is possible.

2. Context is common across all domains (along the behavioural axis). As it is a

common problem it should be possible to tackle it in a consistent way.

This means that we have to consider very carefully exactly where in our continuum

the link and context objects exist. We will now consider several options:

Links: Are Links and Composites the Same?

This question results from the observation that the structure of a link and the structure of

a composite are almost identical (i.e. a list of member objects). In Figure 6.6 links are

shown separately from composites (lines rather than spaces). In this case they can be con-

sidered as ‘wormholes’ through the hyperspaces, connecting one part of the continuum

with another. On the other hand if links are composites they form part of the informa-

tion itself and can contain other links and themselves be the destination for navigational

activity.

Although the ‘wormhole’ representation of these links may seem initially appeal-

ing, there is a danger in enshrining the existence of links purely in the properties of the

system. For a start it removes the link from the information space itself, and makes ref-

erencing that link within the hyperstructure impossible (i.e. you could not create a link

that anchored on another link).

Given that experience necessitates links to be first class (and thus referenceable ob-

jects) we are left with the question of whether a link object is the same thing as a com-

posite. If it is not, then our navigational data model still lacks the notion of a composite.

Halasz identified proper support for composites in hypermedia as one of his seven is-

sues (Halasz, 1988) and it seems only proper that such support is provided in any model.

It helps us to consider the consequences of using links to represent composites. For

example what happens to the added structure that a composite contains (i.e. what does it

mean to follow a link that is actually a list as opposed to a set)?

Adding structure to links would effect navigation at two levels, at the point of traver-

sal and also at the point of arrival. For example, traversing a link that is structured as

a list may return only the next endpoint in the link rather then all endpoints in the link.
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Perhaps this is a nice way to express Bush’s trails (Bush, 1945). In addition, if the user ar-

rives at an endpoint that referred to a composite then the destination reached may change

according to the structure of that composite. Linking to a list, for example, may result in

the first item in the list being returned, while linking to a set would result in all the items

being returned.

Thinking of a link as a composite seems to make sense, after all, a link represents a re-

lationship between several items, which is exactly what a composite is, and has the added

benefit of being typed and navigable. Perhaps we should say that a link is a particular

type of composite (i.e. one with direction).

We can now turn our attention to the idea of a context object and how that fits into the

continuum.

Contexts: Are Contexts and Composites the Same?

The initial intention with OHP-Nav was to implement context as a list of node IDs;

therefore a context could be represented as another type of composite or link object. As a

result we can ask the question of where contexts exist in the hyperspace. Are they a part

of the information space as well?

Thinking of context in this way seems intuitive, however it is probably more accurate

to think of context as being implicit in the system. Users don’t actually see a context;

they are within a context. It is like a filter on their perceptions of the information space.

In which case it is actually not necessary to hold contexts explicitly as objects at all.

Instead, what is required is for each object in the system to hold a number of contextual

properties. When a user browses the system their contextual requirements will intersect

with these properties in such a way as to appear to produce a data set of viewable objects.

This would work if context were merely a mechanism for the inclusion or exclusion

of objects. However context is more than that, as a single object may have different

properties according to the context in which it is viewed. For example, consider a system

containing information on ‘movie monsters’. In a context designed for children, objects

might resolve into cartoon representations of the monsters, while in a context designed for

adults those same objects resolve into movie clips of the ‘real’ monsters. This introduces

the notion of a concept, the idea that several objects in the system actually are facets of

the same object but in different contexts.

Since a concept is a set of objects where each object exists in a different context it

can be thought of as a link across the contextual dimensions of the continuum. In terms
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Figure 6.8: A Contextual Link (or Concept)

of our example this would be a link between each cartoon monster and its more terrifying

video clip counterpart. This leads us to a third and final question.

Composites: Are Links and Contexts the Same?

Let us consider our previous notion of a link as a composite of zero or more items. It is

clear that there are two types of link. Normal links across space (spatial links) and links

that cross one or more dimensions of the continuum (contextual links) regardless whether

these dimensions are time, behaviour or some other distinguishing factor.

Given the definition of a concept given above it seems clear that contextual links

and concepts are the same thing. In other words, the contextual links are actually the

structures that maintain an object’s cohesion across the dimensions. The link represents

a common concept.

A natural consequence of this is that there are two ways to link across space and

context. Figure 6.8 shows two nodes, a cartoon of Godzilla and a movie clip of Godzilla,

linked across context by the common concept of ‘Godzilla’. Notice that links are now

represented like composites in the system, so the concept is shown as a thin purple box.



116

Inside both spaces there are two visible objects; the clip (which is a movie in one space

and a cartoon in the other) and the concept. As a result there are two ways to link across

context:

1. Link directly to a particular instance of an object, for example by anchoring a link

on the cartoon clip. By following this link a user would see the cartoon even if they

were an adult.

2. Link to a concept, for example linking to the concept of ‘Godzilla’ rather than a

particular clip (anchoring on the purple box). In effect within a single space we

link to the concept, which is then resolved across context to be a either the cartoon

or the movie clip depending on whether the context of the user is that of a child or

an adult.

This gives us a concrete notion of what links and contexts are within the system.

Now we can say that the spatial links are analogous to composites and belong in a single

space, while the contextual links (which form part of the mechanism of context) are

shared amongst all participating spaces.

6.3.3 Time as a Contextual Dimension

One of the dimensions identified in the 6D Model and later incorporated into our notion

of context was that of time. As mentioned this dimension represents the development of

the hyperstructure over time, although we do not assume any particular granularity.

As time is a contextual dimension, our notions of concept and contextual linking (de-

scribed above) still apply. Effectively a contextual link across time represents a version

history for a particular object. Otherwise the time dimension appears to have little bear-

ing on the way in which we interact with the hyperstructures. However consider the case

where we have nodes that represent temporal media.

Normally we can consider the temporal nature of this media as orthogonal and sep-

arate to the notion of time across the hyperstructure. However, this view is brought into

question when the media in question is live (for example a streamed digital television

signal).

Imagine the case where we are querying a node to find out about any anchors attached

to it. In the orthogonal time case it seems natural that we receive all the anchors and

display them as required, this is because the stream in question is finite. However, in

the non-orthogonal case the stream may be infinite in length (consider the live television

example) and it seems more natural to rely on context (in particular our position in the

time dimension) to return to us only those anchors which are available at the current time.
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This is interesting as we are regarding such anchors as objects that are anchored on

the entire document but have been designed to exist only for a fixed period of time, after

which they will no longer be available. Presumably the locspecs of such anchors would

still fix the anchor at a particular time stamp within the stream so that they could be

displayed as accurately as the non-orthogonal case.

This is a powerful argument for contexts as a necessity in a hypermedia system, rather

than an additional feature, and it indicates that current thinking about structure and tem-

poral media might be incomplete without the notion of context.

6.4 Summary

In this chapter we have explored the information spaces that hypermedia components

discuss in terms of hypermedia domains and contextual divisions. In particular we have

learnt the following things:

1. There are many hypertext domains, each of which presents information to the user

in a particular way and has its own methods of navigation. Spatial Hypertext allows

users to zoom in and out of a hierarchy of composites, Navigational Hypertext

allows users to follow ad hoc associations between (sections) of documents and

Taxonomic Hypertext allows users to navigate up and down a taxonomic hierarchy

and also move between overlapping categories.

2. These domains represent part of a Behavioural axis of an n dimensional model of

information space. Where a users view of the space is altered by their context.

3. Thus rather than thinking of these domains as independent of one another we now

consider them part of a larger continuous information space with a common struc-

ture. I call this super space of spaces the Information Continuum.

4. Within this continuum it is possible to link between items in a single space (spatial

links) or across the dimensions of the continuum, between items in different spaces

(contextual links).

5. Spacial links (or intra-space links) are analogous to composites (and may there-

fore form a Spatial Hypertext hierarchy of composites, or Taxonomic Hypertext

hierarchy of categories).

6. Contextual links (or inter-space links) are analogous to concepts, identifying sev-

eral objects in different contexts as aspects of the same thing. As a user we could

create a navigational link to an item and then navigate directly to it, or we could

anchor that link on the concept object which is then resolved across context when

we follow it.
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Perhaps the most important result that arises from our consideration of the Informa-

tion Continuum is the idea that all the domains of hypertext are related in some funda-

mental way, such that navigation across those behavioural dimensions is possible. In

Section 5.2 I stated that separation of a communication infrastructure from the rest of

OHP would allow us to concentrate on the semantic content of conversations. This se-

mantic language is essentially an agreement that components will discuss the world in a

particular way, using particular terms.

For example, when a member of the public takes their car to a mechanic, there is a

certain vocabulary of terms used to discuss the situation (concepts such as ‘car’, ‘engine’

etc.). When information components discuss hypertext structure they need a similar com-

mon lexicon of terms and associated meanings. If hypertext domains are all reflections

of a common world then the best semantic language would describe these fundamental

structures and enable components to interoperate across domains and users to navigate

the information spaces in new and innovative ways.



Chapter 7

The Development of FOHM

7.1 Introduction

In the previous two chapters I divided the problems faced by the OHP effort into two

distinct categories. Firstly I tackled the communication problems by describing how a

proposition and performative based approach results in a more powerful communication

language. Secondly I discussed the integration of the various hypermedia domains into a

single information continuum and described how our notions of navigation and context

fit into that view.

In the following two chapters I will bring these two threads back together to build a

prototype implementation of a cross-domain system.

To do this I firstly describe the two approaches to building such a system, and explain

why I believe that the common language approach chosen offers benefits in flexibility

and simplicity.

I then introduce FOHM, the Fundamental Open Hypermedia Model, designed to ex-

press all the structures found in the three domains of Navigational, Spatial and Taxo-

nomic Hypermedia. These domains are compared and contrasted and their mappings

to the FOHM model explored, including a description of what unique structures each

domain contributes and how the other domains cope and benefit from them.

7.2 Inter-Domain Interoperability

There are two distinct sorts of inter-domain interoperability that one might imagine. Let

us imagine that there are two workspaces, the first of which is a traditional navigational

hypertext workspace, and the second of which is a spatial hypertext. If there were a link

119
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from a node in the first workspace to a node in the second workspace, what would be the

semantics of following this link? The first and perhaps most obvious outcome would be

that as the link was followed into the spatial workspace, a spatial browser would open

from where the user could continue to browse. However an interesting second possibility

could be that the navigational browser could remain open, and could continue to attempt

to interpret the spatial workspace as if it were a navigational workspace (Nürnberg et al.,

1999).

There are two options:

1. Translation. For each domain it should be possible to provide a translation mech-

anism for each other domain. This translation functionality could be captured in a

middleware layer, making it reusable across many other components.

2. Common Language. Alternatively we could attempt to define a common model

which would be sufficiently generic that it could express all the structures required

by all current domains, and hopefully all future domains. This model would in

effect be a common semantic language.

These approaches differ over two features:

1. Extensibility. This concerns the ability to include new domains into the system in

the future. The translation approach allows new translations to be added but ex-

hibits quadratic growth with the number of domains that intend to interoperate, thus

in practice the number of interoperating domains may be quite limited. The com-

mon language approach relies on the ability to express any domain in the common

language, something that cannot be tested in advance but which does guarantee

that all domains that can be expressed may interoperate.

2. Distinction between Domains. The translation approach makes a clear distinction

between domains (and thus provides unambiguous semantics). However it is not

known whether a clear distinction is appropriate, in other words, why can’t a hy-

perstructure belong to multiple domains? The common language approach makes

no attempt to define boundaries between different domains, however as a result it

looses the advantage of distinct domains as the semantics concerning the structures

become blurred.

To summarise, although there are concerns over the extensibility of a common lan-

guage, it offers benefits in flexibility, both to the information structure and the software

implementations and should be investigated.
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The creation of a common language depends on examining existing domains and

drawing parallels between them. If objects that exist in one domain can have meaningful

representations in another, then a common language is possible.

7.3 FOHM

In order to explore the similarities between different domains I began to construct a for-

mal model of the three existing domains with the help of Dr. Luc Moreau and Dr. Sigi

Reich (Millard et al., 2000). In this section I shall briefly present the formal definition of

the model which we shall then use to explore the common ground between the different

domains and confront their differences.

7.3.1 Comparison of Domains

There are a number of similarities between the different hypertext domains that we can

use to build a common semantic language. In all domains, we find notions of data (nodes

in navigational, visual icons in spatial, or artifacts in taxonomic hypertext) and associa-

tions (links in navigational, composites in spatial or categories in taxonomic hypertext).

On the other hand, there are features that only appear in a single specific hypertext do-

main:

� The navigational domain contains anchors that allow links to point into documents

rather then be anchored on entire documents.
� The spatial domain introduces typed structures (e.g. lists, sets, etc.) to the relation-

ships.
� The taxonomic domain contains perspective objects that allow the relationship

structures to diverge according to different views.

Other differences concern restricting the possible composite structures for various do-

mains. For example circularity is allowed in navigational hypertext but not in taxonomic

or spatial.

7.3.2 A Fundamental Hypertext Layer

Given the similarities between the different domains we defined a fundamental layer

composed of data structures that are general enough to ‘encode’ any data structure of

each hypertext domain. These operations and data form a Fundamental Open Hyper-

media Model, which we call FOHM. We also define general operations on these data
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Figure 7.1: The Fundamental Data Model

structures. Figure 7.1 contains a formal representation of the data model, whereas Fig-

ure 7.2 displays some example operations, defined as transitions of an abstract machine

representing a server and client.

FOHM makes no assumptions about the protocol it is running over or the systems

that are using it. It is a semantic language that requires an implementation in a syntactic

language before it can be used. Although other structural languages exist they tend to

contain very little semantic information and suffer performance penalties as a result of

their generality. Section 4.5 describes our experiences of this problem with XML.

7.3.3 A FOHM Example

In FOHM I describe four objects that are analogous to objects in the OHP-Nav data

model. I attempted to give these objects unique names to avoid clashes with models

of individual domains. An association object represents a relationship between other

objects, it contains a feature space; a list of features that all the objects in the association

must map to. It also contains a set of bindings, these attach references (usually datarefs)

to the association via a feature vector that describes how the reference maps to the feature

space. Finally FOHM has a notion of a data object, this is a wrapper for some piece of
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Figure 7.2: Some Fundamental Functions and Queries

data that lies outside the scope of the model, normally a document although it could

represent any file or stream.

Figure 7.3 shows a possible FOHM structure. Bindings map References (DataRefs in

this case) to the Navigational Link on the left by defining their direction and to the Spatial

List on the right by defining their position. The DataRefs either reference a whole item

of Data or point into that Data (e.g. to reference a particular region).

7.3.4 Levels of Structure in FOHM

Between them the domains modelled support three levels of structure:

1. Explicit External Structure. By creating typed associations between data, FOHM

allows explicit relationships to be expressed. This is analogous to taxonomic cate-

gorisation, where we say that an object (or data) belongs in one category or another.

2. Implicit External Structure. This is classification within a relationship, defined by

the feature space of an association and the corresponding feature vectors. E.g. in
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Figure 7.3: FOHM Structures: A Navigational Link to a Spatial List

Spatial Hypertext an association may contain a set of data objects, each one of

which is given a Red/Green/Blue (RGB) value. Objects which are similar in some

way will be more alike in colour.

3. Internal Structure is the structure of the information actually inside individual data

objects. For example a film can be viewed as a collection of many scenes, a user

viewing the film follows a path or trail through those scenes. Typically this is not

the way a film is stored due to file size and performance restrictions. Thus at some

level we no longer handle structure externally and instead handle it internally via a

proprietary data format. References allow FOHM’s external structures to reference

the internal structure of data (e.g. link to the seventh scene of a film).

One of the most important aspects of FOHM is that if a client does not totally under-

stand the semantics of the structure it is given it may still understand a portion of it. For

example imagine an association that represents a company. This association may have a

feature space with a single feature ‘role’. All data that binds to this association must have

a vector that maps to that feature, in effect stating what the role of that data object is in

the company.
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Figure 7.4: FOHM Structures: Two Navigational Links

Should this structure be served to a client that understands the feature space ‘role’

then that client will appreciate all of the meaning of that structure. However, if it was

served to a client that didn’t understand the feature then that client would at least still

understand that a relationship exists, could display the relationship to the user, and oth-

erwise manipulate the association as normal.

7.4 The Contribution of the Domains

Each domain brings something unique to the FOHM model (Millard & Davis, n.d.). In

this section we will look at what is brought to FOHM from each domain and discuss how

each of the domains are extended to handle the extra structure.

7.4.1 Navigational Hypertext: Introducing the Anchor

In many ways Navigational Hypertext is the simplest of the three domains. Its notion of

directed links can be easily modeled in FOHM by a single feature ‘direction’ to which

nodes are bound with either a ‘source’, ‘destination’ or ‘bi-directional’ value. The an-

chor object allows external linking structure to point into otherwise opaque data, it is this

mechanism that allows the referencing of internal structure as mentioned above. How-

ever neither Spatial or Taxonomic Hypertext has such a mechanism.

In FOHM the anchor is replaced by a reference object (a DataRef). This object is also

accessible by Spatial and Taxonomic clients enabling those domains to reference internal

structure as well. This is useful to both domains and allows spaces and categories to refer

to parts of a data object as well the object in its entirety.
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Figure 7.4 shows a Navigational structure described within the FOHM model. In this

case two links. The first is a link across three different data objects (one of which is

referenced in its entirety), the second is a link across one area of one document and three

different areas within a second document. Notice that Associations can share References

and that References can share Data objects.

7.4.2 Spatial Hypertext: Classification within Relationships

At a superficial level it is possible to view Spatial Hypertext as a presentation layer on

top of Navigational Links. For example a link may have some attributes that determine

that when viewed spatially it appears as a red square. However this is to miss the im-

portant notion of implicit external structure as described above. In a Spatial Hypertext

System the visual attributes of the various objects actually form extra structural informa-

tion about those objects, one of the applications of which is to allow fuzzy membership

of an association.

Spatial Hypertext Systems rely on users to understand the visual clues supplied. E.g.

they can express that one object is redder than another but no semantic reason is given,

the user must interpret that information themselves. In FOHM we use the feature space

to contain all the spatial features that datarefs may bind to, e.g. colour, shape, size, etc.

A binding maps values to those features, therefore describing a references position in the

space. An interesting consequence of this approach is that as FOHM has no restriction

on the feature spaces used it is possible to replace spatial mappings with semantic ones.

In effect allowing the system, as well as the user, to appreciate fuzzy membership.

As an example consider a set of nodes that represents dangerous animals. In a Spatial

Hypertext system we may colour the animals such that red indicates danger. When ren-

dered the user can see what the nodes represent and they can also see that some are redder

than others, but the understanding of what red represents is lost. However in FOHM we

could replace the colour with a different feature that explicitly enshrined that meaning,

e.g. ‘danger’, which has defined values ranging from ‘harmless’ to ‘deadly’. A system

that understands the meaning of the ‘danger’ feature has a true understanding of how the

animals relate to one another. The disadvantage of this is that it is probable that more

systems understand colour than a specific feature like ‘danger’.

Figure 7.5 shows a simple Spatial structure described within the FOHM model. In

this case there is a set of three objects that ‘Support’ each other. This set contains two

data objects and a list. This list actually represents a ‘Tour’ that supports the documents

in the set. Notice that the third position in the tour revisits the first data object.
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Figure 7.5: FOHM Structures: A Spatial Structure

In our example we have used the feature space to define the internal structure of

a space. For example the list has a ‘position’ feature and all bindings must contain a

mapping to that feature (i.e. their position in the list). However a feature space may be

empty, as can be seen from the Set. In this case the structure type alone is enough to

govern the structure (i.e. no reference may bind to a set more than once) and the feature

vector is empty.

The feature space mechanism is a very powerful way of binding objects to associa-

tions with different internal structure, however we must extend Navigational and Taxo-

nomic Hypertext to deal with these powerful bindings.

With Taxonomic Hypertext this is a fairly trivial operation, the implicit external struc-

ture simply becomes an extension of the categorisation process, where the fuzzy mem-

bership of a category becomes possible. In addition, if the people creating a taxonomy

disagree on this implicit structure then they can divide the taxonomy at that point using

the perspective feature as normal.

Navigational Hypertext has many more issues to deal with because it relies on the

feature space to enable the navigation of associations. There are two ways to cope with

the ‘pollution’ of the feature space.
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Structure Traversal: endpoints user
reaches

Arrival: object user sees

Link All destination or bi-directional
endpoints except starting endpoint

All members

Set All except starting endpoint All members
Stack Endpoints to either side Top of stack
Queue Next endpoint in queue Start of queue
List Endpoints to either side All members
Matrix Nearest endpoints All members

Table 7.1: Semantics of Traversal and Arrival

1. Ignore it. A Navigational client can assume that if there is no direction feature

then all members of an association can be treated as bi-directional for purposes of

navigation.

2. Extend the navigation model. We can make the same assumption as above but

also extend our model of navigation so that it understands some of the common

features that would be used by the other domains and allows them to alter the

effect of navigation.

In actual fact this is a decision that is beyond the scope of the model and should be

made by individual clients, however it is important to think about the consequences of a

client taking the second approach. If we had a standard definition of what it means for a

client to navigate a list (as opposed to a link) then hypertext designers could build their

hypertexts to take advantage of that functionality.

There are two places were the structure of an association could become important.

The first is traversal, the act of following a link (Trigg, 1998). In normal Navigational

Hypertext a link has a basic internal structure based on the notion of ‘direction’, if it could

have different internal structure then the behaviour of the traversal could vary according

to that structure. The second is arrival, the act of viewing a structure (for example at the

end of a traversal). Here internal structure could effect the way in which members of the

association are viewed. Table 7.1 shows some possible semantics for traversal and arrival

over different structures.

These structural types would add valuable organization to otherwise disorganized

hyperwebs. For example take a look at Figures 7.6 and 7.7.

In Figure 7.6 a collection of slides has been gathered together into a set. This means

that the association is unordered but that no individual slide may appear more than once.

Our link semantics dictate that when users arrive at a set they see all of the endpoints

contained, thus if users arrive at the set of slides they would see all four slides. When
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Figure 7.6: Link Structures : A Set of Slides

traversing a link the user always uses an endpoint that is a member of that link as a starting

point. When traversing a Set the user arrives at all the endpoints except the starting one.

So when traversing the set of slides from the slide on the left they would arrive at the

three slides on the right.

In contrast Figure 7.7 shows the same four slides arranged in a stack. When a user

arrives at a Stack they see only the top endpoint of the stack, in this case they would see

the first slide. In addition when a user traverses a stack they arrive at the endpoints to

either side of their starting point. So if the user started their traversal at the third slide

they would arrive at the second and fourth.

7.4.3 Taxonomic Hypertext: Perspectives and Context

Although the OHP-Nav data model has no notion of context, context has long been an

important issue in navigational systems, allowing a user to see different versions of docu-

ments or hyperwebs according to a particular viewpoint. In Taxonomic Hypertext context

is realised via the use of a perspective object. These are designed to be placed in a cat-

egorisation hierarchy at the point where it splits according to the views of the authors.
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Figure 7.7: Link Structures : A Stack of Slides

The context of the viewer will determine which perspective (branch of the taxonomy)

that they see.

When implementing a perspective in FOHM one could use an association of type

‘perspective’. However this does not fit in very well with the rest of the model. This

is because the semantics of what a perspective does to traversal and arrival functionality

has to be understood by the association containing those perspectives and not by the

perspectives themselves. In addition what would it mean for that parent association to

have structure? What is the meaning of a list of perspectives as opposed to a set?

Fortunately there is a way of shifting this knowledge back into the perspective object

itself. Rather than a category containing perspectives representing a branch, in FOHM

we say that a perspective object is the branch. If there were two versions of a data object

you would create a perspective association that contained both versions. Now the arrival

semantic of a perspective is to choose one of the data objects to reveal and the traversal

semantic is essentially the question ‘what other views are there on this object?’

Figure 7.8 shows these alternative implementations of perspective. Note that in the

FOHM model there are two versions of Category 1 - the result of viewing that Category
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Figure 7.8: Alternative Implementations of Perspective

in different contexts.

Interestingly this is exactly the same structure as the ‘concept’ discussed in Sec-

tion 6.3.2. A structure that binds alternative views together across the contextual axes

of the information continuum. Thus in FOHM a perspective is viewed as just another

typed association. Because of this the FOHM model of perspective contains some prop-

erties that are very desirable when dealing with contextual systems:

1. The ability to link to a specific node, whatever the contextual considerations (link-

ing across context). This is achieved by linking to the node itself.

2. The ability to link to a node that is determined by context. This is achieved by

linking to the perspective that contains the choice of nodes.

3. Everything about the structure can change in context. Including the type of that

object (e.g. linking to a perspective could result in a data object in one context but

result in an association object in another)

However FOHM only gives a framework in which context can operate, it does not

define context itself. For example it does not have an explicit mechanism for determining

on arrival to an association which members are visible. This is because the definition of

these mechanisms is an open ended and tricky question. One that is beyond the scope

of this thesis. Instead FOHM places the context mechanism into opaque or black-box

objects and then concentrates on placing them correctly.

FOHM assumes the existence of two types of black-box object. Both are considered

to be profiles, where a profile is an object that contains contextual information.
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Figure 7.9: FOHM Structures: A Taxonomic Hierarchy

1. User Profile. This is an object that defines the state of the user. This could include

information about the user (such as age and job position) as well as information

relating to their interaction with the system (trails etc.). In addition it may include

temporary user specified information that will help the user filter the information

space (e.g. today I am interested in cars).

2. Data Profile. This is an object that describes another object in a contextual fashion.

This could include information about the object (such as the date of its creation),

versioning information as well as a description of to whom the object would be

interesting.
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In addition FOHM assumes the existence of a ‘magic function’ that compares a user

profile to a data profile and decides if they match. A simple implementation could define

the profiles as lists of keyword value pairs and then the function would choose an object

based on the number of matching values.

Figure 7.9 shows a Taxonomic hierarchy described within the FOHM model. In this

hierarchy the Perspective and Categories has been modelled as a set with the relationship

type ‘perspective’ and ‘category’ respectfully. This example demonstrates two alternative

views on how to categorise two data objects. The left fork of the concept views each

object as belonging to a separate category while the right fork places them together in a

single category.

FOHM assumes that each binding object contains a data profile and that when query-

ing the system the user provides a user profile which the system can use to ‘filter’ results.

Effectively choosing a subset of each structure to ‘reveal’. The ‘perspective’ is purely a

particular use of this general mechanism. If a user arrives at the ‘perspective’ then their

user profile is compared to each data profile (there is one for each branch) and one of the

branches is revealed as a result.

Another place where the profile comparison might be used is in the process of query-

ing for reference objects that point into a particular document. In this case for each

reference that refers to that document the users profile is compared to all the reference’s

bindings’ profiles and only the ones that match are shown. This kind of functionality is

important in many adaptive hypermedia systems where the author of a hypertext wishes

to guide a reader based on their task, goals or experience (Brusilovsky, 1996).

7.5 Summary

In Chapter 6 I described how a common vocabulary is required in order to discuss hy-

permedia structures over a common infrastructure. In this chapter I have explored the

difficulties of unifying three hypertext domains (Navigational, Spatial and Taxonomic)

with the aim of producing such a vocabulary and presented FOHM, a semantic language

in which all three domains have a logical representation.

In particular I have described:

1. How Navigational Anchors can provide greater granularity of data in Taxonomic

and Spatial Systems.

2. How the internal structure of different spaces (e.g. Sets, Lists, etc.) might provide

a richer set of traversal and arrival semantics for the navigation of links
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3. How Taxonomic Perspectives suggest a model of context that is constant with our

notion of contextual dimensions (see Section 6.3.1) and which allows us to link to

concepts as well as across context to a particular instance of an object.

FOHM is a powerful way to express hyperstructures, but on its own it does not pro-

vide interoperability. To do that an implementation of FOHM must be created based on

some existing infrastructure, over which FOHM structures can be discussed.



Chapter 8

The Implementation of FOHM

8.1 Introduction

In this thesis I have described how early work with the Open Hypermedia Systems Work-

ing Group on the Open Hypermedia Protocol has grown into a general investigation of

what constitutes hypermedia and what it means to navigate around and between different

hypertext spaces and domains. This has resulted in the Fundamental Open Hypermedia

Model which can represent consistently three of the major hypertext domains.

I have also examined the syntactic aspects of communication and explored human

linguistics and its software equivalents in the agents world.

In this chapter I shall present an implementation of FOHM, based around the SoFAR

agent framework, to explore new notions of cross-domain browsing. Two clients, one

spatial and one navigational, were developed for the implementation and these clients are

described and the issues faced in their design discussed.

Finally I will reflect on the new research field of Structural Computing described

in Section 4.2.1. The CB-OHSs developed in this community share some of FOHM’s

multiple domain functionality and it is interesting to compare the two approaches and

explore whether FOHM supports the Structural Computing philosophy.

8.2 Agent Implementation

To test FOHM I wanted to build on the Solent system described in Section 4.4 however

the emphasis of the work was shifting away from infrastructures and I thought it best to

choose an existing infrastructure, rather than modify the Solent system in some way.

135
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query if Is this predicate true?
query ref What predicates match this predicate?
inform This predicate is true
uninform This predicate is false
request The sender asks the recipient to make this action true

Table 8.1: SoFAR performatives for Communication

The Southampton Framework for Agent Research (SoFAR) (Moreau et al., 2000)

is a communication infrastructure based around dynamically discovered components or

agents. All the work described in Chapter 4 is leading toward the adoption of a logically

separate communication infrastructure and the consideration of performatives discussed

in Section 5.3.3 indicates that a proposition based language coupled with ‘speech acts’

provides one of the most powerful.

SoFAR is designed around just such a mechanism. Because of this I chose to im-

plement FOHM using SoFAR. This required the creation of three ‘agents’. Two would

be clients that understood Navigational and Spatial structures respectively, and displayed

them appropriately to the user, the third would be a storage agent, responsible for storing

the structures and answering questions posed by the first two agents. All three would

speak FOHM exclusively using the ontology based communication of the SoFAR frame-

work.

8.2.1 Description of SoFAR

SoFAR is a multi-agent framework designed for Distributed Information Management

(DIM) tasks. To understand the philosophy of the framework it is necessary to examine

both its architecture and process of communication.

SoFAR communication

Communication in SoFAR is based on collections of related propositions known as on-

tologies. Each proposition in the ontology asserts a particular fact, and therefore is known

as a predicate. For example the predicate:

ReverseString("hello", "olleh")

asserts the fact that the reverse of “hello” is “olleh”. Communication is achieved by

passing predicates between agents along with one of a set of performatives that show the

intention. There are four performatives available for general communication, these are

shown in Table 8.1
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register The sender advertises their capabilities with a broker
unregister The sender withdrawals a previously made advertise-

ment
subscribe The sender asks to receive any inform statements

made about a predicate
unsubscribe The sender cancels a previously made subscription

Table 8.2: SoFAR performatives for Meta-Communication

For example these predicates could be used with the ‘ReverseString’ predicate in the

following ways:

� query if(ReverseString(”hello”, ”olleh”)) Asks: ‘is the reverse of “hello” “olleh”?’
� query ref(ReverseString(”hello”, variable)) Asks: ‘what is the reverse of “hello”?’
� inform(ReverseString(”hello”, ”olleh”)) States: ‘the reverse of “hello” is “olleh” ’
� uninform(ReverseString(”hello”, ”hello”)) States: ‘the reverse of “hello” is not

“hello” ’

Notice that in the ‘query ref’ example the system uses a special variable value to

show that a field within a predicate is not known. An agent sending such a query would

expect some other agent to reply and fill in the variable field, thus answering the query.

In addition to predicates it is possible to define actions, these are objects that describe

a particular action that can be invoked. There is only one performative that communicates

actions, this is the last entry in table 8.1; request. This requests that the recipient performs

the action.

SoFAR architecture

To allow agents to communicate it must be possible for them to locate one another within

the infrastructure. To this end SoFAR contains a registration agent that is always running.

When another agent starts it registers the predicates and actions it understands with the

registry agent. Other agents can then query the registry agent for a list of agents that

understand certain predicates or actions. There are an additional four performatives used

for this sort of meta-communication. These are shown in Table 8.2.

For a full description of the capabilities of the SoFAR system see (Moreau et al.,

2000).
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8.2.2 The FOHM ontology

SoFAR communicates by using sets of predicates grouped together as an ontology. An

ontology can be thought of as a subset of the set of truth statements that can be made

about the world. Therefore to allow agents to discuss FOHM structures required the

creation of a FOHM ontology, the set of truth statements that can be made about FOHM.

As FOHM is primarily a data model I decided that it would be best to create a predi-

cate for each first class object, such that the predicate asserts the existence of the object.

Thus to ‘inform’ the ‘association’ predicate is to assert that that association exists. This

way the query if and query ref predicates create an instant and powerful query language.

FOHM Predicates

Figure 8.1 shows part of the latest version of the FOHM ontology. The full ontology,

which includes comments, can be found in Appendix F

One of the important things about SoFAR is its notion of ground vs. variable terms.

A ground term is one in which every field has a defined value. A ground term will only

‘match’ another ground term with all the same values. A variable is an instance of a term

that will match anything. By filling terms or predicates with a collection of variables and

ground terms it is possible to create a pattern that will match against other predicates.

For this reason it is important to distinguish between a field that is a variable and one

that has no value (but is ground). For this reason the FOHM ontology contains several

objects prepended with the word Undefined. An Undefined object has no value but will

only match other Undefined objects.

Another consideration was to avoid the resolution problem first identified with OHP-

Nav (see Section 3.2.2). This is where all the objects in a data model reference each other

by an identifier which results in clients generating a great deal of network traffic as they

resolve all the references.

One way to avoid this problem is for components to deal in larger hyperstructures.

For this reason the FOHM ontology was altered from its original form, where references

were used extensively, to that described in Appendix F. Using this ontology a system is

capable of choosing whether to include a reference (an IDRef) or an object (ObjectRef)

within a Binding.

Not only does this reduce the resolution problem but some Deitic Expressions (as

described in Section 5.3.2) can be employed that ensure that an object is only sent once,

even though it may appear several times in the hyperstructure. Appearances other than
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<term name="ReferencableObject" extends="Predicate" abstract="yes"/>

<term name="Association" extends="ReferencableObject">
<field type="StorageID" name="id"/>
<field type="String" name="relationshiptype"/>
<field type="String" name="description"/>
<field type="String" name="structuretype"/>
<field type="BindingVector" name="bindings"/>
<field type="StringVector" name="featurespace"/>
</term>

<term name="Binding" extends="Term">
<field type="StringVector" name="featurevalues"/>
<field type="Reference" name="reference"/>
</term>

<term name="Reference" abstract="yes" extends="Predicate"/>

<term name="ObjectRef" extends="Reference">
<field type="StorageID" name="id"/>
<field type="ReferencableObject" name="target"/>
<field type="LocSpec" name="locspec"/>
</term>

<term name="IDRef" extends="Reference">
<field type="StorageID" name="id"/>
<field type="ReferencableStorageID" name="target"/>
<field type="LocSpec" name="locspec"/>
</term>

<term name="Data" extends="ReferencableObject">
<field type="StorageID" name="id"/>
<field type="MediaObject" name="content"/>
</term>

<term name="UndefinedReferencableObject" extends="ReferencableObject"/>

Figure 8.1: Example of the FOHM XML Ontology Definition

the first can be replaced with a reference (a Local or Unique ID). This is analogous to

referring to a person by name in a conversation and from that point on referring to that

person as ‘he’ or ‘she’.

8.2.3 The FOHM Server

The first agent that needed to be developed was one that acted as a persistent storage

device in the system, storing FOHM structures created by other agents and serving them
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<term name="StoreAssociation" extends="Action">
<field type="Association" name="assoc"/>
</term>

<term name="StoreData" extends="Action">
<field type="Data" name="data"/>
</term>

<term name="StoreReference" extends="Action">
<field type="Reference" name="ref"/>
</term>

Figure 8.2: FOHM Storage Actions

up again on demand.

At a superficial level this seems simple and is possible using the predicates described

above. A FOHM Server Agent can wait to be informed that certain structures exist and

can then remember them. However there may be many inform messages flying around

inside an agent cloud which could flood a FOHM Service Agent. For this reason I wanted

to make creation more explicit.

In SoFAR this is easily accomplished by defining three storage actions, shown in

Figure 8.2.

Now agents can seek other components that support these storage actions and use

the ‘request’ performatives to ask that one is performed. Of course there is no rule that

prevents future agents merely remembering inform performatives.

A FOHM Server was developed that used these principles to store information in

memory, with a simple persistence mechanism that preserved the data between different

executions of the Server.

8.2.4 The Spatial Client

The Spatial Client was the first of the two agents that I implemented to talk to the FOHM

Server. Previous Spatial Hypertext applications have placed a great deal of emphasis on

the spatial parsing of the users view to explicitly create the structures they have implic-

itly created. I was less interested in the process of spatial parsing than I was in the idea

of spatially viewing structures, so for the FOHM implementation I concentrated on the

comprehension and display of structures and avoided spatial parsing functionality en-

tirely. The client did have creation functionality but it forced users to explicitly create

structure themselves.
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Figure 8.3: The Spatial FOHM client

To represent the Spatial structures I chose to use a three dimensional display where

the users could see through one level of structure (i.e. could see inside any composites)

and could navigate by ‘zooming in’ to any composite by double clicking on it, or could

zoom out by double clicking on the empty background. In addition to the main display

users could also see two smaller three dimensional views. One of which continually

showed the parent composite in which their view currently resided and the second of

which showed the selection of the moment (made by single clicking on an object). Both

these secondary views also show the attributes of the objects in question. Figure 8.3

shows a screen shot of the Spatial Client, displaying structures retrieved from the FOHM

storage agent. The search dialog (on the bottom right hand side of the figure) provides a

mechanism for users to find spaces within the system to act as starting points.

The client’s display was chosen to complement the 6D model described in section 6.3.1.

Here, as in previous figures representing that model, different structures are shown in

different colours and shapes. Using this type of display means that the only spatial char-

acteristics available for the type of explicit internal structure described in Section 7.3.4

are structural ones such as ‘position’, since colour and shape are ‘used up’ by the display

engine.

As previously mentioned creation support is limited by the lack of a spatial parser.
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However the user can choose to create a new node or composite within the current par-

ent object (or without a parent if none is currently being displayed). The Spatial client

understands three types of structure:

1. Sets which it renders as red cubes with the content’s positions determined by a hash

value derived from their id.

2. Lists which it renders as rotating blue tubes, square in cross section. The contents’

position is determined by the feature vector of each content item.

3. Matrixes which it renders as grey rectangular prisms, whose contents’ position is

determined by the feature vector of each content item.

If the client encounters an object with a different structure type then it renders it as a

Set.

8.2.5 The Navigational Client

The Navigational Client was designed as a general purpose Client capable of handling

an extensible set of media types, initially image and text documents. The display of the

client is split into two sections. The right hand pane displays the document contents

and any endpoints contained in that document. The smaller left hand frame displays the

Navigational gateways open to the user at the current time. These may be the endpoints

of any selected links or other documents associated to the current one by spatial struc-

ture. Figure 8.4 shows a screen shot of the Navigational Client, displaying a document

retrieved from the FOHM storage agent.

The navigational options displayed on the left hand pane fall into three categories:

1. Selected. This represents the endpoints reached by following the current selection

- by clicking on different hotspots in the right hand pane these options change

according to a traversal operation applied to the selected endpoint

2. Organizational. These represent the association objects that contain the current

document. Under each association the endpoints reached under a traversal opera-

tion are listed. For example with a list structure the next and previous endpoints

are available.

3. Perspective. This represents the different views that there are of this object. Under

each individual perspective the alternatives are displayed according to follow link

rules. However as the Navigational Client currently has no notion of what a profile

should be, it simply displays all the different perspectives.

A user can navigate to another document (or space) by clicking on it in the navigation

window.
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Figure 8.4: The Navigational FOHM client

The Navigational Client also allows users to make queries about nodes in the system,

the results of these searches are made available as additional categories when the results

come back. This mechanism is an ideal way for users to find a starting position within

the hyperstructure.

8.3 Cross-Domain Browsing

The main point of implementing the two FOHM clients described above was to explore

the way in which the two applications might view each other’s data. As might be expected

the most interesting aspects of this occurred when either client was browsing structures

that would not normally appear in its own domain.

8.3.1 Browsing Spatial Structure

Figure 8.5 shows three screen shots of the clients, as the user navigates through a spatial

structure to arrive at a navigational view of a node.

The first screen shot shows a view of a list, this contains two nodes (at the beginning

and end) and also three sub-spaces. By double clicking on the first of these three, a list

named ‘Brief Tour of Mazes’, the user ‘zooms’ inside it and can now see its contents.
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Figure 8.5: Navigating through two Spaces to a Node
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The second screen shot shows this view, notice that the parent object shows the ‘Brief

Tour of Mazes’ list.

By selected one of the nodes displayed the user opens up the Navigational Client

and displays its contents. This is shown in the third screen shot. Since the Navigational

Client treats spaces as links, the ‘Brief Tour of Mazes’ list is displayed in the left hand

pane. Traversal semantics are applied to the list, resulting in two of its bindings (link

endpoints) becoming available. The first takes you back to the previous node, a JPEG

image called ‘Maze on a rock’, while the second takes you forward to the next node, in

this case another list, ‘Mazes through the ages’. Both these objects were clearly visible

to either side of this displayed node in the second screen shot.

8.3.2 Browsing Navigational Structure

Figure 8.6 shows two complementary screen shots from each client. The first shows the

Navigational client in the process of creating a link. The user has selected a region (dis-

played as a box, superimposed on the image) and has added that to a list of current link

endpoints in the Link Creation Pane (these will become bindings in a new association ob-

ject). When they have finished adding endpoints the user can click the ‘create link’ button

to send a StoreAssociation request to the FOHMServer with the completed structure.

Given that the binary link shown in the first screen shot has been successfully created

we can view it by opening the Spatial Client and searching for all spaces with the structure

type ‘Set’. The second screen shot shows the results of that search, the highlighted set is

the link that the user has just created.

8.3.3 Issues

These examples show that both clients can interpret each other’s structure when it is

depicted in the FOHM model, however there were a number of issues that had to be

resolved before they could be implemented.

Levels of Structure

One of the main things that had to be decided regarding the Navigational Client was

how to display the structures in the left hand pane; when these structures contained other

structures, how many levels should be opened?

I decided that the client would allow only one level to be expanded. I thought that to

enable the viewer to browse the entire hierarchy would be far too similar to the function-

ality of the Spatial Client. This actually highlights an interesting difference between the
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Figure 8.6: Creating a Link and Viewing it as a Space
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two clients (and two domains).

In the Spatial domain a user can explore down a spatial hierarchy (by zooming into

sub-spaces) but at any one time they can only go up to a single parent space. On the other

hand in the Navigational domain the user can see multiple parents, effectively by asking

the question ‘who links to me?’

It is a reflection on the cross-domain nature of the FOHM structure that the boundaries

between the clients are blurred. There is nothing to prevent a single client being built that

combines the functionality of both.

The Display of Anchors and Perspectives

During the implementation process some choices had to be made concerning things that

the FOHM Spatial Client had to cope with that other spatial tools do not. The first two

of these choices were presentation ones; how was the client going to display References

that referred to part of a node (normally only encountered in Navigational Hypertext) and

how was it going to display perspective objects (normally only encountered in Taxonomic

Hypertext).

I chose to display these References in exactly the same manner as References to entire

nodes. It would be trivial however to create some sort of visual marker to distinguish the

two. The more difficult choice was how to view perspectives, does the spatial user see

the perspective object itself, or is the perspective automatically resolved into one of its

constituent parts?

In fact this is part of a larger question; does the Spatial Client simply show the struc-

ture to the user, or does it invoke arrival semantics at any point to resolve that structure.

In the case of a perspective association that follow link would resolve to be one of objects

inside the association based on context, in the case of a list association it would resolve to

be the first item in the list, (essentially behaviour determined by that associations arrival

and traversal rules (see Section 8.2.5)).

Applying Arrival and Traversal Semantics

It is interesting to look at where I used arrival and traversal semantics within both clients.

The Spatial Client never invoked either of these semantics, preferring instead to dis-

play structures in their entirety. The semantics belong to the Navigational domain.

The Navigational Client invoked traversal semantics when following a link. Either

when the user clicked on a hotspot in the document or when they expanded one of the
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<term name="FollowLink" extends="Predicate">
<field type="Binding" name="source"/>
<field type="Association" name="association"/>
<field type="Binding" name="destination"/>
</term>

Figure 8.7: FOHM FollowLink Predicate

nodes in the tree to see which documents shared its parents spaces. However my choice

not to expand sub-trees meant that arrival semantics were never applied, as whenever a

user selected a space, that space was shown in the Spatial client instead.

Implementation concerns aside there is a more fundamental question: How do you

apply these semantics?

Associations are resolved by querying other agents in the system with Association

predicates that match a certain pattern (i.e. Associations that anchor on a particular docu-

ment). It is the FOHM Storage Agent that applies traversal rules to associations it knows

about and returns the results (a subset of the bindings). In this implementation it used the

following rules:

1. Sets or Links Given that the start endpoint is ‘bi’ or ‘source’ it returns all the other

endpoints in the association that are either ‘bi’ or ‘dest’, excluding the start end-

point. Members of Sets are considered to be bound exclusively as bi-directional.

2. Lists It returns the endpoints to either side of the starting position. I.e. if a follow

link is made from position two, it returns positions one and three.

3. Matrixes It returns the endpoints ‘nearest’ to the starting endpoint, based on a con-

centric search of the matrix.

These semantics are best placed in the server to allow it to make an absolute judgment

on what the user can or cannot see, but there is nothing to prevent clients from applying

their own rules or filters. However there is a problem. When the FOHM Server is queried

about Associations, how does it know whether the querying agent wants an overview (like

the Spatial Client), traversal semantics (like the Navigational Client) or arrival semantics?

I avoided this problem with adding a task based predicate to the FOHM ontology,

shown in Figure 8.7.

This predicate states that when the source binding is followed across the association

it resulted in the destination binding. Now the FOHMServer can respond to queries

exhaustively, while responding to FollowLink queries by applying traversal semantics.
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In the later case, it replies with one completed FollowLink predicate for each destination

binding.

8.4 FOHM as an Interoperability Approach

Given that the FOHM model has been described and a prototype implementation pre-

sented, it is now time to think about FOHM in relation to interoperability and other

interoperability efforts.

8.4.1 FOHM and Structural Computing

In Section 4.2.1 I described a new approach to information systems known as Structural

Computing, where hypermedia is recognised as a special case of the more general philos-

ophy of dealing with structure. I also described a type of system known as a Component-

Based Open Hypermedia System (CB-OHS) which supported this philosophy.

What is FOHM in Relation to Structural Computing?

A great deal of the work undertaken so far in Structural Computing is based around a

software system known as Construct (Wiil & Nürnberg, 1999). Construct is the code-

base successor of HOSS (Nürnberg, 1997), it is a CB-OHS that attempts to provide an

extensible open hypermedia platform based on the latest OHSWG standards.

In Construct the middleware layer is opened up into an extensible set of structure

servers. The servers use a common back end storage facility based on generic structural

primitives and then offer some set of functionality over that structure via a specific API

(or protocol language). For example a Navigational Structure Server might offer naviga-

tional abilities, while a Spatial Structure Server would offer an API specialising in spatial

functionality. Additional work has also been done to investigate the ways in which the

structures served might by specified using templates (Vaitis et al., n.d.) in order to define

the acceptable structures explicitly and in the extreme case, even tailor the functionality

of the server.

The multiple Structure Server approach does not guarantee cross-domain structures

as the structures stored beneath the servers are not necessarily continuous. But it has been

argued that such support could be provided by placing translation functionality into each

structure server. Thus a navigational Structure Server might also deal with and translate

spatial structure.
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Figure 8.8: Integrating FOHM with Construct

This has the advantages of the translation approach (i.e. extensibility) mentioned in

Section 7.2 and also places the functionality in a convenient single location, allowing

lightweight clients to be built.

Combining FOHM and Construct

FOHM is a model that requires a syntactic implementation before it can be used. As

FOHM places no restrictions on architecture it should be entirely possible to use FOHM

within the Construct environment. There are two places where it could arguably be in-

corporated (see Figure 8.8).

1. Structure Server API A FOHM based protocol could be supported by a dedicated

Structure Server and supported on a par with more specific protocols such as OHP-

Nav.

2. Back end API Alternatively a FOHM based protocol could be used by the Structure

Servers and their common store to communicate.

Firstly we consider the case where FOHM replaces specific domain protocols. Thus

rather than a Navigational, Spatial and Taxonomic Structure Server we provide a single

FOHM Server.

I talked extensively about the Information Continuum in Section 6.3 and argued that

rather than think of these domains as independent of one another we should now consider

them part of a larger continuous information space with a common structure. In this way

users can navigate seamlessly around the structure and problems such as context can be
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approached consistently across all domains at once. This multi-domain structure should

not be hidden from clients - it should be exploited by them.

For this reason I believe that FOHM makes a much more powerful structure server

for hypermedia than a collection of individual domain servers.

Secondly we have to consider the idea of using FOHM as a storage model. The

only problem with this is that FOHM is specialised to deal with associations, found in

hypermedia structures (of all domains), while structure servers are designed to deal with

any form of structure. As such it is an ideal replacement for separate hypermedia domain

protocols but not necessarily ideal for an arbitrary structure storage protocol, although

it has been claimed that typed associations are as expressive, and in some ways more

expressive, then meta-data (Moore & Moreau, n.d.).

FOHM was based on the premise that to be practical, a model would have to represent

the highest common structure across the domains considered. Only by representing the

highest common structure could the performance penalties demonstrated by our XML

experience be avoided (see Section 4.5). Due to this I would argue that an arbitrary

storage backend is too general to be deployed effectively in a hypermedia environment.

FOHM, on the other hand, provides only the structures required.

For this reason I believe that FOHM provides a much more practical service for stor-

ing hypermedia structures than an arbitrary storage back-end.

Is FOHM a General Language for Structure?

If we argued that FOHM should be used at both levels of a CB-OHS then we would be

effectively relegating any Structure Server to an optional middleware filter (translating

one type of FOHM structures into another), in a similar way to the CSF in the original

OHP definitions (see Section 3.1.2).

In an analogous way we could argue that there is no need for any ontologies in the

SoFAR framework other than FOHM, as all statements of fact (predicates) can be repre-

sented in the FOHM model.

For example consider the ReverseString Predicate discussed earlier, that states that

the reverse of ‘hello’ is ‘olleh’:

ReverseString("hello", "olleh")

This can be represented in FOHM by two data objects bound to an association of

type ‘Reverse’. We can even add further information by binding ‘hello’ with the feature
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‘forward’ and ‘olleh’ with the feature ‘reversed’.

However, FOHM is not a general model for discussing structure, it is designed around

navigable hyperstructure. For this reason I believe that it is best used to unite the Structure

Servers (or different taxonomies) that would be otherwise associated with the different

hypermedia domains. Although this does somewhat reduce the argument for Structural

Computing the two are not mutually exclusive.

8.4.2 The Semantic Content of FOHM

FOHM is an attempt to define a semantic language, a common vocabulary which com-

ponents (agents) can use when communicating. However there are issues concerning the

actual semantic contents of the model in regard to conveying behaviour.

The OHP-Service protocol described in Section 4.3 worked by encoding services as

opaque black boxes with defined input and outputs. A client could request a list of all

services from a server and then display the ones it understood. In contrast the SoFAR

agent framework allows a component to ask if any other components support a particular

service. In other words components are expected to be proactively seeking out services

that they understand.

The difficulty comes when the worlds of service invocation and hypermedia collide

and services become attached to associations, i.e. the result of a Follow Link on an

endpoint will be the invocation of a ‘Find Similar Images’ service.

It is at this point that it becomes necessary to return to the problem discussed in

Section 4.6, what is the difference between a query, an operation and a service?

Where are the Computations?

It has been pointed out that some users require a great deal of control over their hyper-

structures, to the point of changing the behaviour attached to those structures (Rosenberg,

n.d.). In FOHM terms this would mean that the actual arrival and traversal semantics

of an association would be attached to that association in some way so that clients could

interpret it directly, rather than using one of a pre-defined set of behaviours chosen ac-

cording to structure type.

In OHP-Nav we produced a Service definition that allowed clients to access arbitrary

functionality with a standard, OHP consistent interface (see Section 4.3) but this was

never formally attached to the follow link functionality enshrined in the protocol due to

lack of a proper event model for an OHP system (i.e. at what point in a ‘follow link’
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process is the service activated). As a result Services became separated from the hyper-

structure and OHP-Service became a separate protocol for arbitrary service discovery.

A third view of behaviour is given by the CB-OHS architecture (see Section 4.2.1).

Here behaviour is assumed to be a middleware or server side process. Extensible be-

haviour is provided by allowing systems designers to add to the set of behaviours.

Along with these notions we also have two separate ways of accessing the hyper-

structure, a query language and dedicated operations such as ‘Follow Link’, which we

can assume activates this behaviour in some way. One of the major challenges ahead is

to unite these three views of behaviour and decide at which point a query becomes an

opaque operation - or a behaviour activation request.

We can begin by identifying two types of such computations and providing defined

terms with which to discuss them:

1. Services are designed to be opaque to a client, such as the OHP-Service compu-

tation objects. Services are provided externally to a client and are invoked rather

than processed.

2. Behaviours are designed to be seen explicitly by a client, understood and then

interpreted. Examples of such behaviour include gradual fades between linked

nodes (Rosenberg, n.d.) and transclusions (Nelson, 1987).

Services

It is clear that current systems go someway to address the first of these two issues. In CB-

OHS architectures new Services can be provided via additional Structure Servers, while

a semantic language like FOHM allows components that are not hypermedia based to

express their information in a hypermedia language (i.e. we do not need a ‘Find Similar

Images’ service if that component can export its functionality via FOHM).

One question is, do we continue to implement operations like ‘Follow Link’ sepa-

rately when a ‘generic language’ is available (i.e. a query is not expected to be exhaus-

tive and the results may be subjective)? Perhaps queries and Follow Link requests are

just queries with different user contexts? This seems more powerful and natural - as we

are just asking other components about the structures that they know about.

The one aspect of Services that is not yet solved and remains an issue is the ability to

integrate the hyperstructure itself with arbitrary services. I.e. linking to the ‘Find Similar

Images’ service rather than a defined list of images enables a user to link to all documents

that resemble a particular image.
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Behaviour

Behaviour is rather under supported in both the FOHM and CB-OHS worlds. Both of

these approaches rely on the types within the structures to map to a set of pre-defined

and known behaviours. For example a transclusion could be implemented in FOHM

by giving the association the type ‘transclusion’. Any clients that understood what that

meant could treat the link appropriately.

A more advanced notion of behaviour would allow the behaviour itself to be specified

in some way and attached to the structure. Informing compatible clients how to use

arbitrary behaviour. Such a specification could be given in a scripting language, or even

a binary format such as Java byte code.

8.5 Summary

In this chapter I have drawn from the discussion of syntax and semantics to produce a

prototype cross-domain system based on the FOHM common semantic language.

The functionality of the two clients implemented show that there is no clear divide

between the navigational and spatial domains, rather there is a continuous and gradual

change between them.

In many ways the FOHM work has come full circle and arrived at the hyperbase roots

of hypermedia research, evoking memories of early hypermedia models and systems such

as Hyperbase (Schutt & Streitz, 1990) and HB1 and its derivatives (Schnase et al., 1993).

It has done this via an alternative route of reasoning about cross-domain compatibility

for purposes of interoperability, inspired by the OHP work of the OHSWG. As such it is

important to realise that while FOHM does not necessarily complement the architectural

models of recent CB-OHSs, such as HOSS or Construct, it still acts as a validation of the

philosophy of Structural Computing.

This philosophy states that structure, and separate behaviour across structure, forms

the core of a general class of structural systems of which hypermedia is only one example.

FOHM is a semantic language for the discussion of hypermedia structure of all forms,

which fits into a communications paradigm of propositions and performatives which I

believe is much more powerful and flexible then traditional protocol approaches.
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Conclusions

“The applications of science have built man a well-supplied house, and are

teaching him to live healthily therein. They have enabled him to throw

masses of people against one another with cruel weapons. They may yet

allow him truly to encompass the great record and to grow in the wisdom of

race experience. ”

VANNEVAR BUSH, AS WE MAY THINK

Hypermedia is maturing as a research topic, the World Wide Web has brought its

navigation paradigm to millions of users and helped integrate information technology

with society in ways that were unimaginable only fifteen years ago.

However, it now seems that the calls for integration and standards that occurred at

the beginning of the 1990’s were premature. Mobile phones, Personal Digital Assistants

and other new devices are changing the technical basis and assumptions of our systems

beneath us. Coupled with the recognition of hypermedia as one aspect of a more general

Structural Computing philosophy this has upset our notions of what it means to interop-

erate.

The interoperability effort of the OHSWG has attempted to cope with these rapid

changes and realisations by dividing hypermedia systems into different domains and by

tackling each domain differently, but consistently.

In this document I have taken a detailed look at the nature of the information spaces

that we are attempting to model (from all these considered hypertext domains) and have

incorporated notions of behaviour and context. This has produced a cohesive and contin-

uous space of spaces that I call the Information Continuum.

155
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It is the thesis of this document that the different hypermedia domains are artificial

distinctions imposed upon this underlying continuum, and that this continuum can be

represented in a single, extensible data model that is suitable for use in the common

language approach to interoperability.

Further to this, the common language approach is presented not as a flawed, finite or

over generalist ideal, but as a sensible and coherent way for components to interoperate

and discuss relational structure for the purpose of navigation.

The Fundamental Open Hypermedia Model, FOHM, has been presented as one such

common language and an implementation has been described that demonstrates the model

being used for cross-domain purposes.

Finally, it is believed that much has been learned about the way in which components

communicate. The human linguistics world has been found to have relevancy and lessons

learnt from that world by the agents community have been successfully employed by the

implementation of FOHM via the SoFAR framework.

9.1 The Threads of Research

As in many large, technical documents there has been a great number of different ideas

and arguments presented in this thesis. One of the great ironies of hypertext and informa-

tion system research is that the systems conceptualised would make the research process

itself much more structured and coherent if those systems could ever be employed.

Indeed it is most unfortunate that a hypertext thesis cannot be submitted. However,

hypertext as an idea predates the electronic machines that now enable it by at least a

decade or so. In addition many linear texts can be thought of as ‘flattened’ hypertexts,

that can be re-evaluated by those who revisit them in the light of the hypertext paradigm.

It is in this spirit that I would like to draw together the threads of research that run through

this document.

Each of the following sections briefly describes one of the threads that cuts across

the chapters of this thesis. Each also presents the section numbers so that they can be re-

visited by hand by a reader, or automatically followed by those who have an electronic

(hypertext enabled) version of this document.

9.1.1 Interoperability Standards

The desire to facilitate the interoperation of hypermedia systems was the original driving

force behind this work. Drawing on the experience of researchers in the field, the Open
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Hypermedia Protocol (OHP) became an ambitious project that forced the researchers

involved to look beyond their individual research interests and try and understand the

basic nature of information and its navigation.

An in depth exploration of what it means to communicate has revealed that the key

to interoperation is not syntactical, although a communication infrastructure must exist,

it is semantic. Components must agree on what they are communicating.

This desire for interoperation is as old as hypermedia itself. Section 2.2 describes how

the early hypertext pioneers, Bush and Nelson, both wanted a world corpus of knowledge

held within a global information system.

Section 2.5 explores some of the hypertext models that have been generated since

then, the Dexter, Amsterdam and Trellis Models. These were based around notions of

defining common terms, or analysing hypertexts rather than interoperation. The flag

taxonomy and its requirements for interoperability are presented in Section 2.9.2 along

with Sun’s Link Protocol, an early attempt at standardisation that unfortunately was never

adopted.

Section 2.9.3 presents the original OHP protocol, which was criticised for its lack of

an underlying data model or architecture. Section 3.1 explains how as a result of these

criticisms the protocol was divided into more finely grained domain specific protocols,

OHP-Nav, OHP-Space, etc. This resulted in the first ever demonstration of interoper-

ation between Open Hypermedia Systems at Hypertext ’98 in Pittsburgh, described in

Section 3.2.

The view that hypermedia is only one case of the more general philosophy of Struc-

tural Computing is presented in Section 4.2.1 which also describes the Component-Based

Open Hypermedia Systems (CB-OHSs) that were beginning to appear at the time. Other

issues were also being raised and Section 4.2.3 discusses naming as an important require-

ment for interoperability.

In my own work I was already dividing the problem of interoperation into two areas.

The first was based around syntax and infrastructure. Section 5.2 looks at the mechanism

with which components communicate (i.e. API vs. on the wire mechanisms). While Sec-

tion 5.3.2 discusses how discourse takes place between human beings. I ultimately turned

to the agents community for techniques to simulate this in software and Section 5.3.3 in-

troduces the notion of performative and proposition based communication.

The second area concerned the semantics of communication, how meaning is con-

veyed, and what those semantics should be. The Information Continuum, presented in



158

Section 6.3.2, is a demonstration of how hypertext semantics about navigation and be-

haviour are common across all domains.

Section 7.2 looks at the ‘translation’ verses ‘common language’ approaches to con-

veying this continuum, and argues that a common language, represented by the Funda-

mental Open Hypermedia Model (FOHM) offers advantages in flexibility and represen-

tational power.

An implementation of FOHM was developed using the SoFAR agent framework as

the common infrastructure (described in Section 8.2) while Section 8.2.2 explains how

FOHM was represented using SoFAR predicates,

What makes FOHM an interesting case of interoperation is the ability for browsers

of one domain to access the structures of another. Section 8.3 demonstrates this cross-

domain browsing using the FOHM agents developed with SoFAR.

Finally, Section 8.4.1 looks at how FOHM fits into Structural Computing paradigm

and the CB-OHS architecture and Section 8.4.2 examines the ability of both approaches

to convey semantics for the purpose of interoperation, particularly the behaviour associ-

ated with link traversal.

9.1.2 Cross Domain Interoperability

An important contribution of this thesis is to help expand our notions of what it actu-

ally means to interoperate. I believe that the multiple OHP protocols create an artificial

distinction between different kinds of hypermedia structures. FOHM is an attempt to re-

unite these structures. Structures that have always appeared in hypermedia systems and

models but have not necessarily been recognised.

Section 2.4 describes Halasz’s seven issues. One of which is on the requirement for

composite structures and an open question on whether they are the same as links. In

addition Section 2.8.3 presents three views on context in hypermedia, the third of which

is context as a filtering system on what you can see.

The idea of whole hypermedia systems based around composite structures is rela-

tively recent. Section 2.8.2 introduces spatial hypertext as an alternative approach to

information navigation and management.

When the question was raised of how OHP should deal with this new view of hyper-

media it was decided to break the protocol into different protocol domains as described

in Section 3.1. This idea of different services over structure was later used as part of the

evidence supporting the paradigm of Structural Computing described in Section 4.2.1.
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Section 6.3.2 introduces the Information Continuum, the notion that navigation and

behaviour are common across all domains, and Section 7.4 describes what each domain

brings to the common model, FOHM, to make it capable of representing that continuum.

Section 7.4.1 describes how the Navigational domain introduces the anchor, Sec-

tion 7.4.2 how the Spatial domain includes classification within associations and Sec-

tion 7.4.3 how the Taxonomic domain draws in perspectives and how these form a frame-

work for context.

The FOHM Ontology is presented in Section 8.2.2 in the terms of the SoFAR agent

framework and Section 8.3 demonstrates cross-domain browsing using the FOHM aware

software clients.

Returning to the question of Structural Computing, Section 8.4.1 debates whether

FOHM is a model suitable for representing any structure, but concludes that although

it seems possible, such solutions are an inelegant misuse of FOHM, which is intended

for navigable hyperstructure. As a result, although FOHM detracts somewhat from the

argument for different structure servers (by uniting the hypermedia domains into a single

structure server), it does not oppose it, as other non-hypermedia structure servers might

exists.

9.1.3 Communication Infrastructure

In this thesis I have described how the key to interoperation is not syntactical but seman-

tic. Components must agree on what they are communicating. However, for a system to

exist there has to be a syntactical implementation, components must agree on how they

are communicating. As part of this work I have looked at the architecture and communi-

cations paradigms of existing systems, and contrasted that with an exploration of human

conversational techniques. This later work led me to use an agent infrastructure for my

implementation of FOHM.

Section 2.3 describes the first working hypertext systems. These early systems (ZOG,

Notecards etc.) were monolithic in nature with very little, if any, interaction with external

applications or systems.

Section 2.4 describes how one of Halasz’s seven issues, which were described as re-

flections on Notecards, concerns how future systems should be extensible and tailorable.

This was an issue that hypermedia research community took to heart and Section 2.6

describes the development of open systems, such as Microcosm and DHM, which were

capable of integrating with other components.
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When OHP was written it was already thought that it would form part of an open

system. Section 3.1.2 describes the architectural assumptions of the original OHP. In

particular its dependance on the CSF, not only as a shim for non-compliant systems but

also as a nexus for hypermedia functionality in the system.

A CSF was a crucial part of the Southampton OHP system described in Section 3.2.1

which was used for the Hypertext ’98 demonstration of interoperability. Configuring the

CSF was non-trivial and Section 3.2.2 describes the additional protocol that was needed

to manage it.

Section 3.3 raises the question that if we have a CSF why do we not have an Server

Side Function (SSF)? The answer seems to be that both components are optional in the

system according to the functionality the programmer wishes to place into the clients.

For this reason the CSF was dropped from the assumed architecture.

This architecture was expanded with the notion of a Component Based Open Hy-

permedia System (CB-OHS). Section 4.2.1 describes how the philosophy of Structural

Computing introduces the notion of multiple structure servers (as opposed to a single

OHP server) over a communal storage back end.

The architecture of the OHP-Service aware Solent system is described in 4.4.1. In the

Solent system components register the protocols they can understand with each other and

use a dynamic discovery mechanism to discover other components that speak the same

protocol that they do. Section 4.4.3 describes how this dynamic component approach

allowed us to run multiple versions of a protocol at the same time, as well as using the

same infrastructure with different protocols (i.e. OHP-Service and OHP-Nav).

I was becoming convinced that the OHSWGs interoperability effort was becoming

side tracked by the issues of architecture and protocol design. Section 4.6 describes how

I came to think of such architecture concerns as separate from hypermedia ones.

Once this distinction had been made I was free to examine general communication

infrastructures. The case of an API verses an on-the-wire approach is made in Section 5.2

and the idea of operations as a basis for communication is challenged in Section 5.3.3

which introduces the notion of performative and proposition based communication.

Section 8.2.1 describes the architecture of SoFAR, the agent framework used to im-

plement the FOHM model, which uses this performative approach to allow components

(or agents) to communicate in a dynamic, ad-hoc manner.

As a way of returning to this work’s OHP roots, Section 8.4.1 describes FOHM’s re-

lationship to Structural Computing and how the model might integrate with the CB-OHS



161

architecture as either a structure server to deal with all hypertext domains, a common

structure storage model or possibly both.

9.1.4 Services and Behaviour

Services evolved from a perfunctory inclusion in OHP to an entire protocol in OHP-

Service. Throughout this work there was much debate as to what constituted a Service,

e.g. was ‘Follow Link’ a computation? Via the examination of Structural Computing

environments and the Construct server in particular, coupled with a greater appreciation

of the role of a communication infrastructure such as SoFAR, we were able to prop-

erly distinguish between behaviour and services and evaluate how well they were both

supported.

In Section 2.4 I described how one of Halasz’s original seven issues was the support of

computation objects within a hypertext system. For some hypertext systems this support

is crucial, for example in Section 2.8.1 we saw how such a computation object might by

used to implement media-based navigation.

The OHP data model presented in Section 3.1.1 originally supported computations

via a limited SCRIPTSPEC opaque, described in Section 3.1.5. It was expected that

either clients could interpret the script directly or that such functionality could be ‘farmed

out’ to helper applications such as the CSF (Section 3.1.2).

With the splitting of OHP into separate domain protocols came a more sophisticated

approach to Computations. In particular Section 4.2.1 explains how the Structural Com-

puting approach views behaviour and structure separately.

Within the OHP work itself Services were now seen as separate first class entities

called Computations (Section 4.2.2). The idea that Services were first class caused them

also to be considered the subject of a separate protocol and in Section 4.3 I describe the

OHP-Service protocol that I developed.

A first implementation of OHP-Service, an open set of components called Solent, is

described in Section 4.4 including work on quality of service and composite computa-

tions. Although several issues were raised during this implementation the most important

one was a question posed in Section 4.6 on whether functionality such as ‘Follow Link’

is actually a Service, a Query or an Operation.

Section 6.3.1 presented the 6D model, which incorporates behaviour as a dimension,

indicating that functionality such as ‘Follow Link’ is a discerning part of a hyperstruc-

ture. Follow Link behaviour is mentioned again, this time in the context of traversal and
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arrival semantics, in the discussion of spatial hypertext structure that takes place within

Section 7.4.2.

The SoFAR framework introduced in Section 8.2.1 includes a dynamic service dis-

covery mechanism based around the notion of components registering predicates and

actions with a central registry. Section 8.3.3 describes how the FOHM ontology that uses

that system had to cope with invoking different behavioural semantics via the inclusion

of a ‘Follow Link’ predicate.

Section 8.4.2 returns to the whole question of Services verses Queries or Operations

in the light of the work undertaken with FOHM and agent frameworks. Section 8.4.2

attempts to define what constitutes a Service as opposed to behaviour and explains how

one way to unify Services, Queries and Operations would be to view them as contextual

modifiers applied to a basic query mechanism.

Finally, Section 8.4.2 looks at a definition of Behaviour as opposed to Service and

critically discusses the level of support for behaviour in both FOHM and Construct.

9.1.5 Context

There was always a notion amongst the OHSWG researchers that context was an impor-

tant part of hypermedia and that OHP should support it, however the lack of any real

contextual systems and conflicting understanding about what constitutes context, meant

that agreeing on any standard for inclusion in OHP was impossible. It was only when I

started looking at Taxonomic hypertext that I realised that context was going to be crucial

to any general model of hypermedia. A full analysis of context is beyond the scope of

this thesis, but what I have ensured is that FOHM is designed with the understanding of

where context fits and when it is invoked. These are the user and data profiles and the

‘magic function’ that compares them.

Although it is not immediately obvious, this in itself is a major contribution as it

provides a framework for context, a hyperstructure into which different notions of context

can be placed and will function. Understanding what context is and how it applies to

hypertext has not always been so well understood.

Section 2.8.3 presents the three views on context that had been voiced in the literature

when OHP was first being developed. The first two of these were essentially link anchors

and workspaces, but the third was the view of context held here; context as a filtering or

adaptive mechanism, adjusting what a viewer sees within the system.

Context appears more formally under the guise of Perspectives in Section 6.2.3,

which describes the way in which taxonomic trees can branch according to different
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opinion.

The 6D Model presented in Section 6.3.1 describes context as an information dimen-

sion, alongside time and behaviour. Section 6.3.2 builds on this view and describes how

navigation and context are common across all dimensions of the information space of all

spaces (the Information Continuum).

With the realisation that the time and behaviour dimensions are just part of an n-

dimensional context space came the idea, presented in Section 6.3.2, that context is a

composite that contains all versions of an object. In essence it represents a common con-

cept object. Section 6.3.2 draws a parallel between this concept object and a contextual

link (a link across one or more dimensions of the continuum) leading to the conclusion

that contextual links are the mechanism that binds objects together as a common concept

across these dimensions.

Once context has been so placed within the hyperstructure it becomes possible to

think where else it should be invoked. Section 6.3.3 examines the idea of temporally

infinite media (such as a TV broadcast) as opposed to a finite stream. Whilst the later

is orthogonal to real time (i.e. they do not share the same time line as the user or the

hyperstructure), in the infinite case they share the same notion of time. This poses the

question; are temporal anchors actually contextual anchors, anchored to the entire stream

but within a context that defines there temporal position?

Finally, Section 7.4.3 describes the way in which the FOHM model has expanded

the Taxonomic idea of perspectives into a framework for context that relies on opaque

‘profile’ objects (a user profile, a data profile and a ‘magic function’ to compare them).

9.2 Future Work

In this thesis I have presented an argument that moves across the working definitions of

three communication protocols or models.

The first was OHP-Nav, the Navigational specialisation of the OHP draft proposal.

The second was OHP-Service a further specialisation protocol for the definition and in-

vocation of opaque Service objects. The realisation that such dynamic functionality be-

longed to a general communications infrastructure sparked an exploration into the In-

formation Continuum which resulted in the third definition; FOHM, a model capable of

supporting all three of the hypertext domains currently being considered by the OHSWG.

However there is still work that could be done based around FOHM. To begin with,

before FOHM can be used as a basis for interoperability, or applied to the OHP work, it
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is important that the structures and relationships that can be expressed by each domain

are formalised, so that a client that wishes to be complete knows what it must support. In

addition although the definitions of Behaviour and Context are beyond the scope of this

thesis there is still much interesting work to be undertaken in those areas using FOHM

as a framework.

Perhaps most interestingly for hypermedia researchers, the FOHM model has several

unique features that prompt us to think about hypermedia in new and revealing ways.

9.2.1 Formal Definition of Domains within FOHM

In this thesis I have presented several different ways that FOHM can be used to represent

the domains of hypermedia. In Section 7.3.2 I presented part of a formal definition of

FOHM that has yet to be completed. This would form a formal proof that FOHM was

capable of representing all three domains with no loss of semantics. Section 7.4.2 con-

tained some suggestions on the structure types that might be supported by FOHM and

Section 8.3.3 describes the sub-set supported by the FOHM implementation.

It would be advantageous to define an absolute set of structuretypes, featurespaces

and appropriate bindings for each domain. This would not prevent new components using

the FOHM model in different ways but it would form a well-defined set of hyperstructures

that clients that wished to be complete in one or more of the domains could support. This

description might also include advice on how unrecognised structures should be treated.

For each structure we need to define:

1. The type of the structure (i.e. ‘Link’)

2. The feature space of the structure (i.e. ‘direction’)

3. The vectors that may bind to that feature (i.e. ‘src’, ‘dest’ or ‘bi’)

4. The arrival semantics (i.e. show all endpoints)

5. The traversal semantics (i.e. show all endpoints, other than the start endpoint, that

are bound with ‘dest’ or ‘bi’)

The definition of these structures would require some user analysis of the more struc-

turally complex domain of Spatial Hypertext in order to identify structures that were most

useful.

In addition it would be useful to define how some of these structures could be used,

so that clients knew how to represent structures such as guided tours (i.e. as Lists with

the relationship type ‘Tour’). For the Taxonomic domain this is critical as Perspectives



165

are represented as Sets with the relationship type ’Perspective’ and Categories are repre-

sented as Sets with the relationship type ’Category’.

9.2.2 Behaviour

One of the research threads that I have described running through this document was one

based around Services and Behaviour (Section 9.1.4). The notion of providing Services

has been an important part of the OHP work from the beginning and I spent a significant

amount of time defining and demonstrating the OHP-Service protocol.

I now believe that Service discovery and invocation is best provided by the commu-

nications infrastructure itself, rather than a hypermedia protocol. However there is still

the issue of Behaviour as opposed to Services.

In Section 8.4.2 I defined Behaviour as something that is designed to be seen explic-

itly by a client, understood and then interpreted. Thus behaviour could be used to define

the process of traversal (i.e. a gradual fade or transclusion).

At the moment Behaviour is implemented in FOHM via the use of the relationship

type within an Association. A client manipulating a link must know what actual be-

haviour the relationship type is alluding to. For example a client must understand that

when it sees the relationship type ‘transclusion’ (first used in Xanadu and described in

Section 2.2) the link must be followed and the results inserted into the document view in

place of the link anchor.

There are two ways to make Behaviour work in an interoperable fashion:

1. Standardise the types of Behaviour in the same way as structure. This would in-

volve creating a list of Behaviour names and the functionality associated with them.

This would be a contentious process within the community but a well defined list

of a manageable size would prove enough to allow the majority of structures to be

expressed, and the majority of systems to interoperate.

2. Work on a mechanism to define Behaviour. This would be somewhat akin to

Service description in OHP-Service, where particular behaviour functionality was

wrapped up in a Behaviour object. This functionality could be written as a simple

script, or more powerfully as compiled code (perhaps Java bytecode).

My feeling is that this second option, while appealing, is too difficult to accom-

plish when the viewer being used is unknown. However it is possible that particular

hypermedia viewers become particularly popular (such as Microsoft Internet Explorer,

or Netscape Navigator) and Behaviours could be tailored specifically for them.
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9.2.3 Context

Understanding exactly where context fits into the hyperstructures of FOHM has been a

major part of this thesis. It has involved exploring the domain of Taxonomic Hypertext

and defining exactly what constitutes a context. The FOHM view is that context is the

sum of all information about the current browsing situation, seen by the system as a user

profile, defining the context of the user and a data profile, which provides information on

the structure.

However the actual contents of these profile objects and the functionality of the

‘magic function’ remains opaque. A definite future direction for FOHM research is to

explore different definitions of context and see how user trails, which are otherwise part

of the hyperstructure, can be included.

Another interesting avenue of possible research involves looking at the use of context

as a replacement of the anchor in temporal media. This actually goes back to the idea

of an anchor contextualising the endpoint of a link (presented in Section 2.8.3). It is

interesting to look at where and why we might draw the line between defining an anchor

in terms of a region, as opposed to anchoring on the entire document and allowing context

to resolve those anchors we can view.

The same concept applies when linking to or from real world physical spaces. Should

an anchor be defined on a particular region of the world (i.e. a particular room, or street)

or should it be anchored on the world as a whole and the users context (position within

that world) determines which anchors they see?

9.2.4 Symmetry of FOHM

FOHM is rare amongst hypermedia models in that it allows for Implicit External Struc-

ture, as defined in Section 7.3.4. This essentially means that links have their own arbitrary

internal structure and that endpoints within a link can be related in different ways (e.g. as

a list, matrix, etc.).

This means that an Association is an object with some internal structure which has

Binding objects attached at particular points in that structure. A Data is an object with

some internal structure which has Reference objects attached at particular points in that

structure.

Are Associations and Data the same thing?

Figure 9.1 shows two FOHM structures, a link and a list, over four Data objects, three

of which represent a sequence of movies and one of which is a review of the first of those
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Figure 9.1: FOHM Symmetry

movies. But when the diagram is turned upside down it becomes apparent that the movie

‘Jaws’ is acting as a link between the two Association objects. It would seem that the

only difference between a Data object and an Association is that Data objects have more

complex internal structure.

Consider a HTML page which contains a bulleted list of embedded links to three

movies (shown in Figure 9.2. In this case isn’t the HTML itself acting as a structured

link between those documents?

There is a rather beautiful symmetry at work here that treats Data and Associations in

exactly the same way. It indicates that the reason the Web got it wrong is not because it

uses HTML as a data format but because HTML should be a link description format. One

that includes lots of human readable semantics and presentation detail as well as some

way to allow machines to understand the structure. The question I leave open for future

research is whether or not emerging web standards such as XML might actually correct

that mistake.
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Figure 9.2: List as an Association and as a Data object

9.3 Interoperability in the Future

The work described within this thesis is based on the premise of the original OHP draft.

That hypermedia clients should have a standard way of talking to hypermedia servers.

The pursuit of this seemingly simple goal has taken me down a long but profitable

road. Firstly I have expanded the notion of what it means to interoperate. I have achieved

this by abandoning the simple client to server assumptions of the original draft in favour

of a more general notion of hypermedia components talking to one another.

Secondly I have broadened our ideas about communication. Recognising hypermedia

as just one case of service provision over a universal communications infrastructure.

Most importantly I have examined hypermedia itself and explored the information

space formed by the union of the various domains. I have called this the Information

Continuum and produced FOHM, a model that is capable of representing all the structures

in the continuum in a consistent and interoperable manner.

The use of hypermedia in the world is changing. Originally seen as a single machine

application, the web forced hypermedia researchers and developers to think in distributed

terms. In the future hypermedia will change again, as pervasive computing environments

bring it to us at many different levels, on your desktop, on your television, on your PDA

and on your mobile phone.

Throughout this change we must never lose sight of what hypermedia is all about. It is

about helping people engage and interact with dynamic, living information. We can only

ever achieve this if we focus on providing continuous and consistent structure whatever

the domain, or the device. It is by understanding this continuum of information, and by
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seeking ways in which people can navigate and comprehend it, that we take another step

towards Bush’s vision and finally start to encompass the great record.



Appendix A

OHP-Nav Definition - Extended

Backus-Naur Form (EBNF)

A.1 The Definition Language

In order to define the mechanics of OHP we initially followed an Extended Backus-Naur

Form (EBNF). We used the following constructs:

� name = definition: The name of a rule is simply the name itself and is separated

from its definition by the equal “=” character.
� "literal": defines a literal. The definition is case sensitive.
�

�
elem1 | elem2 � : a “—” can be used to define either/or alternatives.

�
�
elem � *: A “*” indicates repetition, i.e. there can be any number of occurrences.

�
�
elem � +: A “+” indicates that one or more elements have to be present, i.e. there

has to be at least one element.
� [elem]: Square brackets enclose optional elements.
� <elem>: Angle brackets enclose basic types that are not specified in more detail

but can be dealt with by the receiving/sending components.
� ELEM: In the case where an element type is declared in capital letters this decla-

ration can be seen as a placeholder that is defined somewhere else and just referred

to at the current location.

Additionally we assume the following rules (the US-ASCII coded character set is

defined by ANSI X3.4-1986):

� CHAR = US-ASCII character (octets 0 - 127)
� UPALPHA = any US-ASCII uppercase letter “A”..“Z”
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� LOALPHA = any US-ASCII lowercase letter “a”..“z”
� ALPHA = UPALPHA — LOALPHA
� DIGIT = any US-ASCII digit “0”..“9”
� CTL = any US-ASCII control character (octets 0 - 31) and DEL (127)
� CR = US-ASCII CR, carriage return (13)
� LF = US-ASCII LF, linefeed (10)
� SP = US-ASCII SP, space (32)

OHP messages will consist of text strings (CHAR). In the following sections the

messages are shown formatted on multiple lines for ease of presentation. However, the

messages themselves will be one continuous stream of ASCII text, unbroken by line

feeds (LF). The messages consist of Tags, which are proceeded by a backslash (‘
�
’) and

succeeded by a white space (SP). The characters that follow, up to the next tag or the

end of the message are the tag contents. A tag content may be empty. In addition some

tags denote a block of the message with some particular relevance. E.g.
�
LocSpec and

�
EndLocSpec.

The tags that should occur in each message are explained in the protocol definition.

They may be presented in any order. The protocol is designed such that if tags are miss-

ing, the system will attempt to work with the remaining information, and if extra unde-

fined tags are present, systems that do not understand these tags will simply ignore them.

If a backslash (‘
�
’) occurs within the tag content, then it should be quoted by preceding

it with a further backslash.

A.2 Message Header

As opposed to the earlier draft of OHP (Davis et al., 1996), which defines a channel

as an identifier for messages, we have defined a dedicated message header. As already

mentioned above, OHP abstracts from the communication layer so the header does not

include any host or port or other communication specific information.

Every message will have a message header. A message header will contain informa-

tion about the transaction that both sides of the communication channel may from time to

time need to examine. It is not immediately clear that all of this information is essential,

but there is a general consensus that parts of this information will, at times, be necessary.

"\MID " <a unique identifier for the particular message>

"\RMID " <the ID of the message this message is a reply to>

"\VID " <current version of the protocol>

"\SID " <a system dependant string which uniquely identifies some
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"transaction" or "session">

"\UID " <a system dependant string uniquely identifying the user>

A.3 Opaques

There are certain entities within OHP that are treated as opaque (these appear within the

protocol in uppercase). This means that their definition is unimportant for the specifi-

cation of OHP itself although they will need to be understood by the applications using

OHP. There are four opaques within the current protocol, LOCSPEC, PSPEC, CON-

TENTSPEC and SCRIPTSPEC). We expect a situation where a general definition of

an opaque is needed (to allow interoperability) but where the protocol must be flexible

enough to allow specialist applications to define their own standards for these opaques

and to insert an appropriate byte stream; in order for such a byte stream to be placed

within in ASCII protocol, it would be necessary to MIME encode the bytes.

So that an application (or the CSF) can parse all opaques, each opaque is accompanied

by a version ID and enclosed within a begin and end tag. Thus a parser can check the

version and skip the opaque if it is not one that is understood.

A.4 Messages

I will now present the messages in detail. Note that some of the messages might be

rarely used, some even never. However, for reasons of consistency and symmetry of the

protocol we defined and kept them as part of the standard.

A.4.1 Endpoints

Message “CreateEndpoint”

When a new endpoint has been created, the application program will send the following

message to the link server. Generally an endpoint will require a dataref. Also the PSpec

and Service tags may well be defaults (e.g. ‘blue’ and ‘follow link’ respectively). Note,

that not only an application program, but also processes or scripts can create endpoints

by sending this message.

MESSHEADER

"\Subject CreateEndpoint"

"\DataRefId " <DataRefId>

"\Direction " "Source" | "Destination" | "Bidirectional"

"\Service " <ServiceNmae>
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"\PSpecId " <PSpecId>

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

Message “GetEndpoint”

This message allows the application program to ask the link server for the current details

of the endpoint identified.

MESSHEADER

"\Subject GetEndpoint"

"\EndpointId " <EndpointId>

Both messages, CreateEndpoint and GetEndpoint should be answered by the link

server with an EndpointDef message.

Message “UpdateEndpoint”

Updates an endpoint’s attributes given its ID.

MESSHEADER

"\Subject UpdateEndpoint"

"\EndpointId " <EndpointId>

"\DataRefId " <DataRefId>

"\Direction " "Source" | "Destination" | "Bidirectional"

"\Service " <Service>

"\PSpecId " <PSpecId>

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

Message “DeleteEndpoint”

Deletes an endpoint given its ID.

MESSHEADER

"\Subject DeleteEndpoint"

"\EndpointId " <EndpointId>
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Message “GetEndpointList”

The application program, while running, is expected to maintain the list of endpoints. It

may obtain this list, for a given node, by sending the following message.

MESSHEADER

"\Subject GetEndpointList"

"\NodeId " <NodeId>

The link server will reply by sending a “EndpointListDef” message.

Message “ExecuteEndpoint”

When an endpoint is activated the following message will be sent to the link server to

request that whatever action is associated with that endpoint (e.g. follow link) will be

performed by the link server.

MESSHEADER

"\Subject ExecuteEndpoint"

"\EndpointId " <EndpointId>

Message “EndpointDef”

This message is sent by the link server on request from an application program (Cre-

ateEndpoint or GetEndpoint), or possibly the link server might send this autonomously

in the case where a new endpoint has been made by a user in a different session. The tag

“
�
Attributes” is a list of attribute name and value pairs that contain all the attributes the

link server knows about this object.

MESSHEADER

"\Subject EndpointDef"

"\EndpointId " <EndpointId>

"\DataRefId " <DataRefId>

"\Direction " "Source" | "Destination" | "Bidirectional"

"\Service " <Service>

"\PSpecId " <PSpecId>

"\Attributes "

{"\Name "<the attribute’s name>

"\Value "<its value>}*

"\EndAttributes "
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Message “EndpointListDef”

Sent by the link server on request from an application program (endpoint).

MESSHEADER

"\Subject EndpointListDef"

{"\Endpoints "

"\EndpointId " <EndpointId>

"\DataRefId " <DataRefId>

"\Direction " "Source" | "Destination" | "Bidirectional"

"\Service " <ServiceName>

"\PSpecId " <PSpecId>

"\Attributes "

{"\Name "<the attribute’s name>

"\Value "<its value>}*

"\EndAttributes "

"\EndEndpoints "}*

Message “DisplayEndpoint”

The link server might request the application program to display an endpoint (or “hotspot”)

for example, as the end of a link that has been followed.

MESSHEADER

"\Subject DisplayEndpoint"

"\EndpointId " <EndpointId>

"\PSpecId " <PSpecId>

A.4.2 Datarefs

Message “CreateDataRefs”

Datarefs encapsulate attributes for location specifications and also the node itself. Some

systems will require datarefs to be created automatically when an endpoint is created;

others with more complex user interfaces might allow users to create datarefs and connect

them to endpoints. Note that not only users but also system processes (including scripts)

might create datarefs.

MESSHEADER

"\Subject CreateDataRef"

"\NodeId " <NodeId>
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"\LocSpecVID " <LocSpecVersionID>

"\LocSpec "

LOCSPEC

"\EndLocSpec "

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

Message “GetDataRef”

This message allows the application program to ask the link server for the current details

of the datarefs identified.

MESSHEADER

"\Subject GetDataRef"

"\DataRefId " <DataRefId>

Both messages, CreateDataRef and GetDataRef should be answered by the link server

with a DataRefDef message.

Message “UpdateDataRef”

Updates a dataref’s attributes given its ID.

MESSHEADER

"\Subject UpdateDataRef"

"\DataRefId " <DataRefId>

"\NodeId " <NodeId>

"\LocSpecVID " <LocSpecVersionID>

"\LocSpec "

LOCSPEC

"\EndLocSpec "

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

Message “DeleteDataRef”

Deletes a dataref given its ID.
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MESSHEADER

"\Subject DeleteDataRef"

"\DataRefId " <DataRefId>

Message “DataRefDef”

This message is sent by the link server on request from an application program (Create-

DataRef or GetDataRef). In the case where a new endpoint has been made by a user in a

different session, the link server might send this autonomously. The tag “
�
Attributes” is

a list of attribute name and value pairs that contain all the attributes the link server knows

about this object.

MESSHEADER

"\Subject DataRefDef"

"\DataRefId " <DataRefId>

"\NodeId " <NodeId>

"\LocSpecVID " <LocSpecVersionID>

"\LocSpec "

LOCSPEC

"\EndLocSpec "

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

A.4.3 Links

The next set of messages is concerned with the manipulation of links. In practice most

application programs used for viewing data will not handle links, but only endpoints.

This set of messages is provided partly in order to provide a symmetric set of messages

handling all objects within the link server. However, we can envisage the case where

a developer may wish to produce client side tools for the creation, manipulation and

editing of links. From the point of view of the link server, it is unimportant whether the

messages come from an application program or a link editor and OHP should provide

such messages.

Message “CreateLink”

MESSHEADER

"\Subject CreateLink"
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"\Endpoints " {"\EndpointId " <EndpointId>}+ "\EndEndpoints "

"\Description " <Description>

"\Type " <Type>

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

Message “GetLink”

Gets the attributes of a link given its ID. Both messages, CreateLink and GetLink, should

be answered by the link server with a LinkDef message.

MESSHEADER

"\Subject GetLink"

"\LinkId " <LinkId>

Message “UpdateLink”

Updates a link’s attributes given its ID.

MESSHEADER

"\Subject UpdateLink"

"\LinkId " <LinkId>

"\Endpoints " {"\EndpointId " <EndpointId>}+ "\EndEndpoints "

"\Description " <Description>

"\Type " <Type>

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

Message “DeleteLink”

Deletes a link given its ID.

MESSHEADER

"\Subject DeleteLink"

"\LinkId " <LinkId>
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Message “GetLinkList”

An application program may be interested in manipulating the list of all links. Note that

future versions of OHP may include a context tag or a query tag in order to allow the

client to specify which list of links to get. At present it will deliver all links in the link

server.

MESSHEADER

"\Subject GetLinkList"

The link server will reply by sending a ”LinkListDef” message.

Message “LinkDef”

Sent by the link server on request from an application program (CreateLink and GetLink).

MESSHEADER

"\Subject LinkDef"

"\LinkId " <LinkId>

"\Endpoints " {"\EndpointId " <EndpointId>}+ "\EndEndpoints "

"\Description " <Description>

"\Type " <Type>

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

Message “LinkListDef”

Sent by the link server on request from an application program (GetLinkList).

MESSHEADER

"\Subject LinkListDef"

{"\Links "

"\LinkId " <LinkId>

"\Endpoints " {"\EndpointId " <EndpointId>}+ "\EndEndpoints "

"\Description " <Description>

"\Type " <Type>

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*
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"\EndAttributes "

"\EndLinks "}*

A.4.4 Nodes

Again, as with links, we do not believe that the typical application program will be inter-

ested in manipulating nodes, but since nodes are handled by many link servers, it seems

appropriate to provide an interface to these objects so that developers may produce client

side tools to manipulate them, such as browsers. The reader is reminded that in this con-

text a node is a wrapper object that contains the meta-data about a document, rather than

the document itself.

OHP is not a protocol for dealing with the actual storage and retrieval of documents.

We assume that at some stage a protocol will be created for doing this (HTTP is actually

one such protocol, if limited in some aspects; the Open Document Management API

proposes another (see Open Document Management API, 1997). Yet actually managing

the content of documents is what will make OHP a useable protocol. For the moment we

therefore abstract document location in the definition of the protocol by using an opaque

string representing a document (”CONTENTSPEC”).

Message “CreateNode”

The following message will create a new node in the link server. This message is perhaps

the one message related to nodes that might be used by an application program, in the

case where a client side program had just loaded or created some new data content and

wished to register it with the link server.

MESSHEADER

"\Subject CreateNode"

"\NodeName " <A title that the application may choose to display>

"\MimeType " <MimeType>

"\PreferredApp " <The name of the application which we would prefer

to use with this data>

"\ContentSpecVID " <ContentSpecVersionID>

"\ContentSpec "

CONTENTSPEC

"\EndContentSpec "

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*
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"\EndAttributes "

Message “GetNode”

Gets a node’s attributes given its ID.

MESSHEADER

"\Subject GetNode"

"\NodeId " <NodeId>

Both messages, CreateNode and GetNode should be answered by the link server with

a NodeDef message.

Message “UpdateNode”

Updates a node’s attributes given its ID.

MESSHEADER

"\Subject UpdateNode"

"\NodeId " <NodeId>

"\NodeName " <A title that the application may choose to display>

"\MimeType " <MimeType>

"\PreferredApp " <The name of the application which we would prefer

to use with this data>

"\ContentSpecVID " <ContentSpecVersionID>

"\ContentSpec "

CONTENTSPEC

"\EndContentSpec "

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

Message “DeleteNode”

Deletes a node given its ID.

MESSHEADER

"\Subject DeleteNode"

"\NodeId " <NodeId>

Message "GetNodeList"



182

Message “GetNodeList”

An application program may be interested in manipulating the list of all nodes. Note that

future versions of OHP might include a context tag or a query tag in order to allow the

client to specify which list of nodes to get. At present it will deliver all nodes in the link

server.

MESSHEADER

"\Subject GetNodeList"

The link server will reply by sending a NodeListDef message.

Message “NodeDef”

Sent by the link server on request from an application program.

MESSHEADER

"\Subject NodeDef"

"\NodeId " <NodeId>

"\NodeName " <A title that the application may choose to display>

"\MimeType " <MimeType>

"\PreferredApp " <The name of the application which we would prefer

to use with this data>

"\ContentSpecVID " <ContentSpecVersionID>

"\ContentSpec "

CONTENTSPEC

"\EndContentSpec "

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

Message “NodeListDef”

Sent by the link server on request from an application program (GetNodeList).

MESSHEADER

"\Subject NodeListDef"

{"\Nodes "

"\NodeId " <NodeId>

"\NodeName " <A title that the application may choose to display>
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"\MimeType " <MimeType>

"\PreferredApp " <name of the application which we would prefer

to use with this data>

"\ContentSpecVID " <ContentSpecVersionID>

"\ContentSpec "

CONTENTSPEC

"\EndContentSpec "

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

"\EndNodes "}*

A.4.5 Scripts

Scripts play an important part in some hypermedia systems (e.g. Hypercard and Multi-

card), and are hardly used in others. Scripts may be classified into two types:

� Server End Scripts. These are the scripts that are carried out when some particular

event occurs or some action is requested. From the viewer’s point of view there

is no difference between some process being run or a link being followed by the

link server. Of course these scripts may cause new messages to be sent back to the

application program, to change its presentation in some way.
� Client End Scripts. These are scripts that are sent to the application program by the

link server. In general they are either sent as part of a LocSpec in order to identify

an endpoint or they are sent as a process which the application program will be

expected to run. For example in order to change the presentation of the data in

some way. OHP must provide support for such scripts if the application program

wishes to use them.

From the point of OHP, Scripts themselves are opaque. However it is useful to attempt

some standardisation of the content of the Script. This is discussed in Appendix D.

Message “CreateScript”

This message is used to create a new script.

MESSHEADER

"\Subject CreateScript"

"\ScriptVID " <ScriptVersionID>
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"\Script "

SCRIPTSPEC

"\EndScript "

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

Message “GetScript”

Gets the attributes of a script given its ID. Both messages, CreateScript and GetScript,

should be answered by the link server with a ScriptDef message.

MESSHEADER

"\Subject GetScript"

"\ScriptId " <ScriptId>

Message “UpdateScript”

Updates a script’s attributes given its ID.

MESSHEADER

"\Subject UpdateScript"

"\ScriptId " <ScriptId>

"\ScriptVID " <ScriptVersionID>

"\Script "

SCRIPTSPEC

"\EndScript "

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

Message “DeleteScript”

Deletes a script given its ID.

MESSHEADER

"\Subject DeleteScript"

"\ScriptId " <ScriptId>



185

Message “ExecuteScript”

A client may send this message to the server, in which case the server will execute the

given script, or a link server may send this message to a client, in which case if the client

does not currently have the script identified it will need to send a GetScript message back

in order to execute the script on the client.

MESSHEADER

"\Subject ExecuteScript"

"\ScriptId " <ScriptId>

Message “ScriptDef”

Sent by the link server on request from an application program.

MESSHEADER

"\Subject ScriptDef"

"\ScriptId " <ScriptId>

"\ScriptVID " <ScriptVersionID>

"\Script "

SCRIPTSPEC

"\EndScript "

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

A.4.6 Presentation Specifiers

Alternative presentation of hotspots is an important feature in some systems. OHP allows

users to specify different presentations. From the point of view of OHP and link servers,

presentation specifiers (PSpecs) are opaque strings, which are interpreted by the appli-

cation program. However, in order to allow for interoperability of application programs,

and in order to allow server end scripts to change the presentation in a client it is useful to

attempt some standardisation of the content of the PSpec. This is discussed in Appendix

B Presentation Specification.

Message “CreatePSpec”

Used to create a presentation specification.
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MESSHEADER

"\Subject CreatePSpec"

"\PSpecVID " <PSpecVersionID>

"\PSpec "

PSPEC

"\EndPSpec "

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

Message “GetPSpec”

Returns a presentation specification’s attributes given its ID. Both messages, CreatePSpec

and GetPSpec, should be answered by the link server with a PSpecDef message. This ID

then can be used as parameter in further message calls.

MESSHEADER

"\Subject GetPSpec"

"\PSpecId " <PSpecId>

Message “UpdatePSpec”

Updates a presentation specification’s attributes given its ID.

MESSHEADER

"\Subject UpdatePSpec"

"\PSpecId " <PSpecId>

"\PSpecVID " <PSpecVersionID>

"\PSpec "

PSPEC

"\EndPSpec "

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

Message “DeletePSpec”

Deletes a presentation specification given its ID.
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MESSHEADER

"\Subject DeletePSpec"

"\PSpecId " <PSpecId>

Message ”PSpecDef”

Sent by the link server on request from an application program.

MESSHEADER

"\Subject PSpecDef"

"\PSpecId " <PSpecId>

"\PSpecVID " <PSpecVersionID>

"\PSpec "

PSPEC

"\EndPSpec "

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

A.4.7 Services

Message “GetServices”

The ”GetServices” message is to be sent from application program to link server in order

to know which additional services are available, above the standard set which manipulate

dataRefs, endpoints, links, nodes and presentations. The link server should answer this

request with a ServicesDef message. Services are defined by a description and a service

name.

MESSHEADER

"\Subject GetServices"

Message “ExecuteService”

The ExecuteService message is a very general message that can be used by the applica-

tion program to request a link server to do one of its services. The available services can

be retrieved by the GetServices message.

MESSHEADER

"\Subject ExecuteService"
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"\Service " <name of the service>

"\EndpointId " <EndpointId>

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

Message “ServicesDef”

Sent by the link server on request from an application program (GetServices).

MESSHEADER

"\Subject ServicesDef"

{"\Services "

"\Service " <name of the service>

"\Description " <a string which may be used to describe the service

to a user>

"\EndServices " }*

The minimum reply should include the service named “FollowLink”, which all link

servers must handle. All other services are server dependant.

Message “ClosingNode”

This message is sent from the application program to the link server when a node is

closed by the user.

MESSHEADER

"\Subject ClosingNode"

"\NodeId "<NodeId>

Message “DisplayNodeContent”

The link server might send this message for instance as the result of a follow link from

another application.

MESSHEADER

"\Subject DisplayNodeContent"

"\NodeId "<NodeId>

"\ReadOnly" {"True" | "False"}
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Message “DisplayDataRef”

Equally, location specifications might want to be displayed by the link server. This

is done by sending the DisplayDataRef message; note that datarefs have the attributes

NodeId and location specification.

MESSHEADER

"\Subject DisplayDataRef"

"\DataRef " <DataRefId>

"\PSpecId " <PSpecId>

Message “CloseNode”

This message is sent by the link server to a node that it wishes to close, e.g. in order to

free a lock on a document.

MESSHEADER

"\Subject CloseNode"

"\NodeId "<NodeId>

"\UpdateNode "{"True" | "False’’}

The application is then responsible for closing the node itself, ensuring that it has up-

dated its contents if required by the UpdateNode tag. In case of any errors the application

program should send back an error message.

Message “Error”

The Error message might be sent by any component. It is composed of the following

structure:

MESSHEADER

"\Subject Error"

"\MessageId " <Id of message that caused the error>

"\ErrorSubject " <the type of error that occurred>

"\ErrorMessage " <the actual error string>

A.5 Opaques

Although certain parts of the protocol were left opaque for practical interoperability an

on-the-wire definition is required and proposals for location specifications, presentation

specifications, content identifier specifications and script specifications were created.
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A.5.1 Location Specifications (LOCSPEC)

The LOCSPEC defines a position within a document, to which a link can anchor itself.

LOCSPEC =

"\ContentType " <type, e.g., ASCII, binary>

"\Content " <Mime encoded text string>

"\LocVID " <LocVersionID>

"\Loc "

LOC <a LOC object>

"\EndLoc "

Location specifications consist of a content type, the content itself as well as the actual

location data. LOC is defined as

Loc = { NAMELOC | DATALOC | TREELOC | PATHLOC | SCRIPTLOC | NALOC }

Name Space Locations Name space locations are used to reference an object by its

name. The definition of name locations is as follows:

NAMELOC =

"\LocType NameLoc"

Data Locations Data locations are co-ordinate locations, they allow a user to define a

location as a position of a defined scale.

DATALOC =

"\LocType DataLoc"

"\Quantum " { "string" | "int" | "byte" | "utc" }

"\CountList " <list of Strings being interpreted by the

application program>

"\RevCountList " <list of Strings being interpreted by the

application program>

"\Overrun " { "ignore" | "error" | "trunc" }

Tree Locations Tree locations can be used for addressing a single object within a tree.

The addressing is done in a way that on each level of the tree an object is selected by its

position.

TREELOC =
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"\LocType TreeLoc"

"\Overrun " { "ignore" | "error" | "trunc" }

"\CountList " <list of numbers>

Path Locations As opposed to tree locations path locations are used to address a range

of nodes by a path. This is done by addressing a tree as though it were a matrix in which

the rows are the levels of the tree and the columns are the paths. Therefore the count list

of a path location consists of an even number of pairs: the first pair identifies the columns

(i.e. the paths to the leaves) and the second pair selects the rows.

PATHLOC =

"\LocType PathLoc"

"\NodeId " <NodeId>

"\Overrun " { "ignore" | "error" | "trunc" }

"\CountList " <list of numbers>

Script Locations OHP does not define a specific query mechanism for addressing loca-

tions. However, by allowing script locations we define a way for those hypertext systems

that use scripts to identify and address locations at the client’s side.

SCRIPTLOC =

"\LocType ScriptLoc"

"\ScriptId <ScriptId>

Inaccessible Locations An idea borrowed from HyTime is to address data that is cur-

rently not accessible. We call this location specification NALoc for “Not Accessible”

location.

NALOC =

"\LocType NALoc"

"\Location " <string as description of the object and its physical

location>

A.5.2 Presentation Specifications (PSPEC)

PSPECS may be used to store, and thus re-apply, a required presentation for any hypertext

object that a client may wish to display. A client might store a PSPEC as a byte stream

which would then later be retrieved and interpreted by the same client.

PSPEC =
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"\Name " <a string>

["\Colour " <colour>]

["\Style " <style>]

["\Visibility " "true" | "false"]

Following the original proposal we suggest a triplet of colour, style and visibility,

each of which is optional. The above definition allows us to only put these things if we

have them, and we could also add other tags if needed. We will define some tag values

which will always be understood.

We assume that the eight primary computer colours are supported, i.e. black, blue,

cyan, white, magenta, green, red and yellow.

As minimal subset of styles we define flashing, bold, italic, outlined and shaded.

This syntax may be extended by the addition of further name and value pairs. Much

further work needs to be done on discovering the sort of attributes which people wish to

store.

A.5.3 Content Specifications (CONTENTSPEC)

We recommend that the following definition for CONTENTSPEC be used, until such

time as further work has improved on this.

CONTENTSPEC =

"\Name " <the content’s name, typically a file name, a URL or

a DMS handle>

"\Location " "FileSystem" | "Internet" | "DMS"

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

As far as the link server is concerned the CONTENTSPEC information is opaque.

It stores the string, and when the node is required it sends this back. The client side

is expected to provide some component which will be able to interpret this string in

the cases where the client is asked to display a document. Typically this will be the

CSF, which will then get the document from the file system, Internet or the Document

Management System (DMS) that it is using (which may actually be the link server itself

if the link server is a hyperbase).
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A.5.4 Script Specifications (SCRIPTSPEC)

We recommend that the following definition for SCRIPTSPEC be used.

SCRIPTSPEC =

"\Language " <name of the script language, e.g. JavaScript, etc.>

"\Data " <the actual script>

"\Attributes "

{"\Name " <the attribute’s name>

"\Value " <its value>}*

"\EndAttributes "

This is a simple definition, but will allow scripting to be added to an application with

little extra complication.



Appendix B

OHP-Nav Definition - eXtended

Markup Language (XML)

B.1 The Definition Language

The eXtended Markup Language (XML) is a simple meta-language for creating ele-

ments, attributes and values similar to HTML. XML documents that conform to a certain

layout and shape are said to be ‘well-formed’. The description of a standard and shape

are written in an accompanying Document Type Definition (DTD).

The first DTD developed for OHP-Nav is presented below. It is a simple element

tree that uses opaque ‘PCDATA’ for all the values, no attributes are used. This DTD was

created after the EBNF definition described in Appendix A and is thus slightly more ad-

vanced. In particular it includes operations for dealing with lists of all the basic objects as

well as the objects themselves. However as it was written for the practical demonstration

of OHP-Nav at HT’98 it does not properly define those parts of the protocol that were

not used at that time, this includes the CONTENTSPEC and all the types of LOCSPEC

other that DataLoc, which have been simplified.

B.2 The Document Type Definition

<!--

OHP Navigational Document Type Definition for defining OHPNav messages.

This file has been last modified 10 June 1998.

-->
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<!ENTITY ohpnavversion "OHPNAV 1.0.Soton-10-Jun-1998">

<!ENTITY \% allMessNames

"createendpoint | getendpoint | updateendpoint

| deleteendpoint | getendpointlist | executeendpoint

| endpointdef | endpointlistdef | displayendpoint

| createdataref | getdataref | updatedataref

| deletedataref | datarefdef | createlink

| getlink | updatelink | deletelink

| getlinklist | linkdef | linklistdef

| createnode | getnode | updatenode

| deletenode | getnodelist | nodedef

| nodelistdef | getservices | executeservice

| servicedef | servicelistdef | closingnode

| displaynode | displaydataref | closenode

| error">

<!ELEMENT OHPNav (messageheader, (\%allMessNames;))>

<!-- MESSAGEHEADER and IDs-->

<!ELEMENT messageheader (mid, rid, vid, sid, uid, fid)>

<!ELEMENT mid (#PCDATA)>

<!ELEMENT rid (#PCDATA)>

<!ELEMENT vid (#PCDATA)>

<!ELEMENT sid (#PCDATA)>

<!ELEMENT uid (#PCDATA)>

<!ELEMENT fid (#PCDATA)>

<!ELEMENT nodeid (#PCDATA)>

<!ELEMENT readonly (#PCDATA)>

<!ELEMENT nodename (#PCDATA)>

<!ELEMENT mimetype (#PCDATA)>

<!ELEMENT preferredapp (#PCDATA)>

<!ELEMENT contentspecvid (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT location (#PCDATA)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT datarefid (#PCDATA)>

<!ELEMENT direction (#PCDATA)>
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<!ELEMENT endpointid (#PCDATA)>

<!ELEMENT contenttype (#PCDATA)>

<!ELEMENT content (#PCDATA)>

<!ELEMENT locvid (#PCDATA)>

<!ELEMENT quanta (#PCDATA)>

<!ELEMENT countlist (#PCDATA)>

<!ELEMENT revquanta (#PCDATA)>

<!ELEMENT revcountlist (#PCDATA)>

<!ELEMENT overrun (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT url (#PCDATA)>

<!ELEMENT serviceid (#PCDATA)>

<!ELEMENT messageid (#PCDATA)>

<!ELEMENT errorsubject (#PCDATA)>

<!ELEMENT errormessage (#PCDATA)>

<!ELEMENT update (#PCDATA)>

<!ELEMENT linkid (#PCDATA)>

<!ELEMENT version (#PCDATA)>

<!-- ATTRIBUTE -->

<!ELEMENT attribute (name, value)>

<!-- ATTRIBUTES -->

<!ELEMENT attributes (attribute*)>

<!-- CONTENTSPEC -->

<!ELEMENT contentspec (version, url, attributes)>

<!-- LOCSPECS -->

<!ELEMENT nameloc (version, contenttype, content, spec)>

<!ELEMENT treeloc (version, contenttype, content, spec)>

<!ELEMENT naloc (version, contenttype, content, spec)>

<!ELEMENT pathloc (version, contenttype, content, spec)>

<!ELEMENT scriptloc (version, contenttype, content, spec)>

<!ELEMENT dataloc (version, contenttype, content, quantalist,

countlist, revquantalist, revcountlist,

overrun)>

<!ELEMENT spec (#PCDATA)>
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<!-- ENDPOINT -->

<!ELEMENT endpoint (endpointid, dataref, direction, service,

pspec, attributes)>

<!ELEMENT endpoints (endpoint*)>

<!-- PSPEC -->

<!ELEMENT pspec (version, colour, style, visibility)>

<!ELEMENT colour (#PCDATA)>

<!ELEMENT style (#PCDATA)>

<!ELEMENT visibility (#PCDATA)>

<!-- DATAREF -->

<!ELEMENT dataref (datarefid, node, (nameloc | dataloc |

treeloc | pathloc | scriptloc | naloc),

attributes)>

<!-- LINK -->

<!ELEMENT link (linkid, endpoints, description, type,

attributes)>

<!ELEMENT links (link*)>

<!-- NODE -->

<!ELEMENT node (nodeid, nodename, mimetype, preferredapp,

contentspec, attributes)>

<!ELEMENT nodes (node*)>

<!-- SERVICE -->

<!ELEMENT service (serviceid, description)>

<!ELEMENT services (service*)>

<!--

the actual OHPNavigational messages

-->

<!-- CREATEENDPOINT -->

<!ELEMENT createendpoint (endpoint)>

<!-- GETENDPOINT -->

<!ELEMENT getendpoint (endpointid)>
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<!-- UPDATEENDPOINT -->

<!ELEMENT updateendpoint (endpoint)>

<!-- DELETEENDPOINT -->

<!ELEMENT deleteendpoint (endpointid)>

<!-- GETENDPOINTLIST -->

<!ELEMENT getendpointlist (nodeid)>

<!-- EXECUTEENDPOINT -->

<!ELEMENT executeendpoint (endpointid)>

<!-- ENDPOINTDEF -->

<!ELEMENT endpointdef (endpoint)>

<!-- ENDPOINTLISTDEF -->

<!ELEMENT endpointlistdef (endpoints)>

<!-- DISPLAYENDPOINT -->

<!ELEMENT displayendpoint (endpoint, pspec)>

<!-- CREATEDATAREF -->

<!ELEMENT createdataref (dataref)>

<!-- GETDATAREF-->

<!ELEMENT getdataref (datarefid)>

<!-- UPDATEDATAREF -->

<!ELEMENT updatedataref (dataref)>

<!-- DELETEDATAREF -->

<!ELEMENT deletedataref (datarefid)>

<!-- DATAREFDEF -->

<!ELEMENT datarefdef (dataref)>

<!-- CREATELINK -->

<!ELEMENT createlink (link)>

<!-- GETLINK -->

<!ELEMENT getlink (linkid)>
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<!-- UPDATELINK -->

<!ELEMENT updatelink (link)>

<!-- DELETELINK -->

<!ELEMENT deletelink (linkid)>

<!-- GETLINKLIST -->

<!ELEMENT getlinklist EMPTY>

<!-- LINKDEF -->

<!ELEMENT linkdef (link)>

<!-- LINKLISTDEF -->

<!ELEMENT linklistdef (links)>

<!-- CREATENODE -->

<!ELEMENT createnode (node)>

<!-- GETNODE -->

<!ELEMENT getnode (nodeid)>

<!-- UPDATENODE -->

<!ELEMENT updatenode (node)>

<!-- DELETENODE -->

<!ELEMENT deletenode (nodeid)>

<!-- GETNODELIST -->

<!ELEMENT getnodelist EMPTY>

<!-- NODEDEF -->

<!ELEMENT nodedef (node)>

<!-- NODELISTDEF -->

<!ELEMENT nodelistdef (nodes)>

<!-- GETSERVICES -->

<!ELEMENT getservices EMPTY>

<!-- EXECUTESERVICE -->
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<!ELEMENT executeservice (serviceid, endpointid, attributes)>

<!-- SERVICEDEF -->

<!ELEMENT servicedef (service)>

<!-- SERVICELISTDEF -->

<!ELEMENT servicelistdef (services)>

<!-- CLOSINGNODE -->

<!ELEMENT closingnode (nodeid)>

<!-- DISPLAYNODE -->

<!ELEMENT displaynode (node, readonly)>

<!-- DISPLAYDATAREF -->

<!ELEMENT displaydataref (dataref, pspec)>

<!-- CLOSENODE -->

<!ELEMENT closenode (node, update)>

<!-- ERROR -->

<!ELEMENT error (messageheader, errorsubject, errormessage)>



Appendix C

OHP-Nav Definition - Interface

Definition Language (IDL)

C.1 The Definition Language

The Interface Definition Language (IDL) is a implementation independent specification

language. It specifies structures and operations that can then be converted into any par-

ticular implementation.

The IDL below shows the first version of OHP-Nav. Data types start with a capital

letter, e.g. EndPoint, and method names start with a small letter, e.g. getEndPoint

We followed the XML definition/implementation and use IDs for client to server

messages and object references for server to client messages. The idea is that the client

only passes the ID to server (and the server ‘knows’ about the object); the server in turn

passes whole objects to the client to avoid further messages such as getObjectForID.

C.2 The IDL Definition

/*OHPNav.idl - an interface definition for the open hypermedia

navigational interface

last change June 10 1998

*/

module ohp {

interface OHPNavigational {
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//==================== Exceptions =========================//

exception OHPElementNotFoundException {string reason; };

const string ohpnavversion = "OHPNAV 1.0.Soton-10-Jun-1998";

struct MessageHeader {

string MID;

string RID;

string VID;

string SID;

string UID;

string FID;

};

enum Direction {source, destination, both};

struct LocSpec {

string contentType;

string mimeEncodedContent;

string version;

string theSpec;

};

typedef LocSpec DataLoc;

typedef LocSpec NameLoc;

typedef LocSpec TreeLoc;

typedef LocSpec PathLoc;

typedef LocSpec NALoc;

typedef LocSpec ScriptLoc;

struct Attribute {

string name;

string value;

};

typedef sequence<Attribute> Attributes;

struct ContentSpec {

string version;

string url;

Attributes aList;

};
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struct PSpec {

string version;

string spec;

string color;

string style;

string visibility;

};

struct Node {

string ID;

string name;

string mimeType;

string preferredApp;

ContentSpec cSpec;

Attributes aList;

};

struct DataRef {

string ID;

Node node;

LocSpec lSpec;

Attributes aList;

};

struct Service {

string ID;

string description;

};

struct EndPoint {

string ID;

DataRef dataRef;

Direction direction;

Service service;

PSPec pSpec;

Attributes aList;

};

typedef sequence<EndPoint> EndPoints;
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struct Link {

string ID;

string description;

EndPoints eList;

string type;

Attributes aList;

};

typedef sequence<Link> Links;

typedef sequence<Node> Nodes;

typedef sequence<Service> Services;

//=================== The Messages =========================//

//createEndPoint message

EndPoint createEndPoint(in string dataRefID, in Direction ld,

in string serviceID, in PSpec p, in Attributes aList);

//getEndPoint

EndPoint getEndPoint(in string endPointID)

raises (OHPElementNotFoundException);

//updateEndPoint

EndPoint updateEndPoint(in string endPointID, in string

dataRefID, in Direction ld, in string serviceID,

in PSpec p, in Attributes aList)

raises (OHPElementNotFoundException);

//deleteEndPoint

void deleteEndPoint(in string endPointID)

raises (OHPElementNotFoundException);

//getEndPoints

EndPoints getEndPointList(in string nodeID);

//executeEndPoint

void executeEndPoint(in string endPointID)

raises (OHPElementNotFoundException);
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//endPointDef

EndPoint endPointDef();

//endPointListDef

EndPoints endPointListDef();

//displayEndPoint

void displayEndPoint(in EndPoint ep, in PSpec p);

//createDataRef

DataRef createDataRef (in string nodeID, in LocSpec l,

in Attributes aList);

//getDataRef

DataRef getDataRef(in string dataRefID)

raises (OHPElementNotFoundException);

//updateDataRef

DataRef updateDataRef(in string dataRefID, in string nodeID,

in LocSpec l, in Attributes aList)

raises (OHPElementNotFoundException);

//deleteDataRef

void deleteDataRef(in string dataRefID)

raises (OHPElementNotFoundException);

//dataRefDef

DataRef dataRefDef();

//createLink

Link createLink(in EndPoints el, in string description,

in string type, in Attributes aList);

//getLink

Link getLink(in string linkID)

raises (OHPElementNotFoundException);

//updateLink
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Link updateLink(in string linkID, in EndPoints el,

in string description, in string type,

in Attributes aList)

raises (OHPElementNotFoundException);

//deleteLink

void deleteLink(in string linkID)

raises (OHPElementNotFoundException);

//getLinkList

Links getLinkList();

//linkDef

Link linkDef();

//linkListDef

Links linkListDef();

//createNode

Node createNode(in string name, in string mimeType,

in string preferredApp, in ContentSpec c,

in Attributes aList);

//getNode

Node getNode(in string nodeID)

raises (OHPElementNotFoundException);

//updateNode

Node updateNode(in string nodeID, in string mimeType,

in string preferredApp, in ContentSpec c,

in Attributes aList)

raises (OHPElementNotFoundException);

//deleteNode

void deleteNode(in string nodeID)

raises (OHPElementNotFoundException);

//getNodeList

Nodes getnodelist();
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//nodeDef

Node nodeDef();

//nodeListDef

Nodes nodeListDef();

//getServices

Services getServices();

//executeService

void executeService(in string serviceID, in string endPointID,

in Attributes aList);

//serviceDef

//obsolete??

Service serviceDef();

//serviceListDef

Services serviceListDef();

//closingNode

void closingNode(in string nodeID);

//displayNode

void displayNode(in Node n, in boolean readOnly);

//displayDataRef

void displayDataRef(in DataRef dr, in PSpec p);

//closeNode

void closeNode(in Node n, in boolean update);

//error

void error(in MessageHeader mh, in string errorSubject,

in string errorMessage);

};

}; //module



Appendix D

OHP-Service Definition (XML)

D.1 OHP Service Document Type Definition

The DTD below defines the on-the-wire specification for OHP-Service as it was used for

the demo at Hypertext ’99 in Darmstadt, Germany. It is a separate proposal to the OHP-

Nav protocol. This latest DTD refers to Service objects as ‘Computations’ and includes

the definition of Composite Services.

D.2 The Document Type Definition

<!-- OHP Service Document Type Definition for defining OHPService

messages.

Last change: Jan 28 1999, 17:35 GMT-->

<!ENTITY % OHPSERVICEVERSION "OHPSERVICE-1.0.Darmstadt-1999">

<!ENTITY % allMessNames "RETRIEVESERVICES | SERVICESRETRIEVED |

RETRIEVECSERVICES | CSERVICESRETRIEVED |

EXECUTESERVICE | SERVICEEXECUTED |

SERVICEPROGRESS ">;

<!ENTITY % abObjInfo "MYTYPE, DESCRIPTIONSET?, CHARACTERISTICSET?">

<!ENTITY % hmObjInfo "(%abObjInfo;), COMPID?, PSPECSET?">

<!-- MESSAGESET

This is the basic structure of an OHPService message to be

sent over the wire as text (with 19 leading bytes expressing
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the length of the message). An OHPService document consists

of one message plus any number of additional messages. -->

<!ELEMENT OHP (MESSAGESET)>

<!ELEMENT MESSAGESET (MESSAGE, MESSAGE*)>

<!-- MESSAGE STRUCTURE

An OHP message consists of a message header plus a message

body which is one of the messages. -->

<!ELEMENT MESSAGE (MESSAGEHEADER, (%allMessNames;))>

<!--USER DETAILS

Currently we only support a userid and an optional name.

Further extensions might be needed for collaboration. -->

<!ELEMENT ACCOUNT (USERID, NAME?)>

<!ELEMENT USERID (#PCDATA)>

<!ELEMENT NAME (#PCDATA)>

<!-- MESSAGEHEADER

The message header contains the following fields.

- SENDER (optional): the sending component

- RECEIVER (optional): the receiving component. Both fields

could be (are) used to allow routing of messages.

- SERIAL: the unique message ID

- RETURNSERIAL (optional: used if a message is referring to

a previous serial.

- SESSION (optional): a session identifier

- ACCOUNT (optional): user data

- MNAME: the name of the message. This field allows e.g.

routing of messages by looking at the header only (the

content could be encrypted).

- PROTOCOL: this is version information about the protocol

spoken.

- CERT (optional): an optional certificate that can be used

for security reasons.

- CONTEXTIDSET: the set of contexts that this message

applies to.

- PERFORMATIVE (optional): a performative as known from agent

communication languages that allows dealing with messages
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without actually understanding their content. -->

<!ELEMENT MESSAGEHEADER (SENDER?, RECEIVER?, SERIAL,

RETURNSERIAL?, SESSION?, ACCOUNT?, MNAME,

PROTOCOL, CERT?, CONTEXTIDSET,

PERFORMATIVE?)>

<!ELEMENT SENDER (#PCDATA)>

<!ELEMENT RECEIVER (#PCDATA)>

<!ELEMENT SERIAL (#PCDATA)>

<!ELEMENT RETURNSERIAL (#PCDATA)>

<!ELEMENT SESSION (#PCDATA)>

<!ELEMENT MNAME (#PCDATA)>

<!ELEMENT PROTOCOL (#PCDATA)>

<!ELEMENT CERT (#PCDATA)>

<!ELEMENT CONTEXTIDSET (CONTEXTID, CONTEXTID*)>

<!ELEMENT CONTEXTID (#PCDATA)>

<!ELEMENT PERFORMATIVE (#PCDATA)>

<!-- Operations -->

<!ELEMENT RETRIEVESERVICES EMPTY>

<!ELEMENT SERVICESRETRIEVED (COMPUTATIONSET) >

<!ELEMENT EXECUTESERVICE (SERVICEID, INPARAMSET?)>

<!ELEMENT SERVICEEXECUTED (SERVICEID, OUTPARAMSET?)>

<!ELEMENT SERVICEPROGRESS (SERVICEID, PROGRESS)>

<!ELEMENT RETRIEVECSERVICES EMPTY>

<!ELEMENT CSERVICESRETRIEVED (CCSET) >

<-- progress is given as a percentage (e.g. 15.5 = 15.5% complete) -->

<!ELEMENT PROGRESS (#PCDATA)>

<-- Computation -->

<!ELEMENT COMPUTATIONSET (COMPUTATION, COMPUTATION*) >

<!ELEMENT COMPUTATION ((%hmObjInfo;), ID, SPECID, NAME?, FUNCTIONNAME?,

INTEMPLATESET?, OUTTEMPLATESET?, MIMETYPESET?, CODESPEC?,

ETC?)>
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<!-- this is the menu entry or button name -->

<!ELEMENT FUNCTIONNAME (#PCDATA)>

<!-- Expected Time to Completion, can take the values Instant, Fast,

Medium, Slow, Very Slow -->

<!ELEMENT ETC (#PCDATA)>

<!-- specid is the same for all services that do the same thing,

only id is unique -->

<!ELEMENT SPECID (#PCDATA)>

<!ELEMENT CODESPEC (#PCDATA)>

<!ELEMENT MIMETYPESET (MIMETYPE, MIMETYPE) >

<!ELEMENT MIMETYPE (#PCDATA)>

<!ELEMENT INTEMPLATESET (INTEMPLATE, INTEMPLATE*)>

<!ELEMENT OUTTEMPLATESET (OUTTEMPLATE, OUTTEMPLATE*)>

<!-- intemplates define what input parameters are valid.

PossibleValSet is like an enumeration of possible

values. -->

<!ELEMENT INTEMPLATE (((HRANGE, LRANGE) | POSSIBLEVALSET?),

DEFAULT, NAME, TYPE)>

<!ELEMENT POSSIBLEVALSET (VALUE, VALUE, VALUE*)>

<!ELEMENT HRANGE (#PCDATA)>

<!ELEMENT LRANGE (#PCDATA)>

<!ELEMENT DEFAULT (#PCDATA)>

<!ELEMENT OUTTEMPLATE (NAME, TYPE) >

<-- Parameters -->

<!ELEMENT INPARAMSET (INPARAM, INPARAM*)>

<!ELEMENT INPARAM (NAME, PARAMVALUE)>

<!ELEMENT OUTPARAMSET (OUTPARAM, OUTPARAM*)>

<!ELEMENT OUTPARAM (NAME, PARAMVALUE, RANK?)>

<-- a paramvalue is represented here by a string, but thats string

could actually represent other XML structures -->

<!ELEMENT PARAMVALUE (#PCDATA)>
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<!ELEMENT RANK (#PCDATA)>

<!-- COMPOSITE COMPUTATIONS (CC)

the input and output parameters are to be extracted from

the actual services as specified in the COMPUTATION’s GRAPH,

i.e. a cc cannot be invoked! -->

<!ELEMENT CCSET (CC, CC*) >

<!ELEMENT CC ((%hmObjInfo;), ID, COMPUTATIONGRAPH,

FUNCTIONNAME?, NAME, SPECID)>

<!ELEMENT COMPUTATIONGRAPH ((PARALLEL | SPECID),

(PARALLEL | SPECID)*)>

<!ELEMENT PARALLEL (SPECID, SPECID, SPECID*)>
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Performatives

E.1 KQML Performatives

KQML aims to serve several needs of inter-agent communication. These can be sum-

marised as:

� querying and information passing (e.g. evaluate, ask-if, tell)
� managing multiple responses to queries (e.g. ask-all, stream-all, standby, ready,

next)
� managing capability definition and dissemination (e.g. advertise, recommend)
� managing communications (e.g. register, forward, broadcast)

The list of KQML Performatives in Alphabetical Ordering (referring the proposition

passed as ‘content’):

achieve

advertise tell my friends that I can process a message like the one in content

ask-if ask the other peer whether it supports a particular service?

ask-all return all results of this service in one message

ask-one return one result of this service in one message

broadcast forward the content to all components that you know of

broker-one asks a broker to resolve the message to one result via another component

and return it in a forward

broker-all asks a broker to resolve the message to all results via another component and

return it in a forward

delete-one

delete-all
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deny

discard throw away all the remaining responses that are waiting

eos end of stream marker for stream-all

error last message was malformed, i.e. I couldn’t parse it

forward send content onto the component named in the to: field insert

next requests the next response that is waiting (see standby)

ready the response is now ready

recommend-one returns a component that can (and will) resolve this message

recommend-all returns all components that can (and will) resolve this message

recruit-one asks a broker to resolve the message to one result via another component

and return it directly

recruit-all asks a broker to resolve the message to all results via another component and

return it directly

register here I am, my name is X rest requests all the responses that are waiting (fol-

lowed by a eos)

sorry last message was OK but I don’t know what to do with it

standby I will let you know when the response is ready

stream-all return all results of this service in a series of messages

subscribe inform me of all messages of type content

tell asserts a truth about the ls/hb

transport-address change of address

unadvertise tell others that I cannot process a message like the one in content

uninsert

unregister I’m off, my name was X

untell asserts a falsehood about the ls/hb

unachieve

undelete

E.2 FIPA’s Agent Communication Language

FIPA’s Agent Communication Language (ACL) distinguishes more clearly between agent

management and speech acts. Therefore, some of the functionality is part of the agent

management (e.g. register) and some is part of ACL.

FIPA Communicative Acts:

accept-proposal the action of accepting a previously submitted proposal to perform an

action

agree the action of agreeing to perform some action
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cancel canceling some previously requested action

cfp call for proposals to perform a given action

confirm sender confirms to receiver that a proposition is true

disconfirm sender informs receiver that a proposition is false

failure I tried it but it didn’t work

inform sender tells receiver that a proposition is true (It’s raining today)

inform-if (macro-act) tell me whether Paris is in France

inform-ref (macro-act) tell me the current Prime Minister of the UK

not-understood I’d like to do it but I don’t understand it

propose submitting a proposal to perform a certain action

query-if asking the receiver whether a proposition is true

query-ref asking another agent for the object referred to by an expression. E.g. ask for

available services

refuse the action of refusing to perform a given action, and explains why

reject-proposal the action of rejecting a proposal

request sender requests the receiver to perform some action, e.g. open a file

request-when sender requests the receiver to perform an action when event occurs

request-whenever sender requests the receiver to perform some action as soon as some

proposition becomes true and thereafter each time the proposition becomes true

again.

subscribe request notifications whenever the referenced object changes
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FOHM SoFAR Ontology

F.1 The Definition Language

The SoFAR agent framework (described in Section 8.2) communicates using sets of re-

lated Predicates (or truth statements), these are in term made up of Literals, atomic values

such as numbers or strings, and Terms collections of literals and terms that are in turn used

by predicates. These sets of predicates are known as ontologies and represent a subset of

the statements you can make about the world.

Before writing agents it is necessary to create an ontology with which they will com-

municate. This is done by writing an XML file that is then parsed by the SoFAR ontology

compiler. The XML defines a hierarchy of predicate objects and includes comments on

each field that is converted to Javadoc in the final Java source files.

F.2 The FOHM XML Definition

Listed below is the latest version of the FOHM SoFAR ontology. This version is almost

complete but does not yet include the context objects described in Section 7.4.3.

<!-- Last edited 29-11-00 -->

<ontology name="Fohm">

<package>sofar.users.dem97r.ontology.fohm</package>

<import>sofar.ontology.base.*</import>

<import>sofar.ontology.web.*</import>

<import>sofar.ontology.multimedia.*</import>

<import>sofar.ontology.actions.*</import>
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<url>http://www.sofar.ecs.soton.ac.uk/</url>

<version>1.0</version>

<author>Dave Millard</author>

<comment>The Fundamental Open Hypertext Model (FOHM) is

an attempt to define a common model that captures all the

functionality of three different hypertext domains.

Navigational, Spatial and Taxonomic Hypertext. </comment>

<vector name="BindingVector" type="Binding"/>

<vector name="StringVector" type="String"/>

<term name="ReferencableObject" extends="Predicate" abstract="yes">

<comment>These are objects that may be Referenced by an

Association (via an ObjectRef) </comment>

</term>

<term name="Association" extends="ReferencableObject">

<comment>An Association is FOHM’s way of expressing a

link. It represents a relationship between 0 or more

objects (other ReferencableObjects). It contains a

featurespace - a list of attributes for each

member of the Association must provide a value. For

example the feature space of a Navigational Link is a

single attribute "direction".</comment>

<field type="StorageID" name="id">

<comment>the id that locates this object

(could be UndefinedID)</comment>

</field>

<field type="String" name="relationshiptype">

<comment>the type (i.e. "Supports", "Explains")</comment>

</field>

<field type="String" name="description">

<comment>a description of this association

(i.e. "Published Papers")</comment>

</field>

<field type="String" name="structuretype">

<comment>the structure (i.e. "List", "DSet")</comment>

</field>



218

<field type="BindingVector" name="bindings">

<comment>list of (Binding)s in this association</comment>

</field>

<field type="StringVector" name="featurespace">

<comment>ordered list of (String)s defining

binding requirements</comment>

</field>

</term>

<term name="Data" extends="ReferencableObject">

<comment>In FOHM all forms of data have to be wrapped

by a Data object. This can be a file identified by a

unique ID or URL but also might be the content of the

Data itself. </comment>

<field type="StorageID" name="id">

<comment>the id that locates this object

(could be UndefinedID)</comment>

</field>

<field type="MediaObject" name="content">

<comment>The Media itself (can be content or

a reference)</comment>

</field>

</term>

<term name="UndefinedReferencableObject"

extends="ReferencableObject">

<comment>This is used when stating that a Reference

points at ’any’ ReferencableObject</comment>

</term>

<term name="Reference" abstract="yes" extends="Predicate"/>

<term name="ObjectRef" extends="Reference">

<comment>In FOHM the endpoint of a link is always

fixed on an object called a Reference. An ObjectRef

refers to a ReferencableObject

and may optionally point into that

object. (i.e. the third paragraph of a text document,

or a particular region of an image)</comment>
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<field type="StorageID" name="id">

<comment>the id that locates this object

(could be UndefinedID)</comment>

</field>

<field type="ReferencableObject" name="target">

<comment>the (ReferencableObject) it is

referencing</comment>

</field>

<field type="LocSpec" name="locspec">

<comment>the LocSpec used (could be an

UndefinedLocSpec)</comment>

</field>

</term>

<term name="IDRef" extends="Reference">

<comment>This refers

to an object that is identified by ID. To retrieve the

object becomes the responsibility of the recipient.

(The ID cannot be guaranteed to reference a

ReferencableObject, but should do to be valid).

</comment>

<field type="StorageID" name="id">

<comment>the id that locates this object

(could be UndefinedID)</comment>

</field>

<field type="ReferencableStorageID" name="target">

<comment>the id of the target of this

Reference</comment>

</field>

<field type="LocSpec" name="locspec">

<comment>the LocSpec used (could be an

UndefinedLocSpec)</comment>

</field>

</term>

<term name="Binding" extends="Term">

<comment>A Binding is an object that binds a

particular Reference to a particular Association. It
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includes a feature vector that makes values to the

feature space of the Association (E.g. in a

navigational link it would map either "source",

"destination" or "bi-directional" to the feature

"direction").</comment>

<field type="StringVector" name="featurevalues">

<comment>ordered list of (String)s </comment>

</field>

<field type="Reference" name="reference">

<comment>the (Reference) bound</comment>

</field>

</term>

<term name="StorageID" abstract="yes" extends="Term"/>

<term name="ReferencableStorageID" abstract="yes"

extends="StorageID"/>

<term name="UniqueID" extends="ReferencableStorageID">

<comment>A StorageID is an object that represents a

storage locator for a hypermedia object. The UniqueID

is the first type of StorageID. It contains a globally

unique identifier that can identifies an

object.</comment>

<field type="String" name="idvalue">

<comment>the unique id </comment>

</field>

</term>

<term name="UndefinedID" extends="StorageID">

<comment>A StorageID is an object that represents a

storage locator for a hypermedia object. The

UndefinedID is the second type of StorageID. An

UndefinedID inside an object says that the object

is not stored anywhere (it was probably generated

dynamically).</comment>

</term>
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<term name="LocalID" extends="ReferencableStorageID">

<comment>A StorageID is an object that represents a

storage locator for a hypermedia object. A LocalID

specifies a name that is unique only to this

communication. This allows dynamic content that is

not stored anyway to be referenced by ID within a

single communication.</comment>

<field type="String" name="localvalue">

<comment>the local id </comment>

</field>

</term>

<term name="LocSpec" abstract="yes" extends="Term"/>

<term name="NameLoc" extends="LocSpec">

<comment>A LocSpec is an object that represents a

selection within an object. The NameLoc identifies a

selection by name. For example in a CAD system it

could refer to specific objects within a file (Data

object).</comment>

<field type="String" name="name">

<comment>the referenced name</comment>

</field>

</term>

<term name="RegionLoc" extends="LocSpec">

<comment>A RegionLoc is an object that represents a

region within an object. The RegionLoc identifies a

selection by defining zero or more axes and then

defining selections on those axes. For example for an

image it might define two axes x and y and then points

on those axes would select a polygon.</comment>

<field type="RegionContent" name="regioncontent">

<comment>the content of the loc</comment>

</field>

<field type="Region" name="region">

<comment>the region of the loc</comment>
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</field>

</term>

<term name="UndefinedLoc" extends="LocSpec">

<comment>A LocSpec is an object that represents a

region within an object. However it is possible to

select an entire object rather than a region. In

these cases an UndefinedLoc is used.</comment>

</term>

<term name="Region" abstract="yes" extends="Term"/>

<term name="TimeRegion" extends="Region">

<comment>A TimeRegion defines a region via a start

and end point (given in secs)</comment>

<field type="String" name="start">

<comment>the start time in seconds (offset

from the beginning of the media)</comment>

</field>

<field type="String" name="end">

<comment>the end time in seconds (offset

from the beginning of the media)</comment>

</field>

</term>

<term name="TextRegion" extends="Region">

<comment>A TextRegion defines a region via a start

and end character</comment>

<field type="String" name="start">

<comment>the start character (offset from

the beginning of the file)</comment>

</field>

<field type="String" name="end">

<comment>the end character (offset from

the beginning of the file)</comment>

</field>

</term>
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<term name="ImageRegion" extends="Region">

<comment>An ImageRegion defines a region via two

x,y coordinate pairs</comment>

<field type="String" name="x1">

<comment>the x value of the upper left

co-ordinate</comment>

</field>

<field type="String" name="y1">

<comment>the y value of the upper left

co-ordinate</comment>

</field>

<field type="String" name="x2">

<comment>the x value of the lower right

co-ordinate</comment>

</field>

<field type="String" name="y2">

<comment>the y value of the lower right

co-ordinate</comment>

</field>

</term>

<term name="UndefinedRegion" extends="Region">

<comment>An UndefinedRegion is used to indicate

that a region has not been defined and that the

location depends on the RegionContent</comment>

</term>

<term name="RegionContent" abstract="yes" extends="Term"/>

<term name="DataRegionContent" extends="RegionContent">

<comment>A RegionContent is an object that

represents the contents of a selection within an

object. The DataRegionContent holds that content

explicitly.</comment>

<field type="MediaObject" name="selection">

<comment>the media selected</comment>
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</field>

</term>

<term name="UndefinedRegionContent" extends="RegionContent">

<comment>A RegionContent is an object that represents

the contents of a selection within an object. The

UndefinedRegionContent is used when no regioncontent

has been specified explicitly.</comment>

</term>

<term name="StoreAssociation" extends="Action">

<field type="Association" name="assoc"/>

</term>

<term name="StoreData" extends="Action">

<field type="Data" name="data"/>

</term>

<term name="StoreReference" extends="Action">

<field type="Reference" name="ref"/>

</term>

</ontology>
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