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Abstract

The paper introduces a construction algorithm for sparse
kernel modelling using the leave-one-out test score also
known as the PRESS (Predicted REsidual Sums of Squares)
statistic. An efficient subset model selection procedure is
developed in the orthogonal forward regression framework
by incrementally maximizing the model generalization ca-
pability to construct sparse models with good generaliza-
tion properties. The proposed algorithm achieves a fully
automated model construction without resort to any other
validation data set for costly model evaluation.

Index Terms — orthogonal forward regression, structure
identification, cross validation, generalization.

1 Introduction

The least squares (LS) principle has been fundamental to
data modelling and the training mean square error (M SE)
has always played a centra role in model structure con-
struction and parameter estimation. Itiswell known that the
model based on the pure LS estimate tend to be unsatisfac-
tory for an ill conditioned design matrix, and may over-fit
the noise in training data to produce an oversized ill-posed
model with high parameter estimate variances. To produce
amodel with good generalization capabilities, model selec-
tion criteria such as the Akaike information criterion (A1C)
[1], local regularization and optimal experimental design
[2]{4] incorporate some sorts of model structure regular-
ization with the basic training MSE criterion. In forward
regression setting [5], whichis a practical way of construct-
ing akernel model from alarge data set, local regularization
and optimal experimental design criteria are known to offer
better solutions[2]-{4], compared with the AIC.

In order to achieve amodel structure with improved model
generalization, it is natural that a model generalization ca-
pability cost function should be used in the overall model
searching process, rather than only being applied as a mea-
sure of model complexity. Because the evaluation of the
model generalization capability isdirectly based on the con-

cept of crossvalidation [6], it is highly desirable to develop
model selective criteria based on the concept of cross vali-
dation that can distinguish model generalization capability
during the model construction process. A fundamental con-
cept in cross validation is that of delete-1 cross validation
in statistics, and the associated concept of the leave-one-out
test score also known as the PRESS (Predicted REsidual
Sums of Squares) statistic [7]-{9]. The leave-one-out test
score is a measure of model generalization capability. Tra-
ditional model structure determination based on the leave-
one-out test score or PRESS statistic is however inherently
inefficient and computationally prohibitive.

The paper introduces an efficient automatic model con-
struction algorithm that directly optimizes model general-
ization capability. The computational efficiency is achieved
through incrementally minimizing the leave-one-out test
score in an orthogonal forward regression framework,
which minimizesthe effort in the computation of the PRESS
statistic. Further significant reduction in computation arises
owingto aforward recursiveformulato compute PRESS er-
rors. In the proposed algorithm, the PRESS statistic, which
is a measure of model generalization capability, is applied
directly in the orthogonal forward regression model struc-
ture construction process as a cost function in order to op-
timize the model generalization capability. The proposed
algorithm achieves a fully automatic model selection pro-
cedure without resorting to another validation data set for
model assessment. Two examples are included to demon-
strate the effectiveness of the approach.

2 Kernel modelling

Consider ageneral discrete stochastic nonlinear system rep-
resented by [10]:

y() = Fly(t =1),- -yt = ny),ult = 1),---,

u(t —na); 0) +£(t) = F(x(1);0) +£(2) D

where u(t) and y(t) are the system input and output vari-
ables, respectively, n,, and n, are positive integers repre-
senting the known lags in u(t) and y(t), respectively, the



observation noise £(¢) is uncorrelated with zero mean and
varianceo?, x(t) = [y(t—1)---y(t—ny) u(t—1) - - - u(t—
n,)]”T denotes the system input vector, f(e) isa priori un-
known system mapping, and @ is an unknown parameter
vector associated with the model structure. The system
model (1) isto be identified from an [V-sample system ob-
servational dataset Dy = {x(t),y(t)}¥ ;.

Consider the modelling of the unknown dynamical process
(1) by using alinear-in-the-parameters model of the form:

}jml )0k +&(t) =pT(HO+£() ()

where M is the number of candidate regressors, p(t) =
[p1(x(t)) - par(x()]T, 6 are the model weights and
0 = [01-- 0] the model parameter vector. The model
(2) for 1 <t < N canbewritten in the matrix form as

y=PO+¢ ©)

wherey = [y(1)---y(N)]T is the desired output vec-
tor, 5 = [¢(1)---&(N)]T is the residual vector, and P =
[P1---pm] isthe N x M regression matrix with p; =
[pj( x(1)) - -pj(x(N))]", 1 < j < M. An orthogonal de-
composition of P can be expressed as

P=WA (4

where A = {a;; } isan M x M upper triangular matrix with
unity diagonal elementsand W isan NV x M matrix having
orthogonal columnsthat satisfies

WTW = diag{nla"'aﬂM} (5)

with ki, = wl'wy, 1 <k < M. Themodel (3) can alterna-
tively be expressed as

= (PA™')(AO) +€£=Wg+¢ (6)

inwhichg = [g; - - gn]7 isthe orthogonal weight vector.
Knowing g, the original model weight vector 6 can be cal-
culated from A8 = g. The space spanned by the original
model bases pi.(t) = pr(x(t)), 1 < k < M, isidentica to
that spanned by the orthogonal bases w, (t), 1 < k < M,
and the model (2) is equivalently expressed by

y(t) =w' (g + &) (7)

wherew () = [wy (t) - - war (£)] 7.

3 Orthogonal forward regression using PRESS statistic

Consider the model selection problem for modelling (1) by
aset of K models, indexed by £ = 1,2,---, K, that are
based on avariety of model structures. Denote these models
asy(t|t—1) if they areidentified using all the N datapoints
in D . To optimize the model generalization capability, the

model selection criteria are often based on cross-validation
[6], and one commonly used version of cross validation is
called delete-1 cross validation [8],[9]. Theideais that, for
every model, each data point in the training data set D  is
sequentially set asidein turn, amodel is estimated using the
remaining N — 1 data points, and the prediction error is de-
rived using only the data point that was removed from the
estimation data set. Specificaly, let D ) pe the resulting
data set by removing the ¢-th data point from Dy, and de-
note the k-th model estimated using D" asg{ " (|t — 1)
and the related predicted model residual at ¢ as:

et —1) = y(t) -

The leave-one-out test score or the mean square PRESS er-
ror [8],[9] for the k-th model (" (¢|¢ — 1) is obtained by
averaging all these prediction errors:

2 1 &
B (67— 1) | = 5 X (67l -

To select the best model from the K candidates g, (t|t — 1),
1 < k < K, the same modelling process is applied to al
the K models, and the predictor with the minimum PRESS
statistic is selected, i.e. the ny-th model is selected if

gy (e - 1). €)

1))2. )

ng = arg min {E{( =0 (44 — ))2” (10)
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For linear-in-the-parameters models, the PRESS statistic

can be generated without actually sequentially splitting the

training data set and repeatedly estimating the associated

models[8]. Consider that an M-term model g as(t|t — 1) is

identified using Dy based on the model form of (2). The

PRESS errorsfj(\;t) (t|t — 1) can be calculated using [8],[9]:
g (el = 1)

GOt -1 = yt) -
Enr (1)

= - (11
1—p” (k) (PTP) " p(k)

where &y (t) = y(t) — ym (|t — 1). Obviously, choos-
ing the best subset model that minimizes the PRESS statis-
tic quickly becomes computationally prohibitive even for
a modest M -term model set. Moreover, the PRESS error
(11) itself is computational expensive because the matrix
inversion involved. However, if we choose only to incre-
mentally minimizethe PRESS statistic in an orthogonal for-
ward regression manner with an efficient computation of the
PRESS error, the model selection procedure based on the
PRESS statistic becomes computationally affordable.

It can readily be shown that the PRESS error ¢ {7 (]t — 1)
for the M -term orthogonal weight model (7) is given by:

et — 1) = y(t) — a5t — 1)

_ Enm(t) _ Smlt (12)

1-wt)T (WITW + A) " w(t) Bult

| —



assuming that regularization is applied with aregularization
parameter A, where A = diag{\,---,\} isan M x M
diagona matrix and

BM(t) -1— Z w?(t)

Y (13)

>~
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Consider the orthogonal forward regression, in which a sub-
set model of the k regressors (k < M) is selected from the
full model set consisting of the M initial regressors given
by (7). The PRESS errors (12) and (13) can be written, by
replacing M with avariable model size k, as

el -1 = S0 (a4)
where .
2
s =1-3 (15)

i=1
and & (t) is the model residual associated with the sub-

set model structure consisting of the k& selected regressors.
B (t) can be written as arecursive formula, given by

2
B1(0) = o (1) — B (19)

As is in the conventional orthogona LS agorithm [5], a
Gram-Schmidt procedure is used to construct the orthogo-
nal basis w; in a forward regression manner. At each re-
gression step k, the PRESS statistic can be computed with:

B (6 e =)

g1 _ 1 &1
P {ﬂz(w] > @

and this is used as the regressor selective criterion for
the model construction which minimizes this mean square
PRESS error. Note that the function .J; is concave ver-
sus k, and there exists an “optimal” model size ny such
that for £k < ny J, decreases as k increases, while for
k > ng Jy increases as k increases [11]. This property,
i.e. AJ = Jgy1 — Ji changesthe sign at certain model size
k, can be applied to construct the automatic algorithm.

Jr

The proposed algorithm selects significant regressors that
minimizesthe PRESS statistic, with agrowing model struc-
ture until AJ > 0 at a desired model size ng, where the
contribution of the (n.4+1)th regressor in model approxima-
tion becomes insignificant. Thus the agorithm terminates
at Jng,, > Jn,, Wherethe model is optimized based on the
minimization of the PRESS statistics at .J,,,. Note that nei-
ther aseparate criterion to terminate the selection procedure
nor any iteration of the procedure is needed. The proposed
agorithm based on the standard Gram-Schmidt procedure
is summarized in Appendix, in which the orthogonal ba-
sis w; is constructed in a forward regression manner. In

this algorithm a small fixed positive regul arization parame-
ter, e.g. A = 104, is used to improve parameter estimation
variance. Note that the algorithm selects only those model
terms which satisfy E[w}, , (t)] # 0. Thus any numerical
ill-conditioning problem is automatically avoided.

4 Numerical examples

Two examples were used to demonstrate the effectiveness
of the proposed model construction algorithm.

Example 1. Consider using aradia basis function (RBF)
network to approximate an unknown scalar function

sin(x)

flz) = , —10 <z <10. (18)
Four hundred training datawere generated fromy = f(z)+
&, wherethe input z was uniformly distributed in [—10, 10]
and the noise ¢ was Gaussian with zero mean and standard
deviation 0.2. Thefirst two hundred samples were used for
training and the last two hundred data points for possible
model validation. The Gaussian basis function

_ .2
pi(x) = exp <_M> (19

T

272

was used, with a kernel width 72 = 10.0. All the two hun-
dred training data points were used as the candidate RBF
center set for ¢;. Two hundred noise-free data f(z) with
equally spaced z in[—10, 10] were also generated as an ad-
ditional testing data set for evaluating model performance.
The regularization parameter was fixedto A = 0.001.

Fig. 1 depictsthe evolution of thetraining M SE and PRESS
statistic in log scale during the orthogonal forward regres-
sion with atypical set of noisy training data using the pro-
posed algorithm. It can be seen from Fig. 1 that the PRESS
statistic continuously decreased until Jg = 0.041589 >
J7 = 0.041589, and the algorithm terminated with a 7-term
model. Fig. 2 shows the noisy training points y and the un-
derlying function f () together with the mapping generated
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Figure 1: Evolution of training MSE and PRESS statistic versus
model size for simple scalar function modelling.
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Figure 2: Simple scalar function modelling problem: a typical
set of noisy training data y (dots), underlying function
f(z) (thin curve), model mapping (thick curve), and
selected RBF centers (circles). The 7-term model was
identified without the help of avalidation set.

using this 7-term model identified. Table 1 summarizes the
modelling accuracy (mean + standard deviation) averaged
over ten sets of different data realizations. It can be seen
that the proposed al gorithm was able to produce very sparse
models with excellent generalization performance, without
the need to use additional validation set for model evalua-
tion during the model construction process.

Example 2. This example constructed a model represent-
ing the relationship between the fuel rack position (input
u(t)) and the engine speed (output y(¢)) for aLeyland TL11
turbocharged, direct injection diesel engine operated at low
engine speed. Detailed system description and experimental
setup can be found in [12]. The data set, depicted in Fig. 3,
contained 410 samples. The first 210 data points were used
in training and the last 200 pointsin possible model valida-
tion. A RBF model with the input vector

x(t) = [y(t = 1) u(t — 1) u(t - 2)]" (20)

and the Gaussian basis function of variance 72 = 1.69 was
used to model the data. All the 210 training data pointswere
used as the candidate RBF centre set and the regularisation
parameter was fixedto A = 10~7.

Fig. 4 shows the evolution of the training MSE and PRESS
statistic during the forward regression procedure, where it
can be seen that the PRESS statistic continuously decreased
until Jo4 = 0.000548 > Jo3 = 0.000548. The algo-
rithm thus automatically terminated with a 23-term model.

Table 1. Modelling accuracy (mean £ standard deviation) over
ten sets of different data realizations for simple scalar
function modelling.

model terms 7.8+ 0.6
MSE over training set 0.037703 £ 0.003708
PRESS statistic 0.040725 + 0.003893
MSE over noisy test set 0.041692 + 0.002458
MSE over noise-freetest set | 0.001749 £ 0.000630
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Figure 3: Engine data set (a) input u(t) and (b) output y(t).

The modelling accuracy is summarized in Table 2. The
constructed RBF model frpr(e) was used to generate the
model prediction according to

§(t) = frer(x(t)) (21)

with the input vector x(t) given by (20). Fig. 5 depicts
the model prediction 3 (¢) and the prediction error £(t) =
y(t) — g(t) for the 23-term model constructed. Again, it is
seen that the proposed algorithm was able to produce very
sparse models with excellent generalization performance,
without the need to use additional validation set for model
evaluation during the model construction process.
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Figure 4: Evolution of training MSE and PRESS statistic versus
model size for engine data set modelling.



Table 2: Modelling accuracy for engine data set modelling. -
(=}
model terms 23 g 45
MSE over training set | 0.000449 g
PRESS statistic 0.000548 3 4
MSE over test set | 0.000487 =
g 35¢
S ,
g 3
5 Conclusions &
25

This paper has introduced an automatic mode! construc- 0 50 100 150 200 250 300 350 400

tion algorithm for linear-in-the-parameters nonlinear mod- sample
els based directly on maximizing model generalization ca- (a) Model prediction 7(t) (dashed) superimposed on
pability. The leave-one-out test score or PRESS statistic in system output y(¢) (solid)
the framework of regularized orthogonal least squares has
been derived and, in particular, an efficient recursive com- 01}
putation formulafor PRESS errors has been devel oped. The
proposed a gorithm based on orthogonal forward regression 8 o5l
combines parameter regul arization technique in orthogonal c
weight space and the PRESS statistic to optimize model }g
structure in order to achieve improved generalization capa- 2 0
bility, without resorting to another validation data set for aa
model assessment. 8 0051
1t
Appendix: Combined PRESS statistic and regularised 0 50 100 150 S::]‘;Iezw 300 350 400

orthogonal least squares for subset model selection
(b) Model prediction error £(t)
1. Initialization: initialize Jo = y'y, &(t) = y(t) and

Bo(t) = 1fort =1 N Forl < i <:M com Figure 5: Modelling performance for engine data set modelling
o (t) = =1,---,N. <i<M, .

problem. The 23-term model was constructed without

pute the help of avalidation set.
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noo= T G ’ 2. At the kth step where k > 2, for 1 < i < M and
(w( )) w? +A
L 1 i# iy, -0 #ip_ 1, COMpUtE
') = &) -uw’ g, t=1,---,N,
i 2 ; WT i
pi(t) = Bolt) - —(——t=1,--,N, Wi Wj
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N (D) wi! = pi— Y ajlw;,
i 1 1 =
Jl(z) - = Z - j=1
NS (890 0 _ (w®) ®
! k™ = (Wi Wi
Find . w®)
iy = argmin{J?, 1<i< M} (i) _ ( k ) Y
g 1 s T ,
and select (WS)) wff) +A
_ W) _ . . .
w1 =W = pi &) = G —w®)g), t=1,--,N,
it = 1) (s0)
k (t) = kal(t)_i’t:]-,"'aNa
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Find
iy =argmin{J\), 1 <i< M, i#iy,-,i #ip1}
and select
g = ag,
Wi = ““) =P, — Za]kw]
with J;, = J(’k and

fk(t) = fkfl(t) _wk(t)gk for ¢t = L---,N,

2
wi () for t=1,---,N.

Br(t) = Br—1(t) — PR

3. The selection procedure is terminated with an n4-
term model at the & = ny step, when J, > J, 1.
Otherwise, set k = k + 1, and go to step 2.
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