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The closed-loop stability issue of finite word length (FWL) realizations is investigated for digital controllers implemented
in floating-point arithmetic. Unlike the existing methods which only address the effect of the mantissa bits in floating-
point implementation to the sensitivity of closed-loop stability, the sensitivity of closed-loop stability is analysed with
respect to both the mantissa and exponent bits of floating-point implementation. A computationally tractable FWL
closed-loop stability measure is then defined, and the method of computing the value of this measure is given. The
optimal controller realization problem is posed as searching for a floating-point realization that maximizes the proposed
FWL closed-loop stability measure, and a numerical optimization technique is adopted to solve for the resulting
optimization problem. Simulation results show that the proposed design procedure yields computationally efficient
controller realizations with enhanced FWL closed-loop stability performance.

1. Introduction

The classical digital controller design methodology

often assumes that the controller is implemented exactly,

even though in reality a control law can only be realized

in finite precision. It may seem that the uncertainty

resulting from finite-precision implementation of the

digital controller is so small, compared to the uncer-

tainty within the plant, that this controller ‘uncertainty’

can simply be ignored. Increasingly, however, research-

ers have realized that this is not necessarily the case. Due

to the finite word length (FWL) effect, a casual control-

ler implementation may degrade the designed closed-

loop performance or even destabilize the designed stable

closed-loop system, if the controller implementation

structure is not carefully chosen. The effects of finite-

precision implementation have become more critical

with the growing popularity of robust controller design

methods which focus only on dealing with large plant

uncertainty (Keel and Bhattacharryya 1997, Istepanian

and Whidborne 2001). Generally speaking, there are

two types of FWL errors in the digital controller. The

first one is perturbation of controller parameters imple-

mented with FWL and the second one is the rounding

errors that occur in arithmetic operations of signals.

Typically, effects of these two types of errors are inves-

tigated separately for the reason of mathematical tract-

ability. The first type of FWL error directly concerns the

critical issue of closed-loop stability, and many studies

have investigated some closed-loop stability robustness

measures, especially for fixed-point implementation

(Fialho and Georgiou 1994, 2001, Madievski et al.

1995, Li 1998, Chen et al. 1999, Whidborne et al.

2000, 2001, Wu et al. 2001 a, b). The second type of

FWL error can also lead to instability through bounded

limit cycles or floating-point unbounded responses and

how to erase its effect on stability is the focus of the

work of many researchers in control or digital filter

system designs (Liu and Kaneko 1969, Kaneko 1973,

Miller et al. 1988, 1989, Bauer and Wang 1993,

Bauer 1995). Even when it does not arouse unstable

behaviour, the second type of FWL error can still

degrade the system performance and the effect of this

is usually measured and studied with the so-called

roundoff noise gain (Moroney et al. 1980, Williamson

and Kadiman 1989, Li and Gevers 1990, Liu et al. 1992,

Li et al. 2002).

Most works for FWL controller design adopt an

indirect strategy, which relies on the following property.

A control law can be implemented with different realiza-

tions, and these different realizations are all equivalent

if they are implemented in infinite precision. However,

different controller realizations possess different degrees

of robustness to FWL errors. The control law is

assumed to be given by some controller design methods,

which may not take into account FWL considerations,

and the FWL design is to select optimal realizations

for the given control law by optimizing some FWL

criteria. An alternative but better approach is to expli-

citly incorporate the FWL issues into the controller

design process. For example, in the work of Liu et al.

(1992), an FWL–LQG performance index was used to

describe the LQG performance under FWL environ-

ment, and a fixed-order controller realization design

method was presented to minimize this FWL–LQG
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cost function. This direct strategy should be a preferred
approach, since it does not make specific assumptions
on the controller. However, how to extend the idea of
Liu et al. (1992) to various controller design methods
is still an open problem. But this difficulty does not exist
in the indirect strategy where controller synthesis and
controller realization are two separate steps. Various
existing controller design methods can be used to attain
a transfer function or an initial realization of the con-
troller, which can then be optimized to satisfy FWL
implementation requirements.

In real-time applications where computational effi-
ciency is critical, a digital controller implemented with
fixed-point arithmetic has some advantages over floating-
point format. However, the detrimental FWL effects are
markedly increased in fixed-point implementation due
to a reduced precision. It is therefore not surprising
that previous works have focused on finding optimal
controller realizations using fixed-point arithmetic by
optimizing some FWL measures (Li and Gevers 1990,
Liu et al. 1992, Gevers and Li 1993, Fialho and
Georgiou 1994, 2001, Madievski et al. 1995, Li 1998,
Chen et al. 1999, Whidborne et al. 2000, 2001, Wu
et al. 2001 a, b, Li et al. 2002). In all the previous
works using fixed-point arithmetic, various measures,
which can be shown to link to the bits required in imple-
menting the fractional part of fixed-point representa-
tion, are optimized to produce optimal realizations.
However, the dynamic range of fixed-point representa-
tion is determined by its integer part. Overflow occurs
when there are not enough bits for the integer part.
Optimizing these measures, while minimizing the bits
required for the fractional part, may actually increase
the bits required for the integer part. Arguably, a better
approach would be to consider some measure which has
a direct link to the total bit length required.

With a decrease in price and increase in availability,
the use of floating-point processors in controller
implementations has increased dramatically. Floating-
point representation has quite different characteristics
from fixed-point representation. The dynamic range of
floating-point representation is determined by its expo-
nent part. Overflow or underflow occurs when the bits
for the exponent part are not sufficient. The effects
of finite-precision floating-point implementation have
been well studied in digital filter designs (Kalliojärvi
and Astola 1996, Rao 1996, Ralev and Bauer 1999).
However, there has been relatively little work studying
explicitly floating-point digital controller implemen-
tations. Some exceptions include Rink and Chong
(1979), Molchanov and Bauer (1995) and Whidborne
and Gu (2002). In the work by Istepanian et al.
(2000), a block-floating-point arithmetic was used, in
which control coefficients were forced to have a common
exponent and the problem was converted into a

fixed-point one. The work by Whidborne and Gu
(2002) represents a case of true floating-point implemen-
tation. In this work, a weighted closed-loop eigenvalue
sensitivity index was defined for floating-point digital
controller realizations. This index, however, only con-
siders the mantissa part of floating-point arithmetic,
under an assumption that the exponent bits are
unlimited.

This paper adopts an indirect approach to consider
the FWL parameter errors of floating-point implemen-
ted controllers. The generic contribution of this paper
is to derive a new FWL closed-loop stability measure
that explicitly considers both the mantissa and exponent
parts of floating-point arithmetic. The remainder of this
paper is organized as follows. Section 2 briefly sum-
marizes the floating-point representation and highlights
the multiplicative nature of perturbations resulting from
FWL floating-point arithmetic. Section 3 analyses the
FWL effect of floating-point arithmetic on closed-loop
stability and addresses how to measure such an effect on
floating-point implemented digital controllers. Section 4
defines a computationally tractable FWL closed-loop
stability measure for floating-point controller realiza-
tions and provides the method of computing its value.
In } 5, the optimal floating-point controller realization
problem is formulated, and a numerical optimization
technique is adopted to solve the resulting optimiza-
tion problem. Two examples are given in } 6 to demon-
strate the effectiveness of the proposed design method.
Section 7 presents a brief discussion on the direct
approach of Liu et al. (1992) and points out that the
studies on optimizing FWL realizations for a fixed
control law, such as this work, are helpful to explore
the possible way of extending the idea of Liu et al.
(1992). The paper concludes with } 8.

2. Floating-point representation

Let the floor function bxc denote the largest integer
less than or equal to real number x. It is well known that
any real number x 2 R can be represented uniquely by

x ¼ ð�1Þs � w� 2e ð1Þ

where s 2 f0, 1g is for the sign of x, w 2 ½0:5, 1Þ is the
mantissa of x, e ¼ blog2 jxj c þ 1 2 Z is the exponent
of x with Z denoting the set of integers. When x is stored
in a digital computer of finite � bits in a floating-point
format, the bits consist of three parts: one bit for s, �w

bits for w and �e bits for e. Obviously,

� ¼ 1þ �w þ �e: ð2Þ

As the finite �e bits can only support a limited exponent
range, we define e and �ee to represent the lower and upper
limits of the exponent range, respectively, and denote
the exponent range that is supported by �e bits as

Z½ e, �ee � ¼
4
fe j e 2 Z, e � e � �eeg: ð3Þ
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In fact, the exponent range Z½ e, �ee � depends not only on
�e but also on the set of real numbers which is to be
represented. As an example, consider the set of three
numbers f0:7� 2�1, � 0:9� 2, 0:8� 22g. At least two
bits are required to describe their exponents, with 00
representing �1, 01 for 0, 10 representing 1 and 11 for
2. Thus, e ¼ �1, �ee ¼ 2 and Z½�1, 2� ¼ f�1, 0, 1, 2g are
determined by the three numbers represented in this ex-
ample of exponent bits �e ¼ 2. Obviously

�ee� e ¼ 2�e � 1: ð4Þ

Overflow and underflow can occur in floating-point arith-
metic of FWL. Overflow occurs when a floating-point
scheme with Z½ e, �ee � is used to represent a real number
whose exponent is greater than �ee, while underflow
occurs when a floating-point scheme with Z½ e, �ee � is used
to represent a real number whose exponent is smaller
than e. It should be emphasized that in many practical
problems, the problem objective function is highly
sensitive to small parameter perturbation and, therefore,
small numbers shouldnot simplybe ‘underflowed’ to zero.
For a demonstration, we refer to the so-called fragility
issue (Keel and Bhattacharryya 1997). In floating-
point arithmetic with FWL, underflow should generally
be treated as seriously as overflow, and avoided if
possible.

Since �w and �e are finite, the set of numbers that is
represented by a particular floating-point scheme is not
dense on the real line. Thus the set of possible floating-
point numbers is given by

F ¼
4

(
ð�1Þs 0:5þ

X�w
i¼1

bi2
�ðiþ1Þ

 !
2e:

s 2 f0, 1g, bi 2 f0, 1g, e 2 Z½ e, �ee �

)
[ f0g: ð5Þ

When no underflow or overflow occurs, that is, the
exponent of x is within Z½ e, �ee �, the floating-point quan-
tization operator Q:R ! F can be defined as

QðxÞ¼
4 sgnðxÞ2ðe��w�1Þ

b2ð�w�eþ 1Þ
jxj þ 0:5c, for x 6¼ 0

0, for x ¼ 0:

(

ð6Þ

In the above definition, magnitude rounding is used as
the mantissa quantization format. Define the quantiza-
tion error " as

"¼
4
j x�QðxÞ j: ð7Þ

Then

" ¼ sgnðxÞjxj � sgnðxÞ2ðe��w�1Þ
b2ð�w�eþ 1Þ

jxj þ 0:5c
��� ���

¼ 2ðe��w�1Þ 2ð�w�eþ1Þ
jxj � b2ð�w�eþ1Þ

jxj þ 0:5c
��� ���

� 2ðe��w�1Þ
� 0:5: ð8Þ

From the definition of the exponent e, we have

2e � 0:5 ¼ 2blog2 jxjc � 2log2 jxj ¼ jxj: ð9Þ

Combining (8) and (9) leads to

" � jxj 2�ð�wþ1Þ: ð10Þ

Thus, when x is implemented in floating-point format of
�w mantissa bits, assuming no underflow or overflow, it
can be seen from (7) and (10) that x is perturbed to

QðxÞ ¼ xð1þ �Þ, j�j � 2�ð�wþ1Þ: ð11Þ

Clearly, the perturbation resulting from finite-precision
floating-point arithmetic is multiplicative, unlike the
perturbation resulting from finite-precision fixed-point
arithmetic, which is additive.

3. Problem statement

Consider the discrete-time closed-loop control sys-
tem, consisting of a linear time invariant plant P(z)
and a digital controller C(z). The plant model P(z)
is assumed to be strictly proper with a state-space
description ðAP,BP,CPÞ, where AP 2 R

m�m, BP 2 R
m�l

and CP 2 R
q�m. Let ðAC,BC,CC,DCÞ be a state-space

description of the controller C(z), with AC 2 R
n�n,

BC 2 R
n�q, CC 2 R

l�n and DC 2 R
l�q. A linear system

with a given transfer function matrix has an infinite
number of state-space descriptions. In fact, if ðA

0
C,

B
0
C,C

0
C,D

0
CÞ is a state-space description of C(z), all the

state-space descriptions of C(z) form a realization set

SC ¼
4

ðAC,BC,CC,DCÞ jAC ¼ T
�1
A

0
CT,

�
BC ¼ T

�1
B
0
C,CC ¼ C

0
CT, DC ¼ D

0
C

�
ð12Þ

where the transformation matrix T 2 R
n�n is an arbi-

trary non-singular matrix. Denote

X ¼ ½xj, k� ¼
4 DC CC

BC AC

" #
: ð13Þ

The stability of the closed-loop control system depends
on the eigenvalues of the closed-loop transition matrix

AðXÞ ¼
AP þ BPDCCP BPCC

BCCP AC

" #

¼
AP 0

0 0

" #
þ

BP 0

0 In

" #
X

CP 0

0 In

" #

¼
4
M0 þM1XM2 ð14Þ

where 0 denotes the zero matrix of appropriate dimen-
sion and In the n� n identity matrix. All the different
realizations X in SC have exactly the same set of closed-
loop poles if they are implemented with infinite preci-
sion. Since the closed-loop system has been designed to
be stable, all the eigenvalues �iðAðXÞÞ, 1 � i � mþ n,
are within the unit disk. Define

kXkmax ¼
4
max
j, k

jxj, kj ð15Þ
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and

gðXÞ ¼
4
min
j, k

fjxj, kj: xj, k 6¼ 0g: ð16Þ

The controller X is implemented with a floating-point
processor of �e exponent bits, �w mantissa bits and one
sign bit.

First, in order to avoid underflow and/or overflow,
both the exponent of kXkmax and the exponent of gðXÞ
should be within Z½ e, �ee � supported by the �e exponent
bits. We define an exponent measure for the floating-
point controller realization X as

�ðXÞ ¼
4
log2

4kXkmax

gðXÞ

� �
: ð17Þ

The rationale of this exponent measure becomes clear in
the following (obvious) proposition.

Proposition 1: X can be represented in the floating-
point format of �e exponent bits without underflow or
overflow, if

2�e � log2
kXkmax

gðXÞ

� �
þ 2:

Let �min
e be the smallest exponent bit length that,

when used to implement X, can avoid underflow and
overflow. It can be computed as

�min
e ¼ � � log2ðblog2 kXkmaxc � blog2 gðXÞc þ 1Þ

� �
:

ð18Þ

The measure �ðXÞ provides an estimate of �min
e as

�̂�min
e ¼

4
� b� log2 �ðXÞc: ð19Þ

It is clear that �̂�min
e � �min

e .
Second, when there is no underflow or overflow,

according to (11), X is perturbed to Xþ X �" due to
the effect of finite �w where

X �"¼
4
½xj, k�j, k� ð20Þ

represents the Hadamard product of X and " ¼ ½�j, k�.
Each element of " is bounded by �2�ð�wþ1Þ, that is

k"kmax � 2�ð�wþ1Þ: ð21Þ

With the perturbation ", �i ðAðXÞÞ is moved to
�i ðAðXþ X �"ÞÞ. If an eigenvalue of AðXþ X �"Þ is
outside the open unit disk, the closed-loop system,
designed to be stable, becomes unstable with the finite-
precision floating-point implemented X.

It is therefore critical to know when the FWL error
will cause closed-loop instability. This means that we
would like to know the largest open ‘hypercube’ in the
perturbation space, within which the closed-loop system
remains stable. Based on this consideration, a mantissa
measure for the floating-point realization X can be
defined as

�0ðXÞ ¼
4
inf fk"kmax: AðXþ X �"Þ is unstableg: ð22Þ

From the above definition, the following proposition is
obvious.

Proposition 2: AðXþ X �"Þ is stable if k"kmax <
�0ðXÞ.

Let �min
w be the mantissa bit length such that

8�w � �min
w , AðXþ X �"Þ is stable for the floating-

point implemented X with �w mantissa bits and
AðXþ X �"Þ is unstable for the floating-point imple-
mented X with �min

w � 1 mantissa bits. Except through
simulation, �min

w is generally unknown. It should be
pointed out that due to the complex non-linear relation-
ship between �w and closed-loop stability, there may
exist some odd cases of smaller mantissa bit length
�w < �min

w � 1 which regain closed-loop stability. For
example, consider the stable closed-loop system contain-
ing the plant

PðzÞ ¼
�1:66ðz� 1:2Þðz� 1:1Þðz� 0:4Þ

ðz2 � 0:35zþ 0:49Þðzþ 4Þ

and the controller CðzÞ ¼ K ¼ 0:66. When �w � 4, the
closed-loop system with the FWL implemented K is
stable, but it becomes unstable with �w ¼ 3 where the
implemented value of K is 0:6875. However, the closed-
loop regains stability with �w ¼ 2 where the imple-
mented value of K is 0:625. The system becomes unstable
again for �w ¼ 1 where the implemented value of K is
0:75. Figure 1 shows the root locus plot of this three-
order system which gives the closed-loop pole positions
for all values of K. From figure 1, it can be seen that the
system is unstable when the implemented value of K is
greater than 0:686 or less than 0:513. For this system,
�min
w is 4 rather than 2. The mantissa measure �0ðXÞ

provides an estimate of �min
w as

�̂�min
w0 ¼

4
� blog2 �0ðXÞc � 1: ð23Þ

It can be seen that �̂�min
w0 � �min

w .
Define the minimum total bit length required in

floating-point implementation as

�min
¼
4
�min
e þ �min

w þ 1: ð24Þ

Clearly, a floating-point implemented X with a bit
length � � �min can guarantee no underflow, no over-
flow and closed-loop stability. Combining the measures
�ðXÞ and �0ðXÞ results in the following true FWL
closed-loop stability measure for the floating-point
realization X

�0ðXÞ ¼
4
�0ðXÞ=�ðXÞ: ð25Þ

An estimate of �min is given by �0ðXÞ as

�̂�min
0 ¼

4
� blog2 �0ðXÞc þ 1: ð26Þ
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It is clear that �̂�min
0 � �min. The following proposition

summarizes the usefulness of �0ðXÞ as a measure for the
FWL characteristics of X.

Proposition 3: A floating-point implemented X with a
bit length � can guarantee no underflow, no overflow
and closed-loop stability, if

2��1
�

1

�0ðXÞ
: ð27Þ

Since the closed-loop stability measure �0ðXÞ is
a function of the controller realization X and �̂�min

0

decreases with the increase of �0ðXÞ, an optimal realiza-
tion can in theory be found by maximizing �0ðXÞ, lead-
ing to the optimal controller realization problem

�true ¼
4

max
X2SC

�0ðXÞ: ð28Þ

However, the difficulty with this approach is that com-
puting the value of �0ðXÞ is an unsolved open problem.
Thus, the true FWL closed-loop stability measure �0ðXÞ
and the optimal realization problem (28) have limited
practical significance. In the next section, we will
seek an alternative measure that can not only quantify
FWL characteristics of X but is also computationally
tractable.

4. A tractable FWL closed-loop stability measure

When the FWL error " is small, from a first-order
approximation, 8 i 2 f1, . . . ,mþ ng

�iðAðXþ X �"ÞÞ
�� ��� �iðAðXÞÞ

�� �� �Xlþn

j¼1

Xqþn

k¼1

@j�ij

@�j, k

�����
"¼0

�j, k:

ð29Þ

For the derivative matrix @j�ij=@" ¼ ½@j�ij=@ �j, k�, define

@j�ij

@"

����
����
sum

¼
4
X
j, k

@j�ij

@ �j, k

�����
�����: ð30Þ

Then

�iðAðXþ X �"ÞÞ
�� ��� �iðAðXÞÞ

�� �� � k"kmax

@j�ij

@"

����
"¼0

����
����
sum

:

ð31Þ

This leads to the following mantissa measure for the
floating-point realization X

�1ðXÞ ¼
4

min
i2 f1,...,mþng

1� �iðAðXÞÞ
�� ��

@j�ij=@"
��
"¼0

��� ���
sum

: ð32Þ

For those FWL errors that make (31) hold, if
k"kmax < �1ðXÞ, then j�iðAðXþ X �"ÞÞj < 1 which
means that the closed-loop remains stable under the
FWL error ". In other words, the closed-loop can
tolerate those FWL perturbations " whose norms
k"kmax are less than �1ðXÞ. The larger �1ðXÞ is, the
larger FWL errors the closed-loop system can tolerate.
Similar to (23), from the mantissa measure �1ðXÞ, an
estimate of �min

w is given as

�̂�min
w1 ¼

4
� blog2 �1ðXÞc � 1: ð33Þ

The assumption of small " is usually valid in floating-
point implementation. Generally speaking, there is
no rigorous relationship between �0ðXÞ and �1ðXÞ,
but �1ðXÞ is connected with a lower bound of
�0ðX) in some ways: there are ‘stable perturbation
hypercubes’ larger than f": k"kmax<�1ðXÞg while
there is no ‘stable perturbation hypercube’ larger than
f": k"kmax < �0ðXÞg (Wu et al. 2000, 2001 a). Hence, in
most cases, it is reasonable to take that �1ðXÞ � �0ðXÞ

and �̂�min
w1 � �̂�min

w0 . More importantly, unlike the measure

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1

−1  

−0.5

0   

0.5

1
 K=0.686

 K=0.513

Figure 1. Root locus plot of a three-order system.
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�0ðXÞ, the value of �1ðXÞ can be computed explicitly.
It is easy to see that

@j�ij

@"

����
"¼0

¼
@j�ij

@X
� X: ð34Þ

Let pi be a right eigenvector of AðXÞ corresponding to
the eigenvalue �i. Define

Mp ¼
4

p1 p2 	 	 	 pmþn

	 

ð35Þ

and

My ¼
4

y1 y2 	 	 	 ymþn

	 

¼ M

�H
p ð36Þ

where the superscript H denotes the conjugate transpose
operator and yi is called the reciprocal left eigenvector
related to pi. The following lemma is due to Li (1998).

Lemma 1: Let AðXÞ ¼ M0 þM1XM2 given in (14) be
diagonalizable. Then

@�i
@X

¼ M
T
1 y



i p

T
i M

T
2 ð37Þ

where the superscript 
 denotes the conjugate operation
and T the transpose operator.

Comments: The necessary and sufficient condition for
AðXÞ being diagonalizable is that it has mþ n linearly
independent eigenvectors. This includes two cases.
Firstly, AðXÞ has mþ n distinct eigenvalues. In this
case, we can differentiate eigenvalues simply by their
values. Secondly, the eigenvalues of AðXÞ are not all
distinct but there are mþ n linearly independent eigen-
vectors. In this case, we can differentiate eigenvalues by
their corresponding eigenvectors.

The following proposition shows that, given an X,
the value of �1ðXÞ can easily be calculated.

Proposition 4: Let AðXÞ be diagonalizable. Then

�1ðXÞ ¼ min
i2f1,...,mþng

j�ijð1�j�ijÞ

MT
1Re ½�
i y



i p

T
i �M

T
2

� �
�X

�� ��
sum

: ð38Þ

Proof: Noting j�ij ¼
ffiffiffiffiffiffiffiffiffi
�
i �i

p
leads to

@j�ij

@X
¼

1

2
ffiffiffiffiffiffiffiffiffi
�
i �i

p @�
i
@X

�i þ�
i
@�i
@X

� �

¼
1

2j�ij

@�i
@X

� �


�i þ�
i
@�i
@X

� �
¼

1

j�ij
Re �
i

@�i
@X

� �
: ð39Þ

Combining (32), (34), (39) and Lemma 1 results in this
proposition. œ

Replacing �0ðXÞ with �1ðXÞ in (25) leads to a
computationally tractable FWL closed-loop stability
measure

�1ðXÞ ¼
4
�1ðXÞ=�ðXÞ: ð40Þ

From the above measure, an estimate of �min is given as

�̂�min
1 ¼

4
� blog2 �1ðXÞc þ 1: ð41Þ

Note that the computationally tractable mantissa
measure (32) is related to the eigenvalue module sensi-
tivities with respect to (w.r.t.) the controller perturba-
tion. This is similar to the case of controller realizations
implemented in fixed-point arithmetic, where an existing
FWL precision measure is defined as (Wu et al. 2001 a)

�f ðXÞ ¼
4

min
i2f1,...,mþng

1� j�iðAðXÞÞj

k@j�ij=@Xksum
: ð42Þ

The idea underpinning �1ðXÞ in (32), namely the sensi-
tivity w.r.t. controller perturbation, is the same as the
sensitivity w.r.t. controller parameters that underpins
�f ðXÞ in (42). In fact, it is well known that with an
FWL fixed-point implementation, X is perturbed to
Xþ " and

j�i ðAðXþ "ÞÞj � j�i ðAðXÞÞj �
Xlþn

j¼1

Xqþn

k¼1

@j�ij

@�j, k

�����
"¼0

�j, k:

ð43Þ

Obviously, in the fixed-point case, we have

@j�ij

@"

����
"¼0

¼
@j�ij

@X
ð44Þ

and the fixed-point FWLmeasure�f ðXÞ can be written as

�f ðXÞ ¼ min
i2 f1,...,mþng

1� j�iðAðXÞÞj

k@j�ij=@" j"¼0ksum
: ð45Þ

On the other hand, from (32) and (34), it can be seen that

�1ðXÞ ¼ min
i2f1,...,mþng

1� j�iðAðXÞÞj

ð@j�ij=@XÞ �X
�� ��

sum

ð46Þ

which is clearly linked to the eigenvalue module sensi-
tivities w.r.t. the controller parameters. The Hadamard
product in (46) merely reflects the multiplicative charac-
teristic of floating-point perturbations.

It is also useful to compare the proposed measure
with the previous results for floating-point format, espe-
cially the most recent one given by Whidborne and Gu
(2002). For a complex-valued matrix Y ¼ ½ yj, k�, define
the Frobenius norm

kYkF ¼
4

X
j, k

y
j, k yj, k

 !1=2

: ð47Þ

Under an assumption that the exponent bits are unlim-
ited, the computationally tractable weighted closed-loop
eigenvalue sensitivity index addressed in Whidborne and
Gu (2002) is given by

U ðXÞ ¼4
Xmþn

i¼1

�iUiðXÞ ð48Þ
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where �i are non-negative weighting scalars and UiðXÞ
are single-eigenvalue sensitivities defined by

UiðXÞ ¼
4
kXk

2
F

@�i
@X

����
����2
F

: ð49Þ

The thinking behind the above definition is as
follows. From a first-order approximation, it can easily
be shown that

j�iðAðXþ X �"ÞÞ � �iðAðXÞÞj � k"kmax kXkF
@�i
@X

����
����
F

:

ð50Þ

Therefore, for those multiplicative perturbations
bounded by k"kmax, a small UiðXÞ will limit the result-
ing change of the corresponding eigenvalue within a
small range.

The first obvious observation is that �1ðXÞ considers
both the mantissa and exponent of floating-point arith-
metic and is therefore able to handle all the aspects of
underflow, overflow and closed-loop stability, while
U ðXÞ only considers the mantissa part of floating-point
arithmetic and is thus ‘incomplete’. Secondly, it can
be seen that U ðXÞ deals with the sensitivity of �i while
�1ðXÞ (�1ðXÞ) considers the sensitivity of j�ij. It is well
known that the stability of a discrete-time linear time-
invariant system depends only on the moduli
of its eigenvalues. As U ðXÞ includes the unnecessary
eigenvalue arguments in consideration, it is generally
conservative in comparison with �1ðXÞ. Third, �1ðXÞ
uses kð@j�ij=@XÞ�Xksum while U ðXÞ uses kXkFk@�i=@XkF
in checking the change of an eigenvalue. It is easy to
see that

j�iðAðXþ X � "ÞÞj � j�iðAðXÞÞj � k"kmax

@j�ij

@X
� X

����
����
sum

� k"kmaxkXkF
@�i
@X

����
����
F

:

ð51Þ

Obviously, kð@j�ij=@XÞ �Xksum gives a more accurate
limit than kXkFk@�i=@XkF does on the change of the
corresponding eigenvalue module due to the multiplica-
tive perturbations. This again implies that �1ðXÞ is less
conservative than U ðXÞ in estimating the robustness of
closed-loop stability with respect to controller perturba-
tions. The fourth observation is that �1ðXÞ provides an
estimate of �min, �̂�min

1 in (41), while U ðXÞ cannot provide
information on bit length to the designer. One reason is
that the measure �1ðXÞ consists of two components, with
�1ðXÞ addressing the stability margin and eigenvalue
sensitivity linked to the mantissa bits and �ðXÞ consider-
ing the exponent bits, while U ðXÞ only focuses on the
eigenvalue sensitivity partially linked to the mantissa
part. The other reason is that, over all the closed-loop
eigenvalues, �1ðXÞ considers the ‘worst’ one while U ðXÞ
considers a ‘weighted average’.

Finally, it is worth emphasizing that the generic idea
of considering both the exponent, which defines the
dynamic range, and mantissa, which defines the accu-
racy or precision, of the floating-point arithmetic is a
sensible one and should be extended to other situations
where different representation schemes, such as fixed-
point format, are used.

5. Optimization procedure

As different realizations X have different values of
the FWL closed-loop stability measure �1ðXÞ, it is of
practical importance to find an ‘optimal’ realization
Xopt that maximizes �1ðXÞ. The controller implemented
with this optimal realization Xopt needs a minimum bit
length and has a maximum tolerance to the FWL error.
This optimal controller realization problem is formally
defined as

�¼
4

max
X2SC

�1ðXÞ: ð52Þ

Assume that a controller has been designed using some
standard controller design method. This controller,
denoted as

X0 ¼
4

D
0
C C

0
C

B
0
C A

0
C

" #
ð53Þ

is used as the initial controller realization in the above
optimal controller realization problem. Let p0i be a right
eigenvector of AðX0Þ corresponding to the eigenvalue �i
and y0i be the reciprocal left eigenvector related to p0i.
The definition of SC in (12) means that

X¼
4
XðTÞ ¼

Il 0

0 T
�1

" #
X0

Iq 0

0 T

" #
ð54Þ

where detT 6¼ 0. It can then be shown that

AðXÞ ¼
Im 0

0 T
�1

" #
AðX0Þ

Im 0

0 T

" #
ð55Þ

which implies that

pi ¼
Im 0

0 T
�1

" #
p0i, yi ¼

Im 0

0 T
T

" #
y0i: ð56Þ

Hence

M
T
1Re ½�
i y



i p

T
i �M

T
2

¼
Il 0

0 T
T

" #
M

T
1Re ½�
i y



0i p

T
0i�M

T
2

Iq 0

0 T
�T

" #

¼
4

Il 0

0 T
T

" #
(i

Iq 0

0 T
�T

" #
ð57Þ
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with (i ¼ M
T
1Re ½�
i y



0i p

T
0i�M

T
2 . Define the cost function

f ðTÞ ¼
4

max
i 2 f1, ... ,mþng

Il 0

0 T
T

" #
(i

Iq 0

0 T
�T

" # !
� XðTÞ

�����
�����
sum

j�ijð1� j�ijÞ

0
BB@

� log2
4kXðTÞkmax

gðXðTÞÞ

1
CCA
: ð58Þ

In the above definition of the cost function f ðTÞ

log2
4kXðTÞkmax

gðXðTÞÞ

is simply �ðXÞ which estimates the cost of exponent bits,
while

max
i2 f1,...,mþng

Il 0

0 T
T

" #
(i

Iq 0

0 T
�T

" # !
� XðTÞ

�����
�����
sum

j�ijð1� j�ijÞ

is the inverse of �1ðXÞ which estimates the cost of
mantissa bits. Hence f ðTÞ can be used to measure the
cost of total bits.

With the introduction of this cost function, the
optimal controller realization problem (52) can then be
posed as the optimization problem

��1
¼ min

T2Rn�n

detT 6¼0

f ðTÞ: ð59Þ

As the optimization problem (59) is highly non-linear,
global optimization algorithms, such as the genetic
algorithm (Man et al. 1998) and adaptive simulated
annealing (Chen and Luk 1999), can be adopted to
provide a (sub)optimal similarity transformation Topt.
Global optimization methods are, however, computa-
tionally demanding. Local optimization algorithms,
such as Rosenbrock and Simplex algorithms (Beveridge
and Schechter 1970), are computationally simpler but
run more risks of only attaining a local solution. Our
experience with the optimization problem (59) suggests
that, unlike optimizing the mantissa measure �1ðXÞ

alone, the exponent measure �ðXÞ in the criterion �1ðXÞ
helps to bound the solution set and the cost function
f ðTÞ appears to behave better. It is also helpful to use
some good initial controller realization, such as the open-
loop balanced realization (Laub et al. 1987), as the initial
guess for the optimization routine. With Topt, the opti-
mal realization Xopt can readily be computed.

6. Numerical examples

Two examples are used to illustrate the proposed
design procedure for obtaining optimal FWL floating-
point controller realizations and to compare it with the

method given in Whidborne and Gu (2002). In the simu-
lation, the bit length for implementing the state variables
was sufficiently long that the second type of FWL error
can be neglected.

Example 1: This example, taken from Gevers and Li
(1993), has been studied by Whidborne and Gu (2002).
The discrete-time plant is given by

AP ¼

3:7156eþ 0 �5:4143eþ 0 3:6525eþ 0 �9:6420e� 1

1 0 0 0

0 1 0 0

0 0 1 0

2
666664

3
777775

BP ¼ 1 0 0 0
	 
T

CP ¼ 1:1160e� 6 4:3000e� 8 1:0880e� 6 1:4000e� 8
	 


:

The initial realization of the digital controller is given by

A
0
C ¼

2:6743eþ 0 �5:7446eþ 0 2:5101eþ 0 �9:1782e� 1

2:8769e� 1 �2:7446e� 2 �6:9444e� 1 �8:9358e� 3

�3:3773e� 1 9:8699e� 1 �3:2925e� 1 �4:2367e� 3

�8:3021e� 2 �3:1988e� 3 9:1906e� 1 �1:0415e� 3

2
666664

3
777775

B
0
C ¼ 1:0959eþ 6 6:3827eþ 5 3:0262eþ 5 7:4392eþ 4

	 
T
C

0
C ¼ 1:8180e� 1 �2:8313e� 1 5:0006e� 2 6:1722e� 2

	 

,

D
0
C ¼ 0:

Based on the proposed FWL closed-loop stability mea-
sure, the optimization problem (59) was formed and
solved using the MATLAB routine fminsearch.m,
which is a local optimization search algorithm, to obtain
an optimal transformation matrix

Topt ¼

7:7275eþ3 �1:0904eþ2 �2:1292eþ2 9:8042eþ1

6:9729eþ3 2:1370eþ3 4:4988eþ1 2:1812eþ2

6:2844eþ3 3:9092eþ3 2:9303eþ2 2:9240eþ2

5:5879eþ3 5:2862eþ3 5:5027eþ2 3:4367eþ2

2
66664

3
77775

and the corresponding optimal realization of the digital
controller Xopt given by

A
opt
C ¼

�1:4441eþ 0 �1:0500eþ 0 �6:0800e� 2 �1:0102e� 1

3:8412eþ 0 2:4034eþ 0 6:7143e� 2 1:7402e� 1

�1:3159eþ 1 �4:5856eþ 0 5:3403e� 1 �6:8843e� 1

3:2330e� 1 �2:1078eþ 0 �6:6254e� 2 8:2322e� 1

2
666664

3
777775

B
opt
C ¼ 1:6342eþ 2 �2:5378eþ 2 9:1370eþ 2 �6:1106e� 2

	 
T
C

opt
C ¼ 8:9770eþ 1 �1:0310eþ 2 �2:8290eþ 0 �8:0995eþ 0

	 

,

D
opt
C ¼ 0:

An ‘optimal’ controller realization problem was
given in Whidborne and Gu (2002) based on the
weighted closed-loop eigenvalue sensitivity index (48).
We will use the index ‘s’, rather then ‘opt’, to denote
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the solution of this ‘optimal’ controller realization prob-
lem. For this example, the transformation matrix sol-
ution obtained using the MATLAB routine
fminsearch.m given in Whidborne and Gu (2002) is

Ts¼

8:1477eþ3 0 0 0

7:0104eþ3 2:2671eþ3 0 0

6:1991eþ3 3:9989eþ3 1:1558eþ2 0

5:6761eþ3 5:2680eþ3 3:5814eþ2 1:5299eþ1

2
666664

3
777775

with the corresponding controller realization Xs given by

A
s
C ¼

�9:9795e�1 �9:5988e�1 �4:7357e�3 �1:7234e�3

2:1137eþ0 1:6951eþ0 �2:2171e�2 5:2689e�3

�1:4177eþ0 6:1144e�1 6:7870e�1 �9:0420e�2

1:9428eþ0 �2:4577eþ0 4:2234e�1 9:4079e�1

2
666664

3
777775

B
s
C ¼ 1:3451eþ2 �1:3439eþ2 5:3833eþ1 �2:5633eþ1

	 
T
C

s
C ¼ 1:5673eþ2 �1:1677eþ2 2:7885eþ1 9:4430e�1

	 

,

D
s
C ¼ 0:

It is obvious that the true minimum exponent bit
length �min

e for a realization X can directly be obtained
by examining the elements of X. The true minimum
mantissa bit length �min

w , however, can only be obtained
through simulation. That is, starting from a very large
�w, reduce �w by one bit and check the closed-loop
stability. The process is repeated until there appears
closed-loop instability at �w ¼ �wu. Then �min

w ¼

�wu þ 1. Table 1 summarizes the various measures, the
corresponding estimated minimum bit lengths and the
true minimum bit lengths for the three controller reali-
zations X0, Xs and Xopt, respectively. It can be seen
that the floating-point implementation of X0 needs
at least 26 bits (20 mantissa bits and five exponent
bits) while the implementation of Xopt needs at least 13
bits (eight mantissa bits and four exponent bits). The
reduction in the bit length required is 13 (12-bit reduc-
tion for the mantissa part and 1-bit reduction for the
exponent part). Comparing Xopt with Xs, it can be seen
that Xopt needs one bit less in the exponent part and one
bit less in the mantissa part.

Note that any realization X 2 SC implemented in
infinite precision will achieve the exact performance
of the infinite-precision implemented X0, which is the

designed controller performance. For this reason, the
infinite-precision implemented X0 is referred to as
the ideal controller realization Xideal. Figure 2 compares
the unit impulse response of the plant output y(k) for the
ideal controller Xideal with those of the 8-mantissa-bit
plus 5-exponent-bit implemented Xs and 8-mantissa-bit
plus 4-exponent-bit implemented Xopt. The 8-mantissa-
bit implemented X0 quickly becomes unstable and is not
shown here. From figure 2, it can be seen that the closed-
loop system with the 13-bit implemented Xopt is stable
while the system with the 14-bit implemented Xs is
unstable. Figure 3 compares the unit impulse response
of y(k) for Xideal with those of the 9-mantissa-bit plus
5-exponent-bit implemented Xs and the 9-mantissa-
bit plus 4-exponent-bit implemented Xopt. Again the
9-mantissa-bit implemented X0 is unstable and is not
shown. It can be seen that the response with the 14-bit
implemented Xopt is clearly closer to the ideal perfor-
mance than that of the 15-bit implemented Xs.

Example 2: This example is taken from a continuous-
time H1 robust control example studied in Keel and
Bhattacharryya (1997) and Whidborne et al. (2001).
The continuous-time plant model and H1 controller
are sampled with a sampling period of 4ms to obtain
the discrete-time plant

AP ¼
1:9980eþ 0 �9:9800e� 1

1 0

" #

BP ¼ 1 0
	 
T

, CP ¼ 3:9880e� 3 �4:0040e� 3
	 


and the initial realization of the digital controller

A
0
C ¼

2:3985eþ 0 �1:8017eþ 0 4:0317e� 1

1 0 0

0 1 0

2
664

3
775

B
0
C ¼ 1 0 0

	 
T
C

0
C ¼ �7:3591eþ 1 1:4661eþ 2 �7:3018eþ 1

	 

,

D
0
C ¼ 1:2450eþ 2:

The MATLAB routine fminsearch.m was used to
solve the optimization problem based on the FWL

Realization �1 �̂�min
1 �1 �̂�min

w1 � �̂�min
e �min �min

w �min
e

X0 2.6644e�9 30 8.5182e�8 23 3.1971eþ1 5 26 20 5

Xs 4.7588e�6 19 8.7907e�5 13 1.8473eþ1 5 15 9 5

Xopt 9.5931e�6 18 1.5229e�4 12 1.5875eþ1 4 13 8 4

Table 1. Various measures, corresponding estimated minimum bit lengths and true minimum bit lengths for
three controller realizations X0, Xs and Xopt of Example 1.
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Figure 2. Unit impulse response y(k) for Xideal, 14-bit implemented Xs (eight mantissa bits and five exponent bits) and 13-bit
implemented Xopt (eight mantissa bits and four exponent bits) of Example 1.
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Figure 3. Unit impulse response y(k) for Xideal, 15-bit implemented Xs (nine mantissa bits and five exponent bits) and 14-bit
implemented Xopt (nine mantissa bits and four exponent bits) of Example 1.
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closed-loop stability measure presented in this paper to
obtain an optimal transformation matrix

Topt ¼

1:8515eþ 2 7:2829e� 1 9:7266eþ 0

1:8540eþ 2 1:6951eþ 1 �2:3477eþ 0

1:8566eþ 2 3:3300eþ 1 �1:4508eþ 1

2
64

3
75

and the corresponding optimal realization of the digital
controller Xopt with

A
opt
C ¼

1:0006eþ 0 �8:8718e� 2 9:9092e� 2

�2:7168e� 2 1:0178eþ 0 �4:5738e� 1

�3:6546e� 2 3:2513e� 2 3:8007e� 1

2
664

3
775

B
opt
C ¼ �6:8999eþ 0 9:2711eþ 1 1:2450eþ 2

	 
T
C

opt
C ¼ �3:6469e� 2 2:7168e� 2 �6:1334e� 1

	 

,

D
opt
C ¼ 1:2450eþ 2:

Based on the method of the weighted closed-loop eigen-
value sensitivity index (Whidborne and Gu 2002), the
MATLAB routine fminsearch.m found a transformation
matrix solution

Ts ¼

1:8446eþ 2 0 0

1:8500eþ 2 2:9433eþ 0 0

1:8553eþ 2 5:9061eþ 0 8:3753e� 3

2
64

3
75

with the corresponding controller realization Xs given by

A
s
C ¼

9:9711e� 1 �1:5840e� 2 1:8305e� 5

3:2077e� 5 9:9558e� 1 �1:1505e� 3

�2:8762e� 2 2:5216e� 1 4:0584e� 1

2
64

3
75

B
s
C ¼ 5:4211e� 3 �3:4074e� 1 1:2019eþ 2

	 
T
C

s
C ¼ �2:9785e� 2 2:6087e� 1 �6:1154e� 1

	 

,

D
s
C ¼ 1:2450eþ 02:

Table 2 summarizes the various measures, the corre-
sponding estimated minimum bit lengths and the true
minimum bit lengths for X0, Xs and Xopt. Obviously,
the implementation of X0 needs at least 30 bits
(25 mantissa bits and four exponent bits) while the
implementation of Xopt requires at least 12 bits
(seven mantissa bits and four exponent bits). It can be
seen that the optimization results in a reduction of 18

bits for the mantissa part. It is interesting to note that
the realization Xs, while reducing 16 bits in the required
�min
w , actually increases the required �min

e by one bit,
compared with X0. This is not surprising, since the
measure U ðXÞ completely neglects the exponent part.
Figure 4 compares the unit impulse response of the
plant output y(k) for the ideal controller Xideal with
those of the 14-bit implemented Xs (eight mantissa bits
and five exponent bits) and the 14-bit implemented Xopt

(nine mantissa bits and four exponent bits). It can be
seen that the closed-loop system with the 14-bit imple-
mented Xopt is stable while the system with the 14-bit
implemented Xs is unstable. Figure 5 compares the unit
impulse response of y(k) for Xideal with those of the 15-
bit implemented Xs (nine mantissa bits and five expo-
nent bits) and the 15-bit implemented Xopt (ten mantissa
bits and four exponent bits). The performance of the 15-
bit implemented Xopt is clearly closer to the ideal per-
formance than that of the 15-bit implemented Xs.

7. Brief discussion on the direct approach

A limitation of the indirect strategy, one may argue,
is that it relies on a fixed control law or transfer func-
tion. The direct approach removes this assumption and
appears to be a better approach in dealing with the
FWL issues. Apart from the excellent work by Liu et al.
(1992), we are only aware of another case of successfully
adopting a direct strategy (Yang et al. 2000), where the
standard H1 control design was extended to include
FWL controller parameter perturbations, and a
Riccati inequality approach was developed to directly
obtain optimal controller realizations satisfying both
the H1 robustness and FWL closed-loop stability
requirements. Except for H1 and LQG, it seems to be
very difficult to extend various controller design
methods to this direct strategy. The indirect approach,
however, is very flexible. Controller synthesis is gener-
ally a highly complicated task, involving many trade-offs
for various conflicting requirements. Even when a direct
method can be found, the indirect approach is still use-
ful, as it can be used to further optimize a controller
realization obtained with the direct approach.

To see where the difficulties are for the direct
approach, let us discuss how to extend the work of

Realization �1 �̂�min
1 �1 �̂�min

w1 � �̂�min
e �min �min

w �min
e

X0 2.6767e�11 37 2.8122e�10 31 1.0506eþ1 4 30 25 4

Xs 3.1047e�6 20 7.6679e�5 13 2.4697eþ1 5 15 9 5

Xopt 5.8446e�6 19 8.2771e�5 13 1.4162eþ1 4 12 7 4

Table 2. Various measures, corresponding estimated minimum bit lengths and true minimum bit lengths for
three controller realizations X0, Xs and Xopt of Example 2.
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Figure 4. Unit impulse response y(k) for Xideal, 14-bit implemented Xs (eight mantissa bits and five exponent bits) and 14-bit
implemented Xopt (nine mantissa bits and four exponent bits) of Example 2.
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Figure 5. Unit impulse response y(k) for Xideal, 15-bit implemented Xs (nine mantissa bits and five exponent bits) and 15-bit
implemented Xopt (ten mantissa bits and four exponent bits) of Example 2.
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Liu et al. (1992) to the generic setting. First define the
controller realization set

UC ¼
4
fX jX 2 R

ðlþnÞ�ðqþnÞ,

X is a controller realization stabilizing PðzÞg:

ð60Þ

Assume that a performance index can be formulated to
reflect the needs of all the performance requirements,
including FWL implementation considerations. Extend-
ing the idea of Liu et al. (1992) to this generic setting,
the optimization problemy for FWL controller realiza-
tion design can be defined as

	¼
4

min
X0 2UC

min
T2Rn�n

detT6¼0

JðX0,TÞ: ð61Þ

The cost function

JðX0,TÞ ¼
4

lim
k!1

E y
T
ðkÞQyðkÞ þ u

T
ðkÞRuðkÞ

	 

ð62Þ

depends on X0 and T, where E½	� represents the average
value, yðkÞ is the output of P(z), uðkÞ is the output of
C(z), Q and R are given matrices. It is easy to see that
the problem (61) can be broken into two parts and
solved with the two coupling optimization problems:


ðX0Þ ¼
4

min
T2Rn�n

detT6¼0

JðX0,TÞ ð63Þ

	 ¼ min
X0 2UC


ðX0Þ: ð64Þ

Providing that the optimization problem (63) can be
solved exactly, for example, some close-form solution
of the problem (63) can be obtained, the optimization
problem (64) can be tackled and hopefully solved suc-
cessfully. Apart from a few performance cost functions,
how to solve the generic optimization problem (61) is
still an open problem. It is also clear that the first part
(63) of the optimization problem (61) has the same form
as our optimization problem (59). Thus, the studies on
optimal realizations for a fixed control law, like the one
in this paper, may provide useful insights to help solve
the more generic optimal realization problem (61).

8. Conclusions

The closed-loop stability issue of finite-precision
realizations has been investigated for digital controller
implemented in floating-point arithmetic. A new compu-
tationally tractable FWL closed-loop stability measure
has been derived for floating-point controller realiza-
tions. Unlike the existing methods, which only consider

the mantissa part of the floating-point scheme, the pro-
posed measure takes into account both the exponent
and mantissa parts of the floating-point format. It has
been shown that this new measure yields a more
accurate estimate for the FWL closed-loop stability.
Based on this FWL closed-loop stability measure, the
optimal controller realization problem has been formu-
lated, which can then be solved using numerical optimi-
zation algorithms. Two numerical examples have
demonstrated that the proposed design procedure yields
computationally efficient controller realizations suit-
able for FWL floating-point implementation in real-
time applications. The idea of considering both the
dynamic range and precision of FWL floating-point
arithmetic is generic and can be used to deal with
the similar problems in FWL fixed-point arithmetic
and FWL block-floating-point arithmetic. In fact, the
implementation of a digital controller should include
not only the selection of realizations but also the choice
of number representation formats. Further research
is currently being conducted to develop the design
procedure for choosing an optimal controller realization
as well as an appropriate representation scheme for a
given control law to achieve the best performance and
computational efficiency.
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