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Abstract

AC electrokinetics is the study of the movement of polarisable particles under the influence

of AC electric fields. The fields are applied to a suspension of particles by planar

microelectrode structures and one particular design, the interdigitated bar electrode has been

used in both dielectrophoretic (DEP) field flow fractionation and travelling wave

dielectrophoresis. This paper presents, numerical solutions of the DEP and travelling wave

forces for an interdigitated electrode array energised with either a 2- or 4-phase signal.

The electrorotational torque experienced by the particle in the 4-phase travelling wave array is

also calculated. The solutions are compared with previous results. r 2002 Elsevier Science

B.V. All rights reserved.
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1. Introduction

AC electrokinetic forces are produced by the interaction of non-uniform AC
electric fields with polarisable particles [1,2], providing a method for controlled
movement. Techniques based on these forces have been used for the analysis and
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separation of a range of particle types, particularly biological particles such as cells,
bacteria and viruses [2–4]. Dielectrophoretic (DEP) field flow fractionation
experiments and travelling wave dielectrophoresis (twDEP) are frequently used
in these applications. Both techniques use long arrays of interdigitated bar
electrodes fabricated on planar surfaces, in the first case with relative phases of
01 and 1801 applied alternately to the electrodes [5,6] and in the second case,
four signals with a successive phase shift of 901 are applied to consecutive electrodes
[7,8].

Since the forces in AC electrokinetics are generated by the application of an
electric field, the strength and direction of the field are required for the analysis of the
experimental results. Although the bar electrode array has a simple geometry, neither
the electric potential nor the field has an analytical expression. An analytical
approximation for the potential and forces in the electrode array has been
demonstrated using series expansion, both using Green’s functions [9] and Fourier
series [10,11]. It should be noted that both of these are approximations to a geometry
for which an analytical representation has not been determined.

Numerical methods, such as point charge, charge density, finite difference and
integral equation methods have been used to determine electric fields and DEP forces
from electrode arrays [12–14].

This paper presents results of the numerical solution of the potential, electric field
and the DEP force in the DEP and twDEP electrode arrays using the finite element
method [15]. The force equations are re-written to obtain expressions for the force in
terms of the real and imaginary components of the field phasor [16,17]. This
approach permits the solution of the time-averaged DEP force, as well as the
electrorotational torque, in a single step.

For the work presented in this paper, the commercially available Finite Element
Solver FlexPDEs (PDE Solutions Inc., USA) [18] was used. This package is a
generic partial differential equation (PDE) solver. In two-dimensional problems, the
program generates a mesh of triangular elements with second- or third-order
polynomial functions. Here third-order polynomials were used.

The solutions are then compared with analytically and numerically calculated
values. The validity of the numerical solutions and the importance of the boundary
conditions are discussed.

2. Theory

2.1. Background to the electrical problem

In order to determine the electric field and the electrokinetic forces, the electrical
potential is solved for a defined space and set of boundary conditions that represent
the electrode array. In this paper phasor notation will be used, with an arbitrary
potential oscillating at frequency o defined as

fðx; tÞ ¼ Re½ *fðxÞeiot�; ð1Þ
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where i2 ¼ �1; x is the position, Re[y] indicates the real part of and the tilde
indicates the phasor *f ¼ fR þ ifI: The electric field is then given by Eðx; tÞ ¼
Re½ *EðxÞeiot� where the vector *E ¼ �r *f ¼ �ðrfR þ irfIÞ is the corresponding
phasor.

For currents and frequencies typically found in AC electrokinetic problems,
Maxwell’s equations can be reduced to the quasi-electrostatic form [17].

E ¼ �rf; the electric field is irrotational;

r � Jþ
@r
@t

¼ 0; the charge conservation equation;

r �D ¼ r; Gauss0s equation;

where J is the conduction current, r is the free charge density and D is the electric
flux density or the displacement vector. For a homogeneous linear dielectric with
permittivity e and conductivity s; J ¼ sE and D ¼ eE; and the equation for the
potential phasor is

r � ððsþ ioeÞr *fÞ ¼ 0: ð2Þ

For a homogeneous medium, this reduces to Laplace’s equation for the real and
imaginary components of the phasor, respectively

r2fR ¼ 0 and r2fI ¼ 0: ð3Þ

In this work these equations, together with boundary conditions appropriate to the
particular type of electrodes array, are solved by the finite element solver.

2.2. The dielectrophoretic force

The DEP force arises from the interaction of the non-uniform electric field and
the dipole moment induced in the particle, assuming that the higher order terms can
be neglected [1,2]. For linear, isotropic dielectrics and an applied potential of a single
frequency, the relationship between the electric field phasor *E and the dipole moment
phasor *pðoÞ for a spherical particle is *pðoÞ ¼ uaðoÞ *E; where a is the effective
polarisability of the particle and u is the volume of the particle. The time-averaged
force on the particle is given by [1]

/FS ¼ 1
2 Re½ð*p � rÞ *E

�
�: ð4Þ

Substituting for the dipole moment phasor *p; this expression can be re-written and
simplified to the expression 2uað *E � rÞ *E

�
¼ uarð *E � *E

�
Þ � uar� ð *E� *E

�
Þ: Here, two

vector identities have been used: first rðA � BÞ ¼ ðB � rÞAþ ðA � rÞBþ B� ðr �
AÞ þ A� ðr � BÞ with the fact that the electric field is irrotational, i.e. r� *E ¼ 0;
second r� ðA� BÞ ¼ ðB � rÞA� ðA � rÞBþ ðr � BÞA� ðr � AÞB with Gauss’s law
with zero free charge density, i.e. r � *E ¼ 0: The time-averaged force is then [19]

/FS ¼ 1
4
uRe½arð *E � *E

�
Þ� � 1

2
uRe½ar� ð *E� *E

�
Þ�: ð5Þ

The first term on the right-hand side is the DEP force experienced in an electric field
with a spatially varying magnitude but with no spatial variation in phase, such as
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that used in DEP field flow fractionation. In this case, the second component is zero.
In an electric field with a spatial phase variation such as in twDEP, the second term
is non-zero. This expression is equivalent to what Wang et al. refer to as general
dielectrophoresis [20].

In this paper, the two components of the force will be considered separately for
ease of reference and will be referred to as the DEP and twDEP components of the
force. Inserting the expressions for the phasors gives:

/FDEPS ¼ 1
4
uRe½a�rðjRe½ *E�j2 þ jIm½ *E�j2Þ

¼ 1
4
uRe½a�rðjrfRj

2 þ jrfIj
2Þ; ð6Þ

/FtwDEPS ¼ � 1
2
u Im½a�ðr � ðRe½ *E� � Im½ *E�ÞÞ

¼ � 1
2
u Im½a�ðr � ðrfR �rfIÞÞ: ð7Þ

The expressions Re½ *E� ¼ �rfR and Im½ *E� ¼ �rfI refer to the real and imaginary
components of the electric field phasor, respectively.

The electrorotational torque [1] can also be calculated for the case of the travelling
wave array, or indeed for any system with a spatially varying phase. The torque is
given by

/CS ¼ 1
2 Re½*p� *E

�
� ¼ 1

2 uRe½a *E� *E
�
�

¼ u Im½a�ðrfR �rfIÞ: ð8Þ

It should be noted that measurement of the rate of rotation during a twDEP
experiment would give an independent means of determining Im[a] for the particle.

The expressions given for the force and torque here (Eqs. (6)–(8)) are suitable for
the numerical method used in this work. Since the boundary conditions for the real
and imaginary parts of the complex phasor can be independently and completely
defined, the real and imaginary parts of the phasor can be solved independently. The
resulting solutions for the phasor can then be used to determine the time-averaged
forces and torque without involving a time stepped calculation such as used in
Ref. [14].

2.3. Boundary conditions and simplifications

2.3.1. General

There are several boundary conditions common to both the two-electrode
dielectrophoresis array and the four-electrode travelling wave array, which are
therefore specified the same way for both problems.

First, since the electrodes are long compared to their width, the problem can be
considered to be two dimensional.

At heights much greater than the typical electrode dimension, the potential and
the electric field both go to zero. In the numerical problem, if the upper boundary is
sufficiently far from the electrodes, either a Dirichlet condition ð *f ¼ 0Þ or a
Neumann condition q *f=qn ¼ 0 can be specified.
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The electrodes are considered to be infinitely thin, a valid approximation since the
thickness of the electrode is B100 nm and the width of the gaps/electrodes greater
than B10 mm. The electrodes are therefore represented by a section of the bottom
boundary with an appropriate value of the potential. It is important to note that the
resulting solution will be incorrect very close to the electrode edges, as discussed in
[9] since the numerical problem is different from the experimental situation.
However, in this region the rapid variation of the electric field means that the dipole
approximation for the DEP force is invalid, and so inaccuracies in the field solution
are not so important.

The remainder of the lower boundary represents the interface between the
electrolyte above the electrodes and the glass of the substrate below. The condition at
this interface is that both the potential and the normal component of the total
current (conduction plus displacement) are continuous. This can be simplified to a
Neumann boundary condition for the potential in the electrolyte (q *f=qn ¼ 0; where
#n is the normal to the boundary) by the following argument. The normal component
of the total current must be continuous, i.e.

ðsg þ ioegÞ *Eg � #n ¼ ðsel þ ioeelÞ *Eel � #n; ð9Þ

where the subscript g signifies glass and el electrolyte. Values of the conductivity of an
electrolyte are sel ¼ 102421021 Sm–1 and the conductivity of glass can be considered
to be zero. The relative permittivity of water is B80 and of glass is B3. Putting these
values in Eq. (9) it can be seen that the normal component of the electric field in the
electrolyte at the interface is negligible compared to that of the glass for all
frequencies. Therefore, the solution space can be simplified to just the electrolyte with
the condition q *f=qn ¼ 0 on the lower boundary between the electrodes. This is also
the exact boundary condition if two semi-infinite media are considered (water and
glass separated by a flat interface). In this case, the potential can be considered to be
created by a 2D charge distribution on the electrodes and these charges will always
generate a field tangential to the plane of the electrodes. This is not true for finite
media since image charges are induced on the top and bottom interfaces.

In Ref. [11], the lower boundary condition was assumed to be a linear change in
potential between the electrodes. In this paper, the potential, fields and forces will
also be solved with this boundary condition and compared with the Fourier series
analysis of Ref. [11]. This comparison is necessary in order to validate the numerical
calculation of the forces and also to estimate the error of the numerical solution.

The remaining boundary conditions, i.e. those for the sides of the problem and for
the potential on the different electrodes, depend on the configuration of the
electrodes and the applied signals.

2.3.2. The dielectrophoretic array

The values for the real and imaginary parts of the potential phasor at the
electrodes are shown in Fig. 1a. Since for this array there are only two signals with a
difference in phase of 1801, the problem has a spatially independent phase. As can be
seen, fI is zero and only fR needs to be solved, with the boundary conditions as
shown in the figure.
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The boundary conditions repeat every second electrode and are symmetrical,
implying that the problem space does not need to be larger than two electrodes. The
problem space can be further reduced to a quarter of this size using symmetry planes
as shown in Fig. 1b. The basic cell covers one half of one electrode, chosen
arbitrarily in this case to be that with positive potential V0; and half of the adjacent
gap. The vertical edge of the problem space running through the electrode is a line of
even symmetry, i.e. qfR=qn ¼ 0 and that running through the centre of the gap is a
line of odd symmetry, fR ¼ 0:

2.3.3. The travelling wave array

The values for the real and imaginary parts of the potential phasor at the
electrodes are as shown in Fig. 2a. The basic problem space covers four adjacent
electrodes, after which the boundary conditions on the electrodes repeat. Further
simplifications can be made to the problem space using other symmetries. The

Fig. 1. (a) A schematic diagram of the electrode array with 2-phases applied as in dielectrophoresis

experiments. The vertical lines mark the period over which the system repeats. Also shown are the values

for the potential f; the potential phasor *f and the value of fR on each electrode. The imaginary part of

the phasor, fI; is zero everywhere. (b) The smallest possible problem space required for correct solution of

the problem. The solid lines indicate this unit cell with a line of even symmetry on the left and even

symmetry on the right and the single half-electrode required. The dotted lines indicate the images of the

unit cell demonstrating that the problem is completely described.
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minimum problem space that must be solved is one quarter of the four-electrode
space as shown in Fig. 2b and c, covering the region between the centres of two

adjacent electrodes and the entire gap between. In this paper, the electrodes in the
solution space were chosen to be 01 and 901. The rest of the problem space is defined
using even and odd symmetry boundary conditions. Fig. 2b shows the basic cell for
the real part of the phasor fR with the boundary conditions and the ‘‘images’’ of the
potentials created by the symmetry boundaries. Fig. 2c shows the same scheme for
the imaginary part of the phasor fI: This defines the complete problem in this case.

Fig. 2. (a) A schematic diagram of the 4-phase travelling wave electrode array where the vertical lines

indicate the length over which the system repeats. Also shown are the values for the potential f; the
potential phasor *f and the real, fR; and imaginary, fI; parts the potential phasor. The basic unit cell for
the travelling wave electrode array (indicated by the solid lines) with the boundary conditions for the real

part of the potential phasor is shown in (b) and for the imaginary part in (c). The dotted lines demonstrate

how the mirror planes describe the complete electrode array.
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Comparison of Fig. 2b and c shows that the conditions for fI are the mirror image
of those for fR about the centre of the gap. This implies that the solution for fI will
also be the mirror image of fR about the same line. Therefore, only fR needs to be
solved, the solution then being mirrored around the vertical line through the middle
of the gap to give fI:

2.4. Non-dimensional equations

A method for avoiding extreme numbers in numerical calculations is to scale the
variables according to typical values. In this paper, the potential will be scaled with
V0; the amplitude of the applied signals, and the distances will be scaled with d; the
distance between the centre of the electrode and the centre of the adjacent gap. This
gives the non-dimensional potential *f0 ¼ *f=V0 and displacement x0 ¼ x=d: The non-
dimensional potentials also satisfy Laplace’s equation

V0

d2
r02 *f0 ¼ 0 ) r02 *f0 ¼ 0:

The expressions for the force components are then

/FDEPS ¼ 1
4
uRe½a�

V 2
0

d3
r0ðjr0f0

Rj
2 þ jr0f0

Ij
2Þ; ð10Þ

/FtwDEPS ¼ �1
2
u Im½a�

V2
0

d3
ðr0 � ðr0f0

R �r0f0
IÞÞ:

The potential only has to be solved once for any particular ratio of electrode/gap
width. The resulting non-dimensional solution can then be scaled for any distance d;
applied potential V0; particle volume u or effective frequency-dependent polarisa-
bility a:

3. The dielectrophoretic array—results and discussion

Fig. 3 shows the problem space for the DEP array with the complete boundary
conditions for the potential f0

R: on the electrode f0
R ¼ 1; on the left hand and upper

edges qf0
R=qn ¼ 0; and at the right-hand edge f0

R ¼ 0: The condition on the bottom
edge between the electrodes was qf0

R=qn ¼ 0: The distance along the base of the
solution space is d; which is 1 in dimensionless units, the electrode width is d1 and the
gap width is d2: Initially, the problem was solved with d1 ¼ d2 ¼ d: The height h of
the solution space is required to be much greater than d and was set to be 10.

3.1. Results

The potential and magnitude of the electric field are shown in Fig. 4a and b. The
vector r0jr0f0

Rj
2 in the expression for the DEP force is shown in Fig. 4c, with the

direction vectors plotted separately from the magnitude, which is plotted
logarithmically as contours. Away from the electrodes, above y0B1; the vectors
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point straight towards the electrode plane. Moving downwards from this height, the
vectors point more and more towards the electrode edge at x0 ¼ 0:5: The pattern of
the DEP force vectors is symmetrical about a vertical line through the electrode edge,
an observation consistent with the fact that the electric field (Fig. 4b) is also
symmetrical about the same line. This is different from previous calculations [11]
where approximations to the boundary condition between the electrodes were made.

Examining Fig. 4c, it can be seen that above y0B1 the magnitude of the vector
function is constant with x across the array, as is the magnitude of the electric field.
In addition, the magnitudes of the field and r0jr0f0

Rj
2can be matched to an

exponentially decreasing function of the height, i.e. of the form

f ¼ Ae�ky: ð11Þ

According to a general Fourier analysis of the problem, the exponential factor k

should be equal to 2p=l; where l is the spatial period of the problem [11]. The
magnitudes of the electric field, r0f0

R and the vector r0jr0f0
Rj

2 along a vertical line
are plotted logarithmically in Fig. 5a and b. As can be seen, above approximately

Fig. 3. The problem space for the dielectrophoresis array showing the complete boundary conditions. The

space covers one half of an electrode and half of the adjacent gap. The distance along the base is

dimensionless length 1, equivalent to characteristic distance d : The height h is much greater than the width

of the problem space.
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y0 ¼ 1 (y ¼ d), the magnitudes can be matched to the exponentially decreasing
functions shown in the figures. For the electric field magnitude, the exponential
factor kE was p=2 and the coefficient AE was 1.6947. The values of the coefficient and
factor for jr0jr0f0

Rj
2j are shown in Fig. 5b. Re-writing Eq. (6) and substituting for

the dimensionless height in the exponential gives the complete expression for the
DEP force component in this region:

/FDEPS ¼ �ADEPuRe½a�
V2

0

d3
eð�kDEPy=dÞ #y; ð12Þ

Fig. 4. The solution of the problem in the 1� 1 region close to the electrode. (a) The calculated potential

f0
R and (b) the electric field magnitude jr0f0

Rj: (c) The vector r0jr0f0
Rj

2 calculated from the potential

shown as separate vector direction and magnitude plots. The scale on the magnitude plots for both the

field and r0jr0f0
Rj

2 are log10.
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where kDEP ¼ p and ADEP ¼ 2:2534: These coefficients were calculated from the
dimensionless problem and Eq. (12) gives the value of the force for any applied
potential V0 or d as long as the electrode width to gap width ratio is 1:1.

3.2. Comparison with Fourier series solution

Comparison with the values for these constant derived using Fourier series
analysis [11] shows a discrepancy. Calculating the value of AE and ADEP from the
first-order term in the Fourier series gives values of 1.8006 and 2.54648, respectively.
Calculating the percentage difference of these values from the numerically calculated
values gives 6.3% for AE and 13.0% for ADEP: This information is summarised in
Table 1.

The difference in the values for the coefficient ADEP arises from the fact that in the
Fourier series analysis, the potential was calculated for a different boundary
condition between the electrodes. Instead of the Neumann condition used here, the
potential was assumed to change linearly along the bottom surface between the
electrodes.

In order to validate the numerical method used in this work, the problem was
solved a second time using identical boundary conditions to those used for the
Fourier series analysis. Again, above y0 ¼ 1; the magnitude of r0f0

R and r0jr0f0
Rj

2

can be matched to Eq. (11). The values of kE and kDEP were found to be the same as
for the Neumann boundary condition. The numerically determined values of AE and
ADEP (see Table 1) agree closely with the Fourier series analysis (errors of 0.016%
and 0.013%, respectively).

The good agreement with the analytical Fourier series solution demonstrates that
the numerical method used here produces valid results with an estimated error of
0.01%. It also shows that the value of the force calculated at distances far from the

Fig. 5. The magnitude of (a) the electric field r0f0
R and (b)r0jr0f0

Rj
2 plotted along a vertical line running

through x0 ¼ 0:5: The scale was log10 and the two magnitudes follow exponentially decreasing functions

above y0B1:
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electrodes is dependent on the boundary condition assigned at y0 ¼ 0 between the
electrodes.

3.3. Different electrode/gap width ratios

As a further investigation of the relationship between the DEP force far from the
electrodes and the geometry of the electrodes, the problem was solved for different
ratios of electrode width d1 to gap width d2: The values for the exponential
coefficients kDEP were, for all cases, within 0.03% of p as expected. The values of
ADEP for several different ratios are shown in Table 2, along with the value
calculated from the Fourier series solution together with the difference between the
two expressed as a percentage.

As the ratio between the electrode and gap width increases, the numerically
calculated value for ADEP increases and the difference between it and the Fourier
series value decreases to B1.5% in the case of a ratio of 4:1. For low values of the
ratio, the difference becomes much larger, with a difference of 56% for a ratio of 1:4.

Table 2

Numerically calculated values of the coefficient ADEP in the exponential approximation of the

dielectrophoretic force for a variety of electrode/gap ratios, as well as the values calculated from the

Fourier series analysis and the percentage difference

Electrode/gap

ratio d1:d2

ADEP

(numerically determined)

ADEP

(Fourier series solution)

% Fourier from numerical

4:1 2.9954 3.039588939 1.47

3:1 2.9112 2.983385829 2.48

2:1 2.7339 2.864788976 4.79

1:1 2.2534 2.546479089 13.0

1:2 1.6657 2.148591732 28.0

1:3 1.3448 1.932049654 43.7

1:4 1.1462 1.79946248 56.0

Table 1

Numerically calculated values of the coefficients for the exponential approximation of the electric field and

the dielectrophoretic force at sufficient distance from the electrodes

Boundary condition

in gap

kE AE kDEP ADEP % difference from

Fourier

Numerical solution:

constant current

qf0
R=qn ¼ 0

1.5708 1.6947 3.1412 2.2534 13.0

Numerical solution:

linear potential

1.5708 1.8009 3.1414 2.5468 0.013

First-order Fourier

expansion

p/2 1.8006 p 2.54648
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This dependency indicates that as the gap width decreases, the exact boundary
condition on the surface between the electrodes becomes less important in
determining the force far from the electrodes.

From the experimental point of view, large values of the electrode/gap width ratio
might be the best approach since the Fourier series solution can be used to determine
particle motion. In addition, the magnitude of the DEP force far from the electrodes
is greater.

4. The travelling wave array

Although the basic geometry of the twDEP array is the same as the DEP array, a
long series of coplanar bar electrodes, the problem space is more complicated.

The minimum problem space for the travelling wave array is shown in Fig. 6 with
the boundary conditions for the potential. In this case, half of two electrodes are

Fig. 6. The problem space for the travelling wave array showing the complete set of boundary conditions.

The space covers half of each of two adjacent electrodes and the gap between. The width of the problem

space was dimensional distance 2, equivalent to twice the dimensional parameter d : The height h was much

greater than the width of the problem space.
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included in the problem space. The conditions for f0
R were: f0

R ¼ 1 on the left
electrode and f0

R ¼ 0 on the right: on the left edge, the upper edge and the bottom
edge between the electrodes, qf0

R=qn ¼ 0; and f0
R ¼ 0 on the right edge. The

conditions for f0
I were: f

0
I ¼ 0 on the left electrode and f0

I ¼ 1 on the right; on the
right edge, the upper edge and the bottom edge between the electrodes, qf0

I=qn ¼ 0;
and f0

I ¼ 0 on the left edge. The distance along the bottom edge is 2d which is a non-
dimensional distance of 2, the height h was defined to be 20. The electrode width was
again d1 and the gap width d2 and the problem was initially solved with an electrode/
width gap ratio of 1:1.

4.1. Results

The real and imaginary parts of the complex potential are shown in Fig. 7a and b.
The vectors r0ðjr0f0

Rj
2 þ jr0f0

I j
2Þ ¼ r0jr0 *f0j2 and r0 � ðr0f0

R �r0f0
IÞ for the DEP

and twDEP components of the force (Eqs. (6) and (7)) were then calculated.
The vector r0jr0 *f0j2 for the DEP force component is shown in Fig. 8a, again with

the direction vectors plotted separately from the magnitude. Above y0 ¼ 1 (y ¼ d),
the vectors point straight towards the electrode plane and below, they tend more and
more towards the electrode edges (at x0 ¼ 0:5; 1:5). As before, above y0 ¼ 1 the
magnitude of r0jr0 *f0j2 is constant with x0 across the array. Below this height,
the magnitude increases to a maximum value at the electrode edges. The pattern of
the vectors is symmetrical about a vertical line through the electrode edge, similar to
the pattern of vectors for the DEP array.

The vector r0 � ðr0f0
R �r0f0

IÞ for the twDEP component is shown in Fig. 8b.
Above y0B1; as for DEP component, the magnitude of this vector function is
constant with x0 but the vectors this time point in the negative x-direction. It should
be noted that in the force Eqs. (7) and (10) this component is preceded by a negative
sign, so that for a positive value of Im[a] the twDEP component points in the

Fig. 7. The real (a) and imaginary (b) parts of the potential phasor, solved for the problem space of Fig. 6,

shown for the 2� 2 region close to the electrodes. Comparison of (a) and (b) shows that the solution for f0
I

is the mirror image of that for f0
R about the line x0 ¼ 1 in the centre of the gap.
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direction of increasing phase at distances far from the electrodes. Closer to
the electrodes, the vectors exhibit a more complicated pattern, pointing in the
opposite direction very close to the surface and moving in a circular pattern over
the electrode edges. The magnitude of this vector function is also a maximum at the
electrode edges.

Fig. 8. (a) The vector for the DEP force component: r0jr0 *f0 j2 for the 2� 2 region close to the electrodes

plotted separately as vector direction and log10 (magnitude). The maximum value of the magnitude is close

to the electrode edges. (b) The vector for the twDEP force component: r0 � ðr0f0
R �r0f0

IÞ for the 2� 2

region close to the electrodes. This is plotted separately as vector direction and log10 (magnitude) and the

maximum value of the magnitude is close to the electrode edges.
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Comparison of these numerical results with the pattern of vectors calculated from
the Fourier series analysis [11] demonstrates that proper boundary conditions are
essential if particle movement close to the electrodes is to be accurately modelled.
Comparison of Fig. 8a in this work with Fig. 8 from Ref. [11] shows discrepancies in
the pattern of the force vector direction close to the electrode edges. Further,
comparison of the pattern for the vector r0 � ðr0f0

R �r0f0
IÞ; Fig. 8b in this work

and Fig. 10 in Ref. [11] shows a substantial difference in the predicted motion of
particles experiencing twDEP close to the electrodes.

In the region above y0B1; the vector magnitudes were again matched to an
exponential function Eq. (11), with the results shown in Fig. 9. Re-writing equations
for the force components (10) and substituting for the normalised distance in the
exponentials gives the total force for a spherical particle in the region y > d:

/FS ¼ � AtwDEPu Im½a�
V 2

0

d3
eð�ktwDEPy=dÞ #x

� ADEPuRe½a�
V 2

0

d3
eð�ktwDEPy=dÞ #y: ð13Þ

The values for the two coefficients, ADEP and AtwDEP; are given in Table 3 and agree
with each other to within 0.05% and the two exponential factors were within 0.02%
of p=2 as expected.

4.2. Comparison with Fourier series solution

Comparison of the coefficients with the values calculated from the Fourier series
analysis in this case showed that the difference was 22.3%. This is an indication that
the boundary condition on the lower surface is more critical for the twDEP array.

Again, to estimate the numerical error for this solution, the electrical potential was
solved using the same linear boundary condition between the electrodes as was used

Fig. 9. The magnitude of (a) the vector r0jr0 *f0 j2 and (b) the vector r0 � ðr0f0
R �r0f0

IÞ plotted along

several vertical lines indicated by the legend. The two magnitudes follow exponentially decreasing

functions above y0B1 independent of x: The exponential matching functions are shown in the figures.
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in the Fourier series analysis. The values for kDEP and ktwDEP were the same as for
the q *f0=qn ¼ 0 boundary condition and the values for ADEP and AtwDEP matched the
values calculated using the Fourier series analysis to 0.074% and 0.033%,
respectively. The error can therefore be estimated to be of the order of 0.05%.

4.3. Different electrode/gap width ratios

The problem was solved for different ratios of electrode width d1 to gap width d2:
The values for the exponential coefficients kDEP were, for all cases, within 0.05% of
p=2 as expected. The values of ADEP and AtwDEP for several different ratios are
shown in Table 4, along with the value calculated from the Fourier series solution
and the difference between the two expressed as a percentage.

As the ratio between the electrode and gap width increases, the numerically
calculated value for ADEP increases and the difference between it and the Fourier
series value decreases. Again, as the gap width decreases, the exact boundary

Table 4

Numerically calculated values of the coefficient ADEP and AtwDEP in the exponential approximation of the

dielectrophoretic force for a variety of electrode/gap ratios, as well as the values calculated from the

Fourier series analysis and the percentage difference

Electrode/gap

ratio d1:d2

ADEP=AtwDEP

(Fourier)

ADEP

(numerical)

Difference

(%)

AtwDEP

(numerical)

Difference

(%)

4:1 0.38948 0.37938 2.7 0.37929 2.7

3:1 0.38768 0.37141 4.4 0.37132 4.4

2:1 0.38381 0.35415 8.4 0.35406 8.4

1:1 0.37292 0.30558 22.0 0.30535 22.1

1:2 0.35810 0.24195 48.0 0.24191 48.0

1:3 0.34933 0.20388 71.4 0.20385 71.3

1:4 0.34367 0.17928 91.7 0.17925 91.7

Table 3

Numerically calculated values of the coefficients for the exponential approximation of the DEP and

twDEP components of the force for the travelling wave electrode array

Boundary condition

in gap

kDEP ADEP % difference

from Fourier

ktwDEP AtwDEP % difference

from Fourier

Numerical solution:

Constant current q *f0=qn ¼ 0

1.5706 0.3050 22.3 1.5705 0.3049 22.3

Numerical solution:

linear potential

1.5708 0.3732 0.074 1.5707 0.3728 0.033

First-order Fourier

expansion

p/2 0.37292 p/2 0.37292
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condition on the surface between the electrodes becomes less important in
determining the force far from the electrodes.

4.4. Electrorotation

The vector for the electrorotational torque r0f0
R �r0f0

I was also calculated.
Fig. 10 shows the magnitude of the electrorotational vector plotted in the (2� 2)
region close to the electrodes, again on a logarithmic scale. In these simulations,
r0f0

R �r0f0
I always pointed in the same direction, in this case out of the page.

At heights above y0B1; the magnitude of r0f0
R �r0f0

I and therefore the rate of
rotation is constant with x0 for a given height. In this region, the magnitude of the
torque can again be matched to an exponential function with kROT again equal to
p=2 and the value of AROT ¼ 0:3888: The dimensional torque expression is, therefore

j/GSj ¼ AROTu Im½a�
V 2

0

d2
eð�kROTy=dÞ ð14Þ

For this two-dimensional problem, the torque can be written as G ¼ C#z: Since the
twDEP force component is half of the curl of the torque, the contour lines of C are
parallel to the twDEP component of the force (compare Figs. 8b and 10). In effect,
since

F ¼ 1
2r� ðC#zÞ ¼

1

2

qC
qy

#x�
qC
qx

#y

� �
;

Fig. 10. The magnitude of the electrorotational torque ðr0f0
RÞ � ðr0f0

IÞ plotted as contours on a log10
scale for the 2� 2 region close to the electrodes and for ratios of electrode width to gap width of 1:1.
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where F is perpendicular to the gradient of C and, therefore, parallel to the isolines
of C: This is true only if the problem is two dimensional.

Experimentally, if the rotational motion of the particle in the x2y plane were
observed, this would provide an additional independent measurement of Im[a],
which is one objective of the experiments. This would then allow field driven particle
motion and fluid flow to be distinguished.

5. Conclusion

A methodology for exploring the numerical simulation of the DEP force in
complex electric fields has been described and implemented. This method provides a
fast and simple way of determining DEP and travelling wave forces, as well as the
electrorotational torque for electrode arrays.

The DEP force for parallel, coplanar, bar electrodes used in DEP and twDEP
experiments has been numerically calculated using the finite element method. The
calculated values of the forces have been compared with previous analytical results.

The inaccuracies in far field solutions resulting from the use of different boundary
conditions in analytical approximations such as the Fourier series analysis have been
highlighted. The boundary conditions used in the numerical work are more
physically reasonable, being derived from the condition of charge conservation.
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