The University of Southampton
University of Southampton Institutional Repository

Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws

Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws
Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws
The movement and behaviour of particles suspended in aqueous solutions subjected to non-uniform ac electric fields is examined. The ac electric fields induce movement of polarizable particles, a phenomenon known as dielectrophoresis. The high strength electric fields that are often used in separation systems can give rise to fluid motion, which in turn results in a viscous drag on the particle. The electric field generates heat, leading to volume forces in the liquid. Gradients in conductivity and permittivity give rise to electrothermal forces and gradients in mass density to buoyancy. In addition, non-uniform ac electric fields produce forces on the induced charges in the diffuse double layer on the electrodes. This causes a steady fluid motion termed ac electro-osmosis. The effects of Brownian motion are also discussed in this context. The orders of magnitude of the various forces experienced by a particle in a model microelectrode system are estimated. The results are discussed in relation to experiments and the relative influence of each type of force is described.
induced fluid-flow, ac electric-field, s microelectrodes, electrokinetics, electrolytes, forces
0022-3727
2584-2597
Castellanos, Antonio
aa989a75-63b0-4f3e-a36b-370545034d7b
Ramos, Antonio
511ab594-f312-45ce-b7ff-ef348fd9b559
Gonzalez, Antonio
41d6e3cb-9a9a-499a-89b3-a2872864e9d3
Green, Nicolas G
d9b47269-c426-41fd-a41d-5f4579faa581
Morgan, Hywel
de00d59f-a5a2-48c4-a99a-1d5dd7854174
Castellanos, Antonio
aa989a75-63b0-4f3e-a36b-370545034d7b
Ramos, Antonio
511ab594-f312-45ce-b7ff-ef348fd9b559
Gonzalez, Antonio
41d6e3cb-9a9a-499a-89b3-a2872864e9d3
Green, Nicolas G
d9b47269-c426-41fd-a41d-5f4579faa581
Morgan, Hywel
de00d59f-a5a2-48c4-a99a-1d5dd7854174

Castellanos, Antonio, Ramos, Antonio, Gonzalez, Antonio, Green, Nicolas G and Morgan, Hywel (2003) Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. Journal of Physics D: Applied Physics, 36 (20), 2584-2597. (doi:10.1088/0022-3727/36/20/023).

Record type: Article

Abstract

The movement and behaviour of particles suspended in aqueous solutions subjected to non-uniform ac electric fields is examined. The ac electric fields induce movement of polarizable particles, a phenomenon known as dielectrophoresis. The high strength electric fields that are often used in separation systems can give rise to fluid motion, which in turn results in a viscous drag on the particle. The electric field generates heat, leading to volume forces in the liquid. Gradients in conductivity and permittivity give rise to electrothermal forces and gradients in mass density to buoyancy. In addition, non-uniform ac electric fields produce forces on the induced charges in the diffuse double layer on the electrodes. This causes a steady fluid motion termed ac electro-osmosis. The effects of Brownian motion are also discussed in this context. The orders of magnitude of the various forces experienced by a particle in a model microelectrode system are estimated. The results are discussed in relation to experiments and the relative influence of each type of force is described.

Text
scaling.pdf - Version of Record
Download (493kB)

More information

Published date: 21 October 2003
Additional Information: 744CX Times Cited:37 Cited References Count:25
Keywords: induced fluid-flow, ac electric-field, s microelectrodes, electrokinetics, electrolytes, forces
Organisations: Electronics & Computer Science

Identifiers

Local EPrints ID: 259285
URI: http://eprints.soton.ac.uk/id/eprint/259285
ISSN: 0022-3727
PURE UUID: ca81db45-34e6-455f-a31d-596db94a2025
ORCID for Nicolas G Green: ORCID iD orcid.org/0000-0001-9230-4455
ORCID for Hywel Morgan: ORCID iD orcid.org/0000-0003-4850-5676

Catalogue record

Date deposited: 23 Apr 2004
Last modified: 15 Mar 2024 03:20

Export record

Altmetrics

Contributors

Author: Antonio Castellanos
Author: Antonio Ramos
Author: Antonio Gonzalez
Author: Nicolas G Green ORCID iD
Author: Hywel Morgan ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×