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Abstract

This paper considers a general class of 2D continuous-discrete linear systems of both systems
theoretic and applications interest. The focus is on the development of a comprehensive control
systems theory for members of this class in a unified manner based on analysis in an appropriate
algebraic and operator setting. In particular, important new results are developed on stability,
controllability, stabilization, and optimal control.

1 Introduction

The past two to three decades, in particular, have seen a continually growing interest in so-called two-
dimensional (2D) systems or, more generally, (nD (n > 2)) systems. This interest is clearly related to
the wide variety of applications of both practical and/or theoretical interest. The key unique feature
of an nD system is that the plant or process dynamics depend on more than one indeterminate and
hence information is propagated in many independent directions.

Many physical processes have a clear nD structure. Also the nD approach is frequently used as an
analysis tool to assist, or in some cases enable, the solution of a wide variety of problems. A key point
is that the applications areas for nD systems theory can be found within the general disciplines of
circuits, control and signal processing (and many others). For a representative cross-section of these
see, for example, the edited text [1]. In this paper, however, it is a particular class of 2D systems
which is considered.

Some classes of 2D/nD linear systems share strong structural links with, in particular, standard
(1D) linear systems, e.g. so-called differential and discrete linear repetitive processes (see, for exam-
ple, [8]) where the common structure assertion arises from structural similarities between the state
space models which describe the underlying dynamics. This immediately suggests that nD systems
can be studied by direction extension of existing/emerging 1D systems theory. Experience has shown,
however, that there are a great many problems in generalizing 1D systems theory to the nD case. Some
of these problem are fundamentally algebraic in nature, e.g. the distinction in the nD case between
factor primeness, minor primeness, and zero primeness, or the lack of an Euclidean algorithm.

Other problems concern the apparent absence of relationships between important concepts that
are strongly related in the 1D case. For example, there are many generalizations of the concepts
of (state) controllability, observability and minimality to the nD linear systems, but for none of the
accepted definitions is it the case that controllability plus observability is equivalent to minimality.
As another example, the Smith form of an nD linear system fails to provide much information about
the system which it does supply in the 1D case.

At an abstract level, 2D/nD systems theory sets out to examine the same basic questions as 1D
theory, such as controllability, observability, causality, construction of state space models (realization
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theory), stability and stabilization, feedback control, filtering. Given the problems with extending 1D
systems theory, it is clear that much of this development must start from a basic level. The task is
made even more diverse by the “rich” variety of dynamics which can be encountered in terms of the
indeterminates. For example, there are 2D systems where the propagation of the dynamics in the two
independent directions is either a function of (i) two discrete variables, (ii) two continuous variables,
or (iii) a continuous variable in one direction and a discrete variable in the other leading to so-called
2D continuous-discrete systems.

Of these combinations, a very large volume of work has been reported on case (i) based, in the
main, on the Roesser [2] and Fornasini Marchesini [3, 5] state space models and also there has been
work reported on (ii) — see, for example, [6, 7]. It is the case of (iii) which is considered here where
other work, see, for example, [8, 12] has focused on the special case of so-called differential linear
repetitive processes whose state space model has dynamics in one direction (along the pass) governed
by a linear matrix differential equation and along the other (pass-to-pass) by a linear matrix difference
equation.

In this paper we use a general operator setting (see, for example, [13, 14] for related results) to
study key control theoretic properties of a class of 2D continuous-discrete linear systems which allows
for a significant generalization and extension of previous results.

A key fact about the model structure used here is that it allows a general algebraic and operator
setting to be used as a setting for analysis. This leads to major new results on controllability, stability,
stabilization by feedback action and optimal control in this general setting. We begin in the next
section by giving a summary of the necessary background mathematical tools and then introduce the
model to be studied.

2 Preliminaries and Background Results

In this section, we give the necessary background and results required for the analysis in this paper.
To start with, let E, V and W be finite dimensional normed spaces over the complex field C with
norm denoted by | · |. Also let Z+ denote the set of nonnegative integers and denote the set of all
linear operators acting from E to V by L(E, V ). We use BC∞(E) to denote the set of all infinitely
differentiable functions ψ : R → E such that for each ψ ∈ BC∞(E), ∃ a constant cψ > 0 such that
|ψ(j)(s)| ≤ cψ, ∀ s ∈ R, and j = 0, 1, 2, . . . , where ψ(j)(s) denotes the derivative djψ

dsj , This set becomes
a normed linear space under the sup norm defined as ||ψ||E = sups∈R, j∈Z+

|ψ(j)(s)|E . Also BC∞(E)
is a Banach space. (To simplify notation, we drop the explicit representation of the space from || · ||
throughout the paper.)

Suppose now that At, t ∈ Z+ is a set of linear operators in L(E, E). Also let B ∈ L(W,E). Then
the class of 2D continuous-discrete linear systems considered in this paper is defined as follows

x(t + 1, s) =
∑

j∈Z+

Aj
djx(t, s)

dsj
+ Bu(t, s), s ∈ R, t ∈ Z+ (1)

where x : Z+ × R → E, and u : Z+ × R → W is the control input function. We assume that the
mapping s → u(t, s) belongs to the space BC∞(W ) for each fixed t ∈ Z+, and such functions are
termed admissible controls here.

Suppose now that the convergence condition for the series in (1) detailed below holds. Then it is
easy to verify that for any function α ∈ BC∞(E), which represents the initial conditions, there is a
unique solution x(t, s) = x(t, s, α, u) of (1) satisfying

x(0, s) = α(s), s ∈ R (2)

Here the notation x(t, s, α, u) is used to emphasize the fact that the solution x(t, s) depends on (α, u).
By way of motivation for the work reported here, first note that linear equations of the form

considered here arise in the modelling of various physical processes. For example, the two-dimensional



Schrödinger equation used in quantum theory is

ı
∂u

∂t
=

c

ω

√
1− ω2∆u (3)

where ∆ is the known differential operator. Expanding the square root on the right-hand side of this
equation in a power series in ∆ leads to the model

ı
∂u

∂t
=

c

ω


1 +

∞∑

j=1

cjω
2j ∂2ju

∂x2j


 , with cj = (−1)j 1

2
· . . . · 3− 2j

2

where the differential operator on the right-hand side is of infinite degree (see, for example, [10]). Also
it is known that some differential-difference equations can be represented by such an equation where
again the differential operator involved is of infinite degree operator — see, for example, [14] for a
bibliography of the literature on such cases.

Suppose that the operators Ai satisfy
∑

j∈Z+

(1 + ε)j ||Aj || < ∞ (4)

for a real number ε > 0, which guarantees the convergence of the series
∑

j∈Z+

Ajz
j in a domain including

the unit disc (where || · || is also used to denote the induced norm). Then the mapping s → x(t, s)
belongs to BC∞(E) for each fixed t ∈ Z+.

The right-hand side of (1) generates a differential operator D : BC∞(E) → BC∞(V ) of the form

(Dψ)(s) =
∑

j∈Z+

Ajψ
(j)(s), s ∈ R (5)

where for generality and the analysis of next section, we now assume that Aj , j ∈ Z+ is a set of
operators from L(E, V ). Properties of the operator D play a significant role in the analysis to follow
in this paper.

Associate with the differential operator D its representation Υ(z) in the ring of power series defined
by

Υ(z) =
∑

j∈Z+

Ajz
j , z ∈ C (6)

Suppose also that the operators Aj are such that the power series (6) converges in some domain
containing the unit disk in the complex plane (which is certainly true if, for example, (4) holds). Also
let X (E, V ) denote the set of all power series of the form of (6) which satisfy (4). Next, to each
element Υ(z) ∈ X (E, V ) associate a bounded linear operator D defined by (5) and let D(E, V ) denote
the image of X (E, V ) under the mapping Υ → D. Then it follows immediately that D(E, V ) and
X (E, V ) are linear spaces with respect to the usual pointwise addition and multiplication by scalars.

It is easy to prove that the mapping Υ → D is injective since the equalities Υ = 0, D = 0, hold
if, and only if, Aj = 0, j ∈ Z+. Hence the pre-image of the trivial element of D(E, V ) is only the
trivial element of X (E, V ). The fact that this mapping is also surjective follows immediately from the
definition of the set D(E, V ). Consequently the map Υ ↔ D is a bijection.

In the case when E = V, the sets X (E, E) and D(E, E) (denoted here by D(E) and X (E) for
brevity ) are algebras with respect to the standard addition and multiplication operations. Also,
D(E) and X (E) are Banach algebras when the norm on D(E) is the usual operator norm. In the case
of X (E) this is defined by ||Υ|| = max|z|≤1 |Υ(z)|, and the mapping Υ → D is an isomorphism from
X (E) to D(E).

This last fact leads immediately to the following result.

Lemma 1. Let E = V. Then the operator D ∈ D(E) has an inverse in D(E) if, and only if,

det(Υ(z)) 6= 0, |z| ≤ 1 (7)



In the remainder of the section, some basic results from the general theory of operators defined on
topological semigroups [15], [16] required for the analysis in this paper are summarized. First, let X
denote a Banach space over the complex field C and L(X) be the set of all linear bounded operators
from X to X equipped with the standard operator norm. Next, let U(n, r) denote the set of linear
maps of A : Xn → Xr, where n and r are integers, defined by

Ay =




a11y1 + a12y2 + ... + a1nyn

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
ar1y1 + ar2y2 + ... + arnyn


 , y = (y1, . . . , yn) ∈ Xn

where aij , i = 1, ..., r, j = 1, ..., n are elements of C, (i.e. the mapping is defined by matrix A = (aij)
and denoted by the same symbol A.) In Xn define the norm as ‖y‖ = max{‖y1‖, ..., ‖yn‖}. Then,

since ‖Ay‖ ≤ ‖y‖ max
1≤j≤r

n∑
k=1

|ajk|, A is a bounded linear operator.

Let G be a commutative topological semigroup with unit e and the group operation G2 3 (g, h) →
gh ∈ G. Also let d be a continuous representation of G in the Banach space X, i.e. d is a homomorphism
g → d(g) of the semigroup G into the semigroup L(X) which satisfies

d(g1g2) = d(g1)d(g2) (8)

and the mapping g → d(g) is continuous. Also we assume that ‖d(e)‖ = 1, ‖d(g)‖ ≤ 1, g ∈ G.
Let H be a discrete sub-semigroup of G and let Ag, g ∈ H denote a summable set of operators

from U(n, r), i.e.
∑

g∈H

‖Ag‖ < ∞. Then, using the given representation d in X and the collection of

Ag, g ∈ H of operators from U(n, r), we can define the linear operator T : Xn → Xr by the formula

Ty =
∑

g∈H

Agd(g)y, y = (y1, ..., yn) ∈ Xn (9)

where d(g) for every y = (y1, ..., yn) is defined by d(g)y = (d(g)y1, ..., d(g)yn). It is also easy to show
that T is a bounded operator and ‖T‖ ≤ ∑

g∈H

‖Ag‖.

Remark 1. Choosing a suitable space X, and a semigroup G with a representation d in X recovers
a wide class of the operators used in many areas of systems theory. In particular, let G be a local
compact topological group and X = C(G,C) be the space of continuous bounded functions f : G → C
with norm ‖f‖ = sup

x∈G
|f(x)|. Then the collection of linear mappings d(g) : C(G,C) → C(G,C) given

by the formula d(g)f = fg, where fg(x) = f(gx), x ∈ G, is termed the representation of G in C(G,C).
In this case, the operator T of (9) is the shift operator [16]. Also we show below that another special
case of (9) leads to the differential operator D of (5) acting on the space of infinitely differentiable
functions.

We say that the span for v ∈ X, denoted by {span}(v), characterizes the representation d if ∃ a
complex-valued function λ : G → C which satisfies

d(g)v = λ(g)v, ∀ g ∈ G (10)

Also λ(g) is continuous and satisfies the relationship λ(g1g2) = λ(g1)λ(g2), i.e. λ(g) is a continuous
semi-character of the semi-group G. Note that if G is a group then λ(g) is a continuous character
of G (see, for example, [17]). Here we use R(d) to denote the set of all such elements v ∈ X which
characterizes d and by Γ(d) the set of all functions λ satisfying (10) for v ∈ R(d), v 6= 0.

Now let the operator T be described by its representation [16], i.e. by the matrix T̂ defined for
λ ∈ Γ(d) as

T̂ (λ) =
∑

g∈H

Agλ(g), λ ∈ Γ(d) (11)

Then we have the following result.



Lemma 2. Let n = r. Then each eigenvalue ρ of the matrix T̂ (λ0) belongs to the spectrum of the
operator T, ∀ λ0 ∈ Γ(d).

Proof. If (11) holds, there exists a non-trivial n×1 vector c0 ∈ Cn such that T̂ (λ0)c0 = ρc0. Since
λ0 ∈ Γ(d) then there exists a nontrivial element r0 ∈ X for which d(g)r0 = λ0(g)r0, g ∈ G. Finally,
set y0 = (c1r0, ..., cnr0) ∈ Xn, where cj , j = 1, ..., n are the entries in the vector c0, and it is easy to
check that Ty0 = ρy0. ¤

In general, the evaluation of the spectrum of T is a non-trivial task but for some cases this set
corresponds to the set of eigenvalues of the matrix T̂ (λ), λ ∈ Γ(d). In particular, for the shift operator
this fact has been established in [16].

Return now to the differential operator D : BC∞(E) → BC∞(V ) of (5) and suppose that the
semigroup G coincides with the set Z+. Consider also the space BC∞ of infinitely differentiable
bounded complex-valued functions φ : R → C and the set of mappings d(k) : BC∞ → BC∞ defined
by

d(k)φ = φ(k), k ∈ Z+ (12)

Then this map is a representation of the semigroup Z+ in the space BC∞, and it is clear that the
functions d(k) satisfy (8) since d(k1 + k2) = d(k1)d(k2) (by definition, addition is the group operation
in Z+). If we fix the bases in E and V (n = dimE, r = dimV ) then each T of the form (9) is a

differential operator T : ψ →
∞∑

k=0

Akψ
(k), acting from the space (BC∞)n of the n× 1 vector functions

ψ : R → Cn to the space (BC∞)r, where Ak, k ∈ Z+ are given r × n matrices over C which also
satisfy the inequality (4).

In this last case, T is the differential operator D defined by (5) and it is easy to see that in this
case

R(d) = {zω(s) = eωs, ω ∈ [−ı, ı], ı2 = −1} (13)

Also since d(k)zω = ωkzω, we have that

Γ(d) = {λω : k → ωk, ω ∈ [−ı, ı]} (14)

and it now follows that the representation (11) in this case is

T̂ (λω) =
∞∑

k=0

Akλω(k) =
∞∑

k=0

Akω
k = Υ(ω) (15)

The inequality (4) guarantees the convergence of Υ(z) in a domain in the complex plane containing
the interval or segment [−ı, ı] of the complex plane C. Hence the representation T̂ for D is the function
Υ(z) of (6). This fact leads to the following result.

Theorem 1. Let E = V . Then the spectrum Σ(D) of the differential operator D is pointwise and is
given by

Σ(D) =
⋃

z∈[−ı,ı]

σ(Υ(z)) (16)

where σ(Υ(z)) denotes the set of eigenvalues of the matrix Υ(z).

Proof. Let ρ ∈ ⋃
z∈[−ı,ı]

σ(Υ(z)). Hence ∃ω ∈ [−ı, ı] such that ρ ∈ σ(Υ(ω)). Therefore ∃cρ ∈ Cn

such that Υ(ω)cρ = ρcρ. Next, define the function fρ(t) = cρe
ωt, t ∈ R. Then it is straightforward to

show that fρ ∈ (BC∞)n and

(Dfρ)(t) =
∞∑

k=0

Akf
(k)
ρ (t) =

∞∑

k=0

Akω
kcρe

ωt = Υ(ω)cρe
ωt = ρfρ, t ∈ R.

Hence, we have shown that the inclusion
⋃

z∈[−ı,ı]

σ(Υ(z)) ⊂ Σ(D) (17)



is valid.
Now, let λ̂ be a complex number such that λ̂ 6∈ ⋃

z∈[−ı,ı]

σ(Υ(z)). Consider also the operator U =

D − λ̂I, mapping the space BC∞(E) into itself, where I is the identity operator. Then it is easy
to check that the representation Û of the operator U is given by the formula Û = Υ(z) − λ̂I. Since
λ̂ 6∈ ⋃

z∈[−ı,ı]

σ(Υ(z)) then det(Υ(z) − λ̂I) 6= 0, ∀z ∈ [−ı, ı] and, hence, det(Υ(z) − λ̂I) 6= 0, ∀ |z| ≤ 1.

By Lemma 1 the operator U = D− λ̂I has an inverse in D(E) and this means that λ̂ is not a member
of the spectrum of the operator D, which together with the inclusion (17) completes the proof.

¤
It is essential for further study to establish that the differential operator D : BC∞(E) → BC∞(V )

is surjective. This is the subject of the next result.

Theorem 2. The operator D ∈ D(E, V ) is surjective if, and only if,

rank Υ(ω) = dim V, ω ∈ [−ı, ı] (18)

Proof. First note that if E = V and det(Υ(ω)) 6= 0, ω ∈ [−ı, ı], then the operator D is invertible. This
follows immediately since in this case Theorem 1 shows that z = 0 does not belong to the spectrum
of the operator D ∈ D(E).

Suppose now that Υ(z) is an analytic extension of the function Υ(ω) to some domain Ω of the
complex plane which includes the segment [−ı, ı]. The existence of such an extension is guaranteed by
the assumption (4) and, in fact, applying elementary operations yields the following factorization of
the matrix function Υ(z)

Υ(z) = Q1(z)P (z)Q2(z) (19)

where Q1(z) and Q2(z) are square matrices of appropriate dimensions which are analytic in Ω and
have nonzero determinants in the segment [−ı, ı]. The matrix P (z), which has the same dimensions
as Υ(z), has elements which are zero except possibly on the leading diagonal where entries which are
monic polynomials with roots in the segment [−ı, ı] can occur.

No loss of generality arises from assuming that any non-zero diagonal elements p1(z), · · · , pr(z) of
P (z) occur in the first r rows of this matrix. These polynomials also have the property that pi(z)
divides pi+1(z), 1 ≤ i ≤ r − 1. The elementary operations used to obtain (19) are (i) interchanging
two rows (columns), (ii) multiplication of a row (column) by a function which is analytic in Ω and is
non-zero in the segment [−ı, ı], and (iii) multiplication of a row (column) by an analytic function in
Ω and adding the result to another row (column).

As noted above, the mapping Υ ↔ D is a bijection and the composition of differential operators
D1, D2 is equivalent to multiplication of the corresponding matrix functions Q1(z) and Q2(z). Hence,
(19) and the fact that the matrices Q1(z), Q2(z) are nonsingular in the segment [−ı, ı], yield that the
surjective property of D is equivalent to this same property for those operators whose representations
coincide with the matrix P (ω). Hence, by the structure of the matrix P (z), the map D can be
decomposed into a system of r = dim V scalar differential operators on the space BC∞ each of which
has the form

T0 : φ → φ(p) + a1φ
(p−1) + · · ·+ ap−1φ

(1) + apφ (20)

where aj ∈ C, and p is an integer.
Each of the operators in (20) is surjective in the space BC∞ if, and only if,

ωp + a1ω
p−1 + · · ·+ ap−1ω + ap 6= 0, ω ∈ [−ı, ı]. (21)

To show this, suppose that ωp
0 +a1ω

p−1
0 + · · ·+ap−1ω0 +ap = 0, for some ω0 ∈ [−ı, ı]. Then choosing a

function of the form α(t) = eω0t, t ∈ R, from the space BC∞(R) yields that the equation T0φ = α has
no solution in this space. Hence (21) is necessary for operators of the form T0 to be surjective. The fact
that this condition is sufficient follows immediately from (16). Consequently D : BC∞(E) → BC∞(V )
is surjective if, and only if, (18) holds and the proof is complete.

¤



Example 1. Let E := C, and X := BC∞(C) be the Banach space of the infinitely differentiable
functions f : R→ C, and consider the following differential operator D : X2 −→ X2

D

(
φ1

φ2

)
(t) =

(
3
2φ1(t) + φ

(1)
1 (t)

φ2(t) + φ
(1)
2 (t)

)
(22)

where the task is to interpret the spectral properties of Section 2 for this case.
Let G := Z+ with semigroup addition operation G2 3 (g, h) −→ g + h ∈ G. The representation

d(g) : G −→ L(X) of the semigroup G in the space X is defined by (12), i.e.

d(k)φ = φ(k), k ∈ Z+ (23)

The semi-character λ : Z+ → C is defined by

φ(g) = λ(g)φ, ∀g ∈ Z+ (24)

It now is straightforward to show that the function φ(t) = eωt, t ∈ R and the set of functions
λω(g) = ωg, g ∈ Z+ with parameter ω ∈ C satisfy (24). To guarantee the inclusion φ ∈ BC∞(C) it is
necessary that ω is purely imaginary and ω ∈ [−i, i]. Hence

Γ(d) =
{

λω : g −→ ωg, ω ∈ [−i, i]
}

(25)

To define the operator T : X2 −→ X2 of (9), choose the discrete sub-semigroup H = Z+ and the
collection Ag, g ∈ H of matrices from U(n, n) with n = 2 as

A0 =
(

3/2 0
0 1

)
, A1 =

(
1 0
0 1

)
, Ai = 0, i ∈ H, i > 1

The representation d of the group G in the space X2 is defined by

d(g)
(

φ1

φ2

)
=

(
d(g)φ1

d(g)φ2

)
=

(
φ

(g)
1

φ
(g)
2

)

and the operator T is

T

(
φ1

φ2

)
= A0

(
d(0)φ1

d(0)φ2

)
+ A1

(
d(1)φ1

d(1)φ2

)
=

(
3/2φ1 + φ

(1)
1

φ2 + φ
(1)
2

)
(26)

which coincides with the differential operator D. The representation T̂ of T is

T̂ (λω) =
∑

g∈H

Agλω(g) =
(

3/2 0
0 1

)
+

(
1 0
0 1

)
ω =

(
3/2 + ω 0

0 1 + ω

)
, ∀ λω ∈ Γ(d) (27)

and the eigenvalues of the matrix T̂ (λω) are σ1 = 3/2 + ω and σ2 = 1 + ω for ∀ω ∈ [−i, i]. Hence by
Theorem 1 these values are the elements of the spectrum of D.

This last fact can be also established by direct calculation. In particular, consider

(D − µI)φ = 0, µ ∈ C, φ ∈ X2 (28)

which can be rewritten as

(
3
2
− µ)φ1(t) + φ

(1)
1 (t) =0,

(1− µ)φ2(t) + φ
(1)
2 (t) =0 µ ∈ C

(29)

in terms of the unknown functions φ1 and φ2 from the space BC∞(C). Hence it follows that the
functions

φ(t) = e−(3/2−µ)t, φ2(t) = e−(1−µ)t, t ∈ R, µ ∈ C (30)

satisfy (29). These functions belong to BC∞(C) if, and only if, the numbers (3
2 − µ) and (1− µ) are

purely imaginary and have modulus less than or equal to unity, i.e. if, and only if, µ = 3
2 + iν, µ =

1 + iν, ν ∈ [−1, 1]. Hence the spectrum of the operator D coincides with the set
{
σ : σ = 3

2 + ω, σ =
1 + ω, ω ∈ [−i, i]

}
.



3 Stability, Controllability and Stabilization

In this section, we first use properties of the representation Υ(z) of the differential operator D to
characterize stability of systems described by (1) for the case E = V. The formal definition of this
property is as follows.

Definition 1. Systems described by (1) with u = 0 are said to be stable if ∃ a real scalar q ∈ (0, 1)
such that

|x(t, s)|E ≤ Ĉqt (31)

holds for initial condition α ∈ BC∞(E), where Ĉ is a positive constant (independent of s and t).

Note: In order to highlight the role of q, systems satisfying this last definition are termed q stable.
The following result gives the necessary and sufficient condition for q stability of the systems under

consideration here.

Theorem 3. Systems described by (1) are q stable if, and only if,

det(Υ(z)− λI) 6= 0, z ∈ [−ı, ı], |λ| ≥ 1 (32)

Proof. It is a routine to show that (31) holds if, and only if, the spectrum of the operator D in this
case lies in the unit disk in the complex plane. Theorem 1 here states that, under the assumptions
invoked, this holds if the spectrum of D generated by the right-hand side of (1) lies in the unit disk
in the complex plane and the proof is complete. ¤

Stable systems are closely linked to the existence of bounded solutions to the equations which
describe their dynamics in the presence of inputs (or disturbances). In particular, consider non-
homogeneous systems of the form

x(t + 1, s) =
∑

j∈Z+

Aj
djx(t, s)

dsj
+ f(t, s), x(0, s) = α(s), s ∈ R (33)

where the vector valued function f(t, s) represents inputs and/or disturbances acting on the system.
Then we have the following result.

Theorem 4. For each initial condition α ∈ BC∞(E) and each bounded input function f(t, s), ∃ a
bounded solution x(t, s, α, u) of (33) if, and only if, this system is q stable.

Proof. To prove sufficiency, first note that (33) can be rewritten in the operator form

ω(t + 1) = Dω(t) + v(t) (34)

where the differential operator D is defined by (5) and

ω(t)(s) = x(t, s), ω(0) = α, v(t)(s) = f(t, s), t ∈ Z+, s ∈ R (35)

The solution of (33) can now be written as

x(t + 1, s) = (Dtα)(s) +
t−1∑

k=0

(Dt−k−1v(k))(s) (36)

Since the system is stable, r(D) < 1, and choose ε > 0 : q = r(D)+ ε < 1. Then it follows immediately
that ∃ a positive constant d(ε) such that ||Dt|| ≤ d(ε)qt. Hence

|x(t, s)| ≤ d(ε)(||α||qt +
t−1∑

k=0

qt−k−1||v(k)||) (37)

which yields immediately that the solution x(t, s) is bounded. (where now || · || denotes the norm on
BC∞(E) introduced in Section 2).



To establish necessity, suppose that (33) is not q stable. Then by Theorem 3, ∃ an element
λ0 ∈ Σ(D) such that |λ0| ≥ 1. Also since the spectrum of D is pointwise, there is a nontrivial element
β ∈ BC∞(E) such that Dβ = λ0β.

Now consider the case of |λ0| > 1, and set f(t, s) = 0, x(0, s) = β(s). Then the corresponding
solution of (33) is x(t, s) = λt

0β(s) and clearly this solution is not bounded. When |λ0| = 1, we can
write λ0 = eır̂ for some real number r̂. Then if f(t, s) = β(s)eır̂t, x(0, s) = 0

x(t + 1, s) =
t−1∑

k=0

(Dt−k−1β)(s)eıkr̂ = teır̂(t−1)β(s) (38)

which is obviously not bounded and the proof is complete. ¤
Next we study controllability for these systems where this property is defined as follows.

Definition 2. The system (1) is said to be controllable if ∃ an integer t0 ∈ Z+ such that for any
pair of functions α ∈ BC∞(E) and β ∈ BC∞(E) there is an admissible control function uα,β(t, ·) ∈
BC∞(W ), t = 0, · · · , t0 − 1, such that

x(t0, s, α, uα, β) = β(s) s ∈ R (39)

where x(t, s, α, uα, β) denotes the solution of (1) corresponding to the given α and uα, β.

Theorem 5. The system (1) is controllable if, and only if,

rank{B, Υ(z)B, · · · ,Υn−1(z)B} = n, z ∈ [−ı, ı], (n = dimE) (40)

Proof. Definition 2 states that controllability of (1) is equivalent to solvability of the following
equation

Dt0α +
t0−1∑

j=0

DjBut0−j−1 = β (41)

with respect to unknown functions ut = u(t, ·) ∈ BC∞(W ), t = 0, · · · , t0 − 1, for some t0 ∈ Z+ and

arbitrary α and β. Also the mapping F : (u0, · · · , ut0−1) →
t0−1∑

j=0

DjBut0−1−j is a differential operator

acting from the space (BC∞(W ))t0 to the space BC∞(E) whose representation in the ring of power
series is F(z) = {Υ(z)t0−1B, · · · ,Υ(z)B,B}. Application of Theorem 2 now yields that (41) is solvable
if, and only if,

rankF(z) = dimE, z ∈ [−ı, ı] (42)

The Cayley-Hamilton theorem now shows that this last condition is equivalent to (40). ¤
Having characterized controllability, we can move on (as in the 1D linear time invariant case) to

consider the pole (or spectrum) assignment problem and hence the existence of stabilizing control laws
for systems described by (1) which, as one example, can be used to ensure q stability closed loop. Let
P (n) be the set of all polynomials of degree n of the form

p(z, λ) = λn + an−1(z)λn−1 + · · ·+ a0(z) (43)

where the coefficients a0(z), · · · , an−1(z) are analytic functions in some domain Ω of the complex plane
which contains the segment [−ı, ı]. Suppose also that the control function in (1) has the following
feedback form

u(t, s) =
∑

j∈Z+

Fj
dxj(t, s)

dsj
(44)

Here F0, F1, · · · are linear operators from E to W such that the power series
∑

j∈Z+

Fjz
j converges in

some domain which contains the unit disk in the complex plane where, for example, this condition
holds if ∑

j∈Z+

(1 + η)j ||Fj || < ∞ (45)



where η > 0 is a real number.
Now we can formulate the pole assignment problem as: for each element p(λ) from P (n) choose

the operators F0, F1, · · · , defining the control law of (44) such that the polynomial

det


 ∑

j∈Z+

(Aj + BFj)zj − λI


 = 0 (46)

is equal to a prescribed, i.e. pre-specified, polynomial p∗(z, λ) of the form (43), where, in particular,
this polynomial can be chosen such that q stability holds. By Theorem 1, (46) completely determines
the spectrum of the differential operator defined by the right-hand side of (1) under the action of
(44). Hence the pole assignment problem is equivalent to determining the conditions under which the
spectrum of the closed loop system is precisely the prescribed one.

To solve this problem, we need the following preliminary result.

Lemma 3. Let X (z) and η(z) be analytic n × n and n × r matrices respectively in some domain H
containing the l connected set Ω such that

rank{η(z),X (z)η(z), · · · ,X (z)n−1η(z)} = n (47)

holds ∀ z ∈ Ω. Then for any r vector δ(z) analytic in H which satisfies the condition

η(z)δ(z) 6= 0, z ∈ Ω (48)

∃ an r × n matrix ψ(z) analytic in H such that

rank{δ0(z),X0(z)δ0(z), · · · ,X n−1
0 (z)δ0(z)} = n (49)

holds ∀ z ∈ Ω, where δ0(z) = η(z)δ(z) and X0(z) = X (z) + η(z)ψ(z)

The proof of this result follows from slight modifications of that given in [4] and is hence omitted
here.

Theorem 6. The pole assignment problem for systems described by (1) has a solution if, and only if,
the system is controllable.

Proof. To prove necessity, first note that for each point ω ∈ [−ı, ı] and any collection λ1, · · · , λn of n
complex numbers, it is easy to see that ∃ some element p ∈ P (n) such that p(ω, λi) = 0, i = 1, 2, · · · , n,
holds. Since the pole assignment problem is solvable, we can choose the feedback control function (44)
such that the polynomial (46) coincides with the given polynomial p(z, λ). Hence it follows that the
numbers λi, i = 1, · · · , n, belong to the spectrum of the matrix Υ(ω)+BF (ω), i.e. by standard theory
[18], the pair {Υ(ω), B} is controllable.

To prove sufficiency, first assume that r = 1 and write det(Υ(z) − λI) = λn − (an−1(z)λn−1 +
an−2(z)λn−2 + · · · + a0(z)). Also let X(z) denote the n × n matrix whose j th column has the form
Υ(z)n−jB − (aj(z)B + aj+1(z)Υ(z)B + · · · + an−1(z)Υ(z)n−j−1B), j = 1, · · · , n. Then since (1) is
controllable X(z) 6= 0, z ∈ [−ı, ı] and also the matrix X−1Υ(z)X(z) and the vector X−1(z)B have
the well known canonical forms

X−1Υ(z)X(z) =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
a0(z) a1(z) a2(z) · · · an−1(z)




, X−1(z)B =




0
0
...
0
1




(50)

Now select an arbitrary element g(z, λ) = λn−bn−1(z)λn−1−bn−2(z)λn−2−· · ·−b0(z) from the set
P (n) and let f(z) denote the row vector for which f(z)X(z) = (b0(z)− a0(z), · · · , bn−1(z)− an−1(z)).
Then det(Υ(z) + Bf(z) − λI) = det(X−1Υ(z)X(z) + X−1f(z)X(z) − λI) = g(z, λ) and f(z) =



∑

j∈Z+

Fjz
j , where Fj : E → C are linear mappings. Hence the control law (44), where the Fk are the

coefficients of the power series expansion of f(z) guarantees that the polynomial (46) coincides with
g(z, λ) and the theorem is proved for the case of r = 1.

In the case when r 6= 1, Lemma 3 can be used to reduce this case to that for r = 1. In particular,
choose an element b ∈ V such that Bb 6= 0. Since (40) holds it follows from Lemma 3 that ∃ an r × n

matrix of the form ψ(z) =
∑

j∈Z+

Φjz
j such that

rank{Bb, Υ̂(z)Bb, · · · , Υ̂n−1(z)Bb} = n, (z ∈ [−ı, ı]) (51)

where Υ̂(z) = Υ(z) + Bψ(z). Hence the system

x(t + 1, s) =
∑

j∈Z+

(Aj + BΦj)
djx(t, s)

dsj
+ Bbv(t, s) (52)

is controllable in the class of scalar functions v(t, s) ∈ BC∞(R). This means that for each polynomial
p(n) ∈ P (n) ∃ a feedback control law

v(t, s) =
∑

j∈Z+

gj
djx(t, s)

dsj
(53)

such that the polynomial p(n) coincides with the polynomial

det(Υ̂(z) + Bb
∑

j∈Z+

gjz
j − λI) = 0 (54)

Hence the control law

u(t, s) =
∑

j∈Z+

Fj
djx(t, s)

dsj
(55)

where Fj = Φj + bgj shows that the given polynomial p(n) satisfies (46), i.e. the pole assignment
problem has a solution and the proof is complete. ¤

A particular case of the pole assignment problem is the q stabilization problem.

Definition 3. The system (1) is said to be q stabilizable if there exists a feedback law of the form (44)
such that the resulting closed loop system is q stable.

Theorem 7. Suppose that the system (1) is controllable. Then (1) is q stabilizable ∀ q ∈ (0, 1).

The proof here follows immediately from Theorem 6.

4 Systems with Differential Operator of Finite Degree

In this section we consider the very important case when the system (1) only has a finite number of
non-zero operators Aj and E = V, and, in particular, we consider systems of the form

x(t + 1, s) =
N∑

j=0

Aj
djx(t, s)

dsj
+ Bu(t, s) (56)

As such a system is a special case of (1), many of the results given in the previous section also generalize
to this case but the stabilization problem is more complicated. In particular, it is not generally true
that there exists a feedback law of the form

u(t, s) =
M∑

j=0

Fj
djx(t, s)

dsj
(57)

with M ≤ N which stabilizes (56). To confirm this fact, the following preliminary result is required.



Lemma 4. Let

pn(z) = a
(n)
0 + a

(n)
1 z + · · ·+ a

(n)
m(n)z

m(n), n = 0, 1, 2, · · · , z ∈ C, (58)

be a sequence of polynomials (here the coefficients a
(n)
j and the exponent m(n) depend on n, in general)

such that for some compact set M ∈ C which does not only consist of a finite number of points from
C, these polynomials are uniformly bounded on M, i.e.

|pn(z)| ≤ M, z ∈M, n = 0, 1, 2, · · · for some M > 0 (59)

Then if ∃ at least one point v0 ∈ C, v0 6∈ M such that

lim
n→∞ sup |pn(v0)| = ∞ (60)

then
lim

n→∞m(n) = ∞ (61)

i.e. the set of exponents {m(n) : n = 0, 1, 2, · · · } is unbounded.

Proof. Suppose to the contrary that ∃ an integer N > 0 such that m(n) < N, and in this case also
suppose that

pn(z) = a
(n)
0 + a

(n)
1 z + · · ·+ a

(n)
N zN , n = 0, 1, 2, · · · , z ∈ C (62)

Now choose (N +1) points z0, z1, · · · , zN from the set M, such that zi 6= zj , ∀ i, j = 1, 2, · · · , N. Then




pn(z0)
pn(z1)

...
pn(zN )


 = QN




a
(N)
0

a
(N)
1
...

a
(N)
n




(63)

where

QN =




1 z0 z2
0 · · · zN

0

1 z1 z2
1 · · · zN

1
...

...
...

...
...

1 zN z2
N · · · zN

N


 (64)

and also det(QN ) 6= 0. It now follows from (59) and (63) that the coefficients a
(n)
j are uniformly

bounded, i.e. ∃ a positive constant L such that |a(n)
j | ≤ L, j = 1, 2, · · · , N, n = 0, 1, 2, · · · . Hence

|pn(v0)| ≤ L(1 + |v0|+ · · ·+ |v0|N ) (65)

which contradicts (60) and the proof is complete. ¤

The following example shows that there can be cases when no feedback control law of the form (57)
can stabilize processes described by (56).
Example 2. Consider the process described by

x(t + 1, s) = A1x
(1)(t, s) + A0nx(t, s) + Bu(t, s) (66)

where

A1 =
[

0 1
0 0

]
, A0n =

[
10 an

0 0

]
, B =

[
0
1

]
(67)

and an = ı + (n + 1)−1, n = 1, 2, · · · .
Since

det{(A1z + A0n)B, B} 6= 0, z ∈ [−ı, ı] (68)



this example is controllable in the class BC∞ for each n = 0, 1, 2, · · · . Now consider a feedback control
law of the form

u(t, s) = F0x(t, s) + F1x
(1)(t, s) + · · ·+ FMx(M)(t, s) (69)

where M is an integer, and Fj is an operator mapping E into itself and is, in general, a function of n.
Suppose also that the closed loop system in this case, i.e.

x(t + 1, s) = A0nx(t, s) + A1
d x(t, s)

ds
+

M∑

j=0

BFj
djx(t, s)

dsj
(70)

is stable and hence the solutions (λ1(z), λ2(z)) of

det(A0n + A1z +
M∑

j=0

BFjz
j − λI) = 0 (71)

satisfy |λj(z)| < 1, j = 1, 2, z ∈ [−ı, ı].
As a particular case of (66)-(69), we can take F (z) to be of the form F (z) = [ψ1n(z), ψ2n(z)] ,

where ψ1n(z) and ψ2n(z) are polynomials of the form (58). Also

A0n + A1z + BF (z) =
[

10 z + an

ψ1n(z) ψ2n(z)

]
(72)

and hence

λ1(z) + λ2(z) = 10 + ψ2n(z)
λ1(z)λ2(z) = 10ψ2n(z)− ψ1n(z)(z + an) (73)

This gives

ψ1n(z) =
10(λ1(z) + λ2(z))− 100− λ1(z)λ2(z)

(z + an)
(74)

Next, introduce M = {z ∈ C : |z| = 1} \ {z ∈ C : |z + ı| ≤ δ}, where δ is a positive number whose
value does not exceed 1

2 . Then

|ψ1n(z)| ≤ 20 + 100 + 1
|z + an| ≤ 121

|ψ1n(−ı)| ≥ −20 + 100− 1
( 1

n+1)
→∞, n →∞ (75)

Applying Lemma 4 now yields that M of (69) is not bounded in this case. Hence we conclude that
if n is enough large then the system (66) is not stabilizable by feedback control action of the form

u(t, s) = F0x(t, s) + F1x
(1)(t, s) (76)

If the system (66) is stabilizable by (69) then M →∞ as n →∞.
Noting the above example, there are at least two ways to stabilize the system (56). The first of

them is to extend the structure of (56) by allowing growth in the order of the differential operator on
the right-hand side of the system model until M > N in (57). In the limit, this will lead to systems
with infinite degree operator of the form (1).

The second option here is to relax the definition of stability. Of these, we consider the first here
for which the following result can be established.

Theorem 8. If the system (56) is controllable then for each q ∈ (0, 1) ∃ an integer M ≥ 0 such that
(56) is q stabilizable by a feedback control law of the form (57).



Proof. By Theorem 7, ∃ a stabilizing feedback control law of the form

u(t, s) =
∑

j∈Z+

Fj
dxj(t, s)

dsj
(77)

Hence the roots λi(z) of

det
( ∑

j∈Z+

(Aj + BFj)zj − λI

)
= 0 (78)

satisfy
|λi(z)| < 1, j = 1, 2, · · · , n, z ∈ [−ı, ı] (79)

Also it can be shown [20] that the spectrum of an operator is an upper semi-continuous function
and hence the inequalities of (79) are also valid for small perturbations of the matrix Υ̂(z) =∑

j∈Z+

(Aj + BFj)zj and the power series
∑

j∈Z+

Fjz
j is uniformly convergent ∀ z ∈ [−ı, ı]. Hence the

elements of the matrices Υ̂(z) and Υ̂F (z) = Υ̂(z) +
M∑

j=1
Fjz

j are infinitesimally close to each other

∀ z ∈ [−ı, ı] and for some integer M. This leads to the conclusion that ∃ an integer M > 0 such that
all eigenvalues of the matrix Υ̂F (z) lie in the interior of the unit disk ∀ z ∈ [−ı, ı]. Hence for the given
Fj and this M the feedback control law (57) stabilizes the system (56) and the proof is complete.

¤

5 Optimization Theory

The previous analysis has shown that infinitely differentiable functions provide an essential tool for the
control related analysis of the class of 2D continuous-discrete linear systems considered here. In this
section, we apply the methodology of entire functions, a sub-class of infinitely differentiable functions,
to solve the linear optimization problem for these systems. The aim is to show that this problem can
be reduced to the extremal problem in an appropriate Hilbert space of entire functions. Next we give
some necessary definitions and basic results.
Note: Let G be a finite dimensional vector space over the complex field C. Then a complex function
f : C → G is an entire function of exponential type and finite degree σ if f is regular on C and for
any ε > 0 ∃ a constant M = M(ε) such that Me(σ−ε)|zs| < ||f(z)|| < Me(σ+ε)|zs| holds ∀ z ∈ C and
some zs ∈ C, zs →∞, s →∞.

Consider a complex function f : C → E, where E is a finite dimensional normed linear space,
which is an entire function of exponential type with finite degree σ ≤ π ( see, e. g. [21, 22, 23]).
Also let WE denote the set of entire functions of exponential type and finite degree σ, such that their
restrictions to R are functions from the space L2(R, E). Then it is known [22] that WE is a Hilbert
space (often termed the generalized Wiener-Paley space in the Russian literature).

An inner product on W can be defined as (f, g)W =
∫
R

Re(f(x), g(x))E dx, where (·, ·)E denotes

an inner product in E and the over-bar denotes the complex conjugate operation. Denote also by
`2(WE) the Hilbert space of square summable sequences from WE with the usual inner product
(ϕ,ψ)`2(W) =

∑
i∈Z+

(ϕi, ψi)W .
Consider again systems described by (1). Then the optimization problem we consider is to minimize

over the solutions of this system the quadratic cost function

J(u) =
∑

t∈Z+

∫

R

[
(Qx(t, s), x(t, s))E + (Ru(t, s), u(t, s))W

]
ds (80)

Here u : Z+ × C → W is the control input to be determined and Q : E → E and R : W → W
are linear self-adjoint operators which are positive semi-definite and positive definite respectively, i.e.
Q ≥ 0, R > 0.



Assume that the control variables belong to the admissible set u ∈ U , where U is a given closed
convex set in `2(WE). Note here that when U = `2(WW ), the optimal control problem to be solved
has no constraints on the control inputs.

Definition 4. For given functions u(t, s), α(s), we say that a function x ∈ `2(WE) is a solution
of the system (1) if x satisfies (1) ∀ t ∈ Z+, s ∈ R. The control function u : Z+ × C → W is
said to be admissible for (1) if u ∈ U , and an admissible control u0 is said to be optimal for (1) if
J(u0) = min

u∈U
J(u).

Now we have the following result which characterizes the optimal solution of the problem defined
above.

Theorem 9. Suppose that γ =
∑

k∈Z+

σk||Ak|| < 1. Then the optimization problem (80) for (1) has a

unique optimal solution in the space `2(WE) for any initial data α ∈ WE .

Proof. We first establish the existence solutions of (1) in the space `2(WE) for the given admissible
data. Introduce first the linear differential operator a : WE →WE by the formula

(aψ)(z) =
∑

k∈Z+

Ak
dkψ(z)

dzk
, z ∈ C

Then it is known [22] that if ψ ∈ WE then dψ
dz ∈ WE and the inequality ||dψ

dz ||WE
≤ σ||ψ||WE

holds.
Hence the operator a is bounded and ||a|| < 1 .

Next, note that the system (1) can be written as

ω(t + 1) = aω(t) + ψ(t), ω(0) = α, ω(t) ∈ WE , t ∈ Z+ (81)

where α is the given element from WE , ψ(t) = Bu(t), t ∈ Z+, and the operator B : WW → WE is
defined in an obvious way as (Bu)(t, z) = Bu(t, z), z ∈ C, t ∈ Z+. Then the solution of (81) can be
written as

ω(t + 1) = Bu(t) + aBu(t− 1) + · · ·+ atBu(0) + at+1α, t ∈ Z+ (82)

Now define the linear operator L : `2(WW ) → `0
2(WE) as

(Lf)(t + 1) = Bf(t) + aBf(t− 1) + · · ·+ atBf(0), (Lf)(0) = 0, t ∈ Z+ (83)

where `0
2(WE) denotes the space of sequences in `2(WE) with zero first element. Then it is easy to

verify that in the case when γ =
∑

k∈Z+

σk||Ak|| < 1, the operator L is bounded. Moreover, we have

that (leaving out the details of some obvious intermediate manipulations)

||Lf ||`2(W) =


 ∑

t∈Z+

||(Lf)(t + 1)||2W




1
2

≤ (
∑

t∈Z+

||B||2(||f(t)||2 + · · ·+ ||a(t)||t||f(0)||2)) 1
2

≤ ||f || ||B||
1− ||a|| (84)

Hence for a given u ∈ `2(WW ), α ∈ WE , the solution of (82) can be written in the form

ω = Lu + ψ, ψ = (α, aα, a2α, · · · ) (85)

where L is the bounded linear operator defined by (83). This proves that an admissible solution exists.



At this stage, it is convenient to represent the original problem as an extremal problem in the
Hilbert space setting since such an approach enables us to prove the existence of optimal solutions.
Consequently, define the bounded linear operators Q : `2(WE) → `2(WE), H : `2(WW ) → `2(WW ) as
follows

(Qx)(t, z) = Qx(t, z), (Hu)(t, z) = Ru(t, z), z ∈ C, t ∈ Z+ (86)

Then using (85), the cost function (80) can be written in the form

J(u) = Re(Q(Lu + ψ), (Lu + ψ))`2(W) + Re(Hu, u)`2(W)

= Re((H+ L∗QL)u, u)`2(W) + 2Re(L∗Qψ, u)`2(W) + Re(Qψ, ψ)`2(W) (87)

where (for the rest of this paper) ∗ denotes the adjoint operator. Since the operators H and Q are
positive and nonnegative definite respectively, the Hermitian form

G(u, v) = ((H+ L∗QL)u, v)`2(W), (88)

is coercive on U , i.e. the inequality G(u, v) ≥ c||v|| holds for any v ∈ U , where c > 0 is a constant.
Hence the cost function J(u) can be written as

J(u) = ReG(u, u)− 2L(u) + (Qψ,ψ)`2(W) (89)

where L(u) = −Re(L∗Qψ, u)`2(W) is a linear form on U . Also it is well known that in this case there
is a unique element u0 from the closed convex set U such that J(u0) = inf

u∈U
J(u), and the proof is

complete. ¤
It now follows from (89) that u0 is optimal for J(u) if, and only if,

Re(G(u0, v − u0)) ≥ L(v − u0), ∀ v ∈ U (90)

and this inequality is the basis for obtaining explicit optimality conditions.

Corollary 1. Let U = `2(WW ), which corresponds to the case when there are no constraints on the
control inputs. Then substituting v = u0 ± µ, where µ is an arbitrary element from `2(WW ), yields

Re(G(u0, v)) = L(v), ∀ v ∈ U (91)

Corollary 2. Let U be a closed convex cone in `2(WW ). Then (90) in this case is equivalent to the
following conditions

Re(G(u0, v)) ≥ L(v), ∀ v ∈ U
Re(G(u0, v0)) = L(u0) (92)

The first condition in this last result follows immediately from (90) on replacing v by v + u0. Also
if v = 0 in (90) then Re(G(u0, v0)) ≤ L(u0) and hence the second formula holds.

In what follows, we develop modified optimality conditions based on using so-called adjoint vari-
ables.

Theorem 10. Consider the problem of minimizing the cost function (80) for systems described by (1)

and suppose that γ =
∑

k∈Z+

σk||Ak|| < 1. Then the admissible control u0 ∈ U is optimal if, and only if,

Re


 ∑

t∈Z+

∫

R

(
(B∗y0(t, s) + Ru0(t, s)), (v(t, s)− u0(t, s))

)
W

ds


 ≤ 0 (93)

holds ∀ v ∈ U , where y0 is the solution of the adjoint system

y0(t, s) =
∑

k∈Z+

(−1)kA∗k
dky0(t + 1, s)

dsk
+ Qx0(t + 1, s), t ∈ Z+, s ∈ R (94)



Proof. The condition of (90) can be re-written in the form

Re
[
((H+ L∗QL)u0 + L∗Qψ), (v − u0))`2(W)

] ≥ 0, ∀ v ∈ U (95)

Using (85), the solution of (81) (and hence of (1)) can be written as ω0 = Lu0 + ψ. Hence

Re
[
((H+ L∗Qω0), (v − u0))`2(W)

] ≥ 0, ∀ v ∈ U (96)

Since we are considering Hilbert spaces, the corresponding conjugates are also Hilbert spaces, and
it is easy to verify that the adjoint operator L∗ of L is given by L∗β = B∗Λβ, where B∗ : `2(WE) →
`2(WW ) is the adjoint operator of B, and Λ : `0

2(WE) → `2(WE) is given by

(Λβ)(t) = β(t + 1) + a∗β(t + 2) + (a∗)2β(t + 3) + · · · , β(0) = 0, t ∈ Z+ (97)

and the adjoint operator a∗ : WE →WE is given by

(a∗ψ)(z) =
∑

k∈Z+

(−1)kA∗kψ
(k)(z), ψ ∈ WE , z ∈ C (98)

To obtain this last expression, note that we are using functions from WE which are entire and
vanish at infinity, and therefore

(aπ, ψ)WE
=

∑

k∈Z+

(Akπ
(k), ψ)WE

=
∑

k∈Z+

(π(k), A∗kψ)WE
=

∑

k∈Z+

∫

R

(π(k)(x), A∗kψ(x))Edx =

=
∑

k∈Z+

∫

R

((−1)kπ(x), A∗kψ(k)(x))Edx =
∑

k∈Z+

(π, (−1)kA∗kψ
(k))WE

, ψ ∈ WE , π ∈ WE

(99)

This establishes the required representation of the adjoint operator a∗ and it is easy to show that the

condition γ =
∑

k∈Z+

σk||Ak|| < 1 guarantees that ||a∗|| < 1.

For the given control u ∈ U , we define the element y ∈ `2(WE) as y = ΛQω, where ω is the solution
of (85) corresponding to the control u. Hence using (97), the elements of y satisfy

y(t) = a∗y(t + 1) +Qω(t + 1), y(t) ∈ WE , t ∈ Z+ (100)

Since y ∈ `2(WE), then ||y(t)||E → 0, t → ∞, and this last condition can be taken as a boundary
condition for the system (100).

Note now that the system of equations (100) is the adjoint system for (81) and recall that we
have already shown that both (1) and its equivalent system (81) are solvable for any right-hand side

function in `2(WE) and initial data α ∈ WE when γ =
∑

k∈Z+

σk||Ak|| < 1. Also it is straightforward

to show that under these assumptions, the adjoint system (100) has a unique solution y ∈ `2(WE) for
any right-hand side function that belongs to `2(WE) which is given by

y(t) =
∑

s∈Z+

(a∗)sQω(t + s + 1), t ∈ Z+ (101)

Also at t, t + 1, t + 2, . . . it follows from (100) that

y(t) =a∗y(t + 1) +Qω(t + 1),

y(t + 1) =a∗y(t + 2) +Qω(t + 2),

y(t + 2) =a∗y(t + 3) +Qω(t + 3),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(102)



Now apply the operator a∗ to the first of these equations, the operator (a∗)2 to the second and
so on. Then summing the resulting equalities, and noting that ||a∗|| < 1 and limt→∞ ||y(t)||WE

= 0,
yields (101). Also, due to the representation (98) for a∗, (100) in the space WE can be transformed
to (94) as required. The inequality (93) follows directly from (96) and the definition of the inner
product in `2(WE), which completes the proof. ¤
Remark 2. Note that the solutions ω and y of the following equations

ω(t + 1) =aω(t) + f(t)

y(t) =a∗y(t + 1) + g(t), t ∈ Z+

(103)

have the property that (ω(t + 1), y(t))WE
for the homogeneous systems (f = 0, g = 0) is constant

∀ t ∈ Z+. To show this, let τ be an arbitrary integer and then (after some routine manipulations)

(ω(τ + 1), y(τ))WE
= (ω(1), y(0))WE

+
τ∑

s=1

[
(ω(s), g(s))WE

+ (f(s), y(s))WE

]
(104)

The result now follows immediately on setting f = 0, g = 0.

The following result solves the quadratic optimization problem in the absence of constraints on
the control variables and yields an optimal control vector which can be expressed as a linear function
of the adjoint variables.

Theorem 11. Consider the problem of minimizing the cost function (80) for systems described by (1).

Also let U = `2(WW ) and γ =
∑

k∈Z+

σk||Ak|| < 1. Then if the pair u0, x0 is the optimal solution of the

problem defined by (1) and (80), ∃ a unique solution y ∈ `2(WE) of the adjoint system

y(t, s) =
∑

k∈Z+

(−1)kA∗k
dky(t + 1, s)

dsk
+ Qx0(t + 1, s), t ∈ Z+, s ∈ R (105)

such that
u0(t, s) = −R−1B∗y(t, s), t ∈ Z+, s ∈ R (106)

Also the optimal trajectory x0(t, s) satisfies

x0(t + 1, s) =
∑

j∈Z+

Aj
djx0(t, s)

dsj
−BR−1B∗y(t, s), x0(0, s) = α(s) (107)

Proof. By Corollary 1, the optimal control u0 for this problem satisfies

Re(G(u0, v)) = L(v), ∀ v ∈ `2(WW ) (108)

i.e.
Re

[
(H+ L∗QL)u0, v)`2(W)

]
= −Re

[L∗Qψ, v)`2(W)

]
, ∀ v ∈ `2(WW ) (109)

where ψ = (α, aα, a2α, · · · ). Next, it follows immediately that

u0 = (H+ L∗QL)−1L∗Qψ (110)

where the inverse involved exists under the assumptions invoked. Also since ω0 = Lu0 + ψ, then by
(110) we have that u0 = −L∗Qω0 or u0 = −H−1B∗y, where the adjoint variable y ∈ `2(WE) is defined
as in the proof of Theorem 9, i.e. as the solution of

y(t) = a∗y(t + 1) +Qω(t + 1), y(t) ∈ WE , t ∈ Z+ (111)

Using (98) for a∗ yields (105) as required. The solvability of (105) under the assumption that γ =∑

k∈Z+

σk||Ak|| < 1, can be established as in Theorem 9. Finally, since u0 = −H−1By, (106) follows

immediately and the proof is complete.
¤



6 Conclusions

In this paper key elements of a control oriented systems theory for a class of 2D continuous-discrete
linear systems of both theoretical and practical interest has been developed. The analysis is based
on a general model setting of the form defined by (1). The first set of results relate to stability,
controllability and stabilization, where it has been shown the existence of feedback stabilizing control
laws is linked to controllability in a similar manner to the 1D linear system case.

In the final section of this paper, an optimization/optimal control theory has been developed. The
optimization problem (minimization of the quadratic cost function) has been reduced to an extremal
problem in an appropriate Hilbert space. This fact has been developed using the theory of entire
functions, i.e. a sub-class of infinitely differentiable functions. Finally, the solution has been developed
into a constructive form using adjoint variables.
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