
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

Performance-Oriented Refinement

Stefan Hallerstede

A thesis submitted for the degree of Doctor of Philosophy

Department of Electronics and Computer Science
University of Southampton

United Kingdom
July 2001

UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

Doctor of Philosophy

Performance-Oriented Refinement
Stefan Hallerstede

We introduce the probabilistic action system formalism which combines re-
finement with performance. Performance is expressed by means of probabil-
ity and expected costs. Probability is needed to express uncertainty present
in physical environments. Expected costs express physical or abstract quan-
tities that describe a system. They encode the performance objective. The
behaviour of probabilistic action systems is described by traces of expected
costs. Corresponding notions of refinement and simulation-based proof rules
are introduced.

Formal notations like B [2] or action systems [8] support a notion of
refinement. Refinement relates an abstract specification A to a more deter-
ministic concrete specification C. Knowing A and C one proves C refines,
or implements, specification A. In this study we consider specification A
as given and concern ourselves with a way to find a good candidate for
implementation C. To this end we classify all implementations of an ab-
stract specification according to their performance. The performance of a
specification A is a value val.A associated with some optimal behaviour it
may exhibit. We distinguish performance from correctness. Concrete sys-
tems that do not meet the abstract specification are excluded. Only the
remaining correct implementations C are considered with respect to their
performance. A good implementation of a specification is identified by hav-
ing some optimal behaviour in common with it. In other words, a good
refinement corresponds to a reduction of non-optimal behaviour. This also
means that the abstract specification sets a boundary val.A for the perfor-
mance of any implementation. An implementation may perform worse than
its specification but never better.

Probabilistic action systems are based on discrete-time Markov decision
processes [98]. Numerical methods solving the optimisation problems posed
by Markov decision processes are well-known, and used in a software tool
that we have developed. The tool computes an optimal behaviour of a
specification A, and the associated value val.A, thus assisting in the search
for a good implementation C.

We present examples and case studies to demonstrate the use of proba-
bilistic action systems.

Acknowledgement

It takes three to four years and a good supervisor to do a PhD. Michael
Butler has been a very good one. I also enjoyed being part of the Declarative
Systems and Software Engineering group at the University of Southampton
headed by Peter Henderson. Ulrich Ultes-Nitsche and Eric Rogers have
contributed to this work by reading my mini thesis and giving valuable
comments. Finally, am grateful to Jeff Sanders and Ulrich Ultes-Nitsche for
examining the final product of my PhD.

I began studying Computer Science at the University of Oldenburg in
Germany. There I met Ernst-Rüdiger Olderog and Clemens Fischer who
later supervised me during the writing of my diploma thesis. They are
mainly responsible for my growing interest in formal methods during my
studies in Oldenburg.

I would like to thank my family and various friends in Germany and the
United Kingdom for giving joy to my private life. They distracted me from
studying whenever it was necessary, and supported me in making important
decisions. Helko Lehmann shared my flat while I was writing this thesis.
He was in a similar situation [73]. He also was very good at distracting me
from work but also at giving useful advice.

Contents

1 Introduction 6
1.1 State-Based Approaches . 7
1.2 Event-Based Approaches . 8
1.3 Example: Bookshop Inventory 10
1.4 Overview . 13

2 Foundations 14
2.1 Sets . 14
2.2 Mathematical Notation . 16
2.3 Probability . 17
2.4 Action Systems . 17

2.4.1 Syntax . 17
2.4.2 Semantics . 18
2.4.3 Failure Refinement . 19

3 Program Semantics 21
3.1 State Functions . 22
3.2 State Relations . 22
3.3 Probabilistic State Functions 24
3.4 Probabilistic State Relations 29
3.5 Extended Probabilistic State Relations 33
3.6 Algebraic Laws . 36
3.7 Remarks . 42

4 Probabilistic Action Systems 44
4.1 Behaviour of Probabilistic Action Systems 45
4.2 Syntactic Representation . 46
4.3 Example: Polling System . 47
4.4 Cost Refinement . 49

4.4.1 Simulation . 51
4.4.2 Equivalence . 56

4.5 Example: Polling System . 59
4.6 Remarks . 66

i

CONTENTS ii

5 Optimal Systems 68
5.1 Markov Decision Processes . 68
5.2 Optimisation Criteria . 70
5.3 Average Cost Optimality . 72
5.4 Example: Polling System . 74
5.5 Remarks . 77

6 DYNAS 80
6.1 Compiler . 81
6.2 Expander . 85

6.2.1 Data Structures . 85
6.2.2 Game Semantics . 88

6.3 Solver . 94
6.3.1 Policy Iteration . 94
6.3.2 Value Iteration . 97

6.4 Printer . 99

7 Case Study: Lift System 102
7.1 State and Operation of the Lift Machine 102
7.2 From Machines to Systems 105

7.2.1 Interleaving . 106
7.2.2 Random Actions . 106
7.2.3 Dependent Actions . 108
7.2.4 Independent Actions 109
7.2.5 The Lift System . 111

7.3 Time Scale Transformation 112
7.4 More Actions . 112
7.5 Fewer States . 114

7.5.1 State Aggregation . 114
7.5.2 The Reduced Lift System 118

7.6 Evaluation and Discussion . 119

Conclusion 121

A Proofs 124

B Mathematical Notation 144

C ASCII-Representation 146

Index 149

Bibliography 151

Chapter 1

Introduction

In recent years there has been growing interest in combining formal meth-
ods with performance analysis. The resulting developments gave rise to
stochastic variants of established event-based and state-based formalisms.
We distinguish between event-based and state-based formalisms by way of
their behavioural semantics. The B-formalism [2] can be considered event-
based [3]. It lacks a means of performance analysis. This thesis describes
our effort to supplement B with a suitable notion of performance. From the
outset we have only considered extensions that would support automatic cal-
culation of performance measures. Realistically sized systems usually consist
of thousands of states leading to thousands of equations to be solved. We
consider it infeasible to do this by hand. Our extension of B, probabilistic
action systems, is not event-based anymore (see chapter 4). Neither events
nor states are observable. The behaviour is described in terms of expected
costs which capture certain features that are relevant for performance. De-
spite this difference, refinement of probabilistic action systems is reminiscent
of B refinement. This makes it easier to learn for someone familiar with B
refinement already. In practice, this will also mean that experience in either
is useful in the other.

In our current study we measure performance in terms of long-run ex-
pected average-cost. Probabilistic action systems do not make assumptions
about any particular performance measure. It ought to be possible to choose
a measure suitable for the system being investigated. Syntactically proba-
bilistic action systems are close to B [2] and probabilistic predicate trans-
formers [88]. The program constructs used also lean on [9]. We decided on B
as a foundation of probabilistic action systems because of its widespread use.
The inclusion of features for performance analysis was made as non-intrusive
as possible. We believe the notation used for performance analysis should
be close to the notation used in the development process. Then specifica-
tions used in B-refinement, or parts thereof, could be used in performance
analysis and results from the analysis can easily be transferred back.

6

CHAPTER 1. INTRODUCTION 7

Sections 1.1 and 1.2 review state-based and event-based approaches to
performance analysis. We shall briefly discuss notions of performance, re-
finement and simulation used in the mentioned formalisms. In section 1.3 we
demonstrate probabilistic action systems by way of an inventory problem,
and compare the modelling approach to those presented in sections 1.1 and
1.2. Finally, section 1.4 gives an overview of the remaining chapters.

1.1 State-Based Approaches

The models underlying the formalisms discussed in this and the next section
are called Markov processes [61, 70] and Markov decision processes [62, 115].
The two models themselves are used to model state-based stochastic sys-
tems [16, 98, 110]. However, they are impractical to use in the performance
analysis of complex systems because no structuring mechanisms are avail-
able [45]. Queueing systems are the traditional structured formalism used in
performance analysis [84]. They have also been applied to computer systems
performance modelling [24, 43, 69, 92, 106]. Usual performance measures
derived from queueing systems include: system throughput, average num-
bers of waiting customers at stations in a queueing network, and waiting
times [84].

Closely related to performance analysis is the subject of “performabil-
ity”. Performability integrates performance and reliability modelling. Its
purpose is the performance analysis of degradable systems. To a limited
degree performability analysis is possible with our formalism because of its
semantical model. There is no explicit support for performability analysis
though. The articles [44, 45] give an overview of existing formalisms and
tools for performability analysis. One such tool is presented in [106] together
with an introduction to some formalisms. These include queueing systems
and stochastic Petri nets which are widely used in performance analysis, and
some formalisms specific to reliability analysis.

Stochastic Petri nets [79, 85] have been applied to performance modelling
of computer architectures. Their origin are classical Petri nets [101, 113]
which are described by a collection of places, transitions and markings. Ex-
ponentially distributed firing delays are used to model uncertain behaviour.
Consequently, stochastic Petri nets model real-time and probability. There is
no notion of nondeterminism though. The operational behaviour of (gener-
alised) stochastic Petri nets is characterised by the interaction of immediate
transitions and exponentially delayed transitions. If two exponentially de-
layed transitions t1 and t2 in a stochastic Petri net compete for a token, the
conflict is resolved probabilistically. Let µ1 and µ2 be the transition rates
of t1 and t2, i.e. the mean time it takes for ti to fire is 1/ µi . Then transi-
tion ti fires with probability pi = µi /(µ1 +µ2). The use of the transition
probabilities pi corresponds to a shift to discrete time [84]. If an imme-

CHAPTER 1. INTRODUCTION 8

diate transition is enabled in a marking, that marking “vanishes”, i.e. in
the semantical model the marking is not visible. If an immediate transition
conflicts with an exponentially delayed one, the immediate transition has
priority. And if two immediate transitions conflict the conflict is resolved
by explicitly specified priorities.

The generalised model [79] added immediate transitions to the original
model [85]. In [75] the generalised stochastic Petri nets of [79] are extended
with a type of transition having deterministically distributed firing delays.
The extended stochastic Petri nets are mainly used for computer architec-
tures modelling [75]. The book [75] contains another overview over perfor-
mance modelling techniques, and presents a software tool [74] that computes
performance measures. The performance measures that can be derived from
stochastic Petri nets are expectations of functions of markings, and proba-
bilities of predicates over markings [75]. In [75] the lack of nondeterminism
in these formalism is partly remedied by the use of parameterised specifica-
tions, e.g. experiments in [75]. But there is no means to reason about these
parameters from within the formalism. Chapters on stochastic Petri nets
are also contained in [43, 69]. In [69] some consideration is given to discrete-
time stochastic Petri nets as well. None of these state-based formalisms is
accompanied by a notion of refinement.

The action system formalism [8] has been extended in [111] with prob-
abilistic features for reliability analysis. It is based on the probabilistic
extension [88] of the guarded command language [29]. The probabilistic
guarded command language contains notions of nondeterminism and proba-
bilistic choice but is not compatible with the general performance measures
supported by Markov decision processes and used in our approach. In [116]
this has been partly rectified by using parameterised refinement similar to
[75]. By insisting on a close correspondence to standard probability theory
our approach is similar to [49]. However, our model is closely based on
Markov decision processes so that tool support can be easily achieved.

1.2 Event-Based Approaches

The event-based formalisms for performance analysis are usually based on
classical process algebras like CCS [83], CSP [59] or LOTOS [19]. They are
generally called stochastic process algebras, e.g. EMPA [14, 13, 15], MPA
[20], TIPP [53, 54], or PEPA [57, 58].

Stochastic process algebras are deterministic in the sense that for all
choices there are (stochastic) instructions how to resolve them. Similar
to stochastic Petri nets, stochastic process algebras use exponentially dis-
tributed delays between events. Their behaviour is usually described by
labelled transition systems or traces of actions. Let µ denote a rate and
a an action. An activity α is defined by a tuple (a, µ). A choice between

CHAPTER 1. INTRODUCTION 9

two activities α1 = (a1, µ1) and α2 = (a2, µ2) is resolved similarly to con-
flict resolution in stochastic Petri nets: action ai occurs with probability
µi /(µ1 +µ2). Stochastic process algebras have the usual combinators, like
synchronisation or hiding. The definition of synchronised composition varies
between the different algebras. Hidden actions are called internal, and are
denoted by the special symbol τ . Internal actions themselves are not ob-
servable, only their effect is. As in classical process algebras notions of
bisimulation and equivalence between process terms exist. These form the
basis of methods to reduce the size of the semantical model of process terms
for numerical analysis [51, 58].

The stochastic process algebras TIPP and EMPA also have notions of
nondeterminism. In fact, the stochastic process algebra EMPA has language
kernels that correspond to classical process algebra like CCS, stochastic pro-
cess algebras like MPA, and probabilistic process algebras like probabilistic
CSP [108]. However, in EMPA performance analysis is only possible for
specifications that do not contain nondeterminism. In TIPP the process
term being analysed must be bisimilar to a deterministic process term, ef-
fectively saying the original process term does not contain nondeterministic
choices.

The semantics of process algebras can be described in terms of Petri
nets [94]. The same holds for stochastic process algebras and stochastic
Petri nets [11, 13, 102, 103]. This relationship is useful to compare the
two modelling approaches, and to transfer concepts between them. This
also means that performance measures used in one approach are, in princi-
ple, also available in the other one. Typical measures used with stochastic
process algebras are probabilities of process states, throughput, and means
based on variables present in parametric processes [51]. In [23] and [10, 12]
the stochastic process algebras PEPA and EMPA have been equipped with
means to specify more general performance measures based on rewards [62].
The approach of [23] is to use temporal logic-like formulas to refer to states
of a system (that are determined by sequences of actions), and assign re-
wards to them. In EMPAr [12] activities are triples (a, µ, r) where a and µ
are as above and r ∈ R is a reward associated with action a. The article [12]
gives examples on how to express standard performance measures as men-
tioned above in EMPAr . This is extended in [10] to include also rewards
associated with states. Tool support for any of these methods is generally
considered to be essential for the method to be useful in practice [44]. Soft-
ware tools are available to compute performance measures specified in the
process algebras PEPA: PEPA Workbench [37], TIPP: TIPPtool [51], and
EMPAr : TwoTowers [10]. The tool TwoTowers also supports some
model checking of functional aspects specified in EMPAr process terms.

CHAPTER 1. INTRODUCTION 10

system BOOKSHOP
constants

BOOKS ; CAPACITY ; CUSTOMERS ;
constraints

BOOKS = 3 ∧ CAPACITY > 0 ∧ CUSTOMERS > 0;
sets

BOOK = 1 . . BOOKS ;
PRICE = 〈5.0, 70.0, 20.0〉;
DEMAND = 〈0.2, 0.13, 0.34, 0.33〉;
CUSTOMER = 1 . . CUSTOMERS ;

variables
stock : BOOK → 0 . . CAPACITY ;

programs
replenish =⊔

RR : BOOK → 0 . . CAPACITY •
| ∀ bb : BOOK • stock .bb + RR.bb ≤ CAPACITY |;
stock := (λ bb : BOOK • stock .bb + RR.bb);

sell =⊕
DD : CUSTOMER → BOOK ∪ {BOOKS + 1}

| (∏ cc : CUSTOMER • DEMAND .(DD .cc)) •
|∑ bb : BOOK • (card.(DD∼[{bb}]) ·−stock .bb) ∗ PRICE .bb |;
stock := (λ bb : BOOK • stock .bb ·−card.(DD∼[{bb}]));

initialisation
stock := BOOK × {0};

actions
trade =

replenish; sell ; |∑ bb : BOOK • stock .bb ∗ PRICE .bb |;
end

Figure 1.1: A small book shop

1.3 Example: Bookshop Inventory

We introduce probabilistic action systems with an example of an inventory
control problem based on [98, 110]. This section mainly serves two purposes.
First, it describes the specification style we use and, second, demonstrates
how modelling problems from standard literature may be approached using
probabilistic action systems.

A book shop sells three different BOOKS . It may hold up to CAPACITY
copies of a book in store. Every day a number of CUSTOMERS visits the
shop some of which buy a copy of a book. See figure 1.1. The price of book
bb is given by PRICE .bb. It is known that 20% of the customers buy book 1,
13% buy book 2, 34% buy book 3, and 33% of them leave the shop without

CHAPTER 1. INTRODUCTION 11

buying anything. This is expressed by the sequence DEMAND . Note that
the last element of the sequence DEMAND .(BOOKS + 1) represents the
fraction of customers not buying a book. No customer buys more than one
book a day. The stock of the shop is represented by variable stock : there are
stock .bb copies of book bb in stock. The book shop gets a delivery of books
every morning which are subsequently sold on to customers. We regard a
request for a book that cannot be served as a loss, i.e. a cost the shop incurs.
However, holding many books in stock also incurs costs. We assume that
both types of costs are given by the resale prices of the corresponding books.
Performance objectives are associated with system BOOKSHOP by associ-
ating costs with its states. The objective is to keep the operating costs of
the shop as low as possible, that is, cheaper states are to be preferred during
operation.

The operation of system BOOKSHOP proceeds by first executing its
initialisation, and afterwards repeatedly its action trade. First the pro-
gram stock := BOOK × {0} is executed, i.e. initially the stock is empty.
Then the book shop buys, stores, and sells books. The only action trade of
BOOKSHOP is split into two programs replenish and sell which are followed
by a cost statement:

|∑ bb : BOOK • stock .bb ∗ PRICE .bb | . (1.1)

When this statement is encountered in an execution the specified cost is
incurred. The above cost statement (1.1) values the stock of the book shop
that has not been sold during the day. The implied performance objective
is to minimise the value of stock that is kept unnecessarily. A conflicting
objective is specified in program sell , incurring costs if demand is not met.
Improving on one objective worsens the other one.

Program replenish models the delivery of books to the book shop in the
morning. The assumption behind this program is that the books have been
ordered the evening before and they arrive in the morning. The shop man-
ager can only order as many books as can be stored in the shop, present stock
included. Orders are represented by function RR : BOOK → CAPACITY
which details the amount of copies of each book to order. The nonde-
terministic choice

⊔
over possible orders RR describes the decision on an

order RR to be made by the shop manager. An implementation of system
BOOKSHOP would replace this choice by a particular choice, for instance,
one that minimises the running costs of the shop. That implementation
would correspond to the shop manager adopting a policy of running the
book shop.

Program sell models the behaviour of customers. Each customer cc
buys a copy of a book DD .cc ∈ 1 . . BOOKS , or none. The latter case
is modelled by the “dummy” book identifier BOOKS + 1. Function DD
models the demand of a number of CUSTOMERS over one day. The product∏

cc DEMAND .(DD .cc) describes the joint probability that each customer

CHAPTER 1. INTRODUCTION 12

goal cost CUSTOMERS
〈0,0,1〉 31.22 2
〈0,0,1〉 42.18 3
〈1,0,1〉 54.28 4
〈1,1,2〉 65.46 5
〈1,1,2〉 66.56 6
〈1,1,2〉 70.44 7

Table 1.1: Optimal stock-keeping

cc buys book DD .cc, or no book if DD .cc = BOOKS + 1. Using this model
the following property holds:

∑
DD(

∏
cc DEMAND .(DD .cc)) = 1 .

The probabilistic choice
⊕

models the stochastic behaviour of all customers
over one day, assigning probability

∏
cc DEMAND .(DD .cc) to demand DD .

As mentioned earlier an attempt of customer cc to buy a book bb = DD .cc
that is not in stock corresponds to a loss of PRICE .bb in revenue. For an
entire demand DD this equals:

|∑ bb : BOOK • (card.(DD∼[{bb}]) ·−stock .bb) ∗ PRICE .bb | . (1.2)

The symbol ·− denotes subtraction bounded below by zero:

xx ·−yy =̂ xx −min.{xx , yy} .

Hence, the expression card.(DD∼[{bb}]) ·−stock .bb describes the number of
missing copies of book bb to meet the total demand DD∼[{bb}] of book bb.
To minimise (1.2) the shop manager would keep as many copies in stock
as possible. This is the opposite of what is required in (1.1), i.e. trying to
keep the storage costs low. Taking both objectives into account the manager
seeks a trade-off between them.

Using the software tool described in chapter 6, we can calculate the
optimal stock to be kept with respect to the long-run average-cost incurred
by the system per day. Letting CAPACITY = 3, table 1.1 presents the stock
an optimally operating book shop would keep. For instance, if one expects
6 customers per day: keep one copy of book 1, one copy of book 2, and two
copies of book 3. The average cost incurred is approximately 66.56 per day.
An optimal implementation of BOOKSHOP will always issues orders such
that each morning, after delivery, stock = goal .

If refinement was only used in this way it would not be powerful enough.
It becomes more valuable if it supports a change in the representation of
the state space. In this thesis we use this aspect of refinement for state

CHAPTER 1. INTRODUCTION 13

aggregation, a technique also used in stochastic process algebras (see sec-
tion 1.2). In this context refinement is employed to reduce the size of the
state space of probabilistic action systems to facilitate automatic analysis.
Occasionally the model of time underlying probabilistic action systems is
referred to as real-time [121]. However, we prefer to say it is discrete-time
in correspondence with the majority of formalisms in sections 1.1 and 1.2,
and the traditional terms used in stochastic dynamic programming [16, 98].

1.4 Overview

Action systems and trace refinement are briefly introduced in chapter 2.
They are the foundation of this work. In the same chapter we also introduce
notations and conventions used throughout the thesis.

Chapter 3 describes the program notation and semantics we use. A set
of program models is introduced in form of a small hierarchy. We think this
presentation of the semantics of programs makes it easier to understand the
different modelling aspects involved.

Based on the expectation-based program model of section 3.5 proba-
bilistic action systems are described in chapter 4. In the same chapter cost
refinement of probabilistic action systems is presented. Cost refinement has
been developed from trace refinement of action systems described in chapter
2. Probabilistic action systems and cost refinement are explained by way of
an extended example that is continued in chapter 5.

In chapter 5 we explain the principle of optimality as applied in the
theory of stochastic dynamic programming [28]. Average cost optimality of
probabilistic action systems and of Markov decision processes [28] are identi-
fied. This opens the way for automatic performance analysis of probabilistic
action systems (see chapter 6). We also relate cost refinement with average
cost optimality of probabilistic action systems. The presented material is
demonstrated with the continuation of the example of chapter 4.

Chapter 6 describes the implementation of a software tool that computes
an optimal implementation of probabilistic action system. The software tool
utilises results from chapter 5 substituting probabilistic action systems by
Markov decision processes in computations.

In chapter 7 a case study is presented to demonstrate how probabilistic
action systems may be used in practice. None of the refinements proved in
this chapter is actually aimed at implementation. Refinement is only used
for state aggregation. Otherwise analysis with the software tool would be im-
possible. We also introduce a transformation for probabilistic action systems
that preserves average cost optimality. This transformation is necessary to
enable the use of the software tool. The transformation is not a refinement.
Yet, we prove that an optimal implementation of the transformed system is
also an optimal implementation of the original one.

Chapter 2

Foundations

This chapter is not intended as an introduction to the mentioned subjects.
Its purpose is to familiarise the rare reader of this document with the formal
notions and concepts used. We use a notation based on type theory to
define program semantics similar to [9]. Specifications are written in a B-
like notation [2] which is based on set theory. Section 2.1 bridges the two
approaches. So we really use a single notation throughout the text. Section
2.2 introduces some more notation required later, and section 2.3 gives some
references to background material on probability theory. In section 2.4 we
describe the syntax and semantics of action systems. We also briefly discuss
the associated notion of refinement.

2.1 Sets

We assume a universe U of nonempty sets. On objects in this universe the
usual set operations set intersection ∩, set union ∪, set difference \, and the
relationships set member ∈, and set equality =, are defined. Set cardinality
is denoted by card.

Truth Values

The set of truth values {true, false} is denoted by B. The usual logical
operators ∨, ∧, ¬ , ⇒, and ⇔, are defined on B.

Natural Numbers

The set of natural numbers is denoted by N:

N = {0, 1, 2, . . .} .
The set of natural numbers without 0 is denoted by N1, i.e. N1 = N \ {0}.
The interval of the natural numbers from m to n is defined by

m . . n =̂ {k | m ≤ k ≤ n} .

14

CHAPTER 2. FOUNDATIONS 15

Custom Values

Custom sets S of finitely many values V1, V2, . . ., Vk are defined by enu-
meration of the contained constants:

S = V1 | V2 | . . . | Vk .

This corresponds to a matching set in the universe U .

Real Numbers

The set of real numbers is denoted by R. The open real interval from x to
y , where x ≤ y , is denoted by (x , y). We allow the values −∞ and +∞ for
x and y , so that R = (−∞,+∞). The set of positive real numbers is defined
by R≥0 = {0} ∪ (0,+∞).

Types

Types are expressions that describe sets. A type is described by a nullary
type operator C , or one of the type operators below. A nullary type operator
C is a subset of B, N, R, or a set S of custom values. The other type
operators denote function types ∆1 → ∆2, partial function types ∆1 7→ ∆2,
relation types ∆1 ↔ ∆2, product types ∆1 × ∆2, and power types P∆1.
Generally, types are defined by the following grammar:

∆ = C | ∆1 → ∆2 | ∆1 7→ ∆2 | ∆1 ↔ ∆2 | ∆1 ×∆2 | P∆1 .

The type ∆1 × ∆2 denotes a set of pairs. Pairs are denoted by (x , y),
and alternatively x 7→ y . The latter is the preferred notation in connection
with function types. Members of types ∆1 → ∆2, ∆1 7→ ∆2 and ∆1 ↔ ∆2

correspond to sets of pairs. If f is of function or relation type, then dom.f
denotes its domain and ran.f its range. Function application is denoted f .x ,
where x ∈ dom.f . The type P∆1 denotes the power set of ∆1. The set
operators of the universe are used with types. By P1 ∆1 we denote the set
P∆1 \ {∅} of non-empty subsets of ∆1.

Notation

A function q : ∆→ B is called a predicate. Predicates and power types are
isomorphic,

P∆ ' ∆→ B,

if we let x ∈ q ⇔ q .x . This gives the usual correspondence between the two:

(q1 ∪ q2).x ⇔ q1.x ∨ q2.x ,

(q1 ∩ q2).x ⇔ q1.x ∧ q2.x ,

CHAPTER 2. FOUNDATIONS 16

(∆ \ q1).x ⇔ ¬ q1.x ,

(q1 ⊆ q2).x ⇔ q1.x ⇒ q2.x ,

(q1 = q2).x ⇔ q1.x ⇔ q2.x .

Universal and existential quantification are defined as usual:

(∀ x : ∆ • q) ⇔ q .x = true for all x ∈ ∆ ,

(∃ x : ∆ • q) ⇔ q .x = true for some x ∈ ∆ .

We often use relations of type ∆1 ↔ ∆2 like functions based on the
isomorphism

∆1 ↔ ∆2 ' ∆1 → P∆2,

where (x , y) ∈ r ⇔ y ∈ r .x . Observe that using the isomorphism between
power types and predicates this extends to (x , y) ∈ r ⇔ r .x .y . This nota-
tion proves very convenient in definitions on the semantical level which is
the reason why it is introduced. In specifications we treat relations (and
functions) as sets of pairs though. With few exceptions the two notations
are not mixed.

2.2 Mathematical Notation

In addition to the types introduced in section 2.1 we use finite sequence
types

seq[n]∆ =̂ {s ∈ N1 7→ ∆ | dom.s = 1 . . n} ,
seq∆ =̂

⋃
n∈N seq[n]∆ ,

and infinite sequence types

seq∞∆ =̂ N1 → ∆ .

Refer to appendix B for the mathematical notation used in conjunction with
sequences, relations, etc. The notation is close to B [2] and Z [112].

We also use the same notation for substitution as B. The expression

[x := e] q

denotes the expression q with all free occurrences of x replaced by e. Simul-
taneous substitution is denoted by

[x1 := e1, x2 := e2] q .

CHAPTER 2. FOUNDATIONS 17

2.3 Probability

Familiarity with fundamental concepts of linear algebra [76], analysis [56],
and probability theory is assumed. We use the notation P(. . .) to denote
probability distributions, and the notation E(. . .) to denote expectations.
All material presented in this work concerns discrete probability theory only.
For probability theory see [80, 84, 115, 118]. Stochastic dynamic program-
ming and Markov decision processes are treated in [16, 28, 98, 110, 115].

2.4 Action Systems

A variety of specification formalisms have been proposed as modelling lan-
guages for distributed reactive systems [1, 3, 21, 22, 67]. We refer to the
state-based formalisms [3, 21] generally as action systems although they
differ somewhat from the formalism originally introduced in [5]. In the
same manner we refer to the formalism introduced in this chapter as action
systems. It is similar to the B-derivative presented in [3]. It is based on
relational semantics similar to [33], though, instead of predicate transformer
semantics used in [3, 21].

Action systems are the conceptual foundation of probabilistic action sys-
tems which are presented in chapter 4. Yet the behavioural semantics of the
two differs significantly. The semantics of action systems is described in
terms of the failures model of CSP [59, 104, 105] or in form of the state-
trace model [8], whereas the semantics of probabilistic action systems is
defined in terms of cost traces. The case study in chapter 7 relates the two
formalisms in a practical example. Adopting B-terminology, we often refer
to action systems using the term machine. The term system is reserved
for reference to probabilistic action systems, and for informal discussions
involving, for instance, queueing systems.

2.4.1 Syntax

The specification of an action system is partitioned into different sections
describing different aspects of it. Figure 2.1 shows the syntactic structure
of an action system with name TIMER. It models a timer that counts to
T , and then stops. The constants section declares natural number constants
the value of which is restricted in the constraints section. The sets section
declares sets that are used to constrain the possible values of variables.
Variables are declared in the variables section. Their cartesian product makes
up the state space of an action system. Initial values of the variables are
specified in the initialisation section. The initialisation program must not
assume that there is a state before its execution. The last section actions
specifies the operational part of the action system. It consists of a number
of actions each of which may have a list of comma-separated parameters.

CHAPTER 2. FOUNDATIONS 18

machine TIMER
constants T ;
constraints T ≥ 1;
sets

TIME = 1 . . T ;
variables

time : TIME ∪ {T + 1};
initialisation

time := 1;
actions

tick(t : TIME) =
| time = t |; time := time + 1;

tock(t : TIME) =
| time = t |; (skip t time := time + 1);

end

Figure 2.1: Syntax of an action system

The actions describe possible state changes of the action system. For the
program notation used in the initialisation and actions sections see sections
3.1 and 3.2 which can be read independently of the rest of chapter 3.

2.4.2 Semantics

The behaviour of an action system is described by a set of failures. A failure
(t ,X) consists of a finite sequence t of events, and a set X of refusals. We
refer to action names with fully specified parameter values, e.g. tick(1), as
events. The set of events an action system M may engage in is called its
alphabet, denoted alpha.M. Sequence t is usually called a trace. If (t ,X)
is a failure of some action system M, then M may first engage in trace t ,
and afterwards refuse to engage in any event contained in X . When an
action system engages in an event, say, tick(1) the corresponding program,
| time = 1 |; time := time + 1, is executed on its state space. Examples of
failures of machine TIMER follow. The tuples

(〈tock(1)〉, {tick(1)}) and (〈tock(1)〉, {tick(2)})

are failures of machine TIMER, assuming that T is greater than 1. Whereas
the tuple

(〈tock(1)〉, {tick(1), tick(2)})

is not a failure of TIMER, because after having engaged in event tock(1)
machine TIMER cannot refuse both of the events tick(1) and tick(2). This

CHAPTER 2. FOUNDATIONS 19

kind of behaviour is referred to as internal nondeterminism. It is inter-
nally determined by machine TIMER which events may occur next. The
second kind of nondeterminism present in action systems is called exter-
nal nondeterminism. It denotes choices that are entirely determined by the
environment of an action system. The testing preorders of [50], and the ex-
plicit representation of internal choice in [83], are intuitive alternative views
to the failures model we use. The definition of failures below follows the
approach in [67, 39] which is based on relational programs. In [86, 119] a
similar approach is taken using predicate transformers instead. The model
based on predicate transformers contains failures and divergences [59]. The
model presented here does not deal with divergence because the relational
programs used cannot cause divergent behaviour.

Let t ∈ seq(alpha.M) and a ∈ alpha.M. We denote by M.a the action
corresponding to event a with its parameters instantiated as specified by
a. The set of states that are reachable by executing a trace of actions t of
machine M is defined by:

trace.M.〈 〉 =̂ ran.(M.initialisation)
trace.M.t_〈a〉 =̂ (M.a)[trace.M.t] .

We say t is a trace of machine M if trace.M.t 6= ∅. Refusals are defined
relative to the state of a machine M as outlined above. Let X ⊆ alpha.M.
The set of events X is a refusal in state τ if all of the programs M.a corre-
sponding to the events a in X block execution in state τ . The definition of
refusal.M follows.

refusal.M.τ.X = ∀ a : X • τ 6∈ dom.(M.a) .

Finally we define the failures of machine M. The tuple (t ,X) is a failure of
M if all events in X can be refused in a state that is reachable after engaging
in trace t . Formally,

failure.M.(t ,X) =̂ ∃ τ : Γ • trace.M.t .τ ∧ refusal.M.τ.X .

We also refer to failure.M as the behaviour of machine M.

2.4.3 Failure Refinement

A machine MB is said to refine, or implement, another machine MA if the
behaviour of MB is subsumed by the behaviour of MA. In the context of
failure refinement this means, whenever MB can engage in a trace t , so can
MA; and whenever MB can refuse a set of events X , then MA can also
refuse X . We denote by MA v MB that machine MB refines MA, and
define

MA vMB =̂ failure.MB ⊆ failure.MA .

CHAPTER 2. FOUNDATIONS 20

If MA v MB holds we refer to MA as the abstract machine and MB as
the concrete machine.

Usually refinements are not proven using the definition itself. Prefer-
ably simulation techniques are employed. A simulation imitates the step
by step behaviour of a machine. We present a simulation in propostion 2.1
below. A soundness proof can be found in [39, 46]. In proposition 2.1 let
M.initialisation denote the set of initial states of machine M. This is not a
problem because we are assuming that the initialisation of a machine does
not refer to variables that have not been initialised.

Proposition 2.1 Let MA and MB be machines, and let sim be a relational
program with the state space of MA as its domain and the state space of
MB as its range. If (for all actions act of the two machines) the conditions

MB.initialisation ⊆ sim[MA.initialisation] (MS1)
sim[dom.(MA.act)] ⊆ dom.(MB.act) (MS2)
sim;MB.act ⊆ MA.act ; sim (MS3)

hold, then MA vMB.

Condition (MS1) requires that the abstract machine is able to simulate the
initialisation of the concrete machine. Condition (MS2) requires that when-
ever an abstract action can be executed, then also the concrete action can
be executed in a corresponding state. The last condition (MS3) requires
that abstract actions can simulate concrete actions.

As a proof rule proposition 2.1 is sound but not complete. Rule 2.1 is
usually called forward simulation. Completeness can be achieved by intro-
ducing a second rule called backward simulation [47, 60, 67, 119].

Chapter 3

Program Semantics

We introduce several semantic models for different classes of programs. To
do this turns out to be useful in two ways. Firstly, each model describes a
certain class of programs. If we need a program belonging to that class we
simply refer to the corresponding model. Secondly, the models are naturally
arranged in a hierarchy. This makes it easier to grasp the capabilities of the
different classes.

Figure 3.1 shows a hierarchy of the semantic models introduced in this
chapter. The symbols Γ and Γ′ denote state spaces. All programs map
elements of Γ in some way to elements of Γ′. We permit the state spaces
Γ and Γ′ to be different because they are used in data refinement. This
requires the ability to change state spaces. Elements of F(Γ,Γ′) are called
state functions. A state function models a deterministic program. State
functions are embedded into state relations, denoted by R(Γ,Γ′), and into
probabilistic state functions, denoted by M(Γ,Γ′). State relations extend
state functions with nondeterminism. Probabilistic state functions are an
extension of state functions where states are mapped randomly to succes-

F(Γ,Γ′)

&&LLLLLLLLLL

yyrrrrrrrrrr

R(Γ,Γ′)

%%LLLLLLLLLL
M(Γ,Γ′)

xxrrrrrrrrrr

P(Γ,Γ′)

²²
E(Γ,Γ′)

Figure 3.1: Semantic models

21

CHAPTER 3. PROGRAM SEMANTICS 22

sor states. Probabilistic state relations, denoted by P(Γ,Γ′), extend both
state relations and probabilistic state functions. They model programs that
exhibit nondeterminism and randomness. Probabilistic state relations are
further embedded into extended probabilistic state relations E(Γ,Γ′). In the
extended model a transition from a state to another state is associated with
an expected value. Note that these program notations are tailored to our
needs and do not model divergence. See section 5.5 for a discussion of this
matter.

We refer to any of the above simply as “program” if it is clear from the
context which semantical model is meant. The remainder of this chapter
treats the different semantic models. Section 3.1 introduces the concept
of a state used throughout. It also introduces state functions. In section
3.2 state relations are defined, and all non-probabilistic program constructs
are introduced. In section 3.3 probabilistic state functions are introduced,
probabilistic state relations in section 3.4, and extended probabilistic state
relations in section 3.5.

3.1 State Functions

A finite product Γ of given countable sets Γ1,Γ2, . . . ,Γn ,

Γ =
∏n

i=1 Γi , n ≥ 1 ,

is called a state space. Using countable state spaces we can restrict our-
selves to discrete probability theory later on. Their use is also customary
in stochastic dynamic programming [110] which later chapters rely upon.
Elements of a state space Γ are called states. A projection πi : Γ → Γi is
called a variable . By var.Γ we denote the set of variables of a state space
Γ,

var.Γ = {π1, π2, . . . , πn} .

A function φ : Γ → Γ′ is called a state function. The set of all state
functions from Γ to Γ′ is denoted by F(Γ,Γ′). Sequential composition of
state functions φ1 ∈ F(Γ,Γ′) and φ2 ∈ F(Γ′,Γ′′) is defined by functional
composition φ1;φ2 =̂ φ2 ◦ φ1 By idF we denote the identity function. The
subscript F denotes the model in which id is interpreted. As idF is embedded
into other models the subscript is changed. In our notation skip is used as
a synonym for id.

3.2 State Relations

State relations are capable of expressing nondeterminism. A state relation
blocks execution if an attempt is made to execute it outside its domain. The

CHAPTER 3. PROGRAM SEMANTICS 23

model does not support the notion of divergence present in the relational
model of [4, 29, 38]. It is close to the one described in [33, 39] which is based
on Z [112, 120]. The program notation is similar to the notation of [9], and
in parts [2].

Let Γ and Γ′ be state spaces. A relation R : Γ ↔ Γ′ is called a state
relation. We denote the set of all state relations from Γ to Γ′ by R(Γ,Γ′).

For a predicate q : PΓ the guard | q | ∈ R(Γ) blocks execution in states
where (¬ q).τ holds and behaves like skip otherwise. It is defined by

| q |.τ.τ ′ =̂ τ = τ ′ ∧ q .τ .

We also introduce the program stop which blocks any execution. It is defined
by the false guard: stop =̂ | false |.

Nondeterministic choice between two state relations R1,R2 ∈ R(Γ,Γ′) is
defined by

(R1 t R2).τ.τ ′ =̂ R1.τ.τ
′ ∨ R2.τ.τ

′ .

For a set-valued expression I : Γ → P∆ finite nondeterministic choice be-
tween state relations Ri ∈ R(Γ,Γ′), i ∈ I .τ , is defined by

(
⊔

i : I • Ri).τ.τ ′ =̂ ∃ i : I .τ • Ri .τ.τ
′ .

Finiteness of
⊔

i : I • Ri concerns the domain of I . We require that all sets
I .τ are finite for all τ ∈ Γ. Note that for I .τ = ∅ for all τ finite nondeter-
ministic choice behaves like stop. As with the requirement that state spaces
be countable this one originates in stochastic dynamic programming. The
known algorithms work only if there are at most finitely many alternatives
in each state [98, 110]. In chapter 6 we present two such algorithms.

Sequential composition of state relation R1 ∈ R(Γ,Γ′) and state relation
R2 ∈ R(Γ′,Γ′′) is defined by

(R1;R2).τ.τ ′′ =̂ ∃ τ ′ : Γ′ • R1.τ.τ
′ ∧ R2.τ

′.τ ′′ .

Parallel composition of state relations R1 ∈ R(Γ,Γ′1) and R2 ∈ R(Γ,Γ′2) is
defined by

(R1 ‖ R2).τ.(τ ′1, τ ′2) =̂ R1.τ.τ
′
1 ∧ R2.τ.τ

′
2 .

The resulting state relation maps states from the state space Γ shared by R1

and R2 to subsets of the product space Γ′1×Γ′2. For a discussion of different
parallel operators see [7].

For πi ∈ var.Γ, where Γ =
∏n

i=1 Γi , and an expression e : Γ → Γi the
assignment of e to variable πi , denoted by πi := e, is defined by

(πi := e).τ.τ ′ =̂ πi .τ
′ = e.τ ∧ (∀ j • j 6= i ⇒ πj .τ

′ = πj .τ) .

CHAPTER 3. PROGRAM SEMANTICS 24

The notion of expression we use is based on [9]. If a ∈ Γi is a value we define
the point-wise extension ȧ : Γ→ Γi by ȧ =̂ (λ τ : Γ • a). The assignment of
a to πi is then defined by

πi := a =̂ πi := ȧ .

To clarify the definition we give a small example of an assignment:

Example 3.1 Let N×N with variables x = π1 and y = π2. The expression
x + y has type N× N→ N. Let (2, 3) be a state. Then

(x + y).(2, 3) = x .(2, 3) + y .(2, 3) = 2 + 3 = 5 ,

and

(x := x + y).(2, 3).(5, 3)
= x .(5, 3) = (x + y).(2, 3) ∧ y .(5, 3) = y .(2, 3)
= x .(5, 3) = 5 ∧ y .(5, 3) = 3
= true .

We generalise from assignment to one variable to multiple assignment
to a set of distinct variables. Multiple assignment is defined by parallel
composition of assignments:

x1, x2 := e1, e2 =̂ x1 := e1 ‖ x2 := e2 .

We assume that the two assignments x1 := e1 and x2 := e2 have the proper
types required in the parallel composition.

A state relation R : R(Γ,Γ′) is called deterministic if R.τ.τ ′1 ∧ R.τ.τ ′2
implies τ ′1 = τ ′2 for all τ ∈ Γ. State functions correspond to deterministic
state relations. They are embedded into corresponding state relations by a
function ⇑ : F(Γ,Γ′)→R(Γ,Γ′), defined by,

(⇑φ).τ.τ ′ =̂ φ.τ = τ ′ .

We occasionally write deterministic programs φ in the relational notation
when we really mean state functions φ′, given by φ = ⇑φ′. In such cases we
explicitly refer to such a φ as a state function.

3.3 Probabilistic State Functions

In probability theory [80, 118] probabilistic state functions are generally
referred to as stochastic matrices [72] or probability transition matrices [84].
They are used to model Markov chains [72]. Probabilistic state functions
model probabilistic programs without further nondeterminism as present in
state relations.

CHAPTER 3. PROGRAM SEMANTICS 25

Probabilistic States

The state of probabilistic programs is described by a collection of states
and their corresponding probabilities. More precisely, a probabilistic state
f : Γ→ R≥0 is a function that assigns probabilities to states. The set of all
probabilistic states over Γ is defined by

(DΓ).f =̂ card.(car.f) ∈ N ∧∑
τ :Γ f .τ = 1 ,

where car.f ⊆ Γ, the carrier of f , is defined by

car.f .τ =̂ f .τ > 0 .

The set car.f describes a set of states in which a probabilistic program may
be at some instant. The value f .τ is the probability that the program is in
state τ . We use the notation τ @ p to represent f .τ = p, and the notation

{τ1 @ f .τ1, τ2 @ f .τ2, . . . , τn @ f .τn} ,

where car.f ⊆ {τ1, τ2, . . . , τn}, to represent probabilistic state f itself. Simi-
lar notations are used in [109]. Probabilistic states are known as densities,
or masses, in probability theory. We have decided to use the term ‘prob-
abilistic state’ because phrases like ‘program P is in probabilistic state f’
sound more intuitive than if one of the other terms were used.

We define two operators on probabilistic states. We need addition and
scalar product of functions Γ→ R≥0. They are defined by point-wise exten-
sion:

(f + g).τ =̂ f .τ + g .τ ,
(p ∗ f).τ =̂ p ∗ f .τ ,

where f , g ∈ Γ → R≥0 and p ∈ R≥0. For p ∈ (0, 1) probabilistic addition of
f ∈ DΓ and g ∈ DΓ is defined by

f p⊕ g =̂ p ∗ f + (1− p) ∗ g .

If a program is in probabilistic state f with probability p and in probabilistic
state g with probability 1 − p, then its probabilistic state is f p⊕ g . This
situation arises when a program branches to probabilistic states f and g
with the respective probabilities p and 1− p.

Example 3.2 Let Γ = B. Let f , g ∈ DB be probabilistic states,

f = {true @ 3
4 , false @ 1

4} ,
g = {true @ 1

3 , false @ 2
3} .

CHAPTER 3. PROGRAM SEMANTICS 26

If a probabilistic state h of a program is f with probability 2
5 and g with

probability 3
5 , then it is in one of the states true or false with probability 1

2
each.

f 2
5
⊕ g

= 2
5 ∗ f + 3

5 ∗ g
= {true @ 6

20 , false @ 2
20}+ {true @ 3

15 , false @ 6
15}

= {true @ 1
2 , false @ 1

2} .
For a finite set I and probabilities pi ∈ (0, 1), such that

∑
i :I pi = 1, the

probabilistic sum of the probabilistic states fi : DΓ is defined by
⊕

i :I pi • fi =̂
∑

i :I pi ∗ fi .

As above, the sum
∑

i :I pi∗fi is defined by point-wise extension. Probabilistic
addition and sum are indeed operators on probabilistic states as stated in
the following proposition.

Proposition 3.3 If p, pi ∈ (0, 1) and f , g , fi ∈ DΓ, then (f p⊕ g) ∈ DΓ,
and (

⊕
i :I pi • fi) ∈ DΓ.

In probability theory densities give rise to probability distributions. We
set up a probability distribution P on a state space Γ =

∏n
i=1 Γi by means of

probabilistic states f ∈ DΓ. We denote the product
∏n

i=1 πi of type Γ→ Γ
by π. So π is really the identity on Γ. We intend to use it as a variable
name to refer to the value of a state. For ∆ ⊆ Γ we define:

P(π ∈ ∆) =̂
∑
τ :∆ f .τ

Note that probabilistic state f is implicit on the left hand side. It is assumed
to be associated with variable π. We write P(π = τ) to denote P(π ∈
{τ}), which equals f .τ . We define the marginal probability distribution of
variables πi1 , πi2 , . . . , πim by

P(πi1 ∈ ∆i1 , πi2 ∈ ∆i2 , . . . , πim ∈ ∆im) =̂
∑
τ :∆ f .τ ,

where ∆ is the set {τ : Γ | πi1 .τ ∈ ∆i1 ∧ πi2 .τ ∈ ∆i2 ∧ . . . ∧ πim .τ ∈ ∆im}.
We use the notation P(πi1 = vi1 , πi2 = vi2 , . . . , πim = vim) in the same way
as P(π = τ). In probability theory the variables π and πi are called random
variables. If C : Γ→ R≥0 is a real random variable, then

E(C) =̂
∑
τ :Γ C .τ ∗P(π = τ)

is called its expectation. Observe that E(C) ∈ R≥0 exists because proba-
bilistic states have a finite carrier. Defining the product of a probabilistic
state f : DΓ and C by

f ∗ C =̂
∑
τ :Γ f .τ ∗ C .τ ,

the expectation E(C) can be written f ∗ C .

CHAPTER 3. PROGRAM SEMANTICS 27

Probabilistic Programs

A function M : Γ→ DΓ′ is called a probabilistic state function. It takes an
initial state to a final probabilistic state. The set of all probabilistic state
functions from Γ to Γ′ is denoted by M(Γ,Γ′). The value M .τ.τ ′ is the
probability that next state is τ ′ under the condition that the present state is
τ . In probability theory probabilistic state functions are called conditional
densities. Conditional densities induce conditional probability distributions.
Conditional probability distributions, usually denoted P(π′ ∈ ∆′ | π = τ),
describe the probability that π′ assumes a value in ∆′ given that π equals
τ . We define:

P(π′ ∈ ∆′ | π = τ) =̂
∑
τ ′:∆′ M .τ.τ ′ .

Thus π denotes the initial state and π′ the successor state. Again, prob-
abilistic state function M is implicit on the left hand side. The notation
P(π′ = τ ′ | π = τ) is used as before. Similarly, marginal conditional distri-
butions are available. Based on conditional probability distributions, condi-
tional expectations are defined. Let C : Γ′ → R≥0 be a real random variable.
We define:

E(C | π = τ) =̂
∑
τ ′:Γ′ C .τ

′ ∗P(π′ ∈ ∆′ | π = τ) .

Letting (M ∗ C).τ =̂ (M .τ) ∗ C , the conditional expectation E(C | π = τ)
equals the product (M ∗ C).τ .

Note that on finite state spaces Γ = {1, 2, . . . ,m} and Γ′ = {1, 2, . . . ,n}
probabilistic state functions M are usually represented as stochastic matrices




M .1.1 M .1.2 · · · M .1.n
M .2.1 M .2.2 · · · M .2.n
...

...
. . .

...
M .m.1 M .m.2 · · · M .m.n




of type (Γ× Γ′)→ R≥0.
The product of a probabilistic state f : DΓ and a probabilistic state

function M ∈M(Γ,Γ′) is defined component-wise by

(f ∗M).τ ′ =̂
∑
τ :Γ f .τ ∗M .τ.τ ′ .

State function M corresponds to a matrix. In the same manner the product
f ∗M corresponds to the product of a vector and a matrix.

(
f .1 f .2 · · · f .m

)
∗




M .1.1 M .1.2 · · · M .1.n
M .2.1 M .2.2 · · · M .2.n
...

...
. . .

...
M .m.1 M .m.2 · · · M .m.n




=
(

(f ∗M).1 (f ∗M).2 · · · (f ∗M).n
)

CHAPTER 3. PROGRAM SEMANTICS 28

Sequential composition of M ∈M(Γ,Γ′) and N ∈M(Γ′,Γ′′) is defined by

(M ;N).τ.τ ′′ =̂ (M .τ ∗N).τ ′′ .

If Γ, Γ′ and Γ′′ are finite as above, then M ;N corresponds to the ordinary
matrix product of M and N ,

(M .τ ∗N).τ ′′ =
∑
τ ′:Γ′ M .τ.τ ′ ∗N .τ ′.τ ′′ .

State functions are embedded into probabilistic state functions by a func-
tion ⇑ : F(Γ,Γ′)→M(Γ,Γ′), defined by

(⇑φ).τ.τ ′ =̂ χ.(φ.τ).τ ′ ,

where the characteristic function χ :M(Γ) is defined by

χ.τ.τ ′ =̂

{
1 if τ = τ ′

0 otherwise

Using partial functions we express more general deterministic probabilistic
programs: D(Γ,Γ′) =̂ Γ 7→ DΓ′. We do not use partial probabilistic state
functions with the concepts introduced in this section. They are a convenient
means, though, to refer to deterministic programs.

Sequential Products

As a generalisation of sequential composition we introduce a finite sequen-
tial product of probabilistic state functions. Let Φ ∈ seqM(Γ) be a finite
sequence of probabilistic state functions. The sequential product Π.Φ of
sequence Φ is recursively defined by

Π.〈 〉 =̂ idM ,

Π.(Φ_〈M 〉) =̂ (Π.Φ);M .

Remember that idM ∈M(Γ) is the embedding of state function idF ∈ F(Γ)
intoM(Γ). A discussion of the role of sequences Φ ∈ seqM(Γ) follows. Let
k be the length of Φ. With each Φ.i we associate a conditional probability
distribution

P(πi ∈ ∆i | πi−1 = τ i−1) =̂
∑
τ i∈∆i Φ.i .τ i−1.τ i .

We use superscripts to indicate sequence ordering because subscripts are
already in use. Probability distribution P induces a Markov chain [80], i.e.

P(πk = τ k | πk−1 = τ k−1)
= P(πk = τ k | πk−1 = τ k−1, . . . , π0 = τ0) .

CHAPTER 3. PROGRAM SEMANTICS 29

Thus [80], the following property also holds:

P(πk = τ k | π0 = τ0)
=

∑
τ :Γ P(πk = τ k | πk−1 = τ) ∗P(πk−1 = τ | π0 = τ0) .

The expression P(πk = τ k | π0 = τ0) describes the probability of being
in state τ k after the whole sequence Φ has been executed, the initial state
being τ0. This is expressed by the following proposition:

Proposition 3.4 P(πk = τ k | π0 = τ0) = (
∏
.Φ).τ0.τ k .

We prove proposition 3.4 by induction on k ≥ 0:

P(π0 = τ0 | π0 = τ0)
= 1
= (Π.〈 〉).τ0.τ0 .

And for k > 0:

P(πk = τ k | π0 = τ0)
=

∑
τ :Γ P(πk = τ k | πk−1 = τ) ∗P(πk−1 = τ | π0 = τ0)

=
∑
τ :Γ Φ.k .τ.τ k ∗ (Π.(Φ ↑ k − 1)).τ0.τ

=
∑
τ :Γ(Π.(Φ ↑ k − 1)).τ0.τ ∗ Φ.k .τ.τ k

= (Π.(Φ ↑ k − 1); Φ.k).τ0.τ k

= (Π.Φ).τ0.τ k .

3.4 Probabilistic State Relations

State relations model nondeterminism by the multiplicity of final states. In
probabilistic state relations introduced in this section this is replaced by
the multiplicity of probabilistic states. They combine the expressiveness of
state relations and probabilistic state functions. Technically, probabilistic
state relations are defined similarly to the (probabilistic) relational model
proposed in [48]. The difference is that in [48] nondeterminism is regarded
as a generalised form of probabilistic choice. Probabilistic state relations
keep both concepts separate from each other. They are based on Markov
decision processes [16, 28].

A relation P : Γ ↔ DΓ′ is called a probabilistic state relation. The set
of all probabilistic state relations from Γ to Γ′ is denoted by P(Γ,Γ′).

State relations are embedded into probabilistic state relations by a func-
tion ⇑ : R(Γ,Γ′)→ P(Γ,Γ′), defined by

(⇑R).τ.f =̂ ∃ τ ′ : R.τ • f = χ.τ ′ .

CHAPTER 3. PROGRAM SEMANTICS 30

Remember that (⇑R).τ is really a set which we write in functional notation.
Thus (⇑R).τ equals the set {χ.τ ′ | R.τ.τ ′}.

The definition of nondeterministic choice between probabilistic state re-
lations P ∈ P(Γ,Γ′) and Q ∈ P(Γ,Γ′) resembles that of nondeterministic
choice between state relations. It is defined by

(P t Q).τ.f =̂ P .τ.f ∨ Q .τ.f ,

and finite nondeterministic choice between Qi ∈ P(Γ,Γ′), i ∈ I .τ , by

(
⊔

i : I • Qi).τ.f =̂ ∃ i : I .τ • Qi .τ.f .

For p ∈ Γ → (0, 1) probabilistic choice P p⊕ Q between P ∈ P(Γ,Γ′)
and Q ∈ P(Γ,Γ′) is defined arithmetically giving probability p to branch P
and probability 1− p to branch Q :

(P p⊕ Q).τ.h =̂ ∃ f : P .τ, g : Q .τ • h = f p.τ⊕ g .

Let I : Γ→ P1 ∆ be a set-valued expression, all I .τ being finite sets. Also let
pi ∈ Γ→ (0, 1) for all i ∈ I .τ , such that

∑
i :I .τ pi .τ = 1. Finite probabilistic

choice between programs Pi ∈ P(Γ,Γ′) is defined by

(
⊕

i : I | pi • Pi).τ.h =̂ ∃F • (∀ i : I .τ • F .i ∈ Pi .τ) ∧
h =

⊕
i :I .τ pi .τ • F .i .

We demonstrate the use of finite probabilistic choice with a simple program.

Example 3.5 Let Γ = 1 . . 6, x = π1. Also let P ∈ P(Γ),

P =
⊕

m : 1 . . 6 | 1
6 • x := m .

Let τ ∈ Γ be some state. For x := m ∈ R(Γ), (x := m).τ = {m}. Embedded
into P(Γ) it becomes

(x := m).τ = {χ.m} .

Hence P .τ equals the singleton set {⊕m:1..6
1
6 • χ.m} consisting of the prob-

abilistic state

{1 @ 1
6 , 2 @ 1

6 , 3 @ 1
6 , 4 @ 1

6 , 5 @ 1
6 , 6 @ 1

6} .

So execution of program P corresponds to rolling a fair die, i.e. a die where
all outcomes have equal probability.

Parallel composition of P1 ∈ P(Γ,Γ′1) and P2 ∈ P(Γ,Γ′2) is defined by

(P1 ‖ P2).τ.h =̂ ∃ f : P1.τ, g : P2.τ • h = f ‖ g ,

CHAPTER 3. PROGRAM SEMANTICS 31

where f ‖ g denotes the point-wise product of functions f and g :

(f ‖ g).(τ1, τ2) =̂ f .τ1 ∗ g .τ2 .

A parallel composition P1 ‖ P2 relates states of state space Γ with proba-
bilistic states of type D (Γ′1 × Γ′2). It is easy to prove that the point-wise
product of two probabilistic states is a probabilistic state:

Proposition 3.6 If f1 ∈ DΓ1 and f2 ∈ DΓ2, then f1 ‖ f2 ∈ D (Γ1 × Γ2).

In probability theory f1 ‖ f2 is referred to as a joint density of π1 and π2.
It induces a joint probability distribution as well. Let P1 and P2 be the
probability distributions associated with f1 and f2 respectively. The joint
probability distribution P of π1 and π2 corresponding to f1 ‖ f2 is given by:

P(π1 ∈ ∆1, π2 ∈ ∆2)
=

∑
τ1∈∆1

∑
τ2∈∆2

(f1 ‖ f2).(τ1, τ2)
=

∑
τ1∈∆1

∑
τ2∈∆2

f1.τ1 ∗ f2.τ2
=

∑
τ1∈∆1

f1.τ1 ∗
∑
τ2∈∆2

f2.τ2
= P1(π1 ∈ ∆1) ∗P2(π2 ∈ ∆2) .

In probability theory two random variables are called independent if their
joint distribution is the product of their marginal probability distributions.
Hence P(π1 ∈ ∆1, π2 ∈ ∆2) is the distribution of two independent variables.
This agrees with the view that the two programs P1 and P2 do not affect
each other when executed in parallel. In general, a probability distribution
over any product space is called a joint distribution. It may not be made
up from independent variables though.

Sequential composition of probabilistic state relations P ∈ P(Γ,Γ′) and
Q ∈ P(Γ′,Γ′′) is denoted by P ;Q . It is executed by picking all probabilistic
states f from P .τ in turn for each initial state τ . Then the weighted average
of the probabilistic states M .τ ′ ∈ Q .τ ′ for all τ ′ ∈ car.f is taken the weights
being the probabilities f .τ ′. That weighted average is just the product f ∗M .
The product f ∗M can be interpreted as the expected state that is reached
if each probabilistic state M .τ is chosen with probability f .τ :

f ∗M =
⊕

τ :car.f f .τ • M .τ . (3.1)

The state functions M are taken from the set fun.Q ⊆ dom.Q → DΓ which
is defined by

fun.Q .M =̂ ∀ τ : dom.Q • M .τ ∈ Q .τ .

The state functions M ∈ fun.Q describe the deterministic implementations
of a probabilistic state relation. If there is an intermediate state τ ′ ∈ car.f
which Q cannot map anywhere, execution of probabilistic state f is blocked.

CHAPTER 3. PROGRAM SEMANTICS 32

We note that Q can map each state from car.f to some probabilistic state
iff car.f ⊆ dom.Q , and define:

(P ;Q).τ.g =̂ ∃ f : P .τ, M : fun.Q • car.f ⊆ dom.Q ∧ g = f ∗M .

Two examples on sequential composition follow. The first one demonstrates
sequential composition using the matrix notation of section 3.3. The second
one presents a blocked execution.

Example 3.7 Let P ∈ P({0}, {1, 2}) and Q ∈ P({1, 2}, {1, 2, 3}),
P .0 =

{
{1 @ 1

2 , 2 @ 1
2}

}
,

Q .i =
{
{i @ 1

3 , (i + 1) @ 2
3}

}
, for i ∈ {1, 2}.

We calculate P ;Q . The set fun.Q equals {M }, where

M =

(
1
3

2
3 0

0 1
3

2
3

)
,

and P .0 equals {(1
2

1
2)}. The product (1

2
1
2) ∗M equals (1

6
1
2

1
3). Hence

P ;Q ∈ P({0}, {1, 2, 3}) is given by

(P ;Q).0 =
{
{1 @ 1

6 , 2 @ 1
2 , 3 @ 1

3}
}
.

Example 3.8 Let P ∈ P({0}, {1, 2, 3}) and Q ∈ P({1, 2}, {0}),
P .0 =

{
{1 @ 1

3 , 2 @ 1
3 , 3 @ 1

3}
}
,

Q .i =
{
{0 @ 1}

}
, for i ∈ {1, 2}.

Program Q blocks the execution of {1 @ 1
3 , 2 @ 1

3 , 3 @ 1
3}, because 3 ∈

car.{1 @ 1
3 , 2 @ 1

3 , 3 @ 1
3} but 3 6∈ dom.Q . Hence,

(P ;Q).0 = ∅ .

A finite iteration Pn of a probabilistic state relation P executes it n
times. Iteration of P ∈ P(Γ) is defined by

P0 =̂ idP ,

Pn+1 =̂ Pn ;P .

We note that iterates of certain probabilistic state relations are equivalent
to the finite nondeterministic choice over corresponding products of state
functions. We need an embedding ⇑ : D(Γ,Γ′)→ P(Γ,Γ′) of state functions
into probabilistic state relations to express this. It is defined by:

(⇑M).τ.f =̂ τ ∈ dom.M ∧ f = M .τ .

The definition is also easily applied to total probabilistic state functions
M ∈M(Γ,Γ′).

CHAPTER 3. PROGRAM SEMANTICS 33

Proposition 3.9 Let P ∈ P(Γ) be a probabilistic state relation. Let n ∈ N,
and assume that dom.P = Γ. Then:

Pn =
⊔

Φ : SEQ • Π.Φ ,

where SEQ = {Φ | card.Φ = n ∧ (∀ i : 1 . . n • Φ.i ∈ fun.P)}.
Note that the condition dom.P = Γ means that P does not contain any
probabilistic state that might be blocked during execution.

3.5 Extended Probabilistic State Relations

Probabilistic state relations map states to sets of probabilistic states. This
models the presence of nondeterminism and probability at the same time.
In this section probabilistic state relations are augmented with costs. A cost
statement is included in the program notation. Upon encountering such a
statement a program incurs the specified cost, so that an execution yields
an expected cost as well as a final probabilistic state. In [109] expectation
transformers are introduced where expected costs entirely replace proba-
bilistic state. This approach is not appropriate for our purposes. Extended
probabilistic state relations are used to describe the behaviour of probabilis-
tic action systems in chapter 4.

A cost is a nonnegative real number. Similarly to probabilistic addi-
tion and sum in section 3.3 we introduce such operators for costs. They
yield expected costs when choices between different program branches occur
probabilistically. Let p ∈ (0, 1) and c1, c2 ∈ R≥0. We define:

c1 p⊕ c2 =̂ p ∗ c1 + (1− p) ∗ c2 .

The expression on the right hand side calculates the expected cost incurred
after a probabilistic choice has been made. If cost c1 is incurred with prob-
ability p and cost c2 with probability 1− p, then the expected cost incurred
is c1 p⊕ c2. We refer to both, c1 p⊕ c2 and

⊕
i :I pi • ci , as expected costs.

The latter is defined by:
⊕

i∈I pi • ci =̂
∑

i :I pi ∗ ci ,

where I is a finite set, ci ∈ R≥0, and pi ∈ (0, 1) such that
∑

i∈I pi = 1.
Expected costs are expectations with the state space Γ replaced by a set of
execution branches I . Let probability distribution P be given by P(branch =
i) = pi , and C : I → R≥0, C .i = ci , be a cost function. These two give rise
to an expectation E(C) corresponding to the expected cost above:

E(C) =
⊕

i :I pi • ci .

Extended probabilistic state relations relate states with pairs of expected
costs and probabilistic states (c, f). Costs c have no effect on the execution

CHAPTER 3. PROGRAM SEMANTICS 34

of a program. They record expected costs associated with execution paths.
Considered on their own expected costs yield a more abstract description of
the behaviour of a program. If f is chosen as the successor probabilistic state,
then expected cost c is incurred by the program. Cost c does characterise
the choice made but without details about the probabilistic state chosen.
The reason for referring to c itself as expected cost is that it is usually
not specified directly. Instead, costs are specified at different locations in a
program. From these an expected cost c is derived.

A relation P : Γ↔ (R≥0 × DΓ′) is called an extended probabilistic state
relation. The set of all these is denoted by E(Γ,Γ′). Probabilistic state
relations correspond to their extensions with all costs zero. This is expressed
by embedding function ⇑ : P(Γ,Γ′)→ E(Γ,Γ′), defined by

(⇑P).τ.(c, f) =̂ c = 0 ∧ P .τ.f .

Arbitrary nonnegative costs are associated with programs by means of cost
statements. For a real expression e : Γ→ R≥0 the cost statement | e | : E(Γ)
costs state τ at value e.τ and behaves like skip on the state. It is defined by

| e |.τ.(c, f) =̂ c = e.τ ∧ f = χ.τ .

Costs can be abstracted by function ⇓ : E(Γ,Γ′)→ P(Γ,Γ′), defined by,

(⇓P).τ.f =̂ ∃ c : R≥0 • P .τ.(c, f) .

The remaining program constructs are defined analogously to those of
probabilistic state relations. They additionally describe the calculation of
expected costs associated with a program.

Nondeterministic choice between extended probabilistic state relations
P ∈ E(Γ,Γ′) and Q ∈ E(Γ,Γ′) is defined by

(P t Q).τ.(c, f) =̂ P .τ.(c, f) ∨ Q .τ.(c, f) .

Nondeterministic choice now takes costs into account that are associated
with the alternatives P and Q . Different costs are incurred by a program
depending on which alternative an execution follows. Finite nondeterminis-
tic choice is defined similarly.

For p ∈ Γ → (0, 1) probabilistic choice between P ∈ E(Γ,Γ′) and Q ∈
E(Γ,Γ′) is defined by

(P p⊕ Q).τ.(e, h) =̂ ∃(c, f) : P .τ, (d , g) : Q .τ •
e = c p.τ⊕ d ∧ h = f p.τ⊕ g .

In words, (e, h) consists of an expected cost e and a corresponding expected
probabilistic state h resulting from probabilistic choice P p⊕ Q in state τ .
We illustrate the use of probabilistic choice and cost statement in a small
example:

CHAPTER 3. PROGRAM SEMANTICS 35

Example 3.10 Let Γ = N be a state space, x = π1, and

P = | x | 1
2
⊕ | 2 ∗ x | .

We calculate the meaning of P as

P .n.(e, h)
= ∃(c, f) : P .τ, (d , g) : Q .τ • e = c 1

2
⊕ d ∧ h = f 1

2
⊕ g

= e = n 1
2
⊕ (2 ∗ n) ∧ h = χ.n 1

2
⊕ χ.n

= e = 1
2 ∗ n + n ∧ h = χ.n

= e = 3
2 ∗ n ∧ h = χ.n .

Hence the expected cost of an execution of P in state n is 3
2 ∗ n.

Finite probabilistic choice between extended probabilistic state relations
is defined as well:

(
⊕

i : I | pi • Pi).τ.(e, h) =̂ ∃C , F •
(∀ i : I .τ • (C .i ,F .i) ∈ Pi .τ) ∧
e =

⊕
i :I .τ pi .τ • C .i ∧

h =
⊕

i :I .τ pi .τ • F .i ,

where I : Γ → P1 ∆ is a set-valued expression, Pi ∈ E(Γ,Γ′) are programs,
and pi ∈ Γ→ (0, 1) probabilities such that

∑
i :I .τ pi .τ = 1.

As before we need the deterministic implementations of program to de-
fine sequential composition. Let P ∈ E(Γ,Γ′). An implementation consists
of a probabilistic state function M and a cost function C . Cost function C
specifies the costs C .τ program M incurs given an initial state τ ∈ dom.M .
Function fun which maps P to its deterministic implementations (C ,M) is
defined by

fun.P .(C ,M) =̂ ∀ τ : dom.P • (C .τ,M .τ) ∈ P .τ .

Hence the set fun.P is a subset of (dom.P → R≥0) × (dom.P → Γ′). We
define sequential composition of P ∈ P(Γ,Γ′) and Q ∈ P(Γ′,Γ′′) by

(P ;Q).τ.(d , g) =̂ ∃(c, f) : P .τ, (C ,M) : fun.Q • car.f ⊆ dom.Q ∧
d = c + f ∗ C ∧ g = f ∗M .

The expression c + f ∗ C is the expected cost associated a sequential exe-
cution of P and Q . Cost c is incurred when f is chosen as the successor
probabilistic state of τ . It corresponds to an expectation E(c). The ex-
pected cost incurred afterwards depends on the intermediate probabilistic
state f . It equals f ∗ C where the costs C .τ ′ associated with M .τ ′ are

CHAPTER 3. PROGRAM SEMANTICS 36

weighed according to the probability f .τ ′, that τ ′ occurs as an intermediate
state. Remember that f ∗ C =

⊕
τ :car.f f .τ • C .τ denotes an expectation

E(C). Hence the overall expected cost is E(c) + E(C) = c + f ∗ C .
We also define a lifted form of parallel composition of programs P ∈

E(Γ,Γ′1) and Q ∈ E(Γ,Γ′2). By adding the costs of the component pro-
grams P and Q we keep the correspondence P ‖ Q = P ;Q between certain
programs P and Q in the presence of costs. We define

(P ‖ Q).τ.(e, h) =̂ ∃(c, f) : P .τ, (d , g) : Q .τ •
e = c + d ∧ h = f ‖ g .

The type of P ‖ Q is E(Γ,Γ′1 × Γ′2). We illustrate the motivation behind
this definition, in particular the choice of c + d as compound cost, by an
example.

Example 3.11 Let Γ = N × N be a state space, x = π1 and y = π2.
Consider the programs P = | x |; | y | and Q = | x | ‖ | y |. Assume | x | and
| y | have proper types in both cases, so that P , Q ∈ E(Γ). The equality
P = Q holds because:

(e, h) ∈ P .τ
⇔ e = x .τ + χ.τ ∗ y ∧ h = χ.τ ∗ idM
⇔ e = x .τ + χ.τ.τ ∗ y .τ ∧ h = χ.(τ1, τ2)
⇔ e = x .τ + y .τ ∧ h = χ.τ1 ‖ χ.τ2
⇔ (e, h) ∈ Q .τ ,

where we have assumed that τ = (τ1, τ2). Programs P and Q both incur
costs x and y with probability 1. So the expected cost incurred is x + y .

3.6 Algebraic Laws

This section presents algebraic properties of the programming language de-
fined in the preceding sections. Each algebraic law has a number (Ln) for
reference. Most of the laws stated are used in proofs in later chapters. They
are grouped into different categories to improve readability. Most of the
laws are stated as equations. Some are stated as set inclusions however.
Set inclusion is used as the natural ordering of programs as customary in
relational semantics [9]. It is easy to see that all embedding functions ⇑ are
homomorphisms with respect to the operators shared between the different
program classes. All laws are states for the largest program class possible
but are evidently valid for smaller classes as well. Let P , P1, P2, . . . denote
extended probabilistic state relations throughout.

CHAPTER 3. PROGRAM SEMANTICS 37

Sequential Composition

Sequential composition is associative. It has skip as its unit and stop as its
zero.

skip;P = P = P ; skip (L1)
stop;P = stop = P ; stop (L2)
P1; (P2;P3) = (P1;P2);P3 (L3)

Validity of law (L2) depends on the fact that P does not model nontermi-
nation. It only models blocking, and stop is the most blocking program.

Parallel Composition

Strictly speaking, law (L4) does not hold. However, we always assume that
variables of program are ordered according to the projections πi . This could
be achieved formally but would complicate the semantics unnecessarily. So
parallel composition is commutative under a suitable isomorphism. Parallel
composition has skip as its unit. Note however, that this is also an equation
that relies on a suitable isomorphism because the type of P changes. We
generally assume that variables that are not assigned a value remain un-
changed. Effectively this means parallel composition with a skip statement
of appropriate type.

P1 ‖ P2 = P2 ‖ P1 (L4)
P ‖ skip = P (L5)

Nondeterministic Choice

Nondeterministic choice is idempotent, commutative, and has stop as its
unit.

P = P t P (L6)
P1 t P2 = P2 t P1 (L7)
P = P t stop (L8)

Sequential composition distributes through nondeterministic choice from the
left if the left component is not probabilistic. It distributes through nonde-
terministic choice from the right in the general case though. Also parallel
composition distributes through nondeterministic choice from both sides.
Let R be a state relation:

R; (P1 t P2) = (R;P1) t (R;P2) (L9)
P ; (P1 t P2) ⊇ (P ;P1) t (P ;P2) (L10)
(P1 t P2);P = (P1;P) t (P2;P) (L11)
P ‖ (P1 t P2) = (P ‖ P1) t (P ‖ P2) (L12)
(P1 t P2) ‖ P = (P1 ‖ P) t (P2 ‖ P) (L13)

CHAPTER 3. PROGRAM SEMANTICS 38

Law (L10) because the single programs P1 and P2 may be more blocking
than the joint program P1 t P2. This can be seen from the following
example:

Example 3.12 Let P , | x |, | ¬ x | ∈ P(B), P = (x := true 1
2
⊕ x := false).

Then P .true = P .false = {f } where f = {true @ 1
2 , false @ 1

2}. Consequently,
car.f = {true, false}. Hence, because dom.| x | = {true},

P ; | x | = stop.

Similarly, P ; | ¬ x | = stop. Hence, (P ; | x |) t (P ; | ¬ x |) = stop. However,
since | x | t | ¬ x | = skip,

dom.(| x | t | ¬ x |) = dom.(skip) = {true, false} ,

thus, P ; (| x | t | ¬ x |) = P ⊃ stop = (P ; | x |) t (P ; | ¬ x |).

Probabilistic Choice

Probabilistic choice is idempotent and skew-commutative. Let p : Γ→ R≥0

be probabilities with p.τ ∈ (0, 1):

P = P p⊕ P (L14)
P1 p⊕ P2 = P2 (1−p)⊕ P1 (L15)

Let M be a probabilistic state function. Sequential composition distributes
M through probabilistic choice from the right. It distributes M from left if
the branching probability equals a constant c ∈ R≥0. It distributes through
probabilistic choice from the right . Parallel composition distributes proba-
bilistic state function M through probabilistic choice from both sides.

M ; (P1 c⊕ P2) = (M ;P1) c⊕ (M ;P2) (L16)
(P1 p⊕ P2);M = (P1;M) p⊕ (P2;M) (L17)
M ‖ (P1 p⊕ P2) = (M ‖ P1) p⊕ (M ‖ P2) (L18)
(P1 p⊕ P2) ‖ M = (P1 ‖ M) p⊕ (P2 ‖ M) (L19)

If instead of probabilistic state function M we use a program P that may
contain nondeterminism, the following weaker results hold:

P ; (P1 c⊕ P2) ⊆ (P ;P1) c⊕ (P ;P2) (L20)
(P1 p⊕ P2);P ⊆ (P1;P) p⊕ (P2;P) (L21)
P ‖ (P1 p⊕ P2) ⊆ (P ‖ P1) p⊕ (P ‖ P2) (L22)

Law (L20) is similar to law (L10). On the right hand side of the equation
P may unblock some behaviour of P1 and P2. Here is an example:

CHAPTER 3. PROGRAM SEMANTICS 39

Example 3.13 Let P , | x |, | ¬ x | ∈ P(B), P = (x := true t x := false).
Then,

P ; (| x | 1
2
⊕ | ¬ x |) ⊂ (P ; | x |) 1

2
⊕ (P ; | ¬ x |) . (3.2)

The two programs | x | and | ¬ x | have disjoint domains, dom.| x | = {true}
and dom.| ¬ x | = {false}, implying that | x | 1

2
⊕ | ¬ x | = stop, and

P ; (| x | 1
2
⊕ | ¬ x |) = stop .

For b ∈ {true, false}:

(P ; | x |).b =
{
{true @ 1}

}
,

(P ; | ¬ x |).b =
{
{false @ 1}

}
,

implying

((P ; | x |) 1
2
⊕ (P ; | ¬ x |)).b =

{
{true @ 1

2 , false @ 1
2}

}
, thus (3.2).

In law (L21) on the right hand side P may increase the nondeterminism
inside the probabilistic choice. This may cause an increase in probabilistic
alternatives as well. See the following example.

Example 3.14 Let P , skip, (x := true) ∈ P(B), P = (skip t x := false).
Then

(skip 1
2
⊕ x := true);P ⊂ (skip;P) 1

2
⊕ (x := true;P) . (3.3)

For program Q = (skip 1
2
⊕ x := true):

Q .true =
{
{true @ 1}

}
,

Q .false =
{
{true @ 1

2 , false @ 1
2}

}
.

Hence for the left hand side of (3.3):

(Q ;P).true = Q .true ∪
{
{false @ 1}

}
,

(Q ;P).false = Q .false ∪
{
{false @ 1}

}
.

For the programs skip;P and x := true;P on the right hand side of (3.3):

(skip;P).true =
{
{true @ 1}, {false @ 1}

}
,

(skip;P).false =
{
{false @ 1}

}
,

and for b ∈ {true, false}:

(x := true;P).b =
{
{true @ 1}, {false @ 1}

}
.

CHAPTER 3. PROGRAM SEMANTICS 40

Thus, with R = (skip;P) 1
2
⊕ (x := true;P):

R.true = (Q ;P).true ∪
{
{true @ 1

2 , false @ 1
2}

}
,

R.false = (Q ;P).false .

A similar effect as observed in the last example occurs if sequential com-
position is replaced by parallel composition in law (L22):

Example 3.15 Let (x := k), (y := k) ∈ P({1, 2} × {1, 2}, {1, 2}) for k ∈
{1, 2}. Assume x = π1, y = π2. It holds:

P ‖ (y := 1 1
2
⊕ y := 2) ⊂ (P ‖ y := 1) 1

2
⊕ (P ‖ y := 2) , (3.4)

where P = (x := 1 t x := 2). On the left hand side of (3.4):

(y := 1 1
2
⊕ y := 2).n =

{
{1 @ 1

2 , 2 @ 1
2}

}

for n ∈ {1, 2} × {1, 2}. And:

(P ‖ (y := 1 1
2
⊕ y := 2)).n

=
{
{(1, 1) @ 1

2 , (1, 2) @ 1
2}, {(2, 1) @ 1

2 , (2, 2) @ 1
2}

}
.

For the left hand side of (3.4):

(P ‖ y := k).n =
{
{(1, k) @ 1}, {(2, k) @ 1}

}
.

Finally,

(P ‖ y := 1) 1
2
⊕ (P ‖ y := 2)

=
{
{(1, 1) @ 1

2 , (1, 2) @ 1
2}, {(2, 1) @ 1

2 , (2, 2) @ 1
2}

}
∪

{
{(1, 1) @ 1

2 , (2, 2) @ 1
2}, {(2, 1) @ 1

2 , (1, 2) @ 1
2}

}
.

Nondeterministic Choice and Probabilistic Choice

Probabilistic choice distributes through nondeterministic choice but not vice
versa. Let p ∈ Γ→ (0, 1):

P p⊕ (P1 t P2) = (P p⊕ P1) t (P p⊕ P2) (L23)
P t (P1 p⊕ P2) ⊆ (P t P1) p⊕ (P t P2) (L24)

In law (L24) the probabilistic choice on the right hand side of the equa-
tion is offered more alternatives to choose from. See the following example:

CHAPTER 3. PROGRAM SEMANTICS 41

Example 3.16 Let skip,P1,P2 ∈ P(B),

P1 = (| x |; x := false) , P2 = (| ¬ x |; x := true) .

Then

skip t (P1 1
2
⊕ P2) ⊂ (skip t P1) 1

2
⊕ (skip t P2) . (3.5)

Regarding the left hand side of (3.5) we have

(| x |; x := false) 1
2
⊕ (| ¬ x |; x := true) = stop ,

and also skip t stop = skip. Now consider the two component programs
skip t P1 and skip t P2 on the right hand side of (3.5):

(skip t P1).true =
{
{true @ 1}, {false @ 1}

}
,

(skip t P1).false =
{
{false @ 1}

}
,

and

(skip t P2).true =
{
{true @ 1}

}
,

(skip t P2).false =
{
{true @ 1}, {false @ 1}

}
.

Finally, for the entire program Q = (skip t P1) 1
2
⊕ (skip t P2) on the right

hand side of (3.5):

Q .true =
{
{true @ 1}, {true @ 1

2 , false @ 1
2}

}
,

Q .false =
{
{false @ 1}, {true @ 1

2 , false @ 1
2}

}
.

It holds skip ⊂ Q , and thus the claimed inequality.

Assignment

If a variable is assigned to itself, nothing changes. Also, consecutive assign-
ments to the same variable can be merged. Law (L27) holds only if variable
y does not occur in expression e1. Let x and y be distinct variables:

x := x = skip (L25)
x := e1; x := e2 = x := [x := e1] e2 (L26)
x := e1; y := e2 = y := [x := e1] e2; x := e1 (L27)

Guard statement and assignment are quasi-commutative with respect to
sequential composition. The same holds for cost statement and assignment.

x := e; | q | = | [x := e] q |; x := e (L28)
x := e; | r | = | [x := e] r |; x := e (L29)

CHAPTER 3. PROGRAM SEMANTICS 42

If two assignments do not affect each other, their sequential composition
equals their parallel composition. Law (L30) holds only if variable x does
not occur in expression e2.

x := e1; y := e2 = x := e1 ‖ y := e2 (L30)

Assignment quasi-distributes through finite nondeterministic choice with
respect to sequential composition.

x := e; (
⊔

i : I • Pi) =
⊔

i : ([x := e] I) • (x := e;Pi) (L31)

Assignment is also quasi-distributive through both kinds of probabilistic
choice with respect to sequential composition.

x := e; (P1 p⊕ P2) = (x := e;P1) [x :=e] p⊕ (x := e;P2) (L32)

x := e; (
⊕

i : I | pi • Pi) (L33)
=

⊕
i : ([x := e] I) | ([x := e] pi) • (x := e;Pi)

Guard and Cost Statement

The true guard and zero cost statements have no effect. Two consecu-
tive guard statements can be conjoined, and two consecutive cost state-
ments summed. Also, expected costs can be calculated prior to probabilistic
choices.

| true | = skip (L34)
| q1 |; | q2 | = | q1 ∧ q2 | (L35)
| 0 | = skip (L36)
| r1 |; | r2 | = | r1 + r2 | (L37)
(| r1 |;P1) p⊕ (| r2 |;P2) = | r1 p⊕ r2 |; (P1 p⊕ P2) (L38)

3.7 Remarks

We have decided to realise nondeterministic choice t and probabilistic choice
p⊕ as incomparable notions. The order of programs in all relational models
only concerns nondeterministic choice. This is in contrast to the approaches
of [48, 88] where nondeterministic choice ⊕ is defined as a kind of generalised
probabilistic choice,

Q ⊕ R =̂
⋃

p∈[0,1]

Q p⊕ R .

With this model nondeterministic choice ⊕ and probabilistic choice p⊕ are
related to each other, Q ⊕ R ⊇ Q p⊕ R . In the corresponding refinement
notion ⊕ can be refined by p⊕ with the understanding that probabilistic

CHAPTER 3. PROGRAM SEMANTICS 43

choice is more deterministic. Using this approach one can derive bounds for
the probability that one program refines another.

We have chosen t as nondeterministic choice because in the refinement
of probabilistic action systems (see chapter 4) we seek a non-probabilistic
control program that is derived by refining an initial nondeterministic sys-
tem. This control program can then be regarded as an implementation of a
standard action system as presented in chapter 2.4. The operator t models
construction time nondeterminism [48] as opposed to runtime nondetermin-
ism of [88]. In this respect our model is closer to the kind of nondeterminism
proposed in [77], or the second model presented in [48], which is derived from
[64].

Additionally, the models in [48, 88] support a notion of divergence. The
dynamic programming approach for performance analysis taken in this work
(see chapter 5) cannot handle divergent systems at all. Hence, divergence is
not part of the model. Our definitions of sequential composition and proba-
bilistic choice, however, are very similar to the corresponding definitions in
model one in [48].

In the definition of P p⊕ Q we could have allowed p ∈ {0, 1} as well, as in
[48]. We decided not to do so for the following reasons. Equation (3.1) treats
states that have zero probability as if they cannot occur whereas P p⊕ Q
would not:

stop 0⊕ skip = stop .

Although branch stop has zero probability it is treated as if it could occur.
As a consequence it blocks the execution of the entire statement. It would be
possible to change the semantics to achieve the validity of the algebraic law
P 0⊕ Q = Q . But this would complicate the semantics without obtaining
any gain. The law would permit us to remove programs that are chosen
with zero probability, or introduce them. It does not make sense to specify
a program just to remove it later. In [48] values p = 0 or p = 1 make sense
because of the employed refinement relation.

Chapter 4

Probabilistic Action Systems

The behaviour of machines is described by traces of actions, i.e. action names
and parameter values. This corresponds to the view that there is some
environment in which the machine operates. That environment synchronises
with the machine to use its functionality. To that end the environment
can observe the traces of actions the machine can engage in. Refinement
of machines is defined correspondingly as a relationship between traces of
actions, the idea being that a machine operating in some environment ought
to be replaceable with a refined, or rather, improved machine. To achieve
this it is sufficient that the initial machine is able to simulate the behaviour
of the refined machine.

In this chapter probabilistic action systems are introduced. Behaviour
and refinement of probabilistic action systems differ fundamentally from be-
haviour and refinement of machines. Their behaviour is described by traces
of costs. A cost is a non-negative real number. Actions themselves are
not observable. Consequently, the kind of synchronisation and cooperation
present in action systems is not possible. In fact a probabilistic action sys-
tem models a fully synchronised system which includes the environment.
The traces of a probabilistic action system are manifestations of its cost
structure. The cost structure is specified by way of the cost statement.
Refinement in this context means subsumption of the cost structure of a re-
fined probabilistic action system by that of the abstract probabilistic action
system. In chapter 5 refinement is linked to a performance measure. Re-
finement is otherwise independent from any specific performance measure.
This is discussed in section 5.5.

Finally, probabilistic action systems also have a different time model than
action systems. Both use discrete time, but action systems model time as the
order in which actions occur. Looking at a trace one can say that some action
occurs after another one. Nothing is said about the temporal difference
between the two actions though. A cost trace of a probabilistic action system
conceals the actions. One only knows that a cost trace corresponds to a

44

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 45

Â T ÂÂ T ÂÂ T ÂÂ T ÂÂ

◦ Â // ◦ Â // ◦ Â // ◦ Â // ◦ Â

Figure 4.1: Discrete time model of probabilistic action systems

history of state changes. In addition, it is assumed that each state change
takes exactly one unit of time. The amount of time that makes one unit of
time depends on the application context. Figure 4.1 depicts the used time
model. A unit of time is an time interval of length T . We also refer to the
time interval as time slot or transition period . The state change occurring
during a transition period is termed transition.

4.1 Behaviour of Probabilistic Action Systems

A probabilistic action system A, or system for short, is defined by a tuple
(Γ, I ,P) where

Γ is a state space,
I ⊆ DΓ is a set of probabilistic states, the initialisation of A, and
P ∈ E(Γ) is a program, the action of A.

The behaviour of a probabilistic action system A is described by its traces
and impasses. A trace is a sequence of non-negative real numbers. The real
numbers correspond to expected costs system A may incur during single
transitions periods in its evolution. An impasse is a trace after which the
system may not be able to continue. The state of a probabilistic action
system is not observable directly. However, the traces of a system are the
observable consequence of state changes the system undergoes.

At any time the state of A is known up to some probability. Hence the
evolution of A can be described via sequences of probabilistic states and
their associated costs. The sequences of probabilistic states are implicitly
contained in the definition of path.A. If path.A.t .f is true, action system A
may undergo trace t leading to probabilistic state f .

path.A.〈 〉.f =̂ f ∈ I
path.A.t_〈c〉.f =̂ ∃ g • path.A.t .g ∧ (c, f) ∈ g ∗ P .

The term g ∗P denotes the set {(g ∗C , g ∗M) | (C ,M) ∈ fun.P} if car.g ⊆
dom.P , and ∅ otherwise. The semantics of A abstracts from the state of
the system. It is defined by beh.A =̂ (tr.A, im.A) where tr.A are called the
traces of A,

tr.A.t =̂ ∃ f • path.A.t .f ,

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 46

system SYS
constants

C ; . . .
constraints

predicateC ;
sets

S = expressionS ; . . .
variables

v1 : expressionv1 ;
...

vn : expressionvn ;
initialisation

programι;
programs

p = programp ; . . .
actions

a1 = programa1 ;
...

am = programam ;
end

Figure 4.2: Syntax of probabilistic action systems

and im.A are called the impasses of A

im.A.t =̂ ∃ f • path.A.t .f ∧ f ∗ P = ∅ .

4.2 Syntactic Representation

The syntactic representation of probabilistic action systems is based on a
subset of B and the guarded command language of [9] adding probabilistic
imperative features as in [48, 88].

A syntactic system has the structure pictured in figure 4.2. In the
constants section natural number constants are declared. Usually these have
the function of parameters for a specification because only finite state spaces
are supported. Possible values of the constants are constrained by the pred-
icate of the constraints section. The sets section contains constant sets that
are used elsewhere in the specification. The state is declared as a collec-
tion of variables in the variables section. The data types that can be used
are similar to those of B: finite sets, Cartesian products, power sets, func-
tions, and relations. See chapter 2 and appendix B for details on types and
available mathematical notation. Initial values for variables are given in the
initialisation section. The operational behaviour is further specified in the

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 47

actions section containing a number of actions. Initialisation and actions of
a system are atomic. Reoccuring program text can be given a name and de-
clared in the programs section. All available program constructs are defined
in chapter 3.

The semantics of a syntactic system is a probabilistic action system
SYS = (Γ, I ,P). The state space Γ is the Cartesian product of the types
of the variables v1, v2, . . ., vn :

Γ = expressionv1 × expressionv2 × . . .× expressionvn .

The initialisation I of SYS is derived from the initialisation section:

I = ran.(programι) .

As with action systems programι must not assume that there is a state before
its execution. This implies that ran.(programι) is a finite set. The action of
SYS is the finite choice over all named actions a1, a2, . . ., am of SYS :

P =
⊔

a : {a1, a2, . . . , am} • programa .

The names themselves are only used for reference and have no semantical
significance. We usually refer to syntactical systems as probabilistic action
systems, thus, blurring the difference between syntax and semantics. This
is never a problem since it is always apparent from the notation what is
meant.

4.3 Example: Polling System

The cyclic polling system treated in this section is similar to those inves-
tigated in [52, 106, 110]. However, they use continuous time whereas we
use a discrete time model. The system is specified as shown in figure 4.3.
It consists of a number of STATIONS arranged in a ring. Each station
is equipped with a buffer of some maximal CAPACITY . The stations are
numbered from 1. The successor of station i is station i + 1 unless i is
the last station whose successor is station 1. Function NEXT defines the
successor relation. A server travels around the ring from one station to its
successor. Being at station i the server can either remain there or move
to the next station, where it must reside for at least one unit of time. If
the server decides to stay at some location i it serves packets from buffer .i
with an average rate of 1

4 packets per unit of time, or it idles if the buffer is
empty. Packets arrive at the beginning of each time slot with a rate of 1

10 .
On arrival at station i a packet is added to buffer .i if that buffer is not full.
The mean time it takes for the server to get from one station to the next is
2 units of time. This means the probability of arriving at the next station
after one unit of time is 1

2 , since the arrival process is geometric.

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 48

system POLLING
constants

STATIONS ; CAPACITY ;
constraints

STATIONS > 0 ∧ CAPACITY > 0;
sets

STATION = 1 . . STATIONS ;
NEXT = (λ s : 1 . . (STATIONS − 1) • s + 1) ∪ {STATIONS 7→ 1};
ARRIVAL = {true 7→ 0.1, false 7→ 0.9};

variables
station : STATION ;
buffer : STATION → 0 . . CAPACITY ;
moving : B;

programs
arrival = // arrival of packets at stations⊕

S : P(buffer∼[0 . . CAPACITY − 1])
| (∏ s : buffer∼[0 . . CAPACITY − 1] • ARRIVAL.(s ∈ S)) •

buffer := buffer <+ (λ s : S • buffer .s + 1);
departure = // departure of processed packets from station
| buffer .station > 0 |;

(buffer := buffer <+ {station 7→ buffer .station − 1} 0.25⊕ skip)
t
| buffer .station = 0 |;

initialisation
station := 1 ‖ moving := false ‖ buffer := STATION × {0};

actions
serve =
|∑ s : STATION • buffer .s |;
| ¬ moving |; arrival ; departure;

walk =
| 1.0 |;
|∑ s : STATION • buffer .s |;
arrival ;
(moving := true 0.5⊕ (moving := false ‖ station := NEXT .station));

end

Figure 4.3: A cyclic polling system

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 49

The state of system POLLING is described by three variables. Variable
station contains the location of the server. If the boolean variable moving
has value true the server is travelling between two stations. The total func-
tion buffer holds the number of packets waiting at each station. Initially,
the server is at station 1 and stationary. Also, all buffers are empty.

In the programs section the joint arrival process and the departure pro-
cess are defined. The joint arrival process is the product of the ARRIVAL
processes of all non-full buffers. Let W = buffer∼[0..CAPACITY − 1] be
the set of stations having space available in their buffer, and S ⊆W a set of
stations at which packets arrive. Then the probability of arrivals at exactly
all stations in S is

∏
s : W • ARRIVAL.(s ∈ S), which equals

(
1
10

)card.S

∗
(

9
10

)card.(W−S)

.

A departure, i.e. service completion, takes place with probability 1
4 if the

buffer at station station (the location of the server) buffer .station is non-
empty. Otherwise the server idles.

There are two actions serve and walk which represent the two tasks of
the server. It can either service a station or move to the next station, the
choice between the two actions being nondeterministic. At the beginning of
each time slot arrivals are dealt with. Remember that execution of an action
represents what may happen in one unit of time. The actual servicing of
packets in action serve is described by program departure. If the server is
moving it arrives with probability 1

2 at the next station, and moving is set
to false. With probability 1

2 it continues moving towards that station.
Costs are specified as real numbers which are not part of the language

elsewhere. For each packet waiting in any queue a cost of 1.0 is incurred, in
total,

∑
s : STATION • buffer .s .

The system also incurs a cost of 1.0 per unit of time for moving between
stations.

4.4 Cost Refinement

Refinement of probabilistic action systems preserves cost structure and re-
duces the number of possible impasses. The cost structure of a system is
the basis for the performance measures introduced in chapter 5. The per-
formance measures are only defined for live systems, i.e. systems that have
no impasses. Since the number of impasses cannot increase a measure de-
fined on a live system is also defined on any of its refinements. Hence the
performance of a system can be compared to that of any of its refinements.

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 50

Probabilistic action system C refines probabilistic action system A, de-
noted by A v C, if all behaviour possible for C is also possible for A. That
is system C has less traces and less impasses than system A. We define:

A v C =̂ tr.C ⊆ tr.A ∧ im.C ⊆ im.A .

Probabilistic action systems A and C are called equivalent, denoted by
A ≡ C, if A v C and C v A. A probabilistic action system A is called
live, if it has no impasses,

live.A =̂ im.A = ∅ .

Finite traces that can be continued indefinitely are called infinite traces.
The infinite traces itr.A ⊆ seq∞R≥0 of a system A are defined by:

itr.A.v =̂ ∀ t : seqR≥0 • t ≤ v ⇒ tr.A.t .

The behaviour of a live system is entirely described by the infinite traces it
can engage in:

Proposition 4.1 Let A be a live system. Then for all t ∈ seqR≥0:

tr.A.t ⇔ ∃ v : itr.A • t ≤ v .

Clearly, A v C implies itr.A ⊇ itr.C. Also, if A has no impasses and is
refined by C, then C is live. If both systems are live, cost refinement can
be expressed solely by inclusion of infinite traces. The following property
holds:

Proposition 4.2 Let A and C be two live probabilistic action systems.
Then:

A v C ⇔ itr.C ⊆ itr.A .

An alternative way to characterise a system as live is by means of the
states it can reach. For a probabilistic action system A = (Γ, I ,P) we define
the set of reachable states, reach.A, by

reach.A =̂
⋃{car.f | (∃n : N • f ∈ I ; (⇓P)n)} .

The set reach.A contains all states a system can possibly reach, starting
from a state with initial probability greater than zero, by some iteration of
its action P . We note:

Proposition 4.3 Let A = (Γ, I ,P). Then:

live.A ⇔ reach.A ⊆ dom.P .

Proposition 4.3 states that a system does not contain impasses if and only
if its action can continue from any reachable state.

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 51

4.4.1 Simulation

When proving cost refinements A v C we do not use the definition directly.
Instead of checking entire traces we compare the step by step behaviour of
systems A and C. Simulation is a proof technique to do this: System C
refines system A if system A can simulate the behaviour of system C step
by step. This method is widely used in formalisms that have trace-based
behaviour [8, 67, 119] and in data refinement [2, 87, 120].

Although the behaviour of probabilistic action systems is modelled by
traces of costs instead of traces of actions, simulation of probabilistic action
systems looks very similar to simulation of machines. Theorem 4.4 presents
a simulation method that establishes refinement. In the next section two
more variants of simulation are presented that establish equivalence between
two systems.

Theorem 4.4 Let A = (ΓA, I ,P) and C = (ΓC , J ,Q) be two probabilistic
action systems. If there is a probabilistic state function M ∈ D(ΓA,ΓC),
such that

J ⊆ I ;M (PS1)
dom.P ⊆ dom.(M ;Q) (PS2)
M ;Q ⊆ P ;M (PS3)

then A v C.

We call the probabilistic state function M in theorem 4.4 probabilistic sim-
ulation. It creates a link between the states of the two systems.

Condition (PS1) ensures that the initialisation of the concrete system C
can be matched by the initialisation of the abstract system A. Condition
(PS2) ensures that the abstract system can refuse to continue whenever the
concrete system can do so. Hence any impasse of the concrete system must
also be an impasse of the abstract system. Condition (PS3) ensures that
the effect of the concrete action is matched by that of the abstract action.
Note, that (PS3) also establishes the required connection between the cost
structures of the two systems.

It appears a strong requirement for the probabilistic simulation M to
be deterministic. Nondeterministic simulations would allow us to introduce
impasses as can be seen from example 4.5.

Example 4.5 Figure 4.4 shows two probabilistic action systems A and C.
It holds im.A = ∅ and im.C = seq({0}). Their traces both equal seq({0}).
Consequently C does not refine A. Using the nondeterministic simulation

R = C .wieder

we are able to prove A v C. We have to prove conditions (PS1) to (PS3):

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 52

system A
variables

x : B;
initialisation

x := true;
actions

immer = | x |;
end

system C
variables

x : B;
initialisation

x := true;
actions

wieder = | x |; (x := true t x := false);
end

Figure 4.4: C does not refine A

(PS1) C .initialisation ⊆ (x := true t x := false) = A.initialisation;R.
(PS2) Because (R;C .wieder) = C .wieder and dom.(C .wieder) = {true},

dom.(A.immer) = {true} ⊆ R;C .wieder .

(PS3) It also holds (A.immer ;R) = C .wieder , so with the above,

R;C .wieder ⊆ A.immer ;R .

This would prove A v C.

The following example 4.6 demonstrates the use of probabilistic simula-
tion. It provides an abstraction technique often used in queueing theory: the
individuals waiting in a queue are represented by a number that corresponds
to the size of the queue when they arrive.

Example 4.6 System SQ in figure 4.5 models a single-server single-buffer
queueing system. The buffer has length LEN . The customers in this queue-
ing system are people who have names enumerated in set PP . The buffer
is modelled by variable sq , a sequence of people having one of the names
STEVE , STEVEN , or ESTEVE . Initially the buffer is empty. Arrivals of
new customers occur at a rate of 1

4 per unit of time. The probability that
a STEVE , a STEVEN , or an ESTEVE , arrives is 1

3 for each case. The
arrival process is modelled by program arrive. Customers are served at a
rate of 1

2 per unit of time. This is modelled by program depart . Customers
are turned away if the buffer is full, i.e. size.sq = LEN . Obviously no one is
served if the buffer is empty. The service discipline of the queueing system
is “First Come First Served”; customers receive service in the order of their
arrival:

sq := sq ← pp (arrival of a person with name pp)
sq := tail.sq (departure of the person at the front)

The cost structure of system SQ is set up by its sole action, cycle. The cost
| $(size.sq) | incurred during each transition is the length of the buffer at the

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 53

system SQ
constants LEN ;
constraints LEN ≥ 1;
sets

PP = STEVE | STEVEN | ESTEVE ;
variables

sq : seq[LEN](PP);
initialisation

sq := 〈 〉;
programs

arrive =
| size.sq < LEN |; ((⊕ pp : PP | 1

3 • sq := sq ← pp) 1
4
⊕ skip)

t
| size.sq = LEN |;

depart =
| size.sq > 0 |; (sq := tail.sq 1

2
⊕ skip)

t
| size.sq = 0 |;

actions
cycle = | $(size.sq) |; (arrive; depart t depart ; arrive);

end

Figure 4.5: Queue represented by sequence

beginning of the corresponding transition period. Arrivals and departures
to and from the system take place in any order:

arrive; depart t depart ; arrive .

We intend to show that system SQ is refined by system NQ pictured in
figure 4.6.

System NQ also models a single-server single-buffer queueing system.
However the buffer is represented as a natural number nq that counts the
number of customers waiting in the buffer. An arrival increments nq by one
and a departure decrements nq by one:

nq := nq + 1 (arrival of a customer)
nq := nq − 1 (departure of a customer)

Observe, that system NQ makes no assumption about the applied queueing
discipline.

To prove SQ v NQ we have to find a suitable probabilistic simulation
sim : D(ΓSQ ,ΓNQ). Short inspection of SQ and NQ suggests

sim = nq := size.sq .

We have to prove that conditions (PS1) to (PS3) are satisfied.

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 54

system NQ
constants LEN ;
constraints LEN ≥ 1;
variables

nq : 0 . . LEN ;
initialisation

nq := 0;
programs

arrive =
| nq < LEN |; (nq := nq + 1 1

4
⊕ skip)

t
| nq = LEN |;

depart =
| nq > 0 |; (nq := nq − 1 1

2
⊕ skip)

t
| nq = 0 |;

actions
cycle = | $(nq) |; (arrive; depart t depart ; arrive);

end

Figure 4.6: Queue represented by number

(PS1) The initialisations are equivalent:

sq := 〈 〉;nq := size.sq
= nq := size.〈 〉
= nq := 0 .

(PS2) From dom.(SQ .arrive) = ΓSQ and dom.(SQ .depart) = ΓSQ it fol-
lows dom.(SQ .cycle) = ΓSQ . We have to prove dom.(sim;NQ .cycle) = ΓSQ .

Analogous to the case for system SQ it holds dom.(NQ .arrive) = ΓNQ

and dom.(NQ .depart) = ΓNQ . Hence, dom.(NQ .cycle) = ΓNQ , and finally,

dom.(sim;NQ .cycle) = ΓSQ

because sim ∈ D(ΓSQ ,ΓNQ).
Claim (PS2) follows already from dom.sim = ΓSQ , and the equality of the

programs sim;NQ .cycle = SQ .cycle; sim proven under (PS3). We present
this proof of (PS2) to demonstrate the proper use of theorem 4.4.

(PS3) We prove the stronger claim sim;NQ .cycle = SQ .cycle; sim. In
this proof we rely heavily on the algebraic laws presented in chapter 3.

Remember that the type of the program sim;NQ .cycle is E(ΓSQ ,ΓNQ).
Types of programs are not mentioned in the proof. Let sq ∈ seq[LEN](PP)

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 55

be a sequence of persons.

sim;NQ .cycle
= nq := size.sq ; | $(nq) |;

(NQ .arrive;NQ .depart t NQ .depart ;NQ .arrive)
= | $(size.sq) |;nq := size.sq ; (L29)

(NQ .arrive;NQ .depart t NQ .depart ;NQ .arrive)
= | $(size.sq) |; (Q1)

(SQ .arrive;SQ .depart t SQ .depart ;SQ .arrive);nq := size.sq
= SQ .cycle; sim

nq := size.sq ; (NQ .arrive;NQ .depart t NQ .depart ;NQ .arrive) (Q1)
= nq := size.sq ;NQ .arrive;NQ .depart t (L9)

nq := size.sq ;NQ .depart ;NQ .arrive
= SQ .arrive;nq := size.sq ;NQ .depart t (Q2)

nq := size.sq ;NQ .depart ;NQ .arrive
= SQ .arrive;SQ .depart ;nq := size.sq t (Q5)

nq := size.sq ;NQ .depart ;NQ .arrive
= (SQ .arrive;SQ .depart t SQ .depart ;SQ .arrive); (Q2,Q5)

nq := size.sq

nq := size.sq ;NQ .arrive (Q2)
= nq := size.sq ; | nq < LEN |; (nq := nq + 1 1

4
⊕ skip) t (L9)

nq := size.sq ; | nq = LEN |
= | size.sq < LEN |;nq := size.sq ; (nq := nq + 1 1

4
⊕ skip) t (L28)

| size.sq = LEN |;nq := size.sq
= SQ .arrive;nq := size.sq (Q3)

nq := size.sq ; (nq := nq + 1 1
4
⊕ skip) (Q3)

= (nq := size.sq ;nq := nq + 1) 1
4
⊕ nq := size.sq (L16,L1)

= ((
⊕

pp : PP | 1
3 • sq := sq ← pp) 1

4
⊕ skip); (Q4,L17)

nq := size.sq

In the following equation remember that the type of nq := size.(sq ← pp)
is E(ΓSQ ,ΓNQ). This means that the value of variable sq is not visible
after its execution. So program nq := size.(sq ← pp) equals the program

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 56

nq := size.(sq ← pp); sq := sq ← pp with a tailing assignment to sq .

nq := size.sq ;nq := nq + 1 (Q4)
= nq := size.sq + 1 (L26)
=

⊕
pp : PP | 1

3 • nq := size.sq + 1 (L14)
=

⊕
pp : PP | 1

3 • nq := size.(sq ← pp)
=

⊕
pp : PP | 1

3 • (nq := size.(sq ← pp); sq := sq ← pp)
=

⊕
pp : PP | 1

3 • (sq := sq ← pp;nq := size.sq) (L27)
= (

⊕
pp : PP | 1

3 • sq := sq ← pp);nq := size.sq (L17)

nq := size.sq ;NQ .depart (Q5)
= nq := size.sq ; | nq > 0 |; (nq := nq − 1 1

2
⊕ skip) t (L9)

nq := size.sq ; | nq = 0 |
= | size.sq > 0 |;nq := size.sq ; (nq := nq − 1 1

2
⊕ skip) t (L28)

| size.sq = 0 |;nq := size.sq
= | size.sq > 0 |; (sq := tail.sq 1

2
⊕ skip);nq := size.sq t (Q6)

| size.sq = 0 |;nq := size.sq
= SQ .depart ;nq := size.sq (L11)

nq := size.sq ; (nq := nq − 1 1
2
⊕ skip) (Q6)

= (nq := size.sq ;nq := nq − 1) 1
2
⊕ nq := size.sq (L16,L1)

= (sq := tail.sq ;nq := size.sq) 1
2
⊕ nq := size.sq (Q7)

= (nq := size.sq 1
2
⊕ skip);nq := size.sq (L1,L17)

nq := size.sq ;nq := nq − 1 (Q7)
= nq := size.sq − 1 (L26)
= nq := size.(tail.sq)
= sq := tail.sq ;nq := size.sq (L27)

4.4.2 Equivalence

Refinement of probabilistic action systems is proven by simulation. In a
refinement parts of the behaviour of the abstract system might get lost.
Sometimes it is desirable to keep the entire cost behaviour intact. Equiva-
lence proves especially useful as a tool for the analytical solution of associ-
ated performance measures (see chapter 5). A major problem in computing
these measures is the size of the state space of typical systems. To make the

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 57

analytical solution feasible, the original system is replaced with an equiv-
alent system of a much smaller size. In principle we could apply theorem
4.4 twice to prove equivalence of two systems. Instead we prefer to use the
stronger version of theorem 4.7 to prove equivalence directly. A particularly
simple form of simulation is called a fusion. It is a deterministic program
that identifies states which are behaviourally indistinguishable. This tech-
nique is called aggregation in [58]. The approach to aggregation taken in
[20, 58] is based on bisimulation between the used stochastic process alge-
bras. It is referred to as “lumpability”. In their approach the way states
are “lumped” together is fixed by the definition of a bisimulation between
processes. Since our approach allows for the specification of more general
performance measures we need more freedom when “lumping” states. The
concept of lumpability originates in the theory of Markov chains [70].

Theorem 4.7 treats simulation between equivalent probabilistic action
systems. It strengthens theorem 4.4.

Theorem 4.7 Let A = (ΓA, I ,P) and C = (ΓC , J ,Q) be two probabilistic
action systems. If there is a probabilistic state function M ∈ M(ΓA,ΓC)
such that

J = I ;M (EQ1)
M ;Q = P ;M (EQ2)

then A ≡ C.

Conditions (EQ1) and (EQ2) correspond to conditions (PS1) and (PS3)
respectively. Observe that the probabilistic simulation M has domain ΓA,
not a subset as in theorem 4.4.

Example 4.8 (Example 4.6 continued) In example 4.6 we have shown
sim ∈M(ΓSQ ,ΓNQ), and

NQ .initialisation = SQ .initialisation; sim ,

sim;NQ .cycle = SQ .cycle; sim .

Hence probabilistic action systems SQ and NQ are equivalent. We conclude
that the cost structure is independent of the queueing discipline used in
system SQ .

In cases where the main objective in an application of theorem 4.7 is
a reduction of the size of the state space we can replace probabilistic state
function M by a state function φ. The intention is that state function φ
maps states belonging to the same behaviourally equivalent class of states
onto a unique representative for that class. Formally this means

(φ;φ).τ = φ.τ

for all τ ∈ Γ. A state function φ ∈ F(Γ) is called idempotent if φ;φ = φ.

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 58

Theorem 4.9 Let A = (ΓA, I ,P) be a probabilistic action system, and let
φ ∈ F(Γ) be idempotent. If

P ;φ = φ;P ;φ (FUS)

then A ≡ (ΓA, I ;φ,P ;φ).

Condition (FUS) corresponds to conditions (PS3) and (EQ2) in theorems
4.4 and 4.7. However φ also expresses how the state space of the abstract
system is reduced. In fact φ is a reduction instruction and a simulation in
one. Sometimes it is easier to prove

P ;φ = φ;P (4.1)

than to prove (FUS) itself. Assuming φ is idempotent property (4.1) implies
(FUS) because P ;φ;φ = P ;φ. We call the state function φ in theorem 4.9
a fusion of system A.

We state some results that are useful in practical applications of fusions.
They concern sequential composition of fusions and sequential decomposi-
tion of the abstract action. Several fusions can be combined into a single
fusion if they do not affect each other. Proposition 4.10 states this.

Proposition 4.10 Let A = (Γ, I ,P) be a probabilistic action system, and
let φ1, φ2 ∈ F(Γ) be fusions of A. If φ1;φ2 = φ2;φ1, then φ1;φ2 is a fusion
of A.

If the abstract action P is the sequential composition P1;P2 and (FUS)
holds for P1 and P2, then (FUS) holds also for P . This property is useful
in the decomposition proofs.

Proposition 4.11 Let P , φ ∈ E(Γ), P = P1;P2. If P1;φ = φ;P1;φ and
P2;φ = φ;P2;φ, then also P ;φ = φ;P ;φ.

Note that φ is an extended probabilistic state relation in proposition 4.11.
We use it only with fusions though.

Finally we remark that fusion does not only result in a state space reduc-
tion. It also identifies states in which an optimal system behaves similarly.
This could be part of a requirement: A system has to behave in the same
way in states that appear indistinguishable from an observers point of view.
It is difficult to specify this requirement formally though, especially, because
there is usually more than one way to identify similar states. In practice
however, some ways appear more natural than others. There can also be
considerable differences in the ratio of the achieved state space reduction.

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 59

4.5 Example: Polling System

In section 4.3 a model of a cyclic polling system was introduced. In the
model a server walks from station to station serving packets. In this section
we present an alternative model where the stations walk and the server
remains at a fixed location. We show that both systems are equivalent, and
compare their dimensions.

Figure 4.7 pictures the system with the fixed server. It always resides
at location 1. Consequently no variable is needed to record its position.
Arrivals of new packets take place at all locations that have space available
in their buffer. Departures only occur from station 1, the location of the
server. Program rotate models the walking stations. Each station is replaced
with its successor within the cyclic arrangement.

Variable station in system POLLING represents the location of the
server. In system REDPOLL the location of the server is 1 and does not
change. So, relative to the location of the server in both systems, station
1 in system REDPOLL corresponds to the station identified by variable
station in system POLLING . In general, station s in system REDPOLL
corresponds to station 〈〈s + station〉〉, where

〈〈x 〉〉 =̂ ((x − 2) mod STATIONS) + 1 .

We note that the function

(λ s : STATION • 〈〈s + station〉〉) (P0)

is bijective for a fixed station ∈ STATION . It relocates stations from its
range to corresponding stations in its domain. Based on the function 〈〈 · 〉〉
we define a probabilistic simulation sim :M(ΓPOLLING ,ΓREDPOLL) by

sim = mov := moving ‖
loc := (λ s : STATION • buffer .〈〈s + station〉〉) .

Program sim copies the contents buffered at the stations of system POLLING
to the corresponding stations of system REDPOLL.

We have to prove that sim satisfies (EQ1) and (EQ2) in theorem 4.7. We
present the proof in detail because we think the algebraic reasoning used is
an important property of the approach. The proven result itself is perhaps
less interesting.

(EQ1) The initialisation of system POLLING can simulate the initialisa-
tion of system REDPOLL. Let ST = STATION in:

POLLING .initialisation; sim
= station,moving , buffer := 1, false,ST × {0};

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 60

system REDPOLL
constants

STATIONS ; CAPACITY ;
constraints

STATIONS > 0 ∧ CAPACITY > 0;
sets

STATION = 1 . . STATIONS ;
NEXT = (λ s : 1 . . (STATIONS − 1) • s + 1) ∪ {STATIONS 7→ 1};
ARRIVAL = {true 7→ 0.1, false 7→ 0.9};

variables
loc : STATION → 0 . . CAPACITY ;
mov : B;

programs
arrival = // arrival of packets at locations⊕

S : P(loc∼[0 . . CAPACITY − 1])
| (∏ s : loc∼[0 . . CAPACITY − 1] • ARRIVAL.(s ∈ S)) •

loc := loc <+ (λ s : S • loc.s + 1);
departure = // departure of processed packets from location 1
| loc.1 > 0 |;

(loc := loc <+ {1 7→ loc.1− 1} 0.25⊕ skip)
t
| loc.1 = 0 |;

rotate = // rotate locations
loc := (λ s : STATION • loc.(NEXT .s));

initialisation
mov := false ‖ loc := STATION × {0};

actions
serve =
|∑ s : STATION • loc.s |;
| ¬ mov |; arrival ; departure;

walk =
| 1.0 |;
|∑ s : STATION • loc.s |;
arrival ;
(mov := true 0.5⊕ (mov := false ‖ rotate));

end

Figure 4.7: Another cyclic polling system

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 61

mov , loc := moving , (λ s : ST • buffer .〈〈s + station〉〉)
= mov , loc := false, (λ s : ST • (ST × {0}).〈〈s + 1〉〉)
= mov , loc := false, (λ s : ST • (ST × {0}).s)
= mov , loc := false,ST × {0}
= REDPOLL.initialisation .

(EQ2) We have to prove that the action of system POLLING can simulate
the action of system REDPOLL, but does not allow additional behaviour.
We use the same modular style of proof as in example 4.6:

sim; (REDPOLL.serve t REDPOLL.walk)
= sim;REDPOLL.serve t sim;REDPOLL.walk (L9)
= POLLING .serve; sim t POLLING .walk ; sim (P1,P7)
= (POLLING .serve t POLLING .walk); sim (L11)

Simulation of action serve: In the following we let ST = STATION .
We also let CC = 0 . . CAPACITY − 1. We also let ST = STATION , and
A = ARRIVAL.

sim;REDPOLL.serve (P1)
= sim; |∑ s : ST • loc.s |;
| ¬ mov |;REDPOLL.arrival ;REDPOLL.departure

= |∑ s : ST • buffer .s |; sim; (P2)
| ¬ mov |;REDPOLL.arrival ;REDPOLL.departure

= |∑ s : ST • buffer .s |; (L28)
| ¬ moving |; sim;REDPOLL.arrival ;REDPOLL.departure

= |∑ s : ST • buffer .s |; (P3)
| ¬ moving |;POLLING .arrival ; sim;REDPOLL.departure

= |∑ s : ST • buffer .s |; (P4)
| ¬ moving |;POLLING .arrival ;POLLING .departure; sim

= POLLING .serve; sim

sim; |∑ s : ST • loc.s | (P2)
= |∑ s : ST • buffer .〈〈s + station〉〉 |; sim (L29)
= |∑ s : ST • buffer .s |; sim . (P0)

sim;REDPOLL.arrival (P3)
= mov := moving ; (L30)

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 62

(loc := (λ s : ST • buffer .〈〈s + station〉〉);REDPOLL.arrival)
= mov := moving ; (L33)

⊕
S : P((λ s : ST • buffer .〈〈s + station〉〉)∼[CC])
| (∏ s : (λ s : ST • buffer .〈〈s + station〉〉)∼[CC] • A.(s ∈ S)) •

loc := (λ s : ST • buffer .〈〈s + station〉〉)
<+ (λ s : S • (λ s : ST • buffer .〈〈s + station〉〉).s + 1)

= mov := moving ; (P0)
⊕

S : P(buffer∼[CC)
| (∏ s : buffer∼[CC] • A.(s ∈ S)) •

loc :=
(λ r : ST •

(buffer <+ (λ s : S • buffer .s + 1)).〈〈r + station〉〉)
= mov := moving ; (L27)

⊕
S : P(buffer∼[CC)
| (∏ s : buffer∼[CC] • A.(s ∈ S)) •

buffer := buffer <+ (λ s : S • buffer .s + 1);
loc := (λ s : ST • buffer .〈〈s + station〉〉)

=
⊕

S : P(buffer∼[CC) (L33,L27,L30)
| (∏ s : buffer∼[CC] • A.(s ∈ S)) •

buffer := buffer <+ (λ s : S • buffer .s + 1); sim
= POLLING .arrival ; sim (L17)

sim;REDPOLL.departure (P4)
= sim; | loc.1 > 0 |; (L9)

(loc := loc <+ {1 7→ loc.1− 1} 0.25⊕ skip) t
sim; | loc.1 = 0 |

= | buffer .station > 0 |; sim; (L28,P5)
(loc := loc <+ {1 7→ loc.1− 1} 0.25⊕ skip) t
| buffer .station = 0 |

= | buffer .station > 0 |; (L30,L27,P6)
(buffer := buffer <+ {station 7→ buffer .station − 1}; sim 0.25⊕

skip; sim) t
| buffer .station = 0 |; sim

= POLLING .departure; sim (L17,L11)

[loc := (λ s : ST • buffer .〈〈s + station〉〉)] (loc.1) (P5)

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 63

= (λ s : ST • buffer .〈〈s + station〉〉).1
= buffer .station

loc := (λ s : ST • buffer .〈〈s + station〉〉); (P6)
loc := loc <+ {1 7→ loc.1− 1}

= loc := (λ s : ST • buffer .〈〈s + station〉〉) (L26)
<+ {1 7→ (λ s : ST • buffer .〈〈s + station〉〉).1− 1}

= loc := (λ s : ST • buffer .〈〈s + station〉〉) (P5)
<+ {1 7→ buffer .station − 1}

= loc := (λ s : ST •
(buffer <+ {station 7→ buffer .station − 1}).〈〈s + station〉〉)

= buffer := buffer <+ {station 7→ buffer .station − 1}; (L27)
loc := (λ s : ST • buffer .〈〈s + station〉〉)

Simulation of action walk : Let ST = STATION and bb ∈ B.

sim;REDPOLL.walk (P7)
= sim; | 1.0 |; |∑ s : ST • loc.s |;REDPOLL.arrival ;

(mov := true 0.5⊕ (mov := false ‖ rotate))
= | 1.0 |; sim; |∑ s : ST • loc.s |;REDPOLL.arrival ; (L29)

(mov := true 0.5⊕ (mov := false ‖ rotate))
= | 1.0 |; |∑ s : ST • buffer .s |; sim;REDPOLL.arrival ; (P2)

(mov := true 0.5⊕ (mov := false ‖ rotate))
= | 1.0 |; |∑ s : ST • buffer .s |;POLLING .arrival ; sim; (P3)

(mov := true 0.5⊕ (mov := false ‖ rotate))
= | 1.0 |; |∑ s : ST • buffer .s |;POLLING .arrival ; (L16,L30)

(sim;mov := true 0.5⊕ sim;mov := false; rotate)
= | 1.0 |; |∑ s : ST • buffer .s |;POLLING .arrival ; (P8)

(moving := true; sim 0.5⊕ moving := false; sim; rotate)
= | 1.0 |; |∑ s : ST • buffer .s |;POLLING .arrival ; (P9)

(moving := true; sim 0.5⊕
moving := false; station := NEXT .station; sim)

= POLLING .walk ; sim (L17,L30)

sim;mov := bb (P8)
= (mov := moving ;mov := bb); (L30,L27)

loc := (λ s : ST • buffer .〈〈s + station〉〉)

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 64

= (mov := bb); (L26)
loc := (λ s : ST • buffer .〈〈s + station〉〉)

= (moving := bb;mov := moving); (L27)
loc := (λ s : ST • buffer .〈〈s + station〉〉)

= moving := bb; sim (L30)

sim; rotate (P9)
= mov := moving ; (L30)

loc := (λ s : ST • buffer .〈〈s + station〉〉);
loc := (λ s : ST • loc.(NEXT .s))

= mov := moving ; (L26)
loc := (λ s : ST • (λ r : ST • buffer .〈〈r + station〉〉).(NEXT .s))

= mov := moving ;
loc := (λ s : ST • buffer .〈〈NEXT .s + station〉〉)

= mov := moving ; (P10)
loc := (λ s : ST • buffer .〈〈s + NEXT .station〉〉)

= mov := moving ; (L27)
station := NEXT .station;
loc := (λ s : ST • buffer .〈〈s + station〉〉)

= station := NEXT .station; (L27)
mov := moving ; loc := (λ s : ST • buffer .〈〈s + station〉〉)

= station := NEXT .station; sim (L30)

To prove

〈〈NEXT .s + station〉〉 = 〈〈s + NEXT .station〉〉 (P10)

we distinguish four cases:

s < STATIONS ∧ station < STATIONS :

〈〈NEXT .s + station〉〉
= ((s + 1 + station − 2) mod STATIONS) + 1
= ((s + station + 1− 2) mod STATIONS) + 1
= 〈〈s + NEXT .station〉〉

s = STATIONS ∧ station < STATIONS :

〈〈NEXT .s + station〉〉
= ((1 + station − 2) mod STATIONS) + 1
= ((STATIONS + station + 1− 2) mod STATIONS) + 1
= 〈〈s + NEXT .station〉〉

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 65

s < STATIONS ∧ station = STATIONS :

〈〈NEXT .s + station〉〉
= ((s + 1 + STATIONS − 2) mod STATIONS) + 1
= ((s + 1− 2) mod STATIONS) + 1
= 〈〈s + NEXT .station〉〉

s = STATIONS ∧ station = STATIONS :

〈〈NEXT .s + station〉〉
= ((1 + STATIONS − 2) mod STATIONS) + 1
= ((STATIONS + 1− 2) mod STATIONS) + 1
= 〈〈s + NEXT .station〉〉

Observations In this example it seemed appropriate to change the state
space by removing variable station from system POLLING . It is not needed
because its value would always be 1. We could have used a fusion but found
the equivalence proof easier. See chapter 7 for an example of a fusion being
applied to a larger system.

We can easily calculate the sizes of the state spaces ΓPOLLING and
ΓREDPOLL:

card.ΓPOLLING

= card.STATION
∗ (card.(0 . . CAPACITY))card.STATION

∗ card.B
= STATIONS ∗ (CAPACITY + 1)STATIONS ∗ 2

card.ΓREDPOLL

= (card.(0 . . CAPACITY))card.STATION ∗ card.B
= (CAPACITY + 1)STATIONS ∗ 2

It is not difficult to convince oneself that reach.POLLING equals the whole
state space ΓPOLLING , and reach.REDPOLL equals ΓREDPOLL. Obviously
the simple relationship

card.(reach.POLLING) = STATIONS ∗ card.(reach.REDPOLL)

holds between the two systems. In other words, the state space of system
REDPOLL is linearly smaller in the number of stations than that of system
POLLING .

We also observe that, if moving , or mov , is true only action walk may
occur; and if moving , or mov , is false both actions may occur. Because both
actions are deterministic the size of card.(serve t walk) can be calculated as
3
2 ∗ card.Γ, where Γ is the state space of the corresponding system.

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 66

4.6 Remarks

Probabilistic action systems are closely related to probabilistic automata
[99], probabilistic and nondeterministic systems [17], probabilistic concur-
rent programs [42], and simple probabilistic automata [107]. Probabilistic
automata are a probabilistic extension of classical automata theory. Using
a similar model [40] propose a method of model checking real-time temporal
properties of probabilistic automata. The temporal properties then can be
checked for specified probabilistic bounds on the timing behaviour of an au-
tomaton. The underlying model of time is similar to ours in that from one
transition to the next one unit of time is consumed. Probabilistic and non-
deterministic systems are used to check probabilistic temporal logic formulas
over Markov decision processes. Similar to our formalism, nondeterminism
and probability in [17] are separate concepts. It corresponds closely to the
construction time nondeterminism of [48], and similarly [77]. Following [17]
the article [25] treats model checking of timing and reliability properties by
estimating bounds on the quantities of interest. The computational aspect
of the approach is based on Markov decision processes as well. In [17] it is
demonstrated how this can be done by solving a linear programming prob-
lem. Probabilistic concurrent programs are used to analyse the scheduling
of a number of processes, each of which is described by a probability matrix.
Simple probabilistic automata extend labelled transition systems. In [107]
simulations and bisimulations for simple probabilistic automata are defined,
and it is shown that certain temporal properties are preserved by them.
However, the behaviour of the named formalisms is described by probabilis-
tic state transitions. Properties of specifications consequently concern their
probabilistic behaviour. General performance measures based on expected
costs are not representable. An approach similar to [107] is taken in [66]
where temporal logic formulas are refined into deterministic probabilistic
transition systems. The temporal logic specifications are inherently non-
deterministic (and determine a collection deterministic implementations).
The author [121] again follows an approach similar to [66] but based on
the process algebra CCS [83]. A notion of probabilistic simulation is de-
fined and algebraic laws are presented. In [65] it is suggested to model the
behaviour of probabilistic and nondeterministic processes based on reward
testing instead of probabilistic testing. This is the origin of the idea to de-
scribe the behaviour of probabilistic action systems by traces of expected
costs. Simulation between processes is not treated in [65] though.

The above formalisms can be used to derive quantitative properties of a
system. Some formalism use similar semantical models but serve to reason
about qualitative properties. It is proven that some property holds with
probability 1 or 0. In all these formalisms a close correspondence between
probability and fairness is shown. We discuss some of them briefly in the
remainder of this paragraph. Concurrent Markov chains [117] are similar to

CHAPTER 4. PROBABILISTIC ACTION SYSTEMS 67

Markov decision processes but distinguish between probabilistic and nonde-
terministic states. The article [117] deals with the automatic verification of
standard linear temporal logic properties of concurrent Markov chains. Sim-
ilarly, in [97] temporal properties of concurrent, but deterministic systems,
are analysed. It is extended in [96] to include nondeterminism. However
instead of choosing one successor state probabilistically, a set of successor
states is chosen adding extra nondeterminism. This extension is not covered
by Markov decision processes. In [100] probability is added to the UNITY
formalism. It is used for qualitative analysis of temporal properties. The
article also contains a host of proof rules.

In the article [82] the authors investigate probabilistic data refinement
of probabilistic predicate transformers. The simulation-based proof rules
presented are similar to the ones for standard data refinement [35, 36]. This
is in correspondence with our work. The probabilistic simulation of theorem
4.4 was developed using the machine simulation of proposition 2.1 as a blue
print. Unlike for machines however we have not established completeness.
The requirement that probabilistic simulations must be deterministic sug-
gests that we are quite far away from such a result. Completeness has yet to
be investigated. We have also not yet considered unbounded nondetermin-
ism. A problem with infinite state systems in general is that they may not
have optimal implementations. Optimality of probabilistic action systems
is the subject of the next chapter.

Chapter 5

Optimal Systems

Markov decision processes are an alternative way to model live systems.
They are associated with optimality criteria that express performance ob-
jectives to be met. There is a well-established theory [28, 98, 110, 115]
containing both general existence results of optimal solutions to the posed
optimisation problem, and algorithms to compute them.

The behaviour of Markov decision processes and probabilistic action sys-
tems is closely related. We introduce average cost optimality of probabilistic
action systems by exploiting this relationship. We consider average cost op-
timality appropriate for the systems analysed in this thesis. There are other
criteria that may be more appropriate in other applications. Two of them
are briefly discussed in section 5.2.

5.1 Markov Decision Processes

Markov decision processes are a classical model used in performance analysis
[16, 28, 61, 62, 98, 110, 115]. We briefly review the discrete-time model pre-
sented in [115]. Discrete-time means that processes are observed at equidis-
tant points of time 0, 1, 2, . . . (see chapter 4). At time n a process M is
in some state τ ∈ Γ and a decision has to be made on the next action to
take. The set of possible states is denoted by Γ. For each state τ there is
a set of possible actions A(τ). Both the state space Γ and the sets A(τ),
τ ∈ Γ, are assumed to be finite. If process M chooses action a ∈ A(τ) in
state τ , then it incurs a cost cτ (a), and at time n + 1 it will be in state τ ′

with probability pττ ′(a) where
∑
τ ′ pττ ′(a) = 1. The incurred cost cτ (a) and

transition probabilities pττ ′(a) are independent of the history of process M .
A Markov decision process may be modelled in our notation by a tuple

M = (Γ,P) where

Γ is a state space, and
P ∈ E(Γ), with dom.P = Γ, is a program.

68

CHAPTER 5. OPTIMAL SYSTEMS 69

The condition dom.P = Γ ensures that the process cannot deadlock. In
other words only systems that are in ongoing operation are modelled. If
A = (Γ, I ,P) is a live probabilistic action system, then reach.A is a subset
of dom.P . Hence live system A corresponds to a Markov decision process.
We define the Markov decision process proc.A associated with a live system
A by

proc.A =̂ (reach.A, (reach.A) C P) .

The behaviour of Markov decision processes is determined by policies
[115]. A policy is a prescription for taking actions at each stage in the
evolution of a process. In our notation a finite policy is modelled by a pair
consisting of a sequence of cost functions and a sequence of probabilistic
state functions:

po.M.n.(κ,Φ) =̂ size.κ = n ∧
size.Φ = n ∧
∀ i : 1 . . n • (κ.i ,Φ.i) ∈ fun.P .

The behaviour of M is defined as the collection of its finite policies. Remem-
ber that (Π.Φ).τ.τ ′ denotes the conditional probability of being in state τ ′

after execution of sequence Φ, having started in state τ . Let (κ,Φ) ∈ po.M.n
be a finite policy of length n. Then

(Π.(Φ ↑ j − 1) ∗ κ.j) : Γ→ R≥0 , (5.1)

for j ∈ 1 . . n, describes the conditional expected costs that M incurs at
the last transition if it follows policy (κ,Φ) till time j . The sequence of
cost functions in (5.1) has its correspondence in a finite trace of a proba-
bilistic action system from which M stems. Proposition 5.1 establishes this
correspondence between traces and policies.

Proposition 5.1 Let A = (Γ, I ,P) be a live probabilistic action system.
For all t : seqR≥0 and g : DΓ:

path.A.t .g ⇔ ∃ f : I , (κ,Φ) : po.(proc.A).(size.t) •
g = f ∗Π.Φ ∧
∀ j : dom.t • t .j = f ∗Π.(Φ ↑ j − 1) ∗ κ.j .

Define the predicate trace.f .(κ,Φ).t , associating a finite policy (κ,Φ) with
a finite trace t , by (∀ j : dom.t • t .j = f ∗ Π.(Φ ↑ j − 1) ∗ κ.j). Using this
notation, proposition 5.1 essentially says:

Corollary 5.2 For all t : seqR≥0:

tr.A.t ⇔ (∃ f : I , (κ,Φ) : po.(proc.A).(size.t) • trace.f .(κ,Φ).t) .

CHAPTER 5. OPTIMAL SYSTEMS 70

A live system can be described by its infinite traces only. Similarly, for
Markov decision processes infinite policies are sufficient to describe their
behaviour. The infinite policies of a Markov decision process M are defined
by

ipo.M.(κ,Φ) =̂ ∀ i : N1 • (κ.i ,Φ.i) ∈ fun.P .

An infinite policy (κ,Φ) is called stationary if κ.n = κ.1 and Φ.n = Φ.1
for all n ∈ N1. We sometimes denote stationary policies by (C ,M) where
(C ,M) ∈ fun.P .

Because the finite policies of proc.A induce the finite traces of A we
expect the same to be true for infinite policies and infinite traces. Let (κ,Φ)
be an infinite policy of a Markov decision process over a state space Γ, and
f : DΓ a density. The infinite trace associated with f and (κ,Φ) is defined
by:

itrace.f .(κ,Φ).v =̂ ∀ j : N1 • v .j = f ∗Π.(Φ ↑ j − 1) ∗ κ.j .

As in proposition 5.2 the initial densities f of a probabilistic action system
A are required to achieve an exact match between an infinite trace v and
an infinite policy (κ,Φ) of the associated Markov decision process proc.A.

Theorem 5.3 Let A = (Γ, I ,P) be live. For all v ∈ seq∞R≥0:

itr.A.v ⇔ ∃ f : I , (κ,Φ) : ipo.(proc.A) • itrace.f .(κ,Φ).v .

This correspondence between A and proc.A is used in section 5.3 to carry
over the concept of optimality of Markov decision processes, defined in sec-
tion 5.2, to probabilistic action systems.

5.2 Optimisation Criteria

We introduce three optimisation criteria that are commonly used. More
criteria can be found in the literature [68, 98, 110]. We do not treat all
of them because all essential ideas are already present in the three criteria.
In this study we make use of the average-cost criterion. We think that
knowledge of the other two, the finite-horizon criterion and the discounted-
cost criterion, helps to understand the nature of average-cost optimality.
All introduced entities exist for systems with finite state spaces [98]. Note
that probabilistic action systems allow the values of the parameters in the
constants section to be left open. An optimal system, however, can only
be determined for particular choices of parameters. As a consequence an
optimal system for some choice of parameter may not be optimal for a
different choice. In the following let M = (Γ,P) be a Markov decision
process.

CHAPTER 5. OPTIMAL SYSTEMS 71

The finite-horizon criterion considers only a fixed number n of transi-
tions. Let (κ,Φ) be a finite policy. Then tot.(κ,Φ).n.τ ∈ R≥0 is the total
expected cost that M would incur after n transitions having started in state
τ ∈ Γ,

tot.(κ,Φ).n =̂
n∑

m=1

Π.(Φ ↑ m − 1) ∗ κ.m .

The optimal value fin.M.n of Markov decision process M with respect to the
finite-horizon criterion of length n is defined as the infimum of tot.(κ,Φ).n
over all policies of length n:

fin.M.n = inf
(κ,Φ)∈po.M.n

tot.(κ,Φ).n . (5.2)

Note that the infimum in (5.2) is taken component-wise. In the application
of the finite-horizon criterion the choice of the length n of the horizon is
crucial. If it is chosen too short a policy (κ,Φ) might be regarded as optimal
where a costly transition occurs past the horizon. Yet there could be better
policies. This makes it difficult to trust finite-horizon optimal policies except
in cases where n is known in advance (see [98] for examples).

As n approaches infinity so might the total expected cost tot.(κ,Φ).n.
There are two major ways to achieve finiteness in this situation: discounting
and averaging. First we treat the concept of discounting. A discount factor
α ∈ (0, 1) is used so that future costs are discounted at rate α. Costs occur-
ring further in the future are valued less than costs occurring in the imme-
diate future. In the definition of the discounted expected cost, rab.α.(κ,Φ),
the expected cost at the m-th transition is discounted with factor αm−1, and
then the infinite sum is taken over all m ∈ N1. Note that the first transition
is not discounted at all:

rab.α.(κ,Φ) =̂
∞∑

m=1

αm−1Π.(Φ ↑ m − 1) ∗ κ.m .

Let α be fixed. We define the optimal value of M with respect to the
discounted-cost criterion. It is the infimum of rab.α.(κ,Φ) over all infinite
policies:

inf
(κ,Φ)∈ipo.M

rab.α.(κ,Φ) . (5.3)

The optimum attained in (5.3) overemphasises the present in comparison to
the future. Let α = 0.9, then the first transition is discounted with factor
α0 = 1, and the tenth transition with factor α10 ≈ 0.35. After twenty
transitions it is α20 ≈ 0.1. This is acceptable or required in some models.
For instance, in economical models where, say, future loss is discounted to
account for inflation. In other models like the polling system (see section 4.3)

CHAPTER 5. OPTIMAL SYSTEMS 72

discounting is unsuitable. There waiting packages ought to be valued with
the same weight at all times. This is realised by the average-cost criterion.

The average cost incurred in the long-run, avg.(κ,Φ), by following policy
(κ,Φ) is defined by

avg.(κ,Φ) =̂ lim sup
n→∞

tot.(κ,Φ).n
n

.

The term 1
n ∗ tot.(κ,Φ).n represents the average cost incurred over the first

n transitions. We let n approach infinity to get the long-run average-cost.
The limit superior is used because the limit need not exists for all policies. It
exists, however, for all stationary policies [98]. The use of the limit superior
corresponds to the choice of the highest cost, i.e. the worst case from that
perspective. This seems appropriate when it is the aim to minimise the cost
a system may possibly incur. The optimal average-cost value, opt.M, of a
Markov decision process M is defined by:

opt.M =̂ inf
(κ,Φ)∈ipo.M

avg.(κ,Φ) . (5.4)

We have chosen average-cost optimality as performance measure in this work
because it is appropriate for systems in continual operation [78], and simple.
It is simpler than the other two because there is no additional parameter n
or α required. Both parameters appear difficult to estimate if they are not
already part of the model being analysed.

5.3 Average Cost Optimality

We introduce average cost optimality of live probabilistic action systems and
show that it reduces to average cost optimality of the associated Markov
decision process.

The average-cost optimal value of a live system A is defined in terms of
infinite traces of costs by

val.A =̂ inf
v∈itr.A

(
lim sup
n→∞

1
n

n∑

m=1

v .m

)
.

The optimal value val.A corresponds to the best possible behaviour of A as
opposed to the best guaranteed. The difference between the infimum in the
definition of val and the one in (5.4) is that it includes the initial densities
of A. This is expressed in the following theorem.

Theorem 5.4 Let A = (Γ, I ,P) be live. Then

val.A = min
f ∈I

f ∗ opt.(proc.A) .

CHAPTER 5. OPTIMAL SYSTEMS 73

So the main difference between val.A and opt.(proc.A) is that val.A might
choose an initial density that minimises opt.(proc.A) should it be a non-
constant function.

We note that val is a monotonic performance measure, as stated in the
following corollary.

Corollary 5.5 A v C ⇒ val.A ≤ val.C .

Moreover, we know from theorem 5.4 that the average-cost optimal value
of a system can be calculated by solving the corresponding problem for the
associated Markov decision process. We have not yet used the information
about the optimal policy that corresponds to the optimal value. As a matter
of fact there is always such a stationary optimal policy [98]. This in turn
corresponds to a deterministic probabilistic action system. Corollary 5.6
records this.

Corollary 5.6 Let A be a live probabilistic action system. Then there
exists a deterministic system C that refines A, and satisfies val.C = val.A.

A Markov decision process M = (Γ,P) is called connected if for all
τ, τ ′ ∈ Γ there is a number n ∈ N such that

τ ′ ∈ ⋃{car.f | f ∈ (⇓P)n .τ} .
The term (⇓P)n describes the n-th iteration of the probabilistic state rela-
tion ⇓P corresponding to P . Thus, f ∈ (⇓P)n .τ means that probabilistic
state f is reachable after n steps starting in state τ . Taking the carrier car.f
of f yields the states having positive probability in f . The union of the car-
riers

⋃{car.f | . . .} describes the set of all states τ ′ reachable after n steps
starting from state τ . Summarised, a Markov decision process is connected
if all states τ , τ ′ are reachable from each other in a finite number of steps.

If a Markov decision process proc.A is connected then opt.(proc.A) is a
constant function (i.e. the initial state is irrelevant) [98], say (λ τ : Γ • x),
and consequently val.A equals x . If proc.A is connected we call A connected
as well. Connected systems are important because there are efficient algo-
rithms to compute val.A if A is connected1. Connectedness of a system can
be model checked efficiently using the Fox-Landi algorithm [34, 98]. It is
not preserved by cost refinement as the following example shows:

Example 5.7 Figure 5.1 shows two equivalent probabilistic action systems.
System A switches between the two states x = false and x = true incurring a
cost of 2, if x equals true. System B incurs a cost of 1 during each transition
never changing the state. Both systems are initially with equal probability
in state x = false or state x = true. System A is connected. System B is

1In [98] connected systems are referred to as communicating. We stick to the graph
theoretical naming used in [26].

CHAPTER 5. OPTIMAL SYSTEMS 74

system A
variables

x : B;
initialisation

x := true 1
2
⊕ x := false;

actions
cycle =

(| x |; | 2.0 | t | ¬ x |);
x := ¬ x ;

end

system B
variables

x : B;
initialisation

x := true 1
2
⊕ x := false;

actions
cycle = | 1.0 |;

end

Figure 5.1: Two equivalent systems

not connected since, for example, x = true is not reachable from x = false.
Observe also that systems A and B have no policy in common.

The equivalence of the two systems can be established using theorem 4.7
with the following probabilistic simulation (see the appendix for the proof):

sim = x := true 1
2
⊕ x := false .

In general, assuming A is a connected system, and using the software
from chapter 6 we have computed an optimal implementation. If A was
refined by an unconnected system B, it could well be that for the refined
system B it is impossible to compute an optimal implementation. Indeed,
the memory requirements for dealing with unconnected systems are very
high (see chapter 6). There is also a positive side to this problem: If we
were only interested in the optimal value of B, we could compute it using
A as input of the software tool.

We close this section with a remark on average-cost optimality that serves
to characterise its nature further. Proposition 5.8 can be found in similar
form in [110], proposition 7.1.1.

Proposition 5.8 Let v be an infinite trace, and N ≥ 1 fixed. Then:

lim sup
n→∞

1
n

n∑

i=1

v .i = lim sup
n→∞

1
n − (N − 1)

n∑

i=N

v .i .

Proposition 5.8 states a property that one would expect from the average
cost of an infinite trace of some system. The cost accumulated over an initial
finite period of time does not influence the overall average cost of a trace.

5.4 Example: Polling System

The two probabilistic action systems POLLING and REDPOLL from chap-
ter 4 are both live and connected. As mentioned above model checkers can

CHAPTER 5. OPTIMAL SYSTEMS 75

STATIONS CAPACITY val.REDPOLL
5 2 7.7746
6 2 9.7468
7 2 11.7312
8 2 13.7222
9 2 15.7170

Table 5.1: Values of some instances of system REDPOLL

be used to verify connectedness. The software tool DYNAS described in
chapter 6 automatically checks for liveness of a system. Although we oc-
casionally refer to the software tool in this section knowledge of the tool is
not required. No reference is made to particular steps involved in using the
tool. Note, however, that all calculations necessary to derive an optimal
implementation have been solved automatically by the tool. In chapter 6
we discuss the software tool in detail.

The cost structure of system POLLING is set up so that small queues
are preferred as well as stationarity of the server. Each packet waiting in
some buffer causes a cost of one. A cost of one is also incurred each time
period during which the which the server is walking. Serving itself causes
no cost. Using state function sim (defined on page 59) this can easily be
transferred to system REDPOLL. The only difference is that instead of the
walking server we deal with walking stations.

We seek an optimal implementation for system POLLING . Because the
systems are equivalent we only need to analyse system REDPOLL which has
a much smaller state space. We calculate optimal implementations for sys-
tems with CAPACITY = 2 and a variety of values of STATIONS to increase
our confidence in the resulting optimal system. The optimal average-cost
values and optimal implementations have been calculated using the software
tool DYNAS which is the subject of chapter 6. We think that it would be
difficult to guess the optimal guard gdserve of action serve below.

We derive an optimal implementation for system REDPOLL with pa-
rameters STATIONS = 5 and CAPACITY = 2. All we need to find is a
guard | gdserve | for action serve. We can use its negation as guard in action
walk . We define:

gdserve =̂ loc.1 = 0⇒ gd0 ∧ gd1 ∧ gd2 .

The predicates gd0, gd1, and gd2 are defined and explained below. From the
precedent loc.1 = 0 of implication gdserve we gather that the optimal server
always serves when the buffer at station one is not empty. Otherwise one of
the three conditions in its antecedent must hold. The predicates treat the
three possible values of loc.2.

gd0 =̂ loc.2 = 0⇒

CHAPTER 5. OPTIMAL SYSTEMS 76

loc.3 > 0⇒
(loc.3 = 1⇒ loc.4 = 0 ∨ loc.5 = 0) ∧
(loc.3 = 2⇒ loc.4 = 0)

If loc.2 equals 0, then the server serves if the buffer at station three, loc.3, is
also empty. Otherwise, if loc.3 > 0, we distinguish the two remaining cases
for loc.3. Observe that the server is more inclined to serve when buf .3 is
full. This is because rejecting packets does not cause any cost. Remember
that the system incurs a cost of 1 for walking from station to station per
unit of time.

gd1 =̂ loc.2 = 1⇒ loc.3 = 0 ∧ loc.4 = 0

If one packet waits in the buffer of station two, the server serves if no packets
are waiting at the two immediately following stations.

gd2 =̂ loc.2 = 2⇒ loc.3 = 0 ∧ loc.4 = 0 ∧ loc.5 = 0

If the buffer of station two is full, all three buffers not mentioned in the
guard must be empty. Otherwise the serve walks. This differs from the
way station three is treated. The reason is that it is much cheaper to get
to station two than to station three. We now present the actions serve
and walk of the optimal system OPTPOLL. The rest of the specification
is identical to system REDPOLL. Action OPTPOLL.serve simply adjoins
gdserve to the existing guard:

OPTPOLL.serve =
|∑ s : STATION • $(loc.s) |;
| ¬ mov ∧ gdserve |; arrival ; departure;

The guard of action OPTPOLL.walk is the negation of | ¬ mov ∧ gdserve |,
OPTPOLL.walk =
| 1.0 |;
|∑ s : STATION • $(loc.s) |;
| mov ∨ ¬ gdserve |; arrival ;
(mov := true 0.5⊕ (mov := false ‖ rotate));

As shown in table 5.2 system OPTPOLL is also an optimal implemen-
tation of the pictured systems with six, seven, eight and nine stations. This
means in systems with more than five stations packages waiting at stations
not mentioned in the guard have no influence on the behaviour of the opti-
mal server. The reason is that the server expects a packet to arrive at a near
station. Compared to the cost of waiting travelling to a far away station
would appear expensive.

CHAPTER 5. OPTIMAL SYSTEMS 77

STATIONS CAPACITY val.OPTPOLL
5 2 7.7746
6 2 9.7468
7 2 11.7312
8 2 13.7222
9 2 15.7170

Table 5.2: Corresponding values of system OPTPOLL

System POLLING contains explicit cost statements to specify the cost
associated with packets waiting in some buffer, and the cost associated with
moving between stations. It is not so obvious that, in fact, there is an im-
plicit cost objective specifying that rejection of packets is free. Although the
original model POLLING has all operational features that we would expect
of a finite-buffer system, it might not express our performance objectives
properly. If we wanted to associate a cost of, say, one with each rejection
we would need unbounded counters to represent the number of rejections.
This cannot be expressed in our formalism. The probabilistic action system
formalism can potentially cope with infinite state spaces. In [110] algorithms
are presented to solve optimisation problems of this kind for system with
countable state spaces. The algorithms work by solving a sequence of fi-
nite systems. This is an extension of our work which we leave for further
research.

It is useful to seek an informal justification for why an optimal solution
generated by the tool is optimal. Doing this one has to uncover the effect of
performance objectives that have led to the optimal solution. Afterwards it
is possible to validate whether the original model is appropriate.

5.5 Remarks

We keep refinement and optimality separate. Refinement as we have defined
it is compatible with any optimality criterion. If refinement were to require
knowledge of optimal implementations, one would need separate notions of
refinement for the different optimality criteria.

We have not defined a performance measure for non-live systems. The
behaviour of these systems is entirely described in terms of infinite traces.
This suggests we use only infinite traces as a behavioural semantics. How-
ever, we think impasses are useful in their own right. Firstly, systems that
are not live have a meaning. Liveness is a property of a system. There is
no need to prove that something is a system, as would be the case if we
were only to admit live systems. We also prefer to have proper vocabulary
to characterise liveness, i.e. a system having no impasses. Secondly, the

CHAPTER 5. OPTIMAL SYSTEMS 78

semantics based on traces and impasses is instrumental in the soundness
proofs of the refinement rules given in theorems 4.4 and 4.7 in the preceding
chapter.

We represent performance objectives by expected costs that arise during
the operation of the specified system. An implementation of such a spec-
ification is optimal if it minimises the costs incurred during operation. In
some cases the use of rewards instead of costs will appear more natural.
Using rewards, optimal implementations correspond to maximised rewards.
Indeed, some literature is based on rewards [98] and some on costs [110].
Generally the concepts are not mixed, and one decides either to use the cost
approach or the reward approach. One way to represent costs and rewards in
a single model is to treat costs as negative rewards [110]. We take the same
approach as [110] and use only non-negative costs. This does not restrict
the method but simplifies the presentation. A sketch of how to transform
a model containing negative costs, i.e. rewards, into one that contains only
non-negative costs follows. Let P : Γ↔ (R× DΓ) be an extended program
with negative expected costs, and let b = min.{c ∈ R | (∃ τ, f • P .τ.(c, f))}.
Program P induces a Markov decision process (Γ,Q) where Q is given by

Q .τ.(c, f) = P .τ.(c + b, f) .

The optimal average costs of the processes (Γ,P) and (Γ,Q) are related by:

avg.(Γ,P) = avg.(Γ,Q)− b .

In the probabilistic predicate transformer model presented in [81] three
kinds of choice are introduced: demonic, angelic and probabilistic choice.
This is done to arrive at a general theory like [6] for non-probabilistic pred-
icate transformers. A similar approach could have been undertaken here.
There is a suitable theory of competitive Markov decision processes [32].
The competitive model assumes that there are two competing players. One
player tries to maximise the cost incurred; the other tries to minimise it.
Optimally an equilibrium could be achieved where minimum and maximum
are equal. In general, this equilibrium does not exist though. Another prob-
lem with the competitive model is that it is not appropriate to model the
systems we are interested in. The only player involved is the controller try-
ing to act optimally in a probabilistic environment. For some basic game
theoretic notions consult [89].

We only regard deterministic policies. More general randomised policies
have been investigated [28] but it can be shown general optimisation prob-
lems always have optimal solutions among deterministic policies [28]. This
is not true anymore if additional constraints (i.e. state-action frequencies)
are included [28].

The program model in [48] is operational like ours but does include an
improper state “⊥” to treat divergence. It can be embedded into the prob-
abilistic predicate transformer logic of [88]. Residual probability, i.e. the

CHAPTER 5. OPTIMAL SYSTEMS 79

probability of the occurrence of “⊥”, in those models leads to divergence
where in our model it leads to impasses. Our performance measure requires
liveness (as defined in section 4.4), which makes it important to be able to
express impasses. In fact, the role impasses play in our semantical model is
similar to the role divergence plays in other models. In the extreme case us-
ing trace refinement without impasses would allow us to refine any dynamic
system by a system that can only engage in the empty trace. That is it can
not even start. Because we are especially interested in dynamic systems that
are in continual operation impasses are considered ill-behaviour. Hence new
impasses should never be introduced in a refinement. We have chosen not to
introduce a special blocking state “>”, because we are not interested in the
probability of reaching an impasse but only the possibility of reaching an
impasse. If f is a probabilistic state on Γ∪{>}, then we call the restriction
of f to Γ a sub-probability density, or short sub-density [71]. By allowing
sub-densities instead of probabilistic states everywhere in our vector model,
and modifying the definition of sequential composition by removing the con-
dition car.f ⊆ dom.G , we would arrive at a model where the probability of
the occurrence of > equals 1−∑

τ∈Γ f .τ . Assume further that also our trace
model were to use sub-densities. Then some infinite sequence of sub-densities
f∞ of a system A might have the property limn→∞

∑
τ∈Γ f∞.n.τ = 0. As an

immediate consequence limn→∞
∑
τ∈Γ v .n.τ = 0 would also hold, where v is

an infinite cost trace corresponding to f∞. Hence, val.A = 0. This is not
what we intended since now, in general, behaviour that leads to impasses
is favoured over continual behaviour. Our model does not use sub-densities
explicitly but identifies all of them by entirely blocking progress (through
car.f ⊆ dom.G) if one were to occur in the alternative model.

Chapter 6

DYNAS

In this chapter we describe our effort to implement a software tool that
computes an optimal implementation of a probabilistic action system. The
software tool is implemented in the C programming language, Java [18, 114],
JavaCC [63], and MySQL [90]. MySQL features a C-API, and a JDBC
package is available as well. The software runs on Debian GNU/Linux [27].
For presentation purposes we use a functional programming notation similar
to ML [95]. We refer to the software tool as DYNAS. We needed a name.

DYNAS consists of four separate component programs: the compiler, the
expander, the solver, and the printer. If they are executed in that order, then
an optimal implementation is computed for a probabilistic action system.
Figure 6.1 pictures a schematic of the operation of DYNAS. The input is a
syntactic probabilistic action system A. This is translated into an abstract
syntax tree T by the compiler. The expander computes the semantics of T
and generates the corresponding Markov decision process proc.A. Next the
solver takes the Markov decision process proc.A and computes an optimal
stationary policy Φ of proc.A. Finally, the optimal policy is translated into

Syntactic system A
Compiler

²²
Abstract syntax tree T of A

Expander
²²

Markov decision process proc.A

Solver²²
Optimal stationary policy Φ of proc.A

Printer²²
Syntactic representation of Φ based on T

Figure 6.1: Operation of DYNAS

80

CHAPTER 6. DYNAS 81

a textual representation by the printer. The textual representation relates
to the input system A by using some information contained in the abstract
syntax tree T.

The following sections 6.1 to 6.4 describe the function and implementa-
tion of the respective component programs.

6.1 Compiler

A probabilistic action system as accepted by the compiler is a plain text
file. Similar to B, it uses the ASCII character set. Figure 6.2 shows system
REDPOLL in ASCII format. See appendix C for a description of the ASCII-
symbols used. Note that the ASCII-representation uses the function $ to
cast natural numbers into real numbers. In the formal reasoning in this
chapter we do not use the ASCII-format of specifications though. Instead
we use the symbolic representation to improve readability.

The compiler generates an abstract syntax tree from the input and writes
it to the database. It is implemented in Java and JavaCC. Java objects
which make up the nodes of the tree are mirrored into tables in the database.
Upon writing each object is assigned a unique integer number as identifier,
called object key. These object keys are used elsewhere to refer to locations
in the specification. Custom sets C are represented as integer ranges 0 . .
(card.C − 1). So the expander may treat them like natural numbers.

Type-checking is based on the rules described in the B-Book [2]. A set
of rewrite rules is used together with a simple form of unification. All type-
checking is performed while the abstract syntax tree is constructed. The
basic types known to the compiler are natural numbers N, real numbers R,
boolean values B, and custom sets C introduced in a specification. If the
value of a variable x is restricted to a subset of one of these sets, then this
is checked dynamically by the expander. When the expander encounters an
assignment x := e it checks whether e is a member of the set VALUEx .
The set VALUEx describes the possible values of variable x declared in the
variables section of a system. Two type constructors, power set PΘ and
product set Θ1×Θ2, are also given. All other types are derived from these.
Relations, for instance, are given by: Θ1 ↔ Θ2 = P(Θ1 × Θ2). Because
functions and sequences are subsets of relations they are not distinguished
from relations in this type system. The additional properties that functions
and sequences must satisfy are checked by the expander as outlined above.
Examples of rewrite rules follow. We have shaded symbols read from the
input to make them easier to differentiate from the type constructors.

If a constant belongs to one of the basic types, that basic type is inferred.

CHAPTER 6. DYNAS 82

system REDPOLL
constants
STATIONS = 4; // number of stations
CAPACITY = 2; // capacity of buffers

sets
STATION = 1..STATIONS;
ARRIVAL = { TRUE |-> 0.1, FALSE |-> 0.9 };
NEXT = %s:1..STATIONS-1.(TRUE | s + 1) \/ { STATIONS |-> 1 };

variables
buffer : STATION --> 0..CAPACITY; // buffers at stations
moving : BOOL; // true if server is moving to next station

initialisation
// initially the server is stationary and all buffers are empty
moving := FALSE ||
buffer := STATION >< {0};

programs
arrival = // arrival of packets at stations

?S : pow(buffer~[0..CAPACITY-1])
|*!s:buffer~[0..CAPACITY-1].(TRUE | ARRIVAL(s : S)).

buffer := buffer <+ %s:S.(TRUE | buffer(s) + 1);

departure = // departure of processed packets from stations
[buffer(1) = 0]
[]
[buffer(1) > 0];

(buffer := buffer <+ { 1 |-> buffer(1) - 1 } [[0.25]] skip)

actions
serve = [+!s:STATION.(TRUE | $(buffer(s)))];

[not(moving)]; arrival; departure;

walk = [$1 + +!s:STATION.(TRUE | $(buffer(s)))];
arrival;
(

moving := FALSE
[[0.5]]
moving, buffer := TRUE, %s:STATION.(TRUE | buffer(NEXT(s)))

);
end

Figure 6.2: System REDPOLL as accepted by the compiler

CHAPTER 6. DYNAS 83

Remember that C stands for a type of custom values, not some subset.

n
[n ∈ N]

N

b
[b ∈ B]

B

c
[c ∈ C]

C

Using the following set of rules we can type arithmetical and set expression.
In conjunction with the above we derive the type of 3+2 as N, and the type
of (2 + 5) . . (17 + 2) as P(N).

N + N

N

C

P(C)

N . . N

P(N)

Set expressions are combined by set the operators power set and Cartesian
product, or some derived operator. The rewrite rule concerning the power
set operator is defined as:

P P(Θ)

P(P(Θ))

It says that if one forms the power set of a set with type P(Θ), then the
type of the power set is P(P(Θ)). Using the Cartesian product rule below
we can derive the type of 1 . . 2× C as P(N× C). The other two rules deal
with the sequence operator and the relation operator:

P(Θ1) × P(Θ2)

P(Θ1 ×Θ2)

P(Θ1) ↔ P(Θ2)

P(P(Θ1 ×Θ2))

seq P(Θ)

P(P(N×Θ))

The following rules deal with relational operators: relational inverse, identity
relation on a set, and first element of a sequence. We can derive the type of
the expression first.(id .(1 . . 2)) by making use of two of the rules. It is N.

P(Θ1 ×Θ2) ∼

P(Θ2 ×Θ1)

id P(Θ)

P(Θ×Θ)

first P(N×Θ)

Θ

Empty set and empty sequence are polymorphic objects. We introduce
a type variable ϑ to express polymorphism. Wherever a type variable ϑ
occurs any type expression can be inserted. So ϑ acts like place-holder for
type expressions. The type of the empty set is the power set of some set
ϑ; and the type of the empty sequence is the power set of the Cartesian
product of the natural numbers and some set ϑ:

∅

P(ϑ)

〈 〉
P(N× ϑ)

CHAPTER 6. DYNAS 84

fun unify x ϑ = x
| unify ϑ y = y
| unify P(x) P(y) =

if unify x y = fail then fail else P(unify x y)
| unify (x1 × y1) (x2 × y2) =

if unify x1 x2 = fail or unify y1 y2 = fail
then fail
else (unify x1 x2)× (unify y1 y2)

| unify = fail

Figure 6.3: Unification of type expressions

The value of type variables must be inferred at compilation time. All ex-
pressions must be fully-typed. Inference of types is achieved by unification.
Figure 6.3 shows the unification function we use. If two terms Θ1 and Θ2

cannot be unified, then function unify yields fail. We use fail as a special
type constant to express failure of unification. Roughly speaking Θ1 and Θ2

can be unified if they are structurally similar, except where type variables
occur. These type variables are replaced by matching type expressions. The
returned type expression, if it exists, is the most general unifier of the two
type expressions Θ1 and Θ2.

We give two examples of rewrite rules that involve unification. The first
one deals with set union. Using it we can infer that the type of 〈 〉∪(∅×1. .2)
is P(N× N).

P(Θ1) ∪ P(Θ2)
[unify Θ1 Θ2 = Θ 6= fail]

P(Θ)

The second rule treats the append operation on sequences. It allows us to
infer that the type of 〈 〉 ← 1 is P(N× N).

P(N×Θ1) ← Θ2
[unify Θ1 Θ2 = Θ 6= fail]

P(N×Θ)

A type expression Θ resulting from unification may still contain type
variables. This means some type information is unspecified in Θ. To enforce
that all type information is available we need to check whether Θ contains
no occurrence of ϑ. Such a type expression Θ is called ground . Figure 6.4
shows a function ground that computes if a type expression Θ is ground.
Note that the wild-card in the last clause of the function covers all the
basic types N, B, etc. It also treats fail so that the two functions unify and
ground can be nested easily.

CHAPTER 6. DYNAS 85

fun ground ϑ = false
| ground fail = false
| ground P(x) = ground x
| ground (x × y) = ground x and ground y
| ground = true

Figure 6.4: Ground type expressions

Equality and set membership both require ground type expressions. By
their application type information regarding the two expressions Θ1 and Θ2

is dropped. Type B is inferred:

Θ1 = Θ2
[ground (unify Θ1 Θ2)]

B

Observe that a rewrite rule similar to set membership must be used to type
variables x , which are specified in the form x : P(Θ). When variable x is
encountered in an expression, type Θ is inferred.

Θ1 ∈ P(Θ2)
[ground (unify Θ1 Θ2)]

B

6.2 Expander

The input of the expander is an abstract syntax tree generated by the com-
piler (see section 6.1). This corresponds to a type-checked specification of a
probabilistic action system A. The expander computes the semantics of A
with state space reach.A by executing the action of A repeatedly. If system
A is not live the expander aborts with an error message. Hence, if the ex-
pander terminates successfully, the resulting semantical system corresponds
to a Markov decision process. Information generated while executing the
action of A is included into the semantics. It is used to determine which
syntactical implementations belong to particular semantical implementa-
tions.

6.2.1 Data Structures

All data are stored in a relational database. This is advantageous during
debugging because the database can be queried. This often helps in locating
program errors. Searching sequential files is much more difficult and usu-
ally involves writing special debugging tools. Another advantage of using a

CHAPTER 6. DYNAS 86

relational database is that it provides fast insertion and search functional-
ity. Implementation of a fast data storage and retrieval facility is a complex
task. Within the time limits of our work it would have been impossible to
tackle. The semantics of a probabilistic action system A is represented by
three tables, STATE, INIT, and TRANS, such that

A = (STATE, INIT,TRANS) .

We present the three tables in SQL notation. Table STATE has three
fields, KEY, HASH, and DATA. Field DATA contains the value of a state τ in
sequentialised form. Field KEY is a unique key, generated by the expander,
that identifies a state. To check if a state τ ′ has already been encountered
the expander has to look up table STATE, and compare the DATA field of
each entry τ with the sequentialised form of τ ′. Because it would be very
costly to do this directly, each state is assigned a 32-bit hash key HASH
on which the comparison is performed (see [91] for the CRC-based hash
function used). However the hash key is not unique. So the DATA fields
must still be compared when hash keys collide.

table STATE (
KEY integer,

HASH integer,

DATA BLOB,

primary key(KEY),

index(HASH)

)

The acronym BLOB abbreviates ‘binary large object’. The data-type BLOB
is generally used to store unstructured data in a database.

Table INIT has a single field PROB that holds a sequentialised proba-
bilistic state. I.e. table INIT simply represents the set of initial densities.

table INIT (PROB BLOB)

Table TRANS represents the action P of a probabilistic action system. Each
entry in the table has a unique identifier KEY. It specifies a transition

INI 7→ (COST, SUCC) (6.1)

which stands for (COST,SUCC) ∈ P .INI. Hence INI is an initial state of
P , and SUCC the successor probabilistic state. The real value COST is
the associated cost. Note that SUCC is stored as a sequentialised form of
probabilistic state. It is an alternating sequence of integer numbers τi and
double values pi , encoding the probabilistic state {τ1 @ p1, τ2 @ p2, . . . , τn @
pn}. States are represented by integer numbers, the unique keys STATE.KEY

CHAPTER 6. DYNAS 87

supplied by table STATE. Based on the game semantics presented in section
6.2.2 field PLAY stores the (sequentialised) play that is associated with a
transition (6.1).

table TRANS (
KEY integer,

INI integer,

COST double,

PLAY BLOB,

SUCC BLOB,

primary key(KEY),

index(INI)

)

The tables STATE and TRANS are a representation of a Markov deci-
sion process M = (Γ,P). The numerical algorithms of section 6.3, which
are employed to compute the optimal solution of M, use only the integer
values representing the states and transitions. The optimal solution (of a
connected system) is then simply the optimal value represented by a real
number, and a set of integers that corresponds to the optimal deterministic
implementation. However, each transition (6.1) has also a label PLAY at-
tached to it. Having marked a collection of transitions optimal, we also get
a collection of plays that are optimal. From these plays a syntactical form
of the optimal implementation can be derived (see section 6.4).

Ordering and Sequentialisation

To make access to mathematical objects more efficient all objects of identical
type are ordered linearly. So internally ordered trees can be used to store
sets making their retrieval efficient. Also, based on the order any two objects
can be sequentialised and then compared for equality more efficiently. This
is how sequentialised state is stored in the database.

In the following we sketch the ordering used. Remember, it is assumed
that a system passed to the expander is type-checked. Natural numbers have
the obvious order. For boolean numbers, false is smaller than true. Custom
values inherit their order from the representing natural numbers. Pairs are
ordered lexicographically. Sets A and B are ordered with respect to their
cardinality and the order of their elements: A ≤ B ⇔ card.A ≤ card.B ∧
(card.A = card.B ∧ A 6= B ⇒ min.(A \ B) ≤ min.(B \ A)). Set comparison
can be efficiently implemented by enumerating the elements, and comparing
the first distinct value found. The size of the sets is checked in advance.

CHAPTER 6. DYNAS 88

Computing the Semantics of Syntactic Systems

We outline the algorithm used to achieve a certain level of completeness
in the presentation of implementation issues. The algorithm consists of an
initialisation phase followed by a loop:

First the set of initial probabilistic states I is computed from the program
SYS .initialisation. If I is empty expansion is aborted because system SYS is
not live. Otherwise the initial probabilistic states are stored in the database.

Afterwards the actions act of system SYS are expanded. For each state
τ reached compute the set of successor probabilistic states Xact of τ for all
actions act . If, for some state, all sets Xact are empty system SYS is not
live and expansion is aborted. Otherwise corresponding transition data is
stored in the database.

Computations involving program semantics of initialisation and actions
of syntactic systems are described in detail in section 6.2.2.

6.2.2 Game Semantics

It is impractical to compute the semantics of a program using the relational
semantics of chapter 3. Instead we use an operational semantics in which a
program is represented by a game tree. In the context of relational semantics
E(Γ) we interpret a program P as an expression over E(Γ). This is different
from the approach we take in game semantics. There a program P is a
syntactical description of a game tree T . The relationship between P and T
is established by the algorithm exec shown in figure 6.5. Finally, the game
semantics and the relational semantics of P are linked by the algorithm
squash in figure 6.6. They are equivalent. The meaning of non-probabilistic
programs can be described by a similar kind of game semantics [9, 55]. They
establish an equivalence between game semantics and predicate transformer
semantics. Observing that a Markov decision process can be viewed as an
infinite game [32], we follow the construction of [9, 55]. The game trees we
use in the semantics are based on probabilistic games [89].

We do not consider all language constructs introduced in chapter 3.
Finite nondeterministic choice and finite probabilistic choice are left out.
They are similar to their binary counterparts thus do not provide additional
insights. Programs are described by the following syntax:

P = Λ |
skip | x := e | | q | | | r | |
P1 ‖ P2 | P1;P2 | P1 t P2 | P1 p⊕ P2 .

The empty program Λ is introduced for technical reasons. The two programs
| q | and | r | denote the guard and cost statements, respectively. It signals
termination of basic program constructs, and must not occur in actual pro-
grams. We impose the following structural restriction on programs P : If

CHAPTER 6. DYNAS 89

P = P1;P2 or P = P1 ‖ P2, and P1 contains a probabilistic choice, then
P2 does not contain nondeterminism. This is necessary because the game
semantics is only sound if algebraic laws (L17) and (L19) can be applied.

Game Trees

The game semantics of a program P is a binary tree. There are two types
of inner nodes in a game tree corresponding to the two players: choice ¤
and chance ⊕. Leaves of a game tree are either proper states (τ @ p : c),
or they indicate blocked execution (null). A game is played by following the
structure of the game tree from the root. At each node encountered the
appropriate players makes a move. If a choice node is encountered, player
¤ chooses a branch that is not null, and the game continues from there. If
a chance node is encountered, player ⊕ chooses all branches with positive
probability. The game continues in all branches (which must all be different
from null). If a leaf (τ @ p : c) is encountered, this means that state τ occurs
with probability p, and at a cost of c. Note that the same state may occur
in more than one leaf. Playing a game corresponds to selecting a subtree of
a game tree. This subtree is called a play . It is a game tree where all choice
nodes have the form tree2 ¤ null or null ¤ tree1.

tree = null | (τ @ p : c) | tree1 ¤ tree2 | tree1 ⊕ tree2 .

In the above description we have made two assumptions about nodes in a
game tree. We say a game T is well-formed if: for each choice node (tree1 ¤
tree2) in T , either tree1 6= null or tree2 6= null, and for each chance node
(tree1 ⊕ tree2) in T , tree1 6= null and tree2 6= null. The game semantics we
use only produces well-formed games (see figure 6.5). Examples of programs
and their game semantics follow.

The first example deals with the case where a program induces multiple
games. These are programs where the game being played depends on the
initial state.

Example 6.1 Let P ∈ E(B) be a program, P = | b | t (b := true 1
2
⊕ skip).

Program P gives rise to two games: one for initial state b = true and one
for b = false. We show true-game first:

¤
%%JJJJJJJ

uulllllllll

(true @ 1 : 0) ⊕
##HHH

HHH

{{vvv
vvv

(true @ 1
2 : 0) (true @ 1

2 : 0)

The false-game of P is the following tree:

CHAPTER 6. DYNAS 90

¤
%%KKKKKKK

xxqqqqqqq

null ⊕
$$JJJ

JJJ

zzuuuuu

(true @ 1
2 : 0) (false @ 1

2 : 0)

The second example demonstrates game semantics in the presence of
cost statements. It relies on algebraic laws of section 3.6.

Example 6.2 Let P = | 7 |; (x := 1 1
3
⊕ x := 2); | x |. Program P is equiva-

lent to a program where probabilistic choice does not occur within sequential
composition:

P
= | 7 |; ((x := 1; | x |) 1

3
⊕ (x := 2; | x |)) (L17)

= (| 7 |; x := 1; | x |) 1
3
⊕ (| 7 |; x := 2; | x |) (L38)

By way of this equivalence, program P induces the same game tree, below,
for all initial states n ∈ N:

⊕
""EEE

EE
||yyy

yy

(1 @ 1
3 : 8) (2 @ 2

3 : 9)

The last example deals with the case of two consecutive choice state-
ments.

Example 6.3 Let P = (x := 1 t x := 2); (x := x + 1 1
2
⊕ x := x − 1). This

program also does not depend on the initial state, thus, giving rise to only
one game. The game tree associated with program P is:

¤
))SSSSSSSSSSSS

uukkkkkkkkkkkk

⊕
""EEE

EE
||yyy

yy
⊕

""EEE
EE

||yyy
yy

(2 @ 1
2 : 0) (0 @ 1

2 : 0) (3 @ 1
2 : 0) (1 @ 1

2 : 0)

To see this we transform P algebraically:

P
= (x := 1; (x := x + 1 1

2
⊕ x := x − 1)) (L11)

t
(x := 2; (x := x + 1 1

2
⊕ x := x − 1))

= ((x := 1; x := x + 1) 1
2
⊕ (x := 1; x := x − 1)) (L16)

t
((x := 2; x := x + 1) 1

2
⊕ (x := 2; x := x − 1))

CHAPTER 6. DYNAS 91

As in the preceding example 6.2 we have transformed P as long as there
were choice statements within sequential compositions. In fact, the game
semantics is defined this way.

Operational Semantics

Figure 6.5 pictures a functional definition of the game semantics of extended
probabilistic state relations. The game tree game τ P associated with pro-
gram P and initial state τ is defined by:

game τ P = exec τ τ 1.0 0.0 P 〈 〉 .

The probability of initially being in state τ is 1.0. The associated initial cost
is 0.0. And P is the program that remains to be executed. The role of the
first two state parameters of exec and the last parameter, a stack of items
of type rad, is less evident. The type of radicals, rad, is defined by:

rad = (τ ;P) | (τ ‖ P) .

We call (τ ;P) a sequential radical and (τ ‖ P) a parallel radical . Radicals
are used to perform the algebraic transformations of examples 6.2 and 6.3
while constructing the game tree of a program. The radical stack represents
a branch in a tree that serves to compute the effect of a program consisting
of assignments, sequential compositions and parallel compositions. These
three program constructs modify the radical stack. When nondeterministic
or probabilistic choices are encountered the radical stack is copied. We define
the update [[φ]] ρ of a radical stack ρ by a state function φ by

[[φ]] 〈 〉 =̂ 〈 〉 ,
[[φ]] ((τ ;P)→ ρ) =̂ (([φ] τ);P)→ ([[φ]] ρ) ,
[[φ]] ((τ ‖ P)→ ρ) =̂ (τ ‖ P)→ ([[φ]] ρ) .

It updates intermediate states associated with sequential radicals. By doing
this changes occurring on the left hand sides of sequential compositions
become visible on the right hand sides.

Let τ be the current state in an execution of a program. For the mo-
ment assume P and Q are deterministic non-probabilistic programs. When
a sequential composition P ;Q is encountered during the execution, radi-
cal (τ ;Q) is pushed onto the stack and P is executed (line 10 in figure
6.5). Once P has been executed, yielding successor state τ̂ , radical (τ̂ ;Q)
is popped from the stack (line 2). Then Q is executed using τ̂ as initial
state. Assignments made in P are mirrored in sequential radicals on the
stack (lines 8 and 9). So all modifications made by P are visible for Q .
Similarly, when a parallel composition (P ‖ Q) is encountered, execution
continues with P (line 11). The radical (τ ‖ Q) is pushed onto the stack,

CHAPTER 6. DYNAS 92

1 fun exec τ τ ′ p c Λ 〈 〉 = (τ ′ @ p : c)
2 | exec τ τ ′ p c Λ ((τ̂ ;P)→ ρ) = exec τ̂ τ ′ p c P ρ
3 | exec τ τ ′ p c Λ ((τ̂ ‖ P)→ ρ) = exec τ̂ τ ′ p c P ρ
4 | exec τ τ ′ p c skip ρ = exec τ τ ′ p c Λ ρ
5 | exec τ τ ′ p c | q | ρ =
6 if q .τ then (exec τ τ ′ p c Λ ρ) else null
7 | exec τ τ ′ p c | r | ρ = exec τ τ ′ p (c + r .τ) Λ ρ
8 | exec τ τ ′ p c (x := e) ρ =
9 exec τ ([x := e.τ] τ ′) p c Λ ([[x := e.τ]] ρ)

10 | exec τ τ ′ p c (P ;Q) ρ = exec τ τ ′ p c P ((τ ;Q)→ ρ)
11 | exec τ τ ′ p c (P ‖ Q) ρ = exec τ τ ′ p c P ((τ ‖ Q)→ ρ)
12 | exec τ τ ′ p c (P t Q) ρ =
13 if exec τ τ ′ p c P ρ = null and exec τ τ ′ p c Q ρ = null
14 then null
15 else (exec τ τ ′ p c P ρ) ¤ (exec τ τ ′ p c Q ρ)
16 | exec τ τ ′ p c (P a⊕ Q) ρ =
17 if exec τ τ ′ (p ∗ a.τ) c P ρ = null or exec τ τ ′ (p ∗ (1− a.τ)) c Q ρ = null
18 then null
19 else (exec τ τ ′ (p ∗ a.τ) c P ρ) ⊕ (exec τ τ ′ (p ∗ (1− a.τ)) c Q ρ)

Figure 6.5: Game semantics of programs P ∈ E(Γ)

τ being the current state. After execution P yields a successor state τ ′.
Having executed P , radical (τ ‖ Q) is popped from the stack (line 3). Pro-
gram Q is then executed with initial state τ too. The successor state of
Q is merged with state τ ′ to yield the successor state of (P ‖ Q). This is
possible because programs P and Q cannot assign to a shared variable. By
definition of parallel composition there cannot be a shared variable. Note
that commutativity of parallel composition is preserved even though P is
executed first.

If an execution encounters a program (P1 t P2);Q then, as above, (τ ;Q)
is pushed onto the radical stack (line 10). Then P1 and P2 are executed sep-
arately with (τ ;Q) at the top of their radical stack (lines 12 to 15). This
means the program executed is (P1;Q) t (P2;Q). Execution of probabilis-
tic choice followed by sequential composition, (P1 a⊕ P2);Q , is executed
similarly (lines 16 to 19). This behaviour of function exec is based on the
two algebraic laws (L11) and (L17). The same applies for parallel compo-
sition where laws (L13) and (L19) are used. Observe that all assignments
encountered are also performed on state τ ′ (line 9). This way parameter τ ′

accumulates the final state of each execution branch encountered.
Given an initial state τ , a game tree T of a program P corresponds to

a set of pairs of costs and probabilistic states X , such that P .τ = X . The

CHAPTER 6. DYNAS 93

fun squash (τ @ p : c) = {(p ∗ c, {τ @ p})}
| squash null = ∅
| squash (x ¤ y) = squash x ∪ squash y
| squash (x ⊕ y) = squash x + squash y

Figure 6.6: Squashing a game tree

remainder of this section establishes this connection between game semantics
and relational semantics.

Figure 6.6 pictures the function squash that transforms a game tree into
a set of pairs of costs and probabilistic states. The addition of elements of
P(R≥0 × (Γ→ R≥0)) , used in the last clause, is defined by

X + Y = {(c + d , f + g) | (c, f) ∈ X ∧ (d , g) ∈ Y } .
We also define scalar multiplication with a number p ∈ (0, 1) by:

p ∗X = {(p ∗ c, p ∗ f) | (c, f) ∈ X } .
Intermediate probabilistic states that occur in function squash may add up to
a total probability of less than one. We still use the notation for probabilistic
states introduced earlier though.

Theorem 6.5 shows that squash (game τ P) is suitable to compute P .τ .
It is a direct consequence of lemma 6.4 which provides a more general result
using function exec. It says that all subtrees of a game tree correspond to
programs. We only have to take account of the initial probability of the
subtree, and the initial cost which the subtree inherits from the containing
game tree.

Lemma 6.4 Let p ∈ (0, 1), c ∈ R≥0, τ an initial state, and P a program.
Then:

p ∗ (| c |;P).τ = squash (exec τ τ p c P 〈 〉) .
The correctness of the composed function (squash o game) with respect to
the relational semantics of programs follows:

Theorem 6.5 For a program P and initial state τ :

P .τ = squash (game τ P) .

Finally, observe that each play of game τ P corresponds to exactly one
pair (c, f) ∈ squash (game τ P). This is easy to see because the union in
squash is practically removed when the function is applied to a play. This
yields the transition entries stored in table TRANS consisting of an initial
state τ , a cost c, a probabilistic state f , and a corresponding (sequentialised)
play (see section 6.4 for implementation details).

CHAPTER 6. DYNAS 94

6.3 Solver

The solver reads the integer representation of the Markov decision process
associated with the probabilistic action system from the database, and com-
putes the average-cost optimal solution. On termination, the optimal solu-
tion, a vector of integer numbers representing transitions, is stored in the
database. We have implemented three numerical algorithms that solve the
average-cost optimisation problem (5.4): unichain policy iteration, multi-
chain policy iteration, and value iteration. For more details on these and
other related numerical algorithms see [98, 110]. In sections 6.3.1 and 6.3.2
we describe our experiences with the algorithms we have implemented. We
use the abstract notion of Markov decision processes of chapter 5. It should
be easy to relate to the data structures of the implementation presented in
section 6.2.1.

6.3.1 Policy Iteration

Because it is known that an optimal policy is among the stationary ones [28]
one needs only to consider stationary policies in the optimisation algorithm.
Policy iteration searches through the space of stationary policies directly.
This in contrast to value iteration where the search is based on the optimal
value of a Markov decision process.

In the following let M = (Γ,P) be a Markov decision process. A station-
ary policy (C ,M) ∈ ipo.M is called multichain if the underlying state space
Γ can be partitioned into sets ∆0, ∆1, ∆2, . . ., ∆k , such that: set ∆0 is
transient, i.e. the probability of being in ∆0 in the long run is zero, and the
sets ∆1, ∆2, . . ., ∆k are not reachable from each other. Stationary policy
(C ,M) is called unichain if k = 1. The sets ∆1, ∆2, . . ., ∆k are called the
recurrent classes of (C ,M). A Markov decision process is called multichain
if one of its stationary policies is multichain, and unichain otherwise.

The average cost of a stationary policy (C ,M) ∈ ipo.M can be charac-
terised by the two equations [98]:

0 = (M − id) ∗ a , (6.2)
0 = C − a + (M − id) ∗ z , (6.3)

where id ∈M(Γ) is the identity program, i.e. id.τ.τ = 1. Vector a is usually
called the gain of policy (C ,M) and equals the average cost avg.(C ,M) of
the policy. Vector z is usually referred to as bias. It is not determined
uniquely by equation (6.3) but suitable side conditions exist to achieve
uniqueness [98]. The following property holds:

z .τ − z .τ ′ = lim sup
n→∞

1
n

n∑

m=1

(tot.(C ,M).τ − tot.(C ,M).τ ′)

CHAPTER 6. DYNAS 95

It means that z .τ − z .τ ′ is the average relative difference in total expected
cost that results from starting in state τ instead of state τ ′. Equation (6.2)
says that states in the same recurrent class have the same gain. The average
cost avg.(C ,M) distributes the costs C .τ incurred in states τ of a recurrent
class ∆j evenly among all members of that class.

We distinguish multichain and unichain policy iteration algorithms ac-
cording to the type of Markov decision process they can solve. Multichain
policy iteration is treated, for instance, in [98]. In the following we de-
scribe the unichain policy iteration algorithm (see figure 6.7). For unichain
Markov decision processes all associated average costs are constant func-
tions. This implies that equation (6.2) is trivially satisfied. Unichain policy
iteration proceeds as follows: First an arbitrary stationary policy (C ,M) of
a Markov decision process (Γ,P) is selected. For this policy, equation (6.3) is
evaluated which yields the corresponding gain a ∈ R≥0 and bias z ∈ Γ→ R.
Note that a real value a ∈ R≥0 is used to represent the gain, and that ȧ is
the point-wise extension of a. In the next step an improved policy (D ,N)
is sought. Policy (D ,N) is considered an improvement of policy (C ,M) if
it realises the minimum min(d ,n)∈fun.P (d + n ∗ z), but (C ,M) does not. The
expression arg min(d ,n) . . . yields the argument (d ,n) realising the minimum.
If no improvement is possible the algorithm terminates. In this case a is
the average-cost optimal value of (Γ,P) and (C ,M) an average-cost opti-
mal stationary policy. If on the other hand (D ,N) is an improvement the
algorithm continues with evaluation where (C ,M) is replaced by (D ,N).

The algorithm terminates with an optimal policy (C ,M). In each im-
provement step a successor policy (D ,N) is chosen such that either (C ,M)
is improved, or (D ,N) equals (C ,M). If (D ,N) minimises the equation

D + N ∗ z ,

then D + N ∗ z ≤ C + M ∗ z holds, again implying

D + N ∗ z ≤ ȧ + z . (6.4)

If (D ,N) 6= (C ,M) then (6.4) becomes a proper inequality. In this case one
can show that either avg.(D ,N) < ȧ or the bias of a transient state τ of
policy (D ,N) is smaller than z .τ [98, 115]. Only finitely many improvements
are possible because there are only finitely many stationary policies. Upon
termination the following equation is satisfied:

0 = min(D ,N)∈fun.P (D − ȧ + (N − id) ∗ z) . (6.5)

It is called the average-cost optimality equation, and implies that ȧ is the
optimal value [98]. This in turn implies that (C ,M) is the optimal stationary
policy of (Γ,P).

Multichain policy iteration is capable of solving a very general class of
Markov decision processes, where all stationary policies may be multichain.

CHAPTER 6. DYNAS 96

input: Markov decision process (Γ,P)
var M ,N :M(Γ);
var C ,D : Γ→ R≥0;
var a : R≥0;
var z : Γ→ R;
(initialise)
select (D ,N) ∈ fun.P arbitrarily;
(iterate)
repeat

(C ,M) := (D ,N);
(evaluate)

obtain a and z by solving
0 = C − ȧ + (M − id) ∗ z ;

(improve)
choose

(D ,N) ∈ arg min(d ,n)∈fun.P (d + n ∗ z)
setting (D ,N) = (C ,N) if possible;

until (C ,M) = (D ,N);
output: optimal value a and policy (C ,M)

Figure 6.7: Policy iteration algorithm

Unfortunately the price in terms of memory requirements and time con-
sumption is very high. We have managed to use it with systems that have
up to about 2000 states. The memory available was 256 MB. By way
of implementing multichain policy iteration we have also implemented the
Fox-Landi algorithm [34, 98] to determine the recurrent classes of a Markov
decision process. This algorithm can also be used to check if a Markov
decision process is connected, i.e. all states are reachable from each other
(see section 5.3). It is also possible to use linear programming instead of
multichain policy iteration. This causes the same problems however [115]:
it does not cope well with large state spaces. We have not implemented the
linear programming algorithm to solve the Markov decision process.

Unichain policy iteration is only applicable if all stationary policies of
the Markov decision process under consideration are unichain. This is a
severe restriction, and this method has failed already in simple cases. The
unichain property of a system also appears to be hard to prove considering
that it is an artificial constraint imposed by the algorithm. Value iteration
requires a much weaker property of the Markov decision process, that is also
easier to check.

CHAPTER 6. DYNAS 97

6.3.2 Value Iteration

A stationary policy (C ,M) of a Markov decision process M = (Γ,P) is
called aperiodic if there is a state function L :M(Γ) such that

lim
n→∞M n = L .

For instance, the following probabilistic state function M induces a station-
ary policy, say (C ,M), that is not aperiodic:

M =̂

(
0 1
1 0

)
.

Stationary policy (C ,M) “oscillates”. For all n ∈ N:

M 2n−1 =

(
0 1
1 0

)
, M 2n =

(
1 0
0 1

)
.

A Markov decision process M is called aperiodic if all stationary policies of
M are aperiodic.

Remember that fin.M.n is the optimal total cost of a process M after
n transitions. Because a Markov decision process M has only finitely many
policies of length n the infimum in (5.2) is attained. Hence fin.M.n equals

min
(κ,Φ)∈po.M.n

tot.(κ,Φ).n .

We remark that there may be no stationary optimal policy (κ,Φ) that min-
imises tot.(κ,Φ).n [28, 110]. However, as n approaches infinity the signifi-
cance of the past of system M as it evolves diminishes. We define a sequence
of zn =̂ fin.M.n of expected total costs accumulated till time instants n ≥ 0,
letting z0 =̂ 0. At time 0 no costs have been incurred. Sequence zn equals
(see e.g. [110]):

z0.τ = 0 ,
zn .τ = min(c,f)∈P .τ c + f ∗ zn−1 .

If M is aperiodic then zn+1− zn approaches the optimal average cost opt.M
of process M [98, 110]. Note that the sequence zn itself is unbounded and, as
such, not suited for numerical computations. A simple and efficient method
to achieve boundedness of sequence zn is to replace it by a sequence of values
that approximates zn+1 − opt.M [98, 110]. To simplify the presentation of
the value iteration algorithm that follows we use sequence zn to compute
successive approximations of opt.M.

Value iteration converges for aperiodic multichain Markov decision pro-
cesses. In practice the aperiodicity requirement is not a problem because
any stationary policy can be made aperiodic by a simple transformation

CHAPTER 6. DYNAS 98

input: Markov decision process (Γ,P)
var v ,w : (Γ→ R);
var a : R≥0;
var M :M(Γ);
(initialise)
for τ ∈ Γ do w .τ := 0 end;
(iterate)
repeat

v := w ;
for τ ∈ Γ do

w .τ := min(c,f)∈P .τ (c + f ∗ v)
end

until (sp (w − v) < ε);
(finalise)
a := 1

2 ∗ (maxτ (w .τ − v .τ) + maxτ (w .τ − v .τ));
for τ ∈ Γ do

M .τ := arg min(c,f)∈P .τ (c + f ∗ v)
end

output: optimal value a and policy (C ,M)

Figure 6.8: Value iteration algorithm

[98, 110]. However a termination condition is only known for connected
Markov decision processes [98]. Hence we require connectedness if a proba-
bilistic action system is to be analysed with the software tool. As a matter
of fact, it is sufficient to require weak connectedness, i.e. allow the system
to have a nonempty transient class of states [98]. Connected processes M
have constant optimal values opt.M, thus,

sp (opt.M) = 0 .

Function sp is the so-called span semi-norm on Γ→ R [98], defined by,

sp v = (maxτ∈Γ v .τ)− (minτ∈Γ v .τ) .

As sequence zn+1 − zn approaches opt.M the span semi-norm of zn+1 −
zn approaches 0. If opt.M was non-constant sp (opt.M) would equal some
constant c. Because c is not known prior to calculation of opt.M, it can not
be decided from the span semi-norm of the difference zn+1− zn how close it
is to opt.M.

Figure 6.8 pictures the value iteration algorithm. It consists of three
stages. Initially the two vectors of real values v and w are set to zero. In
the iteration to follow variables v and w correspond to the sequence values
zn and zn+1 respectively. Hence w − v approximates the optimal value a of

CHAPTER 6. DYNAS 99

M. The iteration stops when sp (w − v) < ε. The positive real value ε is
a parameter of the algorithm specifying the accuracy of the solution. The
solution is usually called ε-optimal [98]. One can show [98] that the sequence
of differences sp (zn+1 − zn) is monotonously decreasing

sp (zn+2 − zn+1) ≤ sp (zn+1 − zn) ,

and approaches zero as n approaches infinity

lim
n→∞ sp (zn+1 − zn) = 0 .

This implies that the algorithm terminates after finitely many iterations.
Upon termination the following approximation holds

0 ≈ C − ȧ + (M − id) ∗ zn ,

where a, C and M are determined in the finalisation part of the algorithm.
Hence, if ε is small enough (C ,M) is an average-cost optimal stationary
policy.

We have implemented relative value iteration with a preceding aperiod-
icity transformation to achieve numerical stability and certain convergence
of the algorithm [98]. It uses the bounded variant of sequence zn mentioned
above, and performs an aperiodicity transformation on the input Markov
decision process.

Value iteration requires much less memory than policy iteration. Its
memory requirements are linear in the size of the state space of the Markov
decision process. For policy iteration these requirements are quadratic in the
size of the state space. Value iteration is also much faster at each iteration
[98]. From our experience value iteration takes many more iterations until
termination. Policy iteration needs usually less than ten iterations, and
value iteration a few hundred. Yet value iteration is still faster than policy
iteration because each iteration takes much less time. Using value iteration
we have solved systems with up to 100, 000 states and 500, 000 transitions
(see section 7.6). Systems of this size are out of reach for the other numerical
methods considered.

6.4 Printer

On termination the solver stores the optimal value and the optimal station-
ary policy computed in the database. The optimal policy is represented by
the object keys TRANS.KEY that identify entries in table TRANS.

The printer reads the optimal value and the collection of object keys
which determine the optimal policy. Then it reads the portion of the tran-
sition table TRANS to which the object keys refer.

CHAPTER 6. DYNAS 100

action guard
serve if | moving = false ∧ buffer = {1 7→ 0, 2 7→ 0, 3 7→ 0} |
serve if | moving = false ∧ buffer = {1 7→ 0, 2 7→ 0, 3 7→ 1} |
serve if | moving = false ∧ buffer = {1 7→ 0, 2 7→ 1, 3 7→ 0} |
walk if | moving = false ∧ buffer = {1 7→ 0, 2 7→ 1, 3 7→ 1} |
serve if | moving = false ∧ buffer = {1 7→ 1, 2 7→ 0, 3 7→ 0} |
serve if | moving = false ∧ buffer = {1 7→ 1, 2 7→ 0, 3 7→ 1} |
serve if | moving = false ∧ buffer = {1 7→ 1, 2 7→ 1, 3 7→ 0} |
serve if | moving = false ∧ buffer = {1 7→ 1, 2 7→ 1, 3 7→ 1} |
serve if | moving = false ∧ buffer = {1 7→ 1, 2 7→ 1, 3 7→ 2} |
serve if | moving = false ∧ buffer = {1 7→ 1, 2 7→ 2, 3 7→ 1} |
serve if | moving = false ∧ buffer = {1 7→ 1, 2 7→ 2, 3 7→ 2} |
serve if | moving = false ∧ buffer = {1 7→ 2, 2 7→ 1, 3 7→ 1} |
serve if | moving = false ∧ buffer = {1 7→ 2, 2 7→ 1, 3 7→ 2} |
serve if | moving = false ∧ buffer = {1 7→ 2, 2 7→ 2, 3 7→ 1} |
serve if | moving = false ∧ buffer = {1 7→ 2, 2 7→ 2, 3 7→ 2} |
walk if | moving = false ∧ buffer = {1 7→ 0, 2 7→ 2, 3 7→ 2} |
serve if | moving = false ∧ buffer = {1 7→ 2, 2 7→ 2, 3 7→ 0} |
serve if | moving = false ∧ buffer = {1 7→ 2, 2 7→ 0, 3 7→ 2} |
serve if | moving = false ∧ buffer = {1 7→ 1, 2 7→ 0, 3 7→ 2} |
serve if | moving = false ∧ buffer = {1 7→ 0, 2 7→ 0, 3 7→ 2} |
walk if | moving = false ∧ buffer = {1 7→ 0, 2 7→ 1, 3 7→ 2} |
walk if | moving = false ∧ buffer = {1 7→ 0, 2 7→ 2, 3 7→ 1} |
serve if | moving = false ∧ buffer = {1 7→ 2, 2 7→ 1, 3 7→ 0} |
serve if | moving = false ∧ buffer = {1 7→ 1, 2 7→ 2, 3 7→ 0} |
walk if | moving = false ∧ buffer = {1 7→ 0, 2 7→ 2, 3 7→ 0} |
serve if | moving = false ∧ buffer = {1 7→ 2, 2 7→ 0, 3 7→ 1} |
serve if | moving = false ∧ buffer = {1 7→ 2, 2 7→ 0, 3 7→ 0} |

Figure 6.9: Optimal action of system REDPOLL

As can be seen in figure 6.5 choice and chance nodes in a game tree
correspond to locations in the syntactic representation of a probabilistic
action system. Note that because of the algebraic transformation taking
place several nodes in a game tree T may correspond to the same syntactical
location. The compiler has assigned object keys to the syntactical locations
of t and p⊕. These object keys are stored in the nodes of the game tree. The
plays of game tree T inherit the object keys of T . Field TRANS.PLAY of
table TRANS contains a sequentialised form of the plays including the object
keys. Finite nondeterministic choice

⊕
and finite probabilistic choice

⊔
have

not been treated in section 6.2. Every branch of a finite choice corresponds
to an index value. For finite choices

⊕
and

⊔
index values are stored in the

game tree in addition to the object key of
⊕

, or
⊔

. All of this data is also

CHAPTER 6. DYNAS 101

contained in the plays (and sequentialised plays).
The printer creates a text file, and writes the optimal value into it fol-

lowed by a syntactical representation of the plays read from table TRANS.
The output could be improved by combining the abstract syntax tree with
the plays. This would yield a syntactical probabilistic action system. We
leave this work open. We considered this programming task too complex
to complete within the scheduled time. The implementation period for the
entire software tool was limited to ten months.

Figure 6.9 shows the optimal action of system REDPOLL of figure 6.2,
i.e. the polling system with 3 stations and a buffer capacity of 2. The
optimal value is 3.9168. We have modified the output of the printer to
improve readability. The game trees that occur in system REDPOLL do
not contain chance nodes. The printer recognises this and does not print
such game trees. They contain no useful information. The left column
contains the name of an action, and the right column an enabling condition.
This means the guard of action serve, say, of the optimal implementation is
the disjunction of the corresponding rows of the table.

Chapter 7

Case Study: Lift System

The lift system investigated in this case study is similar to the one used in
[2]. It consists of a number of parallel lifts and a number of floors which are
served by the lifts. A similar system has also been analysed in [31] using
the stochastic process algebra PEPA. We choose to examine the lift system
because it has a high degree of nondeterminism and large state space for
even moderate numbers of lifts and floors. The first half of the case study
establishes a relationship between machines (see section 2.4) and probabilis-
tic action systems. The relationship itself is kept informal. However it is
based on an approach commonly used in systems engineering [41]. The sec-
ond half of the case study is dedicated to analysing the initial specification
of the lift system presented in section 7.2.5.

In detail, section 7.1 presents a machine describing the lift and its be-
haviour. In section 7.2 we show how the machine from section 7.1 can be
used to derive a probabilistic action system describing the lift system. The
resulting system is summarised in section 7.2.5. Unfortunately this proba-
bilistic action system cannot be analysed using our software tool. Section
7.3 presents a transformation which results in a probabilistic action system
that can be used with the software tool. It is applied in the following sec-
tion 7.4. A by-product of the transformation is a substantial increase in the
number of states of the system. In section 7.5 we use a fusion to reduce
the size of the state space so that it becomes manageable by the software
tool. Finally, in section 7.6 we present some results of our analysis of the
lift system and discuss the material presented in this chapter.

7.1 State and Operation of the Lift Machine

We give a specification of a lift system in our action system formalism. It
declares two constants FLOORS and LIFTS , the number of floors and the

102

CHAPTER 7. CASE STUDY: LIFT SYSTEM 103

number of lifts, respectively.

machine SYS LIFT
constants FLOORS ; LIFTS ;
constraints FLOORS > 1 ∧ LIFTS > 1;

The sets DIR, LIFT , and FLOOR are used in the declaration of the vari-
ables. Lifts can move up or down. Correspondingly, set DIR defines the
constants UP and DN , modelling the two possible directions. The lifts and
floors of the system are represented by the sets LIFT and FLOOR. The
set MOVE serves to define possible movements of the lifts. It computes
the next position of a lift ll moving in direction dd . Its use simplifies the
operational section of the specification. The domain of MOVE corresponds
to all admissible movements.

sets
DIR = UP | DN ;
LIFT = 1 . . LIFTS ;
FLOOR = 1 . . FLOORS ;
MOVE =

(λff : FLOOR, dd : {DN } • (ff 6= 1 | ff − 1))∪
(λff : FLOOR, dd : {UP} • (ff 6= FLOORS | ff + 1));

The state of the lift system is defined by the variables req , out , dir , floor ,
and moving . Variable req models buttons outside the lift that are used to
call a lift. Variable out model the buttons inside the lift used to select a
destination floor. Variable dir contains the direction of moving lifts. Its
value is meaningless for lifts that are not moving. Variable floor stores the
location of all lifts. All lifts are considered to be at some floor. That includes
moving lifts. Variable moving contains the set of lifts that are moving.

variables
req : P(FLOOR);
out : LIFT ↔ FLOOR;
dir : LIFT → DIR;
floor : LIFT → FLOOR;
moving : P(LIFT);

The initialisation section consists of a collection of parallel assignments.
Initially, there are no open requests: req = ∅ ∧ out = ∅. All lifts are
stationary: moving = ∅. They are in the first floor: floor = LIFT × {1}.
The direction of all lifts is arbitrarily set to UP : dir = LIFT × {UP}.

initialisation
req , out ,moving := ∅,∅,∅ ‖
floor := LIFT × {1} ‖
dir := LIFT × {UP};

CHAPTER 7. CASE STUDY: LIFT SYSTEM 104

The actions section consists of five actions. Actions reqLift and reqFloor add
requests to req and out respectively. Action move models the movement of
lifts. Action stop stops a lift, and action depart occurs when a lift leaves a
floor.

actions

If no stationary lift is located at floor ff , action reqLift(ff) can occur. Floor
ff is then added to req , requesting any lift to stop at floor ff . The set
LIFT \moving denotes the stationary lifts, and the set floor [LIFT \moving]
denotes the floors where at least one stationary lift is located.

reqLift(ff : FLOOR) =
| ff 6∈ FLOOR \ floor [LIFT \moving] |; req := req ∪ {ff };

Action reqFloor(ll ,ff) can only occur if lift ll is not at floor ff . This adds
the request for lift ll to stop at floor ff , (ll 7→ ff), to out .

reqFloor(ll : LIFT ,ff : FLOOR) =
| ff 6= floor .ll |; out := out ∪ {ll 7→ ff };

If ll ∈ moving and it is physically possible to move lift ll in direction dir .ll ,
then action move(ll) can occur. The lift ll is then moved one level in the
given direction dir .ll . Note that a lift ll can move even if there are outstand-
ing requests on floor floor .ll . Ultimately, we want to find out if and how
movements and requests should be connected in an optimal implementation
of system SYS LIFT .

move(ll : LIFT) =
| ll ∈ moving ∧ (floor .ll , dir .ll) ∈ dom.MOVE |;
floor := floor <+ {ll 7→ MOVE .(floor .ll , dir .ll)};

If ll ∈ moving , then lift ll can be stopped. Action stop(ll) stops lift ll and
removes answered requests from buffers req and out .

stop(ll : LIFT) =
| ll ∈ moving |;

moving := moving \ {ll} ‖
out := out \ {ll 7→ floor .ll} ‖
req := req \ {floor .ll};

Finally, action depart(ll , dd) sets lift ll in motion facing direction dd . It
requires that lift ll is stationary. It must also be possible for lift ll to move
in direction dd .

depart(ll : LIFT , dd : DIR) =
| ll 6∈ moving ∧ (floor .ll , dd) ∈ dom.MOVE |;

dir := dir <+ {ll 7→ dd} ‖
moving := moving ∪ {ll};

end

CHAPTER 7. CASE STUDY: LIFT SYSTEM 105

class action explanation
(RND) reqLift caused by human lift user
(RND) reqFloor caused by human lift user
(DEP) move consequence of physical lift movements
(DEP) stop spatial restriction on lift movements
(IND) stop decision to stop any number of moving lifts
(IND) depart decision to commence moving stationary lifts

Table 7.1: Actions of machine SYS LIFT

7.2 From Machines to Systems

Note that machine SYS LIFT is internally deterministic. The nondetermin-
ism present is purely external. No particular order for the occurrence of ac-
tions reqLift , reqFloor , move, bang , stop, and depart of machine SYS LIFT
is given. It is assumed that it is the responsibility of some environment of
the machine to resolve the external nondeterminism. We specify such an en-
vironment and do performance analysis on the complete system consisting
of controller and environment.

We distinguish three different classes of actions. This allows us to follow
a structured approach in the presentation of the material. We distinguish

• actions that occur randomly, (RND)
• actions that occur dependently, (DEP)
• actions that occur independently. (IND)

Actions in class (RND) are controlled by some stochastic source. We make
no further assumptions about actions in this class. Actions belonging to
class (DEP) describe properties of observable quantities, the values of which
change deterministically. Actions in class (IND) are controllable. For actions
in this class we seek a refinement in the form of a control law. Classifications
like this one are customary in control theory [30, 41, 93]. Table 7.1 presents
a classification of all actions of machine SYS LIFT . The first column states
the class of an action, the second its name. The third column gives a short
explanation to justify the presence of an action in the particular class. Ac-
tions reqLift and reqFloor model input from human users of the system.
Action move models physical lift movements. Action stop is present in two
classes because it can represent a decision to stop a lift, or the necessity to
stop a lift because it has reached the bottom or top floor. Finally action
depart represents a decision to commence moving.

We combine the actions of machine SYS LIFT into more complex pro-
grams in a system PAR LIFT to account for the parallelism present in
the complete system. Each class of machine actions has a corresponding

CHAPTER 7. CASE STUDY: LIFT SYSTEM 106

way of combining actions belonging to it. They have in common that they
all require interleaving which we present in the next section. The distin-
guishing features are treated in subsequent sections, where we derive system
PAR LIFT , the model of the actual control system we are interested in. In
sections 7.2.2, 7.2.4 and 7.2.3 the programs section of system PAR LIFT are
derived. Finally, section 7.2.5 presents the sole action of system PAR LIFT .

7.2.1 Interleaving

We say probabilistic state relations P1 and P2 are non-interfering if they
commute with respect to sequential composition,

P1;P2 = P2;P1 .

For non-interfering probabilistic state relations Pi , where i ∈ I , we define
finite interleaving as follows:

‖| i : I • Pi =̂ | I = ∅ | t (
⊔

i : I • (‖| j : I \ {i} • Pj);Pi) . (7.1)

Because of the noninterference of the Pi in (7.1) finite interleaving is equiva-
lent to any sequential composition of the Pi . This means interleaving simply
allows us to reorder the probabilistic state relations as is most convenient.
If I = ∅, then

‖| i : I • Pi = skip .

If I = {i1, i2, . . . , in}, n ≥ 1, then

‖| i : I • Pi = Pi1 ;Pi2 ; . . . ;Pin .

We also define binary interleaving: (P1 ‖| P2) =̂ (P1;P2) t (P2;P1).
To make use of interleaving we have to show that the constituent proba-
bilistic state relations Pi are non-interfering. Subsequently we can replace
interleaving by sequential composition.

7.2.2 Random Actions

Because of laws (L16) and (L17) we do not formulate the following definition
for nondeterministic actions. An action φ ∈ D(Γ) in class (RND) occurs with
a certain (constant) probability c. The probability that nothing happens is
1 − c. More generally, we define probabilistic option for probabilistic state
functions M ∈M(Γ) by

p ? M =̂ M p⊕ skip .

We note that if state relations M1 and M2 are non-interfering, so are c1 ? M1

and c2 ? M2. The interleaving of the latter two probabilistic state relations,

c1 ? M1 ‖| c2 ? M2 ,

CHAPTER 7. CASE STUDY: LIFT SYSTEM 107

models independent occurrences of M1 and M2 with probabilities c1 and
c2 respectively. The joint probability of M1 ‖| M2 is c1 ∗ c2, and the joint
probability of skip is (1−c1)∗(1−c2), and so on. Proposition 7.1 generalises
this. We would fail to prove the proposition if we allowed state relations
instead of state functions φ.

Proposition 7.1 Let ci ∈ (0, 1) for all i ∈ I , and all Mi non-interfering:

‖| i : I • (ci ? Mi) =
⊕

J : P I | (∏ i : J • ci) ∗ (
∏

i : I \ J • 1− ci) • (‖| j : J • Mj) .

Suppose that during one unit of time a request for a lift at floor ff takes
place with probability 0.05. This probability and its opposite are wrapped
into set REQ to simplify the presentation of the product in proposition 7.1,

REQ = {true 7→ 0.05, false 7→ 0.95} .

For J ⊆ I we have

(
∏

i : J • 0.05) ∗ (
∏

i : I \ J • 0.95) =
∏

i : I • REQ .(i ∈ J) .

The actions SYS LIFT .reqLift(ff) are non-interfering, hence,

PAR LIFT .reqLift
=̂ ‖|ff : FLOOR \ floor [LIFT \moving] •

0.05 ? SYS LIFT .reqLift(ff);
=

⊕
FF : P(FLOOR \ floor [LIFT \moving])
| (∏ ff : FLOOR \ floor [LIFT \moving] • REQ .(ff ∈ FF)) •
‖|ff : FF • req := req ∪ {ff };

=
⊕

FF : P(FLOOR \ floor [LIFT \moving])
| (∏ ff : FLOOR \ floor [LIFT \moving] • REQ .(ff ∈ FF)) •

req := req ∪ FF ;

Remember that PAR LIFT and SYS LIFT use different models of time.
Execution of machine action SYS LIFT .reqLift(ff) is not associated with
a duration. As a component of a probabilistic action system, on the other
hand, program PAR LIFT .reqLift is executed within one unit of time. This
means in probabilistic action system PAR LIFT groups of machine actions
SYS LIFT .reqLift(ff) are executed within one time unit.

Suppose that a request for some lift ll to travel to another floor occurs
with probability 0.1. Only one destination floor is chosen per lift, and all
floors ff 6= floor(ll) are chosen with equal probability

1.0/(FLOORS − 1) .

CHAPTER 7. CASE STUDY: LIFT SYSTEM 108

Remember that SYS LIFT .reqFloor(ll ,ff) blocks execution if ff = floor(ll).
Similar to function REQ above we define set ENTER for use in program
PAR LIFT .reqFloor :

ENTER = {true 7→ 0.1, false 7→ 0.9} .

Again, the actions SYS LIFT .reqFloor(ll ,ff) are non-interfering.

PAR LIFT .reqFloor
=̂ ‖| ll : LIFT \moving •

0.1 ?
⊕

ff : FLOOR \ floor(ll) | 1.0/(FLOORS − 1) •
SYS LIFT .reqFloor(ll ,ff);

=
⊕

LL : P(LIFT \moving)
| (∏ ll : LIFT \moving • ENTER.(ll ∈ LL)) •
‖| ll : LL •

⊕
ff : FLOOR \ floor .ll | 1.0/(FLOORS − 1) •
out := out ∪ {ll 7→ ff };

=
⊕

LL : P(LIFT \moving)
| (∏ ll : LIFT \moving • ENTER.(ll ∈ LL)) •

⊕
RR : {RR : LL→ FLOOR | (∀ ll : LL • RR.ll 6= floor .ll)}
| (∏ ll : LL • 1.0/(FLOORS − 1)) •
‖| ll : LL • out := out ∪ {ll 7→ RR.ll};

=
⊕

LL : P(LIFT \moving)
| (∏ ll : LIFT \moving • ENTER.(ll ∈ LL)) •

⊕
RR : {RR : LL→ FLOOR | RR ∩ floor = ∅}
| (∏ ll : LL • 1.0/(FLOORS − 1)) •
‖| ll : LL • out := out ∪ {ll 7→ RR.ll};

=
⊕

LL : P(LIFT \moving)
| (∏ ll : LIFT \moving • ENTER.(ll ∈ LL)) •

⊕
RR : {RR : LL→ FLOOR | RR ∩ floor = ∅}
| (∏ ll : LL • 1.0/(FLOORS − 1)) •

out := out ∪ RR;

7.2.3 Dependent Actions

Actions in class (DEP) are combined solely by interleaving. For kk 6= ll we
have move(kk);move(ll) = move(ll);move(kk), hence

PAR LIFT .move

CHAPTER 7. CASE STUDY: LIFT SYSTEM 109

=̂ ‖| ll : moving • SYS LIFT .move(ll);
= ‖| ll : moving •

| (floor .ll , dir .ll) ∈ dom.MOVE |;
floor := floor <+ {ll 7→ MOVE (floor .ll , dir .ll)};

= | ∀ ll : moving • (floor .ll , dir .ll) ∈ dom.MOVE |;
floor := floor <+ (λ ll : moving • (MOVE .(floor .ll , dir .ll)));

When a lift reaches the bottom or top floor it must stop. This is mod-
elled by program PAR LIFT .bang utilising action SYS LIFT .stop(ll). In
program PAR LIFT .bang we make use of the let statement, defined by,

LET x = E IN P =̂
⊔

x : {E} • P .

The actions SYS LIFT .stop(ll) are also non-interfering. Hence,

PAR LIFT .bang
=̂ ‖| ll : (moving ∩ floor∼[{1}] ∩ dir∼[{DN }])∪

(moving ∩ floor∼[{FLOORS}] ∩ dir∼[{UP}]) •
SYS LIFT .stop(ll);

= ‖| ll : (moving ∩ floor∼[{1}] ∩ dir∼[{DN }]) •
moving := moving \ {ll} ‖
out := out \ {ll 7→ floor .ll} ‖
req := req \ {floor .ll}
‖|
‖| ll : (moving ∩ floor∼[{FLOORS}] ∩ dir∼[{UP}]) •

moving := moving \ {ll} ‖
out := out \ {ll 7→ floor .ll} ‖
req := req \ {floor .ll};

= LET FD = moving ∩ floor∼[{1}] ∩ dir∼[{DN }] IN

moving := moving \ FD ‖
out := out \ (FD C floor) ‖
req := req \ floor [FD];

LET FU = moving ∩ floor∼[{FLOORS}] ∩ dir∼[{UP}] IN

moving := moving \ FU ‖
out := out \ (FU C floor) ‖
req := req \ floor [FU];

7.2.4 Independent Actions

The program skip t R models a decision to do either R or nothing. The in-
terleaving of several such programs models multiple independent decisions.

CHAPTER 7. CASE STUDY: LIFT SYSTEM 110

Proposition 7.2 treats this situation similar to the probabilistic one in propo-
sition 7.1.

Proposition 7.2 Let all Ri ∈ R(Γ) be non-interfering. Then

‖| i : I • (skip t Ri) =
⊔

J : P I • (‖| j : J • Rj) .

The controller can decide to stop lift ll if it is moving. The actions
SYS LIFT .stop(ll) are non-interfering.

PAR LIFT .stop
=̂ ‖| ll : moving • (skip t SYS LIFT .stop(ll));
=

⊔
LL : P(moving) • (‖| ll : LL • SYS LIFT .stop(ll));

=
⊔

LL : P(moving) •
‖| ll : LL •

moving := moving \ {ll} ‖
out := out \ {ll 7→ floor .ll} ‖
req := req \ {floor .ll};

=
⊔

LL : P(moving) •
moving , out , req :=

moving \ LL, out \ (LL C floor), req \ floor [LL];

If lift ll is not moving the controller can decide to commence moving that
lift. The chosen direction dd must be UP if the lift is in the ground floor, and
DN if it is in the top floor. As before the actions SYS LIFT .depart(ll , dd)
are non-interfering.

PAR LIFT .depart
=̂ ‖| ll : LIFT \moving •

skip t
⊔

dd : DIR • SYS LIFT .depart(ll , dd);
=

⊔
LL : P(LIFT \moving) •
‖| ll : LL •

⊔
dd : DIR • SYS LIFT .depart(ll , dd);

=
⊔

LL : P(LIFT \moving) •
⊔

DD : LL→ DIR •
‖| ll : LL • SYS LIFT .depart(ll ,DD .ll);

=
⊔

LL : P(LIFT \moving) •
⊔

DD : LL→ DIR •
‖| ll : LL •

CHAPTER 7. CASE STUDY: LIFT SYSTEM 111

| (floor .ll ,DD .ll) ∈ dom.MOVE |;
moving := moving ∪ {ll} ‖
dir := dir <+ {ll 7→ DD .ll};

=
⊔

LL : P(LIFT \moving) •
⊔

DD : LL→ DIR •
| ∀ ll : LL • (floor .ll ,DD .ll) ∈ dom.MOVE |;
moving , dir := moving ∪ LL, dir <+ DD ;

7.2.5 The Lift System

In this section we present the actions section of system PAR LIFT .

system PAR LIFT
constants FLOORS ; LIFTS ;
. . .

The variables section and initialisation section are identical to the correspond-
ing sections of machine SYS LIFT . The components of the programs section
have been introduced in sections 7.2.2 to 7.2.4.

System PAR LIFT has one action called cycle defining the control cycle
of the lift system. The leading test in action cycle sets up a cost structure for
the lift system. Costs of one unit are incurred for each unanswered request
and for each moving lift. Hence the associated optimisation problem is
to minimise overall waiting time (measured by unanswered requests) and
energy consumption (measured by the number moving lifts). The control
cycle has four phases. First newly arrived requests are recorded. Afterwards
the lift movements are calculated. In the third phase it is decided which lifts
to stop. Finally it is decided which lifts should depart, i.e. move in the next
cycle.

actions

cycle =
| card.req + card.out + card.moving |;
reqLift ; reqFloor ;move; bang ; stop; depart ;

end

Unfortunately system PAR LIFT can not be analysed with our software
tool because programs stop and depart contain nondeterminism (see section
6.2.2). In the next section we introduce a transformation that we use in
section 7.4 to split action cycle into two separate actions. The resulting
system can be analysed with the software tool.

CHAPTER 7. CASE STUDY: LIFT SYSTEM 112

7.3 Time Scale Transformation

Let A and B be two live probabilistic action systems such that for all v ∈
seq∞R≥0:

itr.A.v ⇔ itr.B.(σ.v) ,

where σ : seq∞R≥0 → seq∞R≥0 is defined by σ.v .(2i − 1) =̂ v .i and
σ.v .(2i) =̂ 0 for all i ∈ N1.

From proposition 8.1.1 in [98] we know that if the policy underlying trace
v is stationary, then

lim
n→∞

1
n

n∑

i=1

v .i = lim sup
n→∞

1
n

n∑

i=1

v .i . (7.2)

Using this we can relate the optimal policies of systems A and B by the
following proposition.

Proposition 7.3 Let v ∈ itr.A be an infinite trace which belongs to a
stationary policy, and σ.v ∈ itr.B. Then the following equality holds:

lim
n→∞

1
n

n∑

i=1

v .i = lim
n→∞

2
n

n∑

i=1

σ.v .i . (7.3)

Equation (7.2) implies that the traces of the two systems A and B be-
longing to stationary policies are related by (7.3). This includes the optimal
traces. Assume the optimal value of system A is 2o belonging to infinite
trace w . Then the optimal value of system B is o attained with trace σ.w .

Proposition 7.4 If A and B (as above) have deterministic initialisations,
then

val.A = 2 ∗ val.B .

7.4 More Actions

The lift system of section 7.2.5 is of no practical use to us since we can
not analyse it automatically. In this section we present a variant of that
system which we can analyse with our tool. The idea we follow is simple.
We split action cycle into two actions request and serve which are executed
alternately. Figure 7.1 shows the transformed system PER LIFT .

A new set TURN consisting of two values REQUEST and SERVE , and
a variable turn of type TURN are introduced. If turn has value REQUEST ,
action request is executed, otherwise action serve. Initially turn is set to
REQUEST . The decision to split action PAR LIFT .cycle this way is arbi-
trary. An alternative would have been to detach card.moving from the initial

CHAPTER 7. CASE STUDY: LIFT SYSTEM 113

cost statement attach it to PER LIFT .serve, leaving card.req + card.out in
PER LIFT .request . We intend to use the transformation from section 7.3.
So the latter approach, where serve has a non-zero expected cost, is not ap-
plicable. We have chosen the approach of figure 7.1 because it corresponds
to a simple transformation which is easy to prove.

system PER LIFT
constants FLOORS ; LIFTS ;
sets
. . .
TURN = REQUEST | SERVE ;

variables
. . .
turn : TURN ;

initialisation
. . . ‖
turn := REQUEST ;

programs
. . .

actions
request =
| turn = REQUEST |; turn := SERVE ;
| card.req + card.out + card.moving |;
reqLift ; reqFloor ;

serve =
| turn = SERVE |; turn := REQUEST ;
move; bang ; stop; depart ;

end

Figure 7.1: Time-wise transformed lift

An execution of action request incurs a cost of card.req + card.out +
card.moving , and an execution of action serve a cost of zero. In our discrete
model of time, one unit of time in system PAR LIFT corresponds to two
units of time in system PER LIFT . We have

| turn = REQUEST |;PAR LIFT .cycle
= PER LIFT .request ;PER LIFT .serve .

Hence, system PER LIFT incurs the same costs in two units of time as
PAR LIFT does in one unit. Based on section 7.3 we show that both systems
have in essence the same optimal implementation:

Let optServe be the optimal implementation of serve with the leading
part | turn = SERVE |; turn := REQUEST removed. Then action optCycle

CHAPTER 7. CASE STUDY: LIFT SYSTEM 114

given by

optCycle =
| card.req + card.out + card.moving |;
reqLift ; reqFloor ;
optServe;

is an optimal implementation of action cycle because, by proposition 7.4,
its optimal value is 2 ∗ val.PER LIFT . This value is attained for action
optCycle. Hence optCycle is optimal.

7.5 Fewer States

System PER LIFT in the last section has a feasible number of transi-
tions per state but is has also many more states than the original system
PAR LIFT . In this section we present two fusions to reduce the number of
states. Remember that a fusion is a deterministic simulation (see chapter 4).
The resulting system RED LIFT , incorporating the two fusions, is finally
used in section 7.6 as input to our software tool.

7.5.1 State Aggregation

There is more than one way to aggregate states. It is worth varying the
approach to find a good fusion. Fusion arrange presented below arranges
lifts in ascending order with respect to their location. Alternatively one
might order the lifts so that, say, moving lifts always have numbers 1 . . n
where n = card.moving . Subsequently, moving and stationary lifts might be
ordered separately in ascending order. We do not follow that approach but
remark that it is much less effective than the one presented. In particular,
the advantage of fusion arrange is that it takes variable out into account.
As the considered system gets larger the effect of out on the number of
reachable states increases. The opposite is true for variable moving .

We distinguish two kinds of aggregation. First we eliminate redundant
states. If in some state the value of some variable has no significance, then
we can arbitrarily choose a value for that variable. The second kind is based
on the observation that a system may contain symmetries in its behaviour.
Redundant states give rise to such symmetries. Still we distinguish the two
kinds because the first one yields very simple fusions.

Redundant States

We observe that once a lift is stopped the directional information associated
with it becomes irrelevant. At initialisation time all lifts are stopped and set

CHAPTER 7. CASE STUDY: LIFT SYSTEM 115

to face upwards. So, we decide to let stopped lifts always to face upwards.
This is what fusion faceUp does.

faceUp =
dir := dir <+ (LIFT \moving)× {UP};

We have to prove idempotency of program faceUp,

faceUp; faceUp = faceUp . (7.4)

Since the expression (LIFT \moving)× {UP} does not contain a reference
to variable dir , equation 7.4 is satisfied. Next we have to show that (FUS)
is satisfied by faceUp, request and serve:

request ; faceUp = faceUp; request ; faceUp , (7.5)
serve; faceUp = faceUp; serve; faceUp . (7.6)

Action request does not refer to variable dir , hence,

request ; faceUp = faceUp; request ,

and equation 7.5 is satisfied. Programs move, bang and depart in action
serve refer to dir . We prove

move; faceUp = faceUp;move; faceUp , (7.7)
bang ; faceUp = faceUp; bang ; faceUp , (7.8)
depart ; faceUp = faceUp; depart ; faceUp . (7.9)

The rest follows by proposition 4.11. Equations 7.7 and 7.8 are satisfied
because move only refers to moving C dir which is not changed by program
faceUp. The same is true for program bang because

moving ∩ dir∼[{dd}] = (moving C dir)∼[{dd}]

for dd ∈ DIR. With regard to program depart it is sufficient to consider the
fragment

departFrag =̂ moving , dir := moving ∪ LL, dir <+ DD

where LL ⊆ LIFT \moving and DD ∈ LL → DIR. Using substitution we
calculate:

[departFrag] (dir <+ (LIFT \moving)× {UP})
= (dir <+ DD) <+ (LIFT \ (moving ∪ LL))× {UP}
= dir <+ (DD ∪ (LIFT \ (moving ∪ LL))× {UP})
= (dir <+ (LIFT \ (moving ∪ LL))× {UP}) <+ DD .

CHAPTER 7. CASE STUDY: LIFT SYSTEM 116

It follows:

departFrag ; faceUp
= dir := (dir <+ (LIFT \ (moving ∪ LL))× {UP}) <+ DD ;

moving , dir := moving ∪ LL, dir <+ DD ;
dir := dir <+ (LIFT \moving)× {UP}

= dir := dir <+ (LIFT \ (moving ∪ LL))× {UP};
departFrag ; faceUp

= dir := dir <+ (LIFT \moving)× {UP};
departFrag ; faceUp

= faceUp; departFrag ; faceUp .

This implies 7.9.

Variable Ordering

It is only relevant how many lifts are at which level. We can discard the
information about which particular lift is at some floor. We rearrange the
lifts in ascending order. Lifts on the same floor are ordered according to the
unmet requests in variable out .

Let GL ∈ LIFT → floor [LIFT] be a function that assigns lifts to floors.
The two predicates ascend and invar restrict the possible values of GL. If
GL satisfies ascend , then all lifts are assigned floors in ascending order:

ascend =̂ ∀ xx : LIFT , yy : LIFT • xx < yy ⇒ GL.xx ≤ GL.yy .

If GL satisfies invar , then the number of lifts at each floor remains invariant:

invar =̂ ∀ xx : floor [LIFT] • card.floor∼[{xx}] = card.GL∼[{xx}] .

Function GL is not uniquely determined by ascend and invar . However
it becomes unique as a consequence of the lift reordering, PP ∈ LIFT →
LIFT , presented next. Let PP satisfy predicate bridge. Then the reordering
achieves an exact match between the locations of the lifts stated in variable
floor , and those stated in function GL:

bridge =̂ ∀ xx : LIFT • floor .(PP .xx) = GL.xx .

If two lifts are on the same floor according to the reordering PP , then a
further ordering based on variable out is used. For xx ∈ LIFT the set
out [{xx}] contains all floors which lift xx is expected to visit. We define a
total order SMU on P(FLOOR) to achieve a reordering of variable out that
respects GL:

SMU = {xx : P(FLOOR), yy : P(FLOOR) |

CHAPTER 7. CASE STUDY: LIFT SYSTEM 117

card.xx ≤ card.yy ∧
(card.xx = card.yy ∧ xx 6= yy ⇒ min.(xx \ yy) ≤ min.(yy \ xx))

};

If PP satisfies predicate locate, then it also orders variables out , dir , moving
in ascending order. Lifts on the same floor, GL.xx = GL.yy , are ordered
with respect to SMU . If their requests are also identical, out [{PP .xx}] =
out [{PP .yy}], then they are ordered so that moving lifts come last. If two
lifts are either both moving or stationary, PP .xx ∈ moving ⇔ PP .yy ∈
moving , then the lifts are ordered so that lifts going down come first, and
then lifts going up. If the lifts also face the same direction, dir .(PP .xx) =
dir .(PP .yy), then both lifts are in the same state. In this case their existing
order PP .xx < PP .yy is used.

locate =̂ ∀ xx : LIFT , yy : LIFT •
GL.xx = GL.yy ∧ xx < yy ⇒

out [{PP .xx}] 7→ out [{PP .yy}] ∈ SMU ∧
out [{PP .xx}] = out [{PP .yy}]⇒

(PP .xx ∈ moving ⇒ PP .yy ∈ moving) ∧
(PP .xx ∈ moving ⇔ PP .yy ∈ moving)⇒

(dir .(PP .xx) = UP ⇒ dir .(PP .yy) = UP) ∧
dir .(PP .xx) = dir .(PP .yy)⇒

PP .xx < PP .yy .

Predicate locate fixes the value of PP and as consequence that of GL. Now
we define fusion arrange:

arrange =
⊔

GL : LIFT → floor [LIFT] • | ascend ∧ invar |;
⊔

PP : LIFT → LIFT • | bridge ∧ locate |;
floor := GL ‖
out := {ll : LIFT , ff : FLOOR | PP .ll 7→ ff ∈ out} ‖
dir := {ll : LIFT , dd : DIR | PP .ll ∈ dd ∈ dir} ‖
moving := {ll : LIFT | PP .ll ∈ moving};

Program arrange is nonempty and deterministic because for any choice of
floor and out there are unique functions GL and PP satisfying

fix =̂ ascend ∧ invar ∧ bridge ∧ locate .

Idempotency of arrange follows from the uniqueness of GL and PP , and
because of the strict monotonicity of PP when two lifts xx and yy are in the

CHAPTER 7. CASE STUDY: LIFT SYSTEM 118

same state:

equal .(xx , yy) =̂ floor .xx = floor .yy ∧
out [{xx}] = out [{yy}] ∧
(xx ∈ moving ⇔ yy ∈ moving) ∧
dir .xx = dir .yy .

We show that programs arrange, request and serve satisfy (FUS):

request ; arrange = arrange; request ; arrange , (7.10)
serve; arrange = arrange; serve; arrange . (7.11)

By proposition 4.11 it is sufficient to prove the corresponding properties
for all of the programs, reqLift , reqFloor , move, bang , stop, depart , and
the test | card.req + card.out + card.moving | . Equations 7.10 and 7.11 fol-
low. The test and arrange are non-interfering because PP is a permutation.
Programs reqLift and arrange have no variables in common. So they are
non-interfering. The truth of reqFloor ; arrange = arrange; reqFloor ; arrange
relies on the fact that predicate fix orders lifts xx and yy up to equality,
equal .(xx , yy), in which case xx and yy are indistinguishable. The same
argument applies to programs move, bang , stop, and depart .

7.5.2 The Reduced Lift System

We combine the two fusions from section 7.5.1 into a single fusion.

reduce =̂ faceUp; arrange;

The two fusions faceUp and arrange are non-interfering. Thus, by proposi-
tion 4.10, program reduce is a fusion of PER LIFT .

Note that the two fusions faceUp and arrange contain some information
about the optimal implementation. From fusion faceUp we see that direc-
tional information on stationary lifts is irrelevant. Fusion arrange implies
that the identity of a lift is irrelevant. Only their location is important.

The reduced lift system RED LIFT is derived from system PER LIFT .
Most of system PER LIFT is adopted unchanged:

system RED LIFT
. . .

programs

. . .

reduce = faceUp; arrange
actions

request = PER LIFT .request ; reduce
serve = PER LIFT .serve; reduce

end

CHAPTER 7. CASE STUDY: LIFT SYSTEM 119

system FLOORS states transitions
PER LIFT 2 368 1016
RED LIFT 2 144 368
PER LIFT 3 12800 54656
RED LIFT 3 4728 20064
RED LIFT 4 99200 516352

Table 7.2: Sizes of systems PER LIFT and RED LIFT

We can use the initialisation of PER LIFT unchanged because

PER LIFT .initialisation; reduce = PER LIFT .initialisation .

7.6 Evaluation and Discussion

We have analysed systems PER LIFT and RED LIFT with LIFTS = 2
and varying values of FLOORS (see table 7.2). The optimal solution of the
system with four floors produced by the software tool is a table similar to the
one in section 6.4. However, it has 57633 rows. We have written a small tool
that stores this table in the database so that it can be queried conveniently.
Still it is extremely difficult to gain insight into the optimal solution. Using
the table directly seems impractical for larger systems. Instead, for systems
of this size we would prefer another tool component that would produce a
more compact representation. In the ideal case this would be a syntactical
probabilistic action system.

The state space of system RED LIFT is about two fifth of the size of
the state space of system PER LIFT . The number of transitions is re-
duced by a similar amount. We have not been able to determine the size
of system PER LIFT with four floors. The expansion of the corresponding
RED LIFT takes about 24 hours on a 500MHz computer with 256MB of
RAM.

The relationship between systems PER LIFT and RED LIFT is not a
refinement. We have used the time scale transformation to relate the inner
structure of the two systems. As a result we are able to interchange them in
the performance analysis. The transformation extends the refinement notion
of probabilistic action systems by incorporating properties of the employed
optimality criterion. It is invariant with respect to the optimal value though.

In this chapter we have refined what was external nondeterminism in the
machine SYS LIFT . This corresponds to the view that we have determined
a controller that uses machine SYS LIFT to control the operation of a lift
system. We have not dealt with machines that are internally nondeterminis-
tic. This issue is left for further investigation. Using the approach of section

CHAPTER 7. CASE STUDY: LIFT SYSTEM 120

7.2 one would have to map some nondeterminism to probabilistic and some
to nondeterministic choice.

Conclusion

We have introduced the formalism of probabilistic action systems. Their
behaviour is described by traces of expected costs a system may incur during
operation. Neither state nor actions are visible. This corresponds to the view
that a complete system is modelled with no further possible synchronisation.
We have also presented a notion of cost refinement together with simulation-
based proof rules. The proof rules used with probabilistic action systems
are similar to those used with standard action systems. This facilitates
the use of probabilistic action systems for someone familiar with standard
action systems. The same holds for the definition of refinement itself. Cost
refinement resembles trace refinement.

The expected costs specified in probabilistic action systems encode per-
formance objectives. The optimisation criterion on which the performance
measure associated with a system is based is not fixed. This makes it pos-
sible to choose an appropriate criterion in different application contexts.
Refinement is also not linked to a particular optimisation criterion. A re-
finement may lead to a non-optimal implementation. An initial probabilistic
action system specifies a boundary for the best possible performance any re-
finement may achieve. Although one generally aims at finding an optimal
implementation optimality is not necessary for the implementation to be
correct. Performance analysis as used in our approach only assists in the
refinement process.

Using the probabilistic program notation introduced in chapter 3 refine-
ment proofs are mostly done by algebraic reasoning. Calculations involving
probability densities on the semantical level are avoided. The algebraic laws
concerning probabilistic choice (L16) to (L19) are rather restrictive limit-
ing their use to programs that contain little nondeterminism. However, the
same restriction applies to proof rules 4.4 and 4.7 where simulations must
be nondeterministic. We have shown how refinement can be used to justify
standard abstraction techniques used in queueing theory, e.g. replacing sets
or sequences of individuals by counters (see example 4.6). Another impor-
tant use of refinement is state aggregation. Because state spaces tend to
be large, state aggregation is crucial in making efficient tool support avail-
able. We have used state aggregation in the example of section 4.5 and the
case study of chapter 7. Subsequently we used our software tool to analyse

121

CONCLUSION 122

the system’s performance and find an optimal implementation. In the case
study we found that after state aggregation there were still too many states
to comprehend the output presently produced by the tool.

Tool support in the use of probabilistic action systems is essential. Per-
forming the necessary calculations by hand is impractical. The program no-
tation and the behavioural model of probabilistic action systems have been
formulated with the implementation of a software tool in mind. They both
are closely related to Markov decision process used in stochastic dynamic
programming. For dynamic programming to be applicable a system must
be live, i.e. it must never stop. Depending on the dynamic programming
algorithm used to compute an optimal implementation, further restrictions
on probabilistic action systems may be required. E.g. when using value it-
eration we require connectedness. Liveness is checked automatically in an
early phase by our tool. Connectedness can be checked automatically as
well (see section 5.3).

Further Work

The lack of a tool component that translates the table of plays corresponding
into an optimal implementation of a system is a serious shortcoming. As the
state spaces of systems being analysed becomes larger it gets more and more
difficult to comprehend the output produced by the present tool. Ideally,
the output of the new component would be a probabilistic action system.

In the example of section 5.4 it was found that we would need unbounded
counters to express a more appropriate performance objective. This means
the system would have a countably infinite state space. In this work we
have only dealt with finite state spaces. The program notation introduced
in chapter 3 is not restricted to finite state spaces. This restriction is im-
posed when probabilistic action systems are introduced. Simply removing it
the existence of an optimal implementation is not guaranteed anymore. We
think this is not acceptable because a developer using probabilistic action
systems should not have to prove the existence of an optimal implementa-
tion. However there are conditions under which optimal implementations
exist [110]. The extension to infinite state spaces should be carefully crafted
so that the simplicity of the present approach remains intact.

Though powerful enough for all applications encountered in this work
proof rule 4.4 appears rather strong. More powerful rules ought to be in-
vestigated. Similar to the case of standard action systems there should
be forward and backward simulations. Once these have been discovered it
should be attempted to establish a completeness result as well.

Probabilistic action systems are based on a model of discrete time. Each
transition takes one unit of time. One could introduce real-time where tran-
sitions have different durations. Corresponding continuous-time Markov de-

CONCLUSION 123

cision processes and algorithms to solve them have been investigated thor-
oughly [98, 110]. In the continuous-time model transition durations are
distributed exponentially.

Appendix A

Proofs

Proof of law (L3)

We prove law (L3) the claim for probabilistic state relations. The case of
extended probabilistic state relations is proven analogously. Let P ,Q ,R be
probabilistic state relations, τ a state, and f a probabilistic state.

((P ;Q);R).τ.f
⇔ ∃ g : (P ;Q).τ, M : fun.R • car.g ⊆ dom.R ∧ f = g ∗M
⇔ ∃ g : (P ;Q).τ, M : fun.R •

∃ h : P .τ, N : fun.Q •
car.h ⊆ dom.Q ∧ g = h ∗N ∧
car.g ⊆ dom.R ∧ f = g ∗M

⇔ ∃M : fun.R •
∃ h : P .τ, N : fun.Q •

car.h ⊆ dom.Q ∧
car.(h ∗N) ⊆ dom.R ∧ f = (h ∗N) ∗M

⇔ ∃M : fun.R, h : P .τ, N : fun.Q •
car.h ⊆ dom.Q ∧
car.(h ∗N) ⊆ dom.R ∧ f = h ∗ (N ∗M)

⇔ ∃M : fun.R, h : P .τ, N : fun.Q •
car.h ⊆ dom.Q ∧
(∀ τ ′ : car.h • car.(N .τ ′) ⊆ dom.R) ∧
f = h ∗ (N ∗M)

⇔ ∃M : fun.R, h : P .τ, N : fun.Q •
(∀ τ ′ : car.h • τ ′ ∈ dom.Q ∧ car.(N .τ ′) ⊆ dom.R) ∧
f = h ∗ (N ∗M)

⇔ ∃M : fun.R, h : P .τ, N : fun.Q •

124

APPENDIX A. PROOFS 125

(∀ τ ′ : car.h • τ ′ ∈ dom.Q ∧ N .τ ′ ∈ Q .τ ′ ∧ car.(N .τ ′) ⊆ dom.R) ∧
f = h ∗ (N ∗M)

⇔ ∃M : fun.R, h : P .τ, N : fun.Q •
(∀ τ ′ : car.h • τ ′ ∈ dom.(Q ;R)) ∧
f = h ∗ (N ∗M)

⇔ ∃M : fun.R, h : P .τ, N : fun.Q •
car.h ⊆ dom.(Q ;R) ∧
f = h ∗ (N ∗M)

⇔ ∃ h : P .τ • car.h ⊆ dom.(Q ;R) ∧
∃N : fun.Q , M : fun.R •

f = h ∗ (N ∗M)
⇔ ∃ h : P .τ • car.h ⊆ dom.(Q ;R) ∧

∃K • f = h ∗K ∧
∃N : fun.Q , M : fun.R •

K = N ∗M
⇔ ∃ h : P .τ • car.h ⊆ dom.(Q ;R) ∧

∃K • f = h ∗K ∧
∃N •

(∀ τ ′ : dom.(Q ;R) • N .τ ′ ∈ Q .τ ′ ∧ car.(N .τ ′) ⊆ dom.R) ∧
∃M : fun.R •

K = N ∗M
⇔ ∃ h : P .τ • car.h ⊆ dom.(Q ;R) ∧

∃K • f = h ∗K ∧
∃N •
∀ τ ′ : dom.(Q ;R) •

N .τ ′ ∈ Q .τ ′ ∧ car.(N .τ ′) ⊆ dom.R ∧
∃M : fun.R • K .τ ′ = N .τ ′ ∗M

⇔ ∃ h : P .τ • car.h ⊆ dom.(Q ;R) ∧
∃K • f = h ∗K ∧
∀ τ ′ : dom.(Q ;R) •
∃ g : Q .τ ′ • car.g ⊆ dom.R ∧
∃M : fun.R • K .τ ′ = g ∗M

⇔ ∃ h : P .τ • car.h ⊆ dom.(Q ;R) ∧
∃K • f = h ∗K ∧
∀ τ ′ : dom.(Q ;R) •
∃ g : Q .τ ′, M : fun.R • car.g ⊆ dom.R ∧ K .τ ′ = g ∗M

APPENDIX A. PROOFS 126

⇔ ∃ h : P .τ • car.h ⊆ dom.(Q ;R) ∧
∃K • f = h ∗K ∧ (∀ τ ′ : dom.(Q ;R) • K .τ ′ ∈ (Q ;R).τ ′)

⇔ ∃ h : P .τ • car.h ⊆ dom.(Q ;R) ∧
∃K : fun.(Q ;R) • f = h ∗K

⇔ (P ; (Q ;R)).τ.f .

Proof of law (L9)

Let R be a state relation, P ,Q probabilistic state relations, τ a state, and
f a probabilistic state.

(R; (P t Q)).τ.f
⇔ ∃ τ ′ : R.τ, M : fun.(P t Q) • f = χ.τ ′ ∗M
⇔ ∃ τ ′ : R.τ, M : fun.(P t Q) • f = M .τ ′

⇔ ∃ τ ′ : R.τ, g : (P t Q).τ ′ • f = g
⇔ (∃ τ ′ : R.τ, g : P .τ ′ • f = g) ∨ (∃ τ ′ : R.τ, g : Q .τ ′ • f = g)
⇔ (R;P).τ.f ∨ (R;Q).τ.f
⇔ ((R;P) t (R;Q)).τ.f .

Proof of law (L12)

Let P ,Q ,R be probabilistic state relations, τ a state, and f a probabilistic
state.

P ‖ (Q t R).τ.f
⇔ ∃ g : P .τ, h : (Q t R).τ • f = g ‖ h
⇔ ∃ g : P .τ, h : Q .τ • f = g ‖ h ∨ ∃ g : P .τ, h : R.τ • f = g ‖ h
⇔ (P ‖ Q).τ.f) ∨ (P ‖ R).τ.f)
⇔ ((P ‖ Q) t (P ‖ R)).τ.f) .

Proof of law (L16)

Let M be a probabilistic state function, P ,Q probabilistic state relations,
c ∈ (0, 1) a probability, τ a state, and f a probabilistic state.

M ; (P c⊕ Q).τ.f
⇔ ∃ g • g = M .τ ∧

∃N : fun.(P c⊕ Q) • car.g ⊆ car.N ∧ f = g ∗N
⇔ ∃ g • g = M .τ ∧

∃N : fun.P , K : fun.Q •
car.g ⊆ car.(c ∗N + (1− c) ∗K) ∧

APPENDIX A. PROOFS 127

f = g ∗ (c ∗N + (1− c) ∗K)
⇔ ∃ g • g = M .τ ∧

∃N : fun.P , K : fun.Q •
car.g ⊆ car.N ∧ car.g ⊆ car.K ∧
f = c ∗ (g ∗N) + (1− c) ∗ (g ∗K)

⇔ ∃ g • g = M .τ ∧
∃ h, l •

(∃N : fun.P • car.g ⊆ car.N ∧ h = g ∗N) ∧
(∃K : fun.Q • car.g ⊆ car.K ∧ l = g ∗K) ∧
f = c ∗ h + (1− c) ∗ l

⇔ ∃ h, l •
(∃N : fun.P , g • g = M .τ ∧ car.g ⊆ car.N ∧ h = g ∗N) ∧
(∃K : fun.Q , g • g = M .τ ∧ car.g ⊆ car.K ∧ l = g ∗K) ∧
f = c ∗ h + (1− c) ∗ l

⇔ ∃ h : (M ;P).τ, l : (M ;Q).τ • f = c ∗ h + (1− c) ∗ l
⇔ ((M ;P) c⊕ (M ;Q)).τ.f .

Proof of law (L17)

Let M be a probabilistic state function, P ,Q probabilistic state relations,
p ∈ Γ→ (0, 1) a probabilities, τ a state, and f a probabilistic state.

((P p⊕ Q);M).τ.f
⇔ ∃ g : (P p⊕ Q).τ • car.g ⊆ dom.M ∧ f = g ∗M
⇔ ∃ g : P .τ, h : Q .τ •

car.(p.τ ∗ g + (1− p.τ) ∗ h) ⊆ dom.M ∧
f = (p.τ ∗ g + (1− p.τ) ∗ h) ∗M

⇔ ∃ g : P .τ, h : Q .τ •
car.g ⊆ dom.M ∧ car.h ⊆ dom.M ∧
f = p.τ ∗ (g ∗M) + (1− p.τ) ∗ (h ∗M)

⇔ ∃ l , k •
(∃ g : P .τ • car.g ⊆ dom.M ∧ l = g ∗M) ∧
(∃ h : Q .τ • car.h ⊆ dom.M ∧ k = h ∗M) ∧
f = p.τ ∗ l + (1− p.τ) ∗ k

⇔ ∃ l : (P ;M).τ, k : (Q ;M).τ • f = p.τ ∗ l + (1− p.τ) ∗ k
⇔ ((P ;M) p⊕ (Q ;M)).τ.f

APPENDIX A. PROOFS 128

Proof of law (L18)

Let M be a probabilistic state function, P ,Q probabilistic state relations,
p : Γ→ (0, 1) probabilities, τ a state, and f a probabilistic state.

(M ‖ (P p⊕ Q)).τ.f
⇔ ∃ g : (P p⊕ Q).τ • f = M .τ ‖ g
⇔ ∃ g : P .τ, h : Q .τ • f = M .τ ‖ (p.τ ∗ g + (1− p.τ) ∗ h)
⇔ ∃ g : P .τ, h : Q .τ • f = p.τ ∗ (M .τ ‖ g) + (1− p.τ) ∗ (M .τ ‖ h)
⇔ ∃ g : (M ‖ P).τ, h : (M ‖ Q).τ • f = p.τ ∗ g + (1− p.τ) ∗ h
⇔ ((M ‖ P) p⊕ (M ‖ Q)).τ.f .

Proof of law (L32)

Let P ,Q be probabilistic state relations, x a variable, e an expression of
suitable type, p : Γ → (0, 1) probabilities, τ a state, and f a probabilistic
state.

(x := e; (P p⊕ Q)).τ.f
⇔ (P p⊕ Q).([x := e.τ] τ).f
⇔ ∃ g : P .([x := e.τ] τ), h : Q .([x := e.τ] τ) •

f = p.([x := e.τ] τ) ∗ g + (1− p.([x := e.τ] τ)) ∗ h
⇔ ∃ g : (x := e;P).τ, h : (x := e;Q).τ •

f = ([x := e] p).τ ∗ g + (1− ([x := e] p).τ) ∗ h
⇔ (x := e;P) [x :=e] p⊕ (x := e;Q) .

Proof of law (L38)

Let P ,Q be extended probabilistic state relations, r , s real-valued expres-
sions, p : Γ → (0, 1) probabilities, τ a state, e ∈ R≥0 an expected cost, and
f a probabilistic state.

(| r |;P) p⊕ (| s |;Q).τ.(e, h)
= ∃(c, f) : (| r |;P).τ, (d , g) : (| s |;Q).τ •

e = c p.τ⊕ d ∧ h = f p.τ⊕ g
= ∃(c, f) : P .τ, (d , g) : Q .τ •

e = (c + r .τ) p.τ⊕ (d + s.τ) ∧ h = f p.τ⊕ g
= ∃(c, f) : P .τ, (d , g) : Q .τ •

e = (c p.τ⊕ d) + (r .τ p.τ⊕ s.τ) ∧ h = f p.τ⊕ g
= ∃ e ′ • e = (r .τ p.τ⊕ s.τ) + e ′ ∧

∃(c, f) : P .τ, (d , g) : Q .τ • e ′ = (c p.τ⊕ d) ∧ h = f p.τ⊕ g

APPENDIX A. PROOFS 129

= ∃ e ′ • e = (r .τ p.τ⊕ s.τ) + e ′ ∧ (P p⊕ Q).τ.(e ′, h)
= (| r p⊕ s |; (P p⊕ Q)).τ.(e, h) .

Proof of proposition 4.3

Let A = (Γ, I ,P) be a probabilistic action system. We prove first by induc-
tion on n ∈ N:

f ∈ I ; (⇓P)n ⇔ (∃ t : seq[n](R≥0) • path.A.t .f) . (A.1)

n = 0: f ∈ I ⇔ path.A.〈 〉.f .
n > 0:

f ∈ I ; (⇓P)n

⇔ f ∈ I ; (⇓P)n−1; (⇓P)
⇔ ∃ g , M • g ∈ I ; (⇓P)n−1 ∧ M ∈ fun.(⇓P) ∧ f = g ∗M
⇔ ∃ t : seq[n − 1](R≥0), g , M •

path.A.t .g ∧ M ∈ fun.(⇓P) ∧ f = g ∗M
⇔ ∃ t : seq[n − 1](R≥0), g , C , M •

path.A.t .g ∧ (C ,M) ∈ fun.P ∧ f = g ∗M
⇔ ∃ t : seq[n − 1](R≥0), g , c • path.A.t .g ∧ (c, f) ∈ g ∗ P
⇔ ∃ t : seq[n − 1](R≥0), c • path.A.t_〈c〉.f
⇔ ∃ t : seq[n](R≥0) • path.A.t .f .

Next we prove the claim live.A⇔ reach.A ⊆ dom.P of the proposition:

live.A

⇔ im.A = ∅
⇔ ¬ ∃ t • im.A.t
⇔ ¬ ∃ t , f • path.A.t .f ∧ f ∗ P = ∅
⇔ ¬ ∃n, f • f ∈ I ; (⇓P)n ∧ f ∗ P = ∅
⇔ ∀ f • (∃n • f ∈ I ; (⇓P)n)⇒ car.f ⊆ dom.P
⇔ reach.A ⊆ dom.P .

Proof of theorem 4.4

Let A = (ΓA, I ,P) and C = (ΓC , J ,Q) be probabilistic action systems,
and let M ∈ D(ΓA,ΓC) be a probabilistic state function satisfying (PS1) to
(PS3). Lemma A.1 establishes the simulation relationship for traces:

Lemma A.1 For all t ∈ seq(R≥0) and f ∈ DΓC :

path.C.t .f ⇒ (∃ g : DΓA • path.A.t .g ∧ f = g ∗M) .

APPENDIX A. PROOFS 130

To prove theorem 4.4 we have to show A v B, i.e. the inclusion of the
traces and the impasses.

Trace inclusion. Let t be a trace.

tr.C.t
⇔ ∃ f : DΓC • path.C.t .f
⇒ ∃ f : DΓC , g : DΓA • path.A.t .g ∧ f = g ∗M
⇔ ∃ g : DΓA • path.A.t .g ∧ (∃ f : DΓC • f = g ∗M)
⇒ tr.A.t .

Impasse inclusion. Let t be a trace.

im.C.t
⇔ ∃ f : DΓC • path.C.t .f ∧ f ∗Q = ∅
⇒ ∃ f : DΓC , g : DΓA • path.A.t .g ∧ f = g ∗M ∧ f ∗Q = ∅
⇒ ∃ g : DΓA • path.A.t .g ∧ (g ∗M) ∗Q = ∅
⇔ ∃ g : DΓA • path.A.t .g ∧ g ∗ (M ;Q) = ∅
⇒ ∃ g : DΓA • path.A.t .g ∧ g ∗ P = ∅ (PS2)
⇔ im.A.t .

Proof of lemma A.1

Let t ∈ seq(R≥0) and f ∈ DΓC . The proof is by induction on the length of
trace t .

path.C.〈 〉.f
⇔ f ∈ J
⇒ f ∈ I ;M (PS1)
⇔ ∃ g : DΓA • g ∈ I ∧ f = g ∗M
⇔ ∃ g : DΓA • path.A.〈 〉.g ∧ f = g ∗M .

Let t = s_〈c〉:

path.C.t .f
⇔ ∃ h : DΓC • path.C.s.h ∧ (c, f) ∈ h ∗Q
⇒ ∃ h : DΓC , g : DΓA • path.A.s.g ∧ h = g ∗M ∧ (c, f) ∈ h ∗Q
⇔ ∃ g : DΓA • path.A.s.g ∧ (c, f) ∈ (g ∗M) ∗Q
⇔ ∃ g : DΓA • path.A.s.g ∧ (c, f) ∈ g ∗ (M ;Q)
⇒ ∃ g : DΓA • path.A.s.g ∧ (c, f) ∈ g ∗ (P ;M) (PS3)
⇔ ∃ g : DΓA, h : DΓA • path.A.s.g ∧ (c, h) ∈ g ∗ P ∧ f = h ∗M
⇔ ∃ h : DΓA • path.A.t .h ∧ f = h ∗M .

APPENDIX A. PROOFS 131

Proof of theorem 4.7

Let A = (ΓA, I ,P) and C = (ΓC , J ,Q) be probabilistic action systems, and
M ∈ M(ΓA,ΓC) a probabilistic state function satisfying (EQ1) and (EQ2).
We need the following lemma:

Lemma A.2 For all t ∈ seq(R≥0) and f ∈ DΓC :

path.C.t .f ⇔ (∃ g : DΓA • path.A.t .g ∧ f = g ∗M) .

Using lemma A.2 we prove trace and impasse identity of the two systems.
Trace identity. Let t be a trace.

tr.C.t
⇔ ∃ f : DΓC • path.C.t .f
⇔ ∃ f : DΓC , g : DΓA • path.A.t .g ∧ f = g ∗M
⇔ ∃ g : DΓA • path.A.t .g ∧ (∃ f : DΓC • f = g ∗M)
⇔ tr.A.t ,

where we have used that dom.M = ΓA in the last step.
Impasse identity. Let t be a trace. Again we rely on M being a total

function:

im.C.t
⇔ ∃ f : DΓC • path.C.t .f ∧ f ∗Q = ∅
⇔ ∃ f : DΓC , g : DΓA • path.A.t .g ∧ f = g ∗M ∧ f ∗Q = ∅
⇔ ∃ g : DΓA • path.A.t .g ∧ (g ∗M) ∗Q = ∅
⇔ ∃ g : DΓA • path.A.t .g ∧ g ∗ (M ;Q) = ∅
⇔ ∃ g : DΓA • path.A.t .g ∧ g ∗ (P ;M) = ∅ (EQ2)
⇔ ∃ g : DΓA • path.A.t .g ∧ g ∗ P = ∅
⇔ im.A.t .

Proof of lemma A.2

Let t ∈ seq(R≥0) and f ∈ DΓC . The proof is by induction on the length of
trace t :

path.C.〈 〉.f
⇔ f ∈ J
⇔ f ∈ I ;M (EQ1)
⇔ ∃ g : DΓA • g ∈ I ∧ f = g ∗M
⇔ ∃ g : DΓA • path.A.〈 〉.g ∧ f = g ∗M .

APPENDIX A. PROOFS 132

Let t = s_〈c〉:

path.C.t .f
⇔ ∃ h : DΓC • path.C.s.h ∧ (c, f) ∈ h ∗Q
⇔ ∃ h : DΓC , g : DΓA • path.A.s.g ∧ h = g ∗M ∧ (c, f) ∈ h ∗Q
⇔ ∃ g : DΓA • path.A.s.g ∧ (c, f) ∈ (g ∗M) ∗Q
⇔ ∃ g : DΓA • path.A.s.g ∧ (c, f) ∈ g ∗ (M ;Q)
⇔ ∃ g : DΓA • path.A.s.g ∧ (c, f) ∈ g ∗ (P ;M) (EQ2)
⇔ ∃ g : DΓA, h : DΓA • path.A.s.g ∧ (c, h) ∈ g ∗ P ∧ f = h ∗M
⇔ ∃ h : DΓA • path.A.t .h ∧ f = h ∗M .

Proof of theorem 4.9

Let A = (ΓA, I ,P) be a probabilistic action system, and let φ ∈ F(Γ) be
idempotent satisfying (FUS). Let C = (ΓA, I ;φ,P ;φ) and use theorem 4.7
with M = ⇑φ:

I ;φ = I ;φ ,
φ;P ;φ = P ;φ .

Proof of proposition 4.10

Let A = (Γ, I ,P) be a probabilistic action system, and let φ1, φ2 ∈ F(Γ) be
fusions of A. Assume φ1;φ2 = φ2;φ1 holds, then φ1;φ2 is idempotent:

(φ1;φ2); (φ1;φ2)
= φ1; (φ2;φ1);φ2

= φ1; (φ1;φ2);φ2

= (φ1;φ1); (φ2;φ2)
= φ1;φ2 .

And it satisfies (FUS):

P ; (φ1;φ2)
= (P ;φ1);φ2

= (φ1;P ;φ1);φ2

= (φ1;P); (φ2;φ1)
= φ1; (φ2;P ;φ2);φ1

= (φ1;φ2);P ; (φ1;φ2) .

APPENDIX A. PROOFS 133

Proof of proposition 4.11

Let P , φ ∈ E(Γ), P = P1;P2. Assume P1;φ = φ;P1;φ and P2;φ = φ;P2;φ,
then:

P ;φ
= (P1;P2);φ
= P1; (φ;P2;φ)
= (φ;P1;φ;)P2;φ
= φ;P1; (P2;φ)
= φ;P ;φ .

Proof of proposition 5.1

Let A = (Γ, I ,P) be a live probabilistic action system, t : seqR≥0 a trace,
and g : DΓ a probabilistic state. The proof is by induction on the length of
trace t . For t = 〈 〉:

path.A.〈 〉.g
⇔ g ∈ I
⇔ ∃ f : I • g = f ∗ (Π.〈 〉) .

For t = s_〈c〉:
path.A.t .g
⇔ ∃ f • path.A.t .f ∧ (c, g) ∈ f ∗ P
⇔ ∃ f • (c, g) ∈ f ∗ P ∧

∃ h : I , (κ,Φ) : po.(proc.A).(size.t) •
f = h ∗Π.Φ ∧
∀ j : dom.t • t .j = h ∗Π.(Φ ↑ j − 1) ∗ κ.j

⇔ ∃ f • (∃(C ,M) : fun.P • c = f ∗ C ∧ g = f ∗M) ∧
∃ h : I , (κ,Φ) : po.(proc.A).(size.t) •

f = h ∗Π.Φ ∧
∀ j : dom.t • t .j = h ∗Π.(Φ ↑ j − 1) ∗ κ.j

⇔ ∃(C ,M) : fun.P •
∃ f • ∃ h : I , (κ,Φ) : po.(proc.A).(size.t) •

g = f ∗M ∧ f = h ∗Π.Φ ∧
c = f ∗ C ∧ (∀ j : dom.t • t .j = h ∗Π.(Φ ↑ j − 1) ∗ κ.j)

⇔ ∃(C ,M) : fun.P •
∃ h : I , (κ,Φ) : po.(proc.A).(size.t) •

g = (h ∗Π.Φ) ∗M ∧

APPENDIX A. PROOFS 134

c = (h ∗Π.Φ) ∗ C ∧
(∀ j : dom.t • t .j = h ∗Π.(Φ ↑ j − 1) ∗ κ.j)

⇔ ∃(C ,M) : fun.P •
∃ h : I , (κ,Φ) : po.(proc.A).(size.t) •

g = h ∗ (Π.(Φ_〈M 〉)) ∧
(∀ j : dom.s • s.j = h ∗Π.(Φ ↑ j − 1) ∗ (κ_〈C 〉).j)

⇔ ∃ h : I , (κ,Φ) : po.(proc.A).(size.s) •
g = h ∗ (Π.Φ) ∧
(∀ j : dom.s • s.j = h ∗Π.(Φ ↑ j − 1) ∗ κ.j) .

Proof of theorem 5.3

Let A = (Γ, I ,P) be live, and v ∈ seq∞R≥0 an infinite trace. First we show

itr.A.v ⇒ ∃ f : I , (κ,Φ) : ipo.(proc.A) • itrace.f .(κ,Φ).v . (A.2)

We remark that there exists an infinite policy of process proc.A because A
is live.

Let v ∈ itr.A and t be a prefix of v . Then, by corollary 5.2, there is an
initial probabilistic state ft and a finite policy (κt ,Φt), such that

trace.ft .(κt ,Φt).t

Let f ∈ {g | (∃∞ t ≤ v • ft = g)}. We write ∃∞ for ‘there are infinitely
many’. Now there is an infinite policy (κ,Φ) such that

(κ.k ,Φ.k) ∈ {(C ,M) | (∃∞ t ≤ v • (C ,M) = (κt .k ,Φt .k) ∧
trace.f .((κ ↑ k − 1)_〈C 〉, (Φ ↑ k − 1)_〈M 〉).t}) .

This policy exists because there are only finitely many (C ,M) in fun.P
but infinitely many finite policies (κt ,Φt), i.e. one for each trace t . Once
(κ.k ,Φ.k) is set, we know that the entire sequence till k occurs infinitely
often, so it has infinitely many successors, again chosen from a finite set. At
least one of them must occur infinitely often. Then (κ,Φ) satisfies

∀ j : N1 • v .j = f ∗Π.(Φ ↑ j − 1) ∗ κ.j ,
i.e. claim (A.2) is proven.

The proof of the other implication remains. Let f ∈ I be an initial
probabilistic state, v ∈ seq∞R≥0, and (κ,Φ) : ipo.(proc.A) an infinite policy
of Markov decision process proc.A. Assume itrace.f .(κ,Φ).v holds. This
immediately implies

trace.f .(κ ↑ (size.t),Φ ↑ (size.t)).t

for all t ≤ v . From corollary 5.2 it follows tr.A.t for all t ≤ v , in other
words, itr.A.v .

APPENDIX A. PROOFS 135

Proof of theorem 5.4

Let A = (Γ, I ,P) be live and v ∈ itr.A. By theorem 5.3 there is an infinite
policy (κ,Φ) (and vice versa) such that

lim sup
n→∞

1
n

n∑

m=1

v .m

= lim sup
n→∞

1
n

n∑

m=1

f ∗Π.(Φ ↑ m − 1) ∗ κ.m

= lim sup
n→∞

1
n
∗ f ∗

n∑

m=1

Π.(Φ ↑ m − 1) ∗ κ.m

= lim sup
n→∞

f ∗ 1
n

n∑

m=1

Π.(Φ ↑ m − 1) ∗ κ.m

= f ∗ lim sup
n→∞

1
n

n∑

m=1

Π.(Φ ↑ m − 1) ∗ κ.m ,

where the last equation uses that f has finite carrier. Taking the infimum
on both sides we get:

inf
v∈itr.A

lim sup
n→∞

1
n

n∑

m=1

v .m

= inf
f ∈I ,

(κ,Φ)∈ipo.(proc.A)

f ∗ lim sup
n→∞

1
n

n∑

m=1

Π.(Φ ↑ m − 1) ∗ κ.m

= inf
f ∈I

inf
(κ,Φ)∈ipo.(proc.A)

f ∗ avg.(κ,Φ)

= inf
f ∈I

f ∗ inf
(κ,Φ)∈ipo.(proc.A)

avg.(κ,Φ)

= inf
f ∈I

f ∗ opt.(proc.A)

= min
f ∈I

f ∗ opt.(proc.A) .

Proof of example 5.7

We prove (EQ1) and (EQ2) of theorem 4.7 to establish the equivalence. The
program

sim = x := true 1
2
⊕ x := false

is a suitable probabilistic simulation.

(EQ1) We show the equivalent claim sim; sim = sim:

sim; sim
= (sim; x := true) 1

2
⊕ (sim; x := false) (L16)

= sim . (L17,L26,L14)

APPENDIX A. PROOFS 136

(EQ2) We have to prove that sim;A.cycle = B .cycle; sim holds for the
actions of the two systems:

sim;A.cycle
= x := true;A.cycle 1

2
⊕ x := false;A.cycle (L17)

= | 2.0 |; x := false 1
2
⊕ x := true (C1,C2)

= | 2.0 |; x := false 1
2
⊕ | 0.0 |; x := true (L36)

= | 1
2 ∗ 2.0 + 1

2 ∗ 0.0 |; (x := false 1
2
⊕ x := true) (L38)

= B .cycle; sim

x := true;A.cycle (C1)
= (x := true; | x |; | 2.0 | t x := true; | ¬ x |); x := ¬ x (L9)
= (| true |; x := true; | 2.0 | t | false |; x := true); x := ¬ x (L28)
= (| true |; | 2.0 | t | false |); x := true; x := ¬ x (L29,L11)
= (| 2.0 | t | false |); x := false (L1,L26)
= | 2.0 |; x := false (L8)

x := false;A.cycle (C2)
= (x := false; | x |; | 2.0 | t x := false; | ¬ x |); x := ¬ x (L9)
= (| false |; x := false; | 2.0 | t | true |; x := false); x := ¬ x (L28)
= (| false |; x := false t | true |; x := false); x := ¬ x (L29,L2)
= (| false | t | true |); x := false; x := ¬ x (L11)
= | true |; x := true (L8,L26)
= x := true (L34)

Proof of lemma 6.4

Let Γ be state space, p ∈ (0, 1) a probability, c ∈ R≥0 a cost, τ ∈ Γ a state,
and P ∈ E(Γ) a program. We have to show that:

squash (exec τ τ p c P 〈 〉) = p ∗ (| c |;P).τ . (A.3)

Let ε(P) be a context of program P consisting of parallel and sequential
compositions, such that

exec τ τ ′ p c ε(P) 〈 〉 = exec τ τ ′ p c P ρ

for some radical stack ρ induced by ε. Note that, if P contains no choice,
then neither does ε(P). Furthermore, the structure of program ε(P) is such

APPENDIX A. PROOFS 137

that P is executed first and afterwards the contents of ε. We prove that for
a program P :

squash (exec ([ψ] τ) ([φ] [ψ] τ) p c P ([[φ]] [[ψ]] ρ) (A.4)
= p ∗ (| c |; ε(ψ; (φ ‖ P))).τ .

The two functions φ and ψ depend on τ , meaning, they are constant func-
tions that are chosen appropriately. We use substitution notation [φ] τ with
φ to denote the corresponding modification φ.τ of state τ . Function φ is
used to “merge” execution branches of parallel compositions. The other
function ψ represents an assignment that precedes P (and φ). Note that, by
definition, the stack [[φ]] ρ might still refer to the initial state τ . The proof
of (A.4) is by induction on the structure of ε(P). Let program basic be one
of skip, | q |, | r |, z := e. We first prove:

squash (exec ([ψ] τ) ([φ] [ψ] τ) p c basic 〈 〉) (A.5)
= p ∗ (| c |; (ψ; (φ ‖ basic))).τ .

There are four cases to prove. We begin with program skip:

squash (exec ([ψ] τ) ([φ] [ψ] τ) p c skip 〈 〉)
= squash (exec ([ψ] τ) ([φ] [ψ] τ) p c Λ 〈 〉)
= squash (([φ] [ψ] τ) @ p : c)
= p ∗ {c, ([φ] [ψ] τ) @ 1}
= p ∗ (| c |; (ψ; (φ ‖ skip))).τ

The proof for the guard statement is similar:

squash (exec ([ψ] τ) ([φ] [ψ] τ) p c | q | 〈 〉)
= squash (if q .([ψ] τ) then exec τ ([φ] [ψ] τ) p c Λ 〈 〉 else null)

=

{
p ∗ {c, ([φ] [ψ] τ) @ 1} if q .([ψ] τ)
p ∗ ∅ if ¬ q .([ψ] τ)

= p ∗ (| c |; | q .([ψ] τ) |; (ψ;φ)).τ
= p ∗ (| c |; (ψ; (φ ‖ | q .τ |))).τ
= p ∗ (| c |; (ψ; (φ ‖ | q |))).τ

In the case of the cost statement we have:

squash (exec ([ψ] τ) ([φ] [ψ] τ) p c | r | 〈 〉)
= squash (exec ([ψ] τ) ([φ] [ψ] τ) p (c + r .([ψ] τ)) Λ 〈 〉)
= squash (([φ] [ψ] τ) @ p : c + r .([ψ] τ))
= p ∗ {c + r .([ψ] τ), ([φ] [ψ] τ) @ 1}
= p ∗ (| c + r .([ψ] τ) |; (ψ;φ)).τ
= p ∗ (| c |; (ψ; (φ ‖ | r .([ψ] τ) |))).τ
= p ∗ (| c |; (ψ; (φ ‖ | r |))).τ

APPENDIX A. PROOFS 138

In the next case, note that the two substitutions [x := e.([ψ] τ)] and [φ]
change different variables. In other words we assume that the parallel com-
ponent φ does not alter variable x , i.e. x .τ = x .([φ] τ). However, ψ may
alter variable x . So the order in which [x := e.([ψ] τ)] and [ψ] are applied is
important.

squash (exec ([ψ] τ) ([φ] [ψ] τ) p c (x := e) 〈 〉)
= squash (exec ([ψ] τ) ([x := e.([ψ] τ)] [φ] [ψ] τ) p c Λ 〈 〉)
= squash (([φ] [x := e.([ψ] τ)] [ψ] τ) @ p : c)
= p ∗ {c, ([φ] [x := e.([ψ] τ)] [ψ] τ) @ 1}
= p ∗ (| c |;ψ; x := e.([ψ] τ);φ).τ
= p ∗ (| c |; (ψ; (φ ‖ x := e))).τ

This proves claim (A.5).
In the next step we prove (A.5) for an enlarged program ε′(Q) where

either ε′(Q) = (Q ;P) or ε′(Q) = (Q ‖ P), and program P being a choice-
free program:

squash (exec ([ψ] τ) ([φ] [ψ] τ) p c (ε′(basic)) ([[φ]] [[ψ]] ρ)) (A.6)
= p ∗ (| c |; ε(ψ; (φ ‖ ε′(basic)))).τ .

By (A.5) this holds for the empty context of a basic program. Assume it
holds for ε(P). We do not consider skip anymore because it is subsumed by
the guard construct:

squash (exec ([ψ] τ) ([φ] [ψ] τ) p c (| q |;P) ([[φ]] [[ψ]] ρ))
= squash (exec ([ψ] τ) ([φ] [ψ] τ) p c | q | ((([ψ] τ);P)→ ([[φ]] [[ψ]] ρ)))
= squash (if q .([ψ] τ)

then exec ([ψ] τ) ([φ] [ψ] τ) p c Λ ((([ψ] τ);P)→ ([[φ]] [[ψ]] ρ))
else null)

= squash (if q .([ψ] τ)
then exec ([ψ] τ) ([φ] [ψ] τ) p c P ([[φ]] [[ψ]] ρ)
else null)

=

{
p ∗ (| c |; ε(ψ; (φ ‖ P))).τ if q .([ψ] τ)
p ∗ ∅ if ¬ q .([ψ] τ)

= p ∗ (| [ψ] q |; | c |; ε(ψ; (φ ‖ P))).τ
= p ∗ (| c |; ε(ψ; (φ ‖ (| q |;P)))).τ

In the last equation we used the fact that ε(P) is choice-free. Similarly to
the guard statement we prove for the cost statement:

squash (exec ([ψ] τ) ([φ] [ψ] τ) p c (| r |;P) ([[φ]] [[ψ]] ρ))

APPENDIX A. PROOFS 139

= squash (exec ([ψ] τ) ([φ] [ψ] τ) p c | r | ((([ψ] τ);P)→ ([[φ]] [[ψ]] ρ)))
= squash (exec ([ψ] τ) ([φ] [ψ] τ) p (c + r .([ψ] τ)) Λ

((([ψ] τ);P)→ ([[φ]] [[ψ]] ρ)))
= squash (exec ([ψ] τ) ([φ] [ψ] τ) p (c + r .([ψ] τ))P ([[φ]] [[ψ]] ρ))
= p ∗ (| c + r .([ψ] τ) |; ε(ψ; (φ ‖ P))).τ
= p ∗ (| c |; | [ψ] r |; ε(ψ; (φ ‖ P))).τ
= p ∗ (| c |; ε(ψ; (φ ‖ (| r |;P)))).τ

In the next case we use that in ε(x := e;P) the assignment x := e is executed
first, and also that ε(P) is choice-free:

squash (exec ([ψ] τ) ([φ] [ψ] τ) p c (x := e;P) ([[φ]] [[ψ]] ρ))
= squash (exec ([ψ] τ) ([φ] [ψ] τ) p c (x := e)

((([ψ] τ);P)→ ([[φ]] [[ψ]] ρ)))
= squash (exec ([ψ] τ) ([x := e.([ψ] τ)] [φ] [ψ] τ) p c Λ

([[x := e.([ψ] τ)]] ((([ψ] τ ;P)→ ([[φ]] [[ψ]] ρ)))))
= squash (exec ([x := e.([ψ] τ)] [ψ] τ) ([φ] [x := e.([ψ] τ)] [ψ] τ) p c P

([[φ]] [[x := e.([ψ] τ)]] [[ψ]] ρ))
= p ∗ (| c |; ε(ψ; x := ([ψ] e); (φ ‖ P))).τ
= p ∗ (| c |; ε(ψ; (φ ‖ (x := e;P)))).τ

Next we deal with a context that is enlarged by parallel composition. We
only consider the cost and the assignment statement. The case of the guard
statement is proven similarly to the cost statement. We begin with the cost
statement:

squash (exec ([ψ] τ) ([φ] [ψ] τ) p c (| r | ‖ P) ([[φ]] [[ψ]] ρ))
= squash (exec ([ψ] τ) ([φ] [ψ] τ) p c | r | ((([ψ] τ) ‖ P)→ ([[φ]] [[ψ]] ρ)))
= squash (exec ([ψ] τ) ([φ] [ψ] τ) p (c + r .([ψ] τ)) Λ

((([ψ] τ) ‖ P)→ ([[φ]] [[ψ]] ρ)))
= squash (exec ([ψ] τ) ([φ] [ψ] τ) p (c + r .([ψ] τ))P ([[φ]] [[ψ]] ρ))
= p ∗ (| c + r .([ψ] τ) |; ε(ψ; (φ ‖ P))).τ
= p ∗ (| c |; | [ψ] r |; ε(ψ; (φ ‖ P))).τ
= p ∗ (| c |; ε(ψ; (φ ‖ | r | ‖ P))).τ

Next is the assignment statement:

squash (exec ([ψ] τ) ([φ] [ψ] τ) p c (x := e ‖ P) ([[φ]] [[ψ]] ρ))
= squash (exec ([ψ] τ) ([φ] [ψ] τ) p c (x := e)

((([ψ] τ) ‖ P)→ ([[φ]] [[ψ]] ρ)))

APPENDIX A. PROOFS 140

= squash (exec ([ψ] τ) ([x := e.([ψ] τ)] [φ] [ψ] τ) p c Λ
((([ψ] τ) ‖ P)→ ([[x := e.([ψ] τ)]] [[φ]] [[ψ]] ρ)))

= squash (exec ([ψ] τ) ([x := e.([ψ] τ)] [φ] [ψ] τ) p c P
([[x := e.([ψ] τ)]] [[φ]] [[ψ]] ρ))

= p ∗ (| c |; ε(ψ; (φ ‖ x := ([ψ] e) ‖ P)).τ
= p ∗ (| c |; ε(ψ; (φ ‖ x := e ‖ P)).τ

Assume now that (A.4) holds for a general context ε containing choices,
and programs P and Q . Then it holds also for P t Q and P a⊕ Q . We
treat nondeterministic choice first:

squash (exec ([ψ] τ) ([φ] [ψ] τ) p c (P t Q) ([[φ]] [[ψ]] ρ))
= squash (

if exec ([ψ] τ) ([φ] [ψ] τ) p c P ([[φ]] [[ψ]] ρ) = null

and exec ([ψ] τ) ([φ] [ψ] τ) p c Q ([[φ]] [[ψ]] ρ) = null

then null

else (exec ([ψ] τ) ([φ] [ψ] τ) p c P ([[φ]] [[ψ]] ρ))
¤
(exec ([ψ] τ) ([φ] [ψ] τ) p c Q ([[φ]] [[ψ]] ρ)))

= squash (exec ([ψ] τ) ([φ] [ψ] τ) p c P ([[φ]] [[ψ]] ρ))∪
squash (exec ([ψ] τ) ([φ] [ψ] τ) p c Q ([[φ]] [[ψ]] ρ))

= (p ∗ (| c |; ε(ψ; (φ ‖ P)).τ) ∪ (p ∗ (| c |; ε(ψ; (φ ‖ Q)).τ)
= p ∗ ((| c |; ε(ψ; (φ ‖ P)).τ) ∪ (| c |; ε(ψ; (φ ‖ Q)).τ))
= p ∗ ((| c |; ε(ψ; (φ ‖ P))) t (| c |; ε(ψ; (φ ‖ Q))).τ)
= p ∗ (| c |; ε(ψ; (φ ‖ (P t Q))))

In the last equation we have used law (L9) with R = | c |, laws (L11) and
(L13) for ε, again law (L9) but with R = ψ, and law (L13) with P = φ.

Next we regard probabilistic choice:

squash (exec ([ψ] τ) ([φ] [ψ] τ) p c (P a⊕ Q) ([[φ]] [[ψ]] ρ))
= squash (

if exec ([ψ] τ) ([φ] [ψ] τ) (p ∗ a.([ψ] τ)) c P ([[φ]] [[ψ]] ρ) = null

or exec ([ψ] τ) ([φ] [ψ] τ) (p ∗ (1− a.([ψ] τ))) c Q ([[φ]] [[ψ]] ρ) = null

then null

else (exec ([ψ] τ) ([φ] [ψ] τ) (p ∗ a.([ψ] τ)) c P ([[φ]] [[ψ]] ρ))
⊕
(exec ([ψ] τ) ([φ] [ψ] τ) (p ∗ (1− a.([ψ] τ))) c Q ([[φ]] [[ψ]] ρ)))

= squash (exec ([ψ] τ) ([φ] [ψ] τ) (p ∗ a.([ψ] τ)) c P ([[φ]] [[ψ]] ρ)) +

APPENDIX A. PROOFS 141

squash (exec ([ψ] τ) ([φ] [ψ] τ) (p ∗ (1− a.([ψ] τ))) c Q ([[φ]] [[ψ]] ρ))
= ((p ∗ a.([ψ] τ)) ∗ (| c |; ε(ψ; (φ ‖ P)).τ)+

((p ∗ (1− a.([ψ] τ))) ∗ (| c |; ε(ψ; (φ ‖ Q)).τ)
= p ∗ ((| c |; ε(ψ; (φ ‖ P))) a.([ψ] τ)⊕ (| c |; ε(ψ; (φ ‖ Q)))).τ

= p ∗ (| c |; ε(ψ; (φ ‖ (P a.([ψ] τ)⊕ Q)))).τ

= p ∗ (| c |; ε(ψ; (φ ‖ (P a⊕ Q)))).τ

In the last but one equation we have used law (L38), laws (L17) and (L19)
with ε, law (L16) with P = ψ, and law (L18) with P = φ.

Claim (A.3) follows from (A.4) with ρ = 〈 〉, φ = id, and ψ = id.

Proof of proposition 7.1

Let pi ∈ (0, 1) for all i ∈ I , and all Mi ∈ M(Γ) non-interfering. We prove
the claim by induction on the size of I .

‖| i : ∅ • (pi ? Mi)
= skip

=
⊕

J : P∅ | (∏ i : J • pi) ∗ (
∏

i : ∅ \ J • 1− pi) • skip

=
⊕

J : P∅ | (∏ i : J • pi) ∗ (
∏

i : ∅ \ J • 1− pi) • (‖| j : J • Mj) .

And for card.I > 0, where I = K ∪ {k}, k 6∈ K :

‖| i : I • (pi ? Mi)
= (‖| i : K • Mi); (pk ? Mk)
=

⊕
J : PK | (∏ i : J • pi) ∗ (

∏
i : K \ J • 1− pi) •

(‖| j : J • Mj);
(pk ? Mk)

=
⊕

J : PK | (∏ i : J • pi) ∗ (
∏

i : K \ J • 1− pi) •
(‖| j : J • Mj);

(Mk pk
⊕ skip)

=
⊕

J : PK | (∏ i : J • pi) ∗ (
∏

i : K \ J • 1− pi) •
(‖| j : J • Mj);Mk

pk
⊕

⊕
J : PK | (∏ i : J • pi) ∗ (

∏
i : K \ J • 1− pi) •

(‖| j : J • Mj); skip
=

⊕
J : PK | (∏ i : J • pi) ∗ (

∏
i : K \ J • 1− pi) •

(‖| j : J ∪ {k} • Mj)

pk
⊕

⊕
J : PK | (∏ i : J • pi) ∗ (

∏
i : K \ J • 1− pi) •

(‖| j : J • Mj)

APPENDIX A. PROOFS 142

Let τ ∈ Γ, f ∈ DΓ, and for J ⊆ I let fJ ∈ DΓ such that

{fJ} = (‖| j : J • Mj).τ .

Thus

‖| i : I • (pi ? Mi).τ.f
⇔ f = pk ∗

∑
J⊆K (

∏
i : J • pi) ∗ (

∏
i : K \ J • 1− pi) ∗ fJ∪{k}+

(1− pk) ∗
∑

J⊆K (
∏

i : J • pi) ∗ (
∏

i : K \ J • 1− pi) ∗ fJ
⇔ f =

∑
J⊆K (

∏
i : J ∪ {k} • pi)∗

(
∏

i : I \ (J ∪ {k}) • 1− pi) ∗ fJ∪{k}+
∑

J⊆K (
∏

i : J • pi) ∗ (
∏

i : I \ J • 1− pi) ∗ fJ
⇔ ∑

J⊆I (
∏

i : J • pi) ∗ (
∏

i : I \ J • 1− pi) ∗ fJ
⇔ (

⊕
J : P I | (∏ i : J • pi) ∗ (

∏
i : I \ J • 1− pi) • (‖| j : J • Mj)).τ.f .

Proof of proposition 7.2

Let I be a finite set and all Ri ∈ R(Γ) be non-interfering. The proof of the
claim is by induction on the size of I .

‖| i : ∅ • (skip t Ri)
= skip

=
⊔

J : P∅ • skip

=
⊔

J : P∅ • (‖| j : J • Rj) .

And for card.I > 0, where I = K ∪ {k}, k 6∈ K :

‖| i : I • (skip t Ri)
= (‖| i : K • (skip t Ri)); (skip t Rk)
= (

⊔
J : PK • (‖| j : J • Rj)); (skip t Rk)

= (
⊔

J : PK • (‖| j : J • Rj); skip) t
(
⊔

J : PK • (‖| j : J • Rj);Rk)
= (

⊔
J : PK • (‖| j : J • Rj)) t

(
⊔

J : PK • (‖| j : J ∪ {k} • Rj))
=

⊔
J : PK • (‖| j : J • Rj) .

Proof of proposition 7.3

Let v ∈ itr.A be an infinite trace. For even n = 2m:

lim
m→∞

2
2m

2m∑

i=1

σ.v .i = lim
m→∞

1
m

2m∑

i=1

σ.v .i = lim
m→∞

1
m

m∑

i=1

v .i .

APPENDIX A. PROOFS 143

Now let n = 2m + 1:

lim
m→∞

2
2m + 1

2m+1∑

i=1

σ.v .i

= lim
m→∞

2
2m + 1− (2− 1)

2m+1∑

i=2

σ.v .i

= lim
m→∞

2
2m

2m+2∑

i=3

σ.v .i

= lim
m→∞

1
m

2(m+1)∑

i=3

σ.v .i

= lim
m→∞

1
m

m+1∑

i=2

v .i

= lim
m→∞

1
(m + 1)− (2− 1)

m+1∑

i=2

v .i

= lim
m→∞

1
m + 1

m+1∑

i=1

v .i

= lim
m→∞

1
m

m∑

i=1

v .i ,

where we have used proposition 5.8 two times.

Appendix B

Mathematical Notation

Functions and Relations

r∼ {(y , x) | (x , y) ∈ r} (relational inverse)

r [X] {y | (∃ x • (x , y) ∈ r)} (relational image)

X C r {(x , y) | x ∈ X ∧ (x , y) ∈ r} (domain restriction)

X −C r {(x , y) | x 6∈ X ∧ (x , y) ∈ r} (domain subtraction)

r B Y {(x , y) | y ∈ Y ∧ (x , y) ∈ r} (range restriction)

r −B Y {(x , y) | y 6∈ Y ∧ (x , y) ∈ r} (range subtraction)

r <+ r ′ (dom.r ′ −C r) ∪ r ′ (left overriding)

r ′ +> r r <+ r ′ (right overriding)

λ x : X • (q | e) {x 7→ y | q .x ∧ e.x = y} (lambda abstraction)

λ x : X • e (λ x : X • (true | e)) (lambda abstraction)

Sequences

size.s card.(dom.s) (size)

s ↑ n (1 . . n) C s (retain)

s ↓ n {(m − n) 7→ x | m > n ∧ s.m = x} (remove)

s_t s ∪ {(n + size.s) 7→ x | s.n = x} (concat)

x → s 〈x 〉_s (prepend)

s ← x s_〈x 〉 (append)

s ≤ t (∃n • s = t ↑ n) (prefix)

144

APPENDIX B. MATHEMATICAL NOTATION 145

Arithmetics

In specifications we mix expressions of type R and N when the resulting
number is of type R. Mathematically this makes no difference for division-
free expressions. In real expressions division is always real division. We have
decided to use this convention to make formulas more readable. Otherwise
explicit type casts would be needed (as they are present in the ASCII-based
textual form used with the software tool of chapter 6). We use sum and
product of numbers in the usual mathematical way. However in specification
we stick to the B-notation:
∑

x : X • e
∑

x :X e.x (sum)
∑

x : X • (q | e)
∑

x : {x ′ | x ′ ∈ X ∧ q .x ′} • e.x (selective sum)
∏

x : X • e
∏

x :X e.x (product)
∏

x : X • (q | e)
∏

x : {x ′ | x ′ ∈ X ∧ q .x ′} • e.x (selective product)

Appendix C

ASCII-Representation of
Probabilistic Action Systems

Sets

m . . n (interval)
(x, y) (pair)
x |-> y (pair)
{x : S | P} (set comprehension)
{x : S, y : T | P} (set comprehension)
{x1, x2, . . . , xn} (set enumeration)
{} (empty set)
pow(S) (power set)
pow1(S) (non-empty subsets)
S >< T (product set)
S \/ T (set union)
S /\ T (set intersection)
S \ T (set difference)
x : S (set membership)
x /: S (set non-membership)
x = y (equality)
x /= y (inequality)
S <: T (set inclusion)
S /<: T (set non-inclusion)
S <<: T (strict set inclusion)
S /<<: T (strict set non-inclusion)
card(S) (set cardinality)

146

APPENDIX C. ASCII-REPRESENTATION 147

Predicates

!x1 : S1, x2 : S2, . . . , xn : Sn . P (for all)
#x1 : S1, x2 : S2, . . . , xn : Sn . P (there is)
P or Q (disjunction)
P& Q (conjunction)
not(P) (negation)
P => Q (implication)
P <=> Q (equivalence)

Functions and Relations

S --> T (total function type)
S +-> T (partial function type)
S <-> T (relation type)
f(x) (function application)
%x : S . (P | E) (lambda abstraction)
%x : S, y : T . (P | E) (lambda abstraction)
R[S] (relational image)
S <| R (domain restriction)
S <<| R (domain subtraction)
R |> S (range restriction)
R |>> S (range subtraction)
R <+ Q (left overriding)
R +> Q (right overriding)
dom(R) (domain)
ran(R) (range)
R∼ (inverse)
id(S) (identity)

Sequences

seq[n](S) (sequences of max. length n)
iseq[n](S) (injective sequences of max. length n)
S <= T (prefix)
S < T (strict prefix)
S <- x (append)
x -> S (prepend)
<x1, x2, . . . , xn> (sequence enumeration)
<> (empty sequence)
S^T (prepend)

APPENDIX C. ASCII-REPRESENTATION 148

x /|\ S (retain)
x \|/ S (remove)
rev(S) (reverse)
first(S) (first)
last(S) (last)
front(S) (front)
tail(S) (tail)
size(S) (size)

Arithmetics

+!x : S.(P | E) (set summation)
+!x : S, y : T.(P | E) (set summation)
∗!x : S.(P | E) (set product)
∗!x : S, y : T.(P | E) (set product)
$(x) (type cast)
min(x) (minimum)
max(x) (maximum)
x + y (addition)
x− y (subtraction)
x ∗ y (multiplication)
x / y (division)

Program Constructs

skip (skip statement)
[P] (guard statement)
[E] (cost statement)
x := E (assignment)
x1, x2, . . . , xn := E1, E2, . . . , En (simultaneous assignment)
A || B (parallel composition)
A ; B (sequential composition)
A [] B (nondeterministic choice)
@ x : S . A (finite nondeterministic choice)
A [[E]] B (probabilistic choice)
?x : S | E . A (finite probabilistic choice)

Index

aggregation 57
bias (of policy) 94
exec . 91–93
fusion . 58
gain (of policy) 94
game . 91
game tree . 89

well-formed 89
ground . 84
hash function 86
idempotent . 57
Markov decision process 68

aperiodic 97
avg (average cost) 72
connected 73
fin (finite-horizon) 71
ipo (infinite policy) 70
itrace (infinite trace)70
multichain 94
opt (average cost optimal) 72
po (finite policy) 69
proc . 69
rab (discounted cost) 71
stationary 70
tot (total expected cost) . . 71
trace (finite trace) 69
unichain 94

play . 87, 89
probabilistic action system 45

A ≡ C . 50
A v C . 50
action 45, 86
beh . 45
connected 73
im (impasse) 46
initialisation 45, 86

live . 50
path .45
reach . 50
tr (trace) 45
val (optimal value) 72

probabilistic simulation.51
probabilistic state 25⊕

i :I pi • fi 26
DΓ . 25
f p⊕ g . 25
f + g .25
p ∗ f . 25
car (carrier) 25
expectation 26

probabilistic state function 27
M ∗ C . 27
M ;N . 28
D(Γ,Γ′) 28
M(Γ,Γ′) 27
Π.Φ (sequential product) . 28
⇑φ . 28
f ∗M . 27
p ? M .106

probabilistic state relation 29
P t Q . 30
P p⊕ Q 30
P ;Q . 31
Pn (finite iteration) 32
P1 ‖ P2 30⊔

i : I • Qi 30
‖| i : I • Pi 106⊕

i : I | pi • Pi 30
P(Γ,Γ′) 29
⇑M . 32
⇑R . 29
LET x = E IN P 109

149

INDEX 150

non-interfering 106
probabilistic state relation

extended 34
P t Q . 34
P ‖ Q . 36
P p⊕ Q 34
P ;Q . 35⊕

i : I | pi • Pi 35
⇓P .34
E(Γ,Γ′) 34
| e | (cost) 34
⇑P .34
cost . 33⊕

i∈I pi • ci 33
c1 p⊕ c2 33

fun . 35
rad .see radical
radical . 91

parallel 91
sequential 91
stack . 91

squash .93
X + Y . 93
p ∗X . 93

squash game 93
state . 22, 86
state function 22
F(Γ,Γ′) 22
id . 22
skip . 22

state relation 23
R1 t R2 23
R1 ‖ R2 23
R1;R2 .23⊔

i : I • Ri 23
| q | (guard) 23
πi := e . 23
R(Γ,Γ′) 23
⇑φ . 24
x1, x2 := e1, e2 24
deterministic 24
stop . 23

state space . 22
state variable22

time slot . 45
transition . 45

period . 45
type-checking 81–85
unify . 84

Bibliography

[1] Mart́ın Abadi and Leslie Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 82:253–284, 1991.

[2] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

[3] Jean-Raymond Abrial and Louis Mussat. Introducing dynamic con-
straints in B. In Didier Bert, editor, B’98 : The 2nd International
B Conference, volume 1393 of Lecture Notes in Computer Science,
pages 83–128. LIRRM Laboratoire d’Informatique, de Robotique et
de Micro-électronique de Montpellier, Springer Verlag, 1998.

[4] Krzysztof R. Apt and Ernst-Rüdiger Olderog. Verification of Sequen-
tial and Concurrent Systems. Texts and Monographs in Computer
Science. Springer-Verlag, Berlin, New York, 1991.

[5] R.-J. R. Back and R. Kurki-Suonio. Distributed cooperation with
action systems. ACM Transactions on Programming Languages and
Systems, 10(4):513–554, 1988.

[6] R.-J. R. Back and J. von Wright. Duality in specification languages:
a lattice theoretical approach. Acta Informatica, 27:583–625, 1990.

[7] Ralph-Johan Back and Michael Butler. Fusion and simultaneous exe-
cution in the refinement calculus. Acta Informatica, 35:921–949, 1998.

[8] Ralph-Johan Back and Joakim von Wright. Trace refinement of action
systems. Reports on Mathematics and Computer Science 153, Åbo
Akademi, 1994.

[9] Ralph-Johan Back and Joakim von Wright. Refinement Calculus:
A Systematic Introduction. Graduate Texts in Computer Science.
Springer-Verlag, 1998.

[10] M. Bernardo, W.R. Cleaveland, S.T. Sims, and W.J. Stewart.
TwoTowers: A tool integrating functional and performance analysis of
concurrent systems. In S. Budkowski, A. Cavalli, and E. Najm, editors,

151

BIBLIOGRAPHY 152

Proc. of the IFIP Joint Int. Conf. on Formal Description Techniques
for Distributed Systems and Communication Protocols and Protocol
Specification, Testing, and Verification (FORTE/PSTV 1998), pages
457–467, Paris, France, 1998. Kluwer.

[11] M. Bernardo, L. Donatiello, and R. Gorrieri. Operational GSPN se-
mantics of MPA. Technical Report BOLOGNA#UBLCS-94-12, Uni-
versity of Bologna (Italy). Department of Computer Science., 1994.

[12] Marco Bernardo. An algebra-based method to associate rewards with
EMPA terms. In Pierpaolo Degano, Robert Gorrieri, and Alberto
Marchetti-Spaccamela, editors, Automata, Languages and Program-
ming, 24th International Colloquium, volume 1256 of Lecture Notes
in Computer Science, pages 358–368, Bologna, Italy, 1997. Springer-
Verlag.

[13] Marco Bernardo, Lorenzo Donatiello, and Roberto Gorrieri. A formal
approach to the integration of performance aspects in the modeling
and analysis of concurrent systems. Information and Computation,
144(2):83–154, 1998.

[14] Marco Bernardo and Roberto Gorrieri. Extended Markovian process
algebra. In Ugo Montanari and Vladimiro Sassone, editors, CON-
CUR ’96: Concurrency Theory, 7th International Conference, volume
1119 of Lecture Notes in Computer Science, pages 315–330, Pisa, Italy,
1996. Springer-Verlag.

[15] Marco Bernardo and Roberto Gorrieri. A tutorial on EMPA: A theory
of concurrent processes with nondeterminism, priorities, probabilities
and time. Theoretical Computer Science, 202(1–2):1–54, 1998. Tuto-
rial.

[16] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume
I and II. Athena Scientific, 1995.

[17] A. Bianco and L. De Alfaro. Model checking of probabilistic and non-
deterministic systems. Lecture Notes in Computer Science, 1026:499–
513, 1995.

[18] Blackdown JDK Homepage. Hosted at http://www.blackdown.org/.

[19] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO spec-
ification language LOTOS. In P. H. J. van Eijk, C. A. Vissers, and
M. Diaz, editors, The Formal Description Technique LOTOS, pages
23–73. Elsevier Science Publishers North-Holland, 1989.

[20] Peter Buchholz. On a markovian process algebra. Technical Report
500, Universität Dortmund, Fachbereich Informatik, 1994.

BIBLIOGRAPHY 153

[21] Michael J. Butler. Refinement and decomposition of value-passing
action systems. In Eike Best, editor, CONCUR’93 – 4th International
Conference on Concurrency Theory, volume 715 of Lecture Notes in
Computer Science, pages 217–232. Springer-Verlag, 1993.

[22] K. Mani Chandy and Jayadev Misra. Parallel Program Design: a
Foundation. Addison-Wesley, Reading, Mass., 1988.

[23] Graham Clark. Formalising the specifications of rewards with PEPA.
In Proceedings of the Fourth Workshop on Process Algebra and Per-
formance Modelling, pages 139–160, 1996.

[24] Edward G. Coffman and Peter J. Denning. Operating Systems Theory.
Prentice-Hall, 1973.

[25] Luca de Alfaro. Stochastic transition systems. In Proceedings of CON-
CUR’98, LNCS. Springer, 1998.

[26] Luca de Alfaro. From fairness to chance. Electronic Notes in Theo-
retical Computer Science, 22:33 pages, 1999.

[27] Debian GNU/Linux Homepage. http://www.debian.org/.

[28] Cyrus Derman. Finite State Markovian Decision Processes, volume 67
of Mathematics in Science and Engineering. Academic Press, 1970.

[29] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[30] Richard C. Dorf and Robert H. Bishop. Modern Control Systems.
Addison Wesley, 7th edition, 1995.

[31] Amani El-Rayes, Marta Kwiatkowska, and Steven Minton. Analysing
performance of lift systems in PEPA. In Proc. UK Performance En-
gineering Workshop, page 17, September 1996.

[32] Jerzy Filar and Koos Vrieze. Competitive Markov Decision Processes.
Springer, 1997.

[33] Clemens Fischer. Combining Z and CSP. Technical report, University
of Oldenburg, 1996.

[34] B. L. Fox and D. M. Landi. An algorithm for identifying the ergodic
subchains and transient states of a stochastic matrix. Communications
of the ACM, 2:619–621, 1968.

[35] P. H. B. Gardiner and C. C. Morgan. Data refinement of predicate
transformers. Theoretical Computer Science, 87:143–162, 1991.

[36] Paul Gardiner and Carroll Morgan. A single complete rule for data
refinement. Formal Aspects of Computing, 5(4):367–382, 1993.

BIBLIOGRAPHY 154

[37] S. Gilmore and J. Hillston. The PEPA workbench: A tool to support a
process algebra-based approach to performance modelling. In G. Har-
ing and G. Kotsis, editors, Proceedings of the Seventh International
Conference on Modelling Techniques and Tools for Computer Per-
formance Evaluation, volume 794 of LNCS, pages 353–368. Springer-
Verlag, 1994.

[38] David Gries. The Science of Programming. Springer, New York, 1981.

[39] Stefan Hallerstede. Semantische Fundierung von CSP-Z. Master’s
thesis, University of Oldenburg, Germany, 1997.

[40] Hans Hansson and Bengt Jonsson. A logic for reasoning about time
and reliability. Formal Aspects of Computing, 6(5):512–535, 1994.

[41] Martin Hargreaves. Engineering Systems: Modelling and Control. Ad-
dison Wesley-Longman, 1996.

[42] Sergiu Hart, Micha Sharir, and Amir Pnueli. Termination of proba-
bilistic concurrent program. ACM Transactions on Programming Lan-
guages and Systems, 5(3):356–380, 1983.

[43] Boudewijn R. Haverkort. Performance of Computer Communication
Systems: A Model-based Approach. John Wiley & Sons, 1998.

[44] Boudewijn R. Haverkort and Ignas C. Niemegeers. Performability
modelling tools and techniques. Performance Evaluation, 25:17–40,
1996.

[45] Boudewijn R. Haverkort and Kishor S. Trivedi. Specification tech-
niques for markov reward models. Discrete Event Dynamic Systems:
Theory and Applications, 3:219–247, 1993.

[46] Jifeng He. Process simulation and refinement. Formal Aspects of
Computing, 1:229–241, 1989.

[47] Jifeng He, C. A. R. Hoare, and J. W. Sanders. Data refinement re-
fined. In Bernard Robinet and Reinhard Wilhelm, editors, ESOP 86,
European Symposium on Programming, volume 213 of Lecture Notes
in Computer Science, pages 187–196. Springer, 1986.

[48] Jifeng He, K. Seidel, and A. McIver. Probabilistic models for the
guarded command language. Science of Computer Programming,
28(2–3):171–192, 1997.

[49] Eric Hehner. Probabilistic predicative programming. Private Commu-
nication.

BIBLIOGRAPHY 155

[50] Matthew Hennessy. Algebraic Theory of Processes. The MIT Press,
1988.

[51] H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and M. Siegle.
Compositional performance modelling with the TIPPtool. Perfor-
mance Evaluation, 39:5–35, 2000.

[52] Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-Kayser, and
Markus Siegle. A markov chain model checker. In TACAS 2000,
number 1786 in Lecture Notes in Computer Science, 2000.

[53] Holger Hermanns and Michael Rettelbach. Syntax, semantics, equiv-
alences, and axioms for MTIPP. In U. Herzog and M. Rettelbach,
editors, Proceedings of the Second Workshop on Process Algebra and
Performance Modelling, pages 71–88, 1994.

[54] Holger Hermanns, Michael Rettelbach, and Thorsten Weiss. Formal
characterisation of immediate actions in SPA with nondeterministic
branching. The Computer Journal, 38(7):530–541, 1995.

[55] Wim H. Hesselink. Nondeterminacy and recursion via stacks and
games. Theoretical Computer Science, 124:273–295, 1994.

[56] Harro Heuser. Lehrbuch der Analysis, volume 1. B. G. Teubner
Stuttgart, 10. edition, 1993.

[57] Jane Hillston. PEPA: Performance enhanced process algebra. Techni-
cal Report CSR-24-93, University of Edinburgh, Edinburgh, Scotland,
1993.

[58] Jane Hillston. A Compositional Approach to Performance Modelling.
Cambridge University Press, 1996.

[59] C. A. R. Hoare. Communcating Sequential Processes. Prentice Hall,
1985.

[60] C. A. R. Hoare, Jifeng He, and J. W. Sanders. Prespecification in data
refinement. Information Processing Letters, 25(2):71–76, 1987.

[61] Ronald A. Howard. Dynamic Probabilistic Systems, volume I: Markov
Models. John Wiley and Sons, 1971.

[62] Ronald A. Howard. Dynamic Probabilistic Systems, volume II: Semi-
markov Models and Decision Processes. John Wiley and Sons, 1971.

[63] JavaCC Homepage. Hosted at http://www.metamata.com/.

[64] Claire Jones. Probabilistic Non-Determinism. PhD thesis, LFCS, Ed-
inburgh University, 1990.

BIBLIOGRAPHY 156

[65] Bengt Jonsson, Chris Ho-Stuart, and Wang Yi. Testing and refine-
ment for nondeterministic and probabilistic processes. In H. Lang-
maack, W.-P. de Roever, and J. Vytopil, editors, Formal Techniques
in Real-Time and Fault-Tolerant Systems, volume 863 of Lecture Notes
in Computer Science, pages 418–430. Third International Symposium
Organized Jointly with the Working Group Provably Correct Systems-
ProCoS, Springer-Verlag, 1994.

[66] Bengt Jonsson and Kim Guldstrand Larsen. Specification and re-
finement of probabilistic processes. In Proceedings of the 6th Annual
Symposium on Logic in Computer Science, pages 266–277, 1991.

[67] Mark B. Josephs. A state-based approach to communicating processes.
Distributed Computing, 3:9–18, 1988.

[68] Leslie Pack Kaelbling, Michael B. Littman, and Andrew W. Moore.
Reinforcement learning: A survey. Journal of Artificial Intelligence
Research, 4:237–285, 1996.

[69] Krishna Kant. Introduction to Computer System Performance Evalu-
ation. McGraw Hill, New York, 1992.

[70] John G. Kemeny and J. Laurie Snell. Finite Markov Chains. Under-
graduate Texts in Mathematics. Springer-Verlag, 1976.

[71] Dexter Kozen. Semantics of probabilistic programs. Journal of Com-
puter and System Sciences, 22, 1981.

[72] Ulrich Krengel. Einführung in die Wahrscheinlichkeitstheorie und
Statistik. Vieweg Verlag, 1988.

[73] Helko Lehmann. On Reasoning about Action and Change in the Fluent
Calculus. PhD thesis, Declarative Systems and Software Engineering,
ECS, University of Southampton, 2001.

[74] Christoph Lindemann. DSPNexpress: A software package for the effi-
cient solution of deterministic and stochastic petri nets. Performance
Evaluation, 22:3–21, 1995.

[75] Christoph Lindemann. Performance Modelling with Deterministic and
Stochastic Petri Nets. Wiley, 1998.

[76] Falko Lorenz. Lineare Algebra, volume I and II. B. I. Wissenschaftsver-
lag, 3. edition, 1992.

[77] Gavin Lowe. Representing nondeterminism and probabilistic be-
haviour in reactive processes. Technical Report PRG-TR-11-93, Pro-
gramming Research Group, Oxford University, 1993.

BIBLIOGRAPHY 157

[78] Sridhar Mahadevan. Average reward reinforcement learning: Founda-
tions, algorithms, and empirical results. Machine Learning, 22:159–
195, 1996.

[79] Marco Ajmone Marsan, Gianni Conte, and Gianfranco Balbo. A class
of generalized stochastic petri nets for the performance evaluation of
multiprocessor systems. ACM transactions on computer systems, 2:93–
122, 1984.

[80] Rudolf Mathar and Dietmar Pfeifer. Stochastic für Informatiker.
B. G. Teubner, 1990.

[81] A. K. McIver and Carroll Morgan. Demonic, angelic and unbounded
probabilistic choices in sequential programs. Technical report, Pro-
gramming Research Group, University of Oxford, 1998.

[82] Annabelle McIver, Carroll Morgan, and Elena Troubitsyna. The prob-
abilistic steam boiler: a case study in probabilistic data refinement.
Technical Report TUCS-TR-173, TUCS - Turku Centre for Computer
Science, April 22 1998. Wed, 22 Apr 1998 12:00:00 GMT.

[83] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[84] Isi Mitrani. Probabilistic Modelling. Cambridge University Press, 1998.

[85] Michael K. Molloy. Performance analysis using stochastic petri nets.
IEEE Transactions on Computers, C-31(9):913–917, September 1982.

[86] Carroll Morgan. Of wp and CSP. In W. H. J. Feijen, A. J. M. van
Gasteren, D. Gries, and J. Misra, editors, Beauty is Our Business:
A Birthday Salute to Edsger W. Dijkstra, pages 319–326. Springer-
Verlag, 1990.

[87] Carroll Morgan. Programming from Specifications. Prentice Hall In-
ternational, 2nd edition, 1992.

[88] Carroll Morgan, Annabelle McIver, and Karen Seidel. Probabilistic
predicate transformers. ACM Transactions on Programming Lan-
guages and Systems, 18(3):325–353, 1996.

[89] Peter Morris. Introduction to Game Theory. Universitext. Springer,
1994.

[90] MySQL Homepage. http://www.mysql.com/.

[91] Mark Nelson and Jean-Loup Gailly. The Data Compression Book.
M&T Books, second edition, 1996.

BIBLIOGRAPHY 158

[92] Randolph Nelson. Probability, Stochastic Processes, and Queue-
ing Theory: The Mathematics of Computer Performance Modelling.
Springer, 1995.

[93] Norman S. Nise. Control Systems Engineering. Benjamin/Cummings,
2nd edition, 1995.

[94] Ernst-Rüdiger Olderog. Nets, Terms and Formulas, volume 23 of
Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press, 1991.

[95] Lawrence C. Paulson. ML for the Working Programmer. Cambridge
University Press, second edition, 1996.

[96] Amir Pnueli and L. D. Zuck. Probabilistic verification. Information
and Computation, 103:1–29, 1993.

[97] Amir Pnueli and Lenore Zuck. Verification of multiprocess probabilis-
tic protocols. Distributed Computing, 1:53–72, 1986.

[98] Martin L. Puterman. Markov Decision Processes – Discrete Stochastic
Dynamic Programming. Wiley Series in Probability and Mathematical
Statistics. Wiley, 1994.

[99] Michael O. Rabin. Probabilistic automata. Information and Control,
6:230–245, 1963.

[100] Josyula R. Rao. Reasoning about probabilistic parallel pro-
grams. ACM Transactions on Programming Languages and Systems,
16(3):798–842, 1994.

[101] Wolfgang Reisig. Petri Nets. An Introduction, volume 3 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1985.

[102] Marina Ribaudo. On the aggregation techniques in stochastic petri
nets and stochastic process algebras. The Computer Journal, 38(7),
1995.

[103] Marina Ribaudo. Stochastic petri net semantics for stochastic pro-
cess algebras. In Proc. 6th International Workshop on Petri Nets and
Performance Models, 1995.

[104] A. W. Roscoe. An alternative order for the failures model. Technical
Mongraph PRG-67, Programming Research Group, Oxford University,
1988.

[105] A. W. Roscoe. Unbounded nondeterminism in CSP. Technical Mon-
graph PRG-67, Programming Research Group, Oxford University,
1988.

BIBLIOGRAPHY 159

[106] Robin Sahner, Kishor S. Trivedi, and Antonio Puliafito. Performance
and reliability analysis of computer systems: an example-based ap-
proach using the SHARPE software package. Kluwer Academic Pub-
lishers, 1996.

[107] Roberto Segala and Nancy Lynch. Probabilistic simulations for prob-
abilistic processes. In CONCUR’94, volume 836 of LNCS, pages 481–
496. Springer, 1994.

[108] Karen Seidel. Probabilistic communicating processes. Theoretical
Computer Science, 152:219–249, 1995.

[109] Karen Seidel, Carroll Morgan, and Annabelle McIver. Probabilistic
imperative programming: a rigorous approach. Technical report, Uni-
versity of Oxford, PRG, 1997.

[110] Linn I. Sennott. Stochastic Dynamic Programming and the Control of
Queueing Systems. Wiley Series in Probability and Statistics. Wiley,
1999.

[111] Kaisa Sere and Elena Troubitsyna. Probabilities in action systems. In
Proc. of the 8th Nordic Workshop on Programming Theory, 1996.

[112] J. M. Spivey. The Z Notation. Prentice-Hall International, 1989.

[113] Peter H. Starke. Analyse von Petrinetz-Modellen. Velag Teubner,
1990.

[114] Sun JDK Homepage. Hosted at http://java.sun.com/.

[115] Henk C. Tijms. Stochastic Models: An Algorithmic Approach. Wiley
Series in Probability and Mathematical Statistics. Wiley, 1994.

[116] Elena Troubitsyna. Enhancing Dependability via Parameterized re-
finement. In Proc. of Pacific Rim International Symposium on De-
pendable Computing, 1999.

[117] Moshe Y. Vardi. Automatic verification of probabilistic concurrent
finite-state programs. In Proc. 26th IEEE Symp. on Foundations of
Computer Science, pages 327–338, 1985.

[118] P. Whittle. Probability via Expectation. Springer, 1992.

[119] J. C. P. Woodcock and Carroll Morgan. Refinement of state-based
concurrent systems. In D. Bjørner, C. A. R. Hoare, and H. Lang-
maack, editors, VDM and Z – Formal Methods in Software Develop-
ment, volume 428 of Lecture Notes in Computer Science, pages 340–
351. Springer-Verlag, 1990.

BIBLIOGRAPHY 160

[120] Jim Woodcock and Jim Davies. Using Z. Prentice Hall International,
1996.

[121] Wang Yi. Algebraic reasoning for real-time probabilistic processes with
uncertain information. In H. Langmaack, W.-P. de Roever, and J. Vy-
topil, editors, Formal Techniques in Real-Time and Fault-Tolerant
Systems, pages 680–693. Springer-Verlag, 1994.

