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Abstract

We consider standard robust adaptive control designs
based on the dead-zone and projection modifications,
and compare their performance w.r.t. a worst case
transient cost functional penalizing the £*° norm of
the state, control and control derivative. If a bound on
the £°° norm of the disturbance is known, it is shown
that the dead-zone controller outperforms the projec-
tion controller when the a-priori information on the
unknown system parameter is sufficiently conservative.
For simplicity the results are presented for a scalar sys-
tem and generalizations are briefly discussed.

1 Introduction

It is well known that adaptive controllers are suscepti-
ble to phenomena such as parameter drift even when
small disturbances are present. To overcome such prob-
lems, a number of standard techniques are widely uti-
lized, such as dead-zones, o modification, projection
modification [5] etc.

Each of these designs have advantages and draw-
backs. For example, dead-zone modifications require
a-priori knowledge of the disturbance level, and only
achieve convergence of the output to some pre-specified
neighbourhood of the origin (whilst keeping all sig-
nals bounded). In particular if the disturbance van-
ishes, then the dead-zone controller does not typically
achieve convergence to zero, the convergence remains to
the pre-specified neighbourhood of the origin. On the
other hand, projection modifications generally achieve
boundedness of all signals, and furthermore have the
desirable property that if no disturbances are present,
then the output converges to zero, however, an arbi-
trarily small £ disturbance can completely destroy
any convergence of the state.

This illustrates that in the case of asymptotic per-
formance, there are some known characterisations of
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‘good’ and ‘bad’ behaviour. However, there are many
situations in which we cannot definitively state whether
a projection or dead-zone controller is superior even
when only considering asymptotic performance. Fur-
thermore, the known results, as with most results in
adaptive control, are confined to non-singular perfor-
mances, ie. without any consideration of the control
signal.

The goal of this paper is to compare dead-zone and pro-
jection based adaptive controllers with respect to tran-
sient performance. Furthermore, the transient perfor-
mance measure will be nonsingular (ie. penalise both
the state (z) and the input (u) of the plant); specifically
we will consider cost functionals of the form:

P =zl + lullee + [ldllc.

We will identify a circumstance in which the dead-
zone controller is superior to the projection controller
w.r.t. P.

2 Statement of the Problem and Main Result
2.1 System and Basic Control Design

Consider the following class of SISO nonlinear systems
and controller:

£,.(0,d(-)) :
.'ii:.l‘i+1, 1S’LSTL~1
&n = 0T (z) +u + d(-), z(0) = @9
Z(a) :
u=—6T¢(z) —aTx,
- azTé(z), 6(0) =0

where £ € R" is the state vector, u € R is the control
input, # and 6 € R™ are unknown constant parameter
and its adaptive estimator respectively, ¢ € R™ is a
known basis, which is taken to be locally Lipschitz, d(-)
is a bounded disturbance, « is the adaptation gain, and

2043



a=[a,... ,an]T is chosen such that the matrix:

0 1 0 0
0 0 1 0 0
A= : :
0 0 0 1
—Qa1 —Q2 —as —Qn

is Hurwitz. Letting B = (0...1)7, one can rewrite
(£.(6,d()), E(e) as follows:

&= Ac+B((0—60)To(x) +d()), z(0)=uzx0o

= azT¢(z), 6(0) = 0.

2.2 Robust Modifications to the Control Design
It has been shown that even a small £ distiurbance
may cause a drift of the parameter estimates 0, see eg.

[1). The adaption law @ is often modified to avoid this
problem. We briefly describe two popular methods, i.e.
dead-zone and projection (see e.g. [5]).

Let

6= 7(z,0)

be the unmodified adaptation law. The idea of dead-
zone is to modify the parameter estimator so that the
adaptive mechanism is ‘switched off” when system tra-
jectory z lies inside a region Qo where the disturbance
has a destabilising effect on the dynamics. The modi-

fied adaptive law is taken to be § = Dgq,(z)7, where

_ 0, I(t) € Qo
Dﬂo(fc) = { 1, .’L‘(t) e R \QO

The size of the disturbance is necessary a-priori knowl-
edge in order to define the region Q.

Projection is a alternative method to eliminate param-
eter drift by keeping the parameter estimates within
some a priori defined bounds. Let us define the convex
set

Il = {§ € R? | P(6) < 0}

where P is a smooth convex function. Denote II°,
Ol the interior and the boundary of I respectively and
observe that VP represents an outward normal vector
at & € OI1. The idea behind this method is to project
the adaptation law 7 on the hyperplane tangent to oIl
at 6 when @ is on the boundary OII and 7 pointing
outward i.e.

T, if 6 e I1° or V;PT7 <0

Proj(r) = (1 VPV, PT .,
VgPTV 4P
if 6 € OI1 and V;PT7 > 0.

The modified adaptive law is taken to be b= Proj(r).

2.3 Specific System and Controllers

The goal of this paper is to establish a comparison be-
tween dead-zone and projection methods on a scalar
system with & = 1 and ¢(x) = z, ie. consider the
following system:

£1(0,d(-)) : &(t) = 6z(t) + u(t) + d(-)

1
z(0) = zo. M
The unmodified controller E = E(a = 1) is
2 u(t) = —az(t) — H(t)z(t)
(2)

0(t) = z(2)?, 6(0) = 0

Consequently we define the dead-zone and projection
controllers Zp(n) and Ep(fnax) as follows:

Ep(n) : u(t) = —az(t) - b(t)e(t)

B(t) = Dy (2)a(t)? (3)
6(0) =0
Ep (Omax) 1'L(t) = —ax(t) — O(t)z(t)
6(t) = Proj(z(t)?) 4)
6(0) =0

where a > 0, the convex set IT is defined as II =
[—Omax> Imax] Where Opayx is an upper bound of |6|, and
the dead-zone region Q is taken to be Qo = [—7,7].

Finally let us denote the respective closed loops by
(21(97 d('))1ED(7])) and (21(0’ d('))vap(amax))'

2.4 Statement of the Main Result

We will compare the performances of the controllers
with respect to the following worst case non-singular
transient cost functional P, defined as follows:

P(%1(8,d(-),E) = sup ([l + llullee + llillce) -
ldll co= <€ 5)

We are not concerned in this paper with the compar-
ison of asymptotic performance, this has been studied
previously, see eg. [5] and the references therein.
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The main theorem in this paper is as follows:

Theorem 2.1 Consider the scalar system ¥,(0,d(-))
defined by (1), and the controllers Ep(n), Ep(fmax)
defined by equations (3), (4), where €,0max > 0, and
€
n> 57 gmax 2 l9|
Consider the transient performance cost functional (5).

Then there exists 6%,, > 0 such that for

all Opax > 030, we have:

P(Z1(6,d(-)),Ep(Bmax)) > P(X1(6,d(-)),Ep(n)).

In fact, we will prove the stronger result that the ratio
between the two costs can be made arbitrarily large, i.e

P( >31 (0’ d())a EP(gmax) )
P(%1(8,4d(-)),Ep(n))

— 00 as Bmax — 00.

3 Proof of the Main Result
In order to prove theorem 2.1, we establish three propo-

sitions:

Proposition 3.1 For the closed loop (£1(8,d()),ZE)
defined by (1), (2), where
d(:) =,

the following statements are true:
1. z(t) — 0, é(t) — 00 ast — 00,
2. Suppose there exists L € R such that
lim 6(t) z(t) = L
t—oo

then L = €.

Proof: For a proof of statement 1, see [3]. To estab-
lish 2, let f and f’ be defined as follows:

a4
f=bx= = and = —dix—A
d
1/6 (1/6)
then . )
—0%(—azx+0x+¢ 62
f/ — ( x2 ) + ____Q_f
S0,
—ar+0x+e€
f = 2 f
62 f

Now since there exist L s.t. limy,o f = L then
by considering the Taylor series of f, f’,! we have
lme oo f/ = limyyoo f = Lie lime,oo f//f = 1.

lim f = lim (—‘“‘””Mx“)

t—o0 t—oo 1- ?,;'iﬂ
62 f

_limyeo(—ax + 02 4 €)

lim; oo (1 — £ L)
€

= . 2
1 —-limi—oo %?

50
L= lim 6z = lim f =,
t—o0 t—o00

2

since lim;_,o0 (—’5;) = 0 by Proposition 3.1, (1).
n

Proposition 3.2 Consider the closed loop
(21(6,d(-)),E) defined by equations (1),(2) and

the transient performance cost functional (5). Then

P(%1(6,d(-)), E) = o0

Proof: We choose d(-) = € > 0. Suppose for contra-
diction P < oo. Consider . There are two cases either

‘1. limsup & = o0 or 2. limsup & < o0:

t—oo t—o0

1. limsup £ =co i.e.
t—o0

limsup (—az + (8 — 8)z + €) = oco.
t—o0
Since z — 0 by Proposition 3.1, therefore
limsup 0z = co. It follows that

t—o0

sup  J|uflgoe > (6] coe = o0, (6)
1] coo <€

i.e P = oo, which is a contradiction.

2 limsup < co. Again there are two cases a)
t—oo
limsup 6z = oo, b) limsup bz < co:
t—o0 t—o0
2.a. limsup 6z = oo. Then similarly to (6),
—00
sup  |luf|gee = oo, and that is a contradiction.
lldll coo <€

2.b. limsup fr < oo i.e. |é$| < M for some M > 0.
t—o0

a

There are two possibilities, either i) lim;_,o, 6z
does not exist, or ii) lim,_,o, fz does exist:

1These exist since the r.h.s. of the equations (1),(2) are ana-
lytic, hence the solutions are analytic.
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2b.i. limseo Oz does mnot exist. By considering Therefore either
lim sup 4, we see

oo | ~ sup JJulle = o0
a lldll coo <e
limsup# = limsup(—ad — 2% — 8z)
t—o0 t—-+00 or
= (2a — 0)0z — ae + 8(0z — €) — oo, ”dnsigq [[&l] goo = oo0.
since the first two terms are bounded, § — oo Hence P = oo. [ ]
by Proposition 3.1, and 6z cannot converge to
€ since the limit does not exist. It follows that
sup ||@||ge = oo; hence contradiction. Proposition 3.3 Consider  the closed  loop
ldljzoo <e (21(0,d(-)),Ep(fmax)) defined by equations (1),
(4) and the transient performance cost functional (5).

2b.ii Let L denote the limit, ie. lim; o 0z = L. Then
Therefore L = € by Proposition 3.1. So

V6>0 T, >0 st Vi>T) |fz—e <6 P ((£1(6,4("), Ep(fmax))) — 00 a5 fmax — 00.

Since 6 — 0o by Proposition 3.1, it follows that Proof: It is convenient to define
V8* >0 I, >0 st. Vt>T, 6>68* (7) Pl = (nmnﬂm o7 F l1ull o= 0.7 + N1l 2 [O,T]) )
Taking T3 = max(T1,T») we have that Now let M > 0. By Proposition 3.2 there exists d(-),

Il e < € s.t.

Plio,oc}(Z1(6,d(-)),E) > 2M.

Vi>Ty 6>60% e—6<fz<et+s (8)

Now we choose d(-) as follows
It follows that 3T > 0 s.t.

ap=1 ¢ ‘=5 9
R ©) Plon(F1(6,d()), %) > M
With this choice, by causality, (8) holds also, and also é(T) > M. Let Opax = Qé(T) > 2M. Then

the unmodified and the projection design are identical

and it can be easily shown that the whole proof
on [0,T], hence

from the beginning is also hold for the case that

d = —¢; hence with the choice of d given by equa- — —

tion (9) we have fz — —e as t — oo. Since P(X1(8,d(-)), EP(Bmax)) 2 Plio,1)(Z1 (6, d(-)),fp(9max))
6(T3)z(T3) < €+ 0, by intermediate value theo- Z Plon(1(6,d(-)),E) = M.
rem, Since this holds for all M > 0, this completes the proof.

3Ty < T < o0 s.t. §(T)z(T) = —g (10) .

So look at #(T), we see that Proposition 3.4 Consider the closed loop

(£1(6,d(-)),Ep(n)) defined by equations (1), (3)

and the transient performance cost functional (5).

W(T) = (a2 — ab)z(T) — =(T)? + 9% + é(T)%

. . Suppose

Note that by (7), we have 8(T) > 6* and therefore €
n>-.
by (10) a
[2(T)] < ==, Then

(267) P(£1(9,d(-)), Ep(n)) < oo.
i.e. by choosing 6*, z(T) can be sufficiently small
and G(T) can be made arbit.rarﬂ.y large. Hence Proof:  Due to switching nature of the dead-zone,
also |[i]|ze can be made arbitrarily large, i.e. all our differential equations have a discontinuous right

hand sides, for which the classical definition of solution
is not valid, we therefore consider solutions in a Fillipov
sense. A complete proof of stability can be found in [2].
~and this is a contradiction. A brief sketch of the proof is as follows:

sup |d| = oo
el oo <e
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We define a Lyapunov function:
V(z,6) = %aﬂ + %(9 — gy

and let

Vo = %max( zg, €2 )+ %02.

It has been shown [2] that

V(z,0)<Vy Vi>0.

Hence we can bound z(t) and 6(t) in terms of V; as
follows:

< Vv, (11)
B < 6]+ V2. (12)

It follows that [|z||ze < co. Since
u = —az — bz,

and
W(t) = —ai — 0z — z°
= —(a+0)(—az + (6 — Oz +d) — z°,

inequalities (11), (12) imply ||u| g, and [[&t]|ze are
bounded in terms of V;, hence

(lzlleoe + llulleoe + [|fce) < 00
thus completing the proof. ™

We can now prove the main result, which we repeat for
convenience of the reader:

Theorem 2.1 Consider the scalar system ¥1(8,d(-))
defined by (1), and the controllers Ep(n), Zp(fmax) de-
fined by equations (3), (4), where €,0max > 0, and

€

77> ;7 amaxz [6|

Consider the transient performance cost functional (5).
Then there exists 0%, > 0 such that for all Opayx >
0% ... we have:

max

P(21(8,d(-)); EP(0max) ) > P(%1(6,d(-)),Ep(n)).

Proof: This is a simple consequence of Proposition
3.3 and Proposition 3.4. »

4 Conclusion

In this paper we have established a rigorous result
demonstrating a situation in which the transient per-
formance of a projection based controller is worse than
that of a dead-zone based controller. There are a num-
ber of directions in which the result can be fruitfully
generalised, for example:

1. Relaxation of the assumption that ¢(z) = z. The
first problem is that we need some conditions un-
der which, the closed loop system has a drift
in parameter estimator. For the simple case
#(x) = =, it has been shown that § — oo and
x — 0 [3]. For a similar general argument, we
would impose the conditions:

T =0 ¢(z) =0,

and
z¢(x) >0,

to ensure & > 0. In particular, similar results
have been obtained for ¢(z) = zP, p odd.

2. Generalisation of the result to the chain of inte-
grators X,(8,d(-)) for n > 1. Some preliminary
results has been obtained.

3. Generalisation of the result to strict feedback sys-
tems, via backstepping controllers [4].

4. Establishing whether the same results can be
given for the alternative costs, for example, P =
[/l oo + fluall oo

Similarly we are developing results to demonstrate the
contrary relationship between the controllers, ie. es-
tablishing results which show when the projection con-
trollers outperform the dead-zone controllers. We let
dpmax Play a similar role to 6,4, in theorem 2.1 by let-
ting dpqq be the upper bound on the £*° norm of the
disturbance d(-). Then we define a worst case transient
performance P and show that for the dead-zone con-
troller, P — 0o as dmaxr — 00, while the performance
P of the projection controller remains bounded.

The aim is to establish good characterisations of the
classes of problem in which one controller should be
used in preference to another. The result of this paper
represents a step towards these more general results.
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