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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

NONLINEAR OUTPUT FEEDBACK CONTROL: An Analysis of Performance and Robustness

by Chengkang Xie

By considering a non-singular performance cost functional, observer backstepping designs and

adaptive observer backstepping designs are compared to high-gain observer designs for an out-

put feedback system and a parametric output feedback system. For the output feedback system,

if the initial error between the initial condition of the state and the initial condition of the ob-

server is large, the high-gain observer design has better performance than the observer backstep-

ping design. Whilst, for the parametric output feedback system, if the a-priori estimate for the

bound of the uncertain parameter is conservative, the adaptive observer backstepping design has

better performance than the high-gain observer design.

In the sense of gap metric robustness, by a backstepping procedure, a robust state feedback

controller is developed for the nominal plant in strick-feedback form. For the closed-loop, the

controller achieves gain-function stability, and stability if the initial condition is zero. By the

gap metric robustness theory, the controller achieves robustness to plant perturbations which are

small in gap sense. In this way, it is shown that for any perturbed plant the controller stabilizes

the closed-loop in the presence of input and measurement disturbances if the gap metric distance

between the nominal and perturbed plant is less than a computable constant.

For output feedback control, a nominal plant in output-feedback form is considered, and the

observer backstepping procedure is amended to design a robust controller and an observer in the

presence of input and measurement disturbances. The closed-loop is shown to be gain-function

stable, and stable if the initial condition is zero. If the nonlinearities are only locally Lipschitz

continuous, the results are only local to input and measurement disturbances; if the nonlinearities

are globally Lipschitz continuous, then results are global to input and measurement disturbances.

By gap metric robustness theory, if the initial condition is zero the controller is shown to be

robust to plant perturbations in a gap metric sense. As an application, the theory is applied to a

system with time delay, and it is shown that if the time delay is suitably small, the controller is

able to achieve stability of the closed-loop.

To investigate the robustness of high-gain designs to loop disturbances and plant perturbations,

a restricted class of nonlinear nominal plant in normal form are considered. An amended high-

gain observer control design is shown to be robust to loop disturbances and has a non-zero plant

perturbation margin, which is independent of the high-gain factor.
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x state vector
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x2 perturbed state vector
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1 initial condition of a system
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T, Ti transformation
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R+ the interval[0,∞)
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time-invariant, continuous time, systems

RH∞ space of rationalH∞ functions

K∞ space of continuous functionsγ : R+ → R+ which are strictly

increasing, and satisfyγ(0) = 0 andγ(r) →∞ asr →∞
UΣ Dom(Σ)
UΞ Dom(Ξ)
W UΣ × UΞ

GΣ, M graph of plantΣ
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GΞ, N graph of controllerΞ
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Chapter 1

Introduction

Control theory and engineering is the study of techniques that allow humans to achieve a desired

behaviour of a plant. To manipulate the behaviour of the plant, a controller is designed to realize

this purpose. The connection of the plant and the controller is called a control system. To de-

sign a controller and put the controller into practice, a mathematical model which describes the

physical plant must be built, which is called the nominal plant. So, in general, a nominal control

system is in the form of mathematical equations. In the term of mathematics, the following

paragraph characterizes the purpose of control.

Generally speaking, the objective in a control system is to make some output, say

y, behave in a desired way by manipulating some input, sayu. The simplest ob-

jective might be to keepy small (or close to some equilibrium point)−a regulator

problem−or to keepy − r small for r, a reference or command signal, in some

set−a servomechanism or servo problem.

John Doyle, Bruce Francis, Allen Tannenbaum [13]

A control system can be open-loop or closed-loop. In a open-loop control system, the controller

is designed without using measurable information, whereas, in a closed-loop control system,

the controller uses measurable information for feedback comparison, that is feedback control.

The purpose of feedback is to reduce the effect of uncertainties in the system, such uncertainties

are from uncertainties in the dynamics ( i.e., the mismatch between the nominal and the real

plant ) or external disturbances. If all the states of a system are measurable and can be used for

feedback, the control is referred to as state feedback, if only some of the states or a combination

of some states is measurable for feedback, the control is referred to as output feedback. If

the mathematical model for a plant is linear, the system is called linear system, otherwise, the

system is termed nonlinear. Furthermore, a mathematical model only approximates the physical

plant: uncertainties or plant perturbations arise from the mismatch. Loop disturbances also arise

1
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from the imprecise measurement of the output and the inaccurate implementation of the control

input. A controller is required to be ‘robust’ to these perturbations and disturbances.

Control engineering is a very wide discipline, and has a long history. It has been developed with

the advance of technology. Over the last forty years, with great industrial demand, the field of

control has been greatly advanced and widely used. Nowadays, control systems play a crucial

roles in many areas such as manufacturing, aerospace and transportation, and military weapon

systems ( see, for example, Hurray [63] ). To solve increasing control problems, improve control

performance and robustness, many new control principles and methods are being developed.

In the past two decades, many of control techniques have been developed for nonlinear systems

using feedback control. Most of the results, however, assume full state feedback. Efforts to

extend some of these results to output feedback have naturally included the idea of designing an

observer to estimate the state of the system from its output, see, e.g., [52, 30, 60, 32].

In recent years, a number of techniques have been developed for controlling nonlinear systems

using output feedback control. Among them, high-gain observer and observer backstepping are

two classes of important designs. The first class of controllers are based on high-gain observers

with saturated controls, see, e.g., [15, 31, 48, 32, 81, 82, 45, 46, 3, 6]. We refer to this class

of control designs asKhalil designs. The second class of controllers are based on backstepping

techniques, see, e.g., [50, 51, 69, 40, 41, 42, 59, 61, 60, 55], and we refer to this class of

controllers asKKK designs.

Despite their status as two important design types, their performance theory and robustness to

loop disturbances and plant perturbations, in most cases, are still open questions. In this thesis,

first, we are interested in introducing performance measurement and comparing the two kinds of

output feedback control designs analytically; second, we study the robustness of the two kinds

of designs in the framework of gap metric. The thesis is divided into two parts. The first part

is about performance comparison, see Xie and French [87, 89, 90]. The second part is robust

backstepping and high-gain observer designs, see Xie and French [88].

1.1 Backstepping Designs

Backstepping design is being developed with the need to cope with the presence of unknown

parameters and breaking matching condition in models.

In 1980s, researchers, e.g., Isidori [36] introduced differential-geometric theory of nonlinear

feedback control to linearize nonlinear systems. Nonlinear control theory made great progress.

But this class of designs require the matching condition for systems, and are restricted to the sys-

tems without unknown parameters. To cope with the unknown parameters motivated the study

of adaptive control. In the early research, the matching condition was still required. Craig [12]

first designed a robotic adaptive controller in 1988, but his design needed to measure joint ac-

celerations, which was impractical. Afterwards, other researchers, e.g., Slotine and Li [75, 76],
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Middleton and Goodwin [62], and Ortega and Spong [64], designed controllers without this

condition. Taylor, Kokotovíc, Marino and Kanellakopoulos [79] further developed the adaptive

control designs, and got a general design idea. On the other hand, researchers, e.g., Kanel-

lakopoulos, Kokotovíc and Marino [40] and Campion and Bastin [5, 11] tried to remove the

matching condition, and generalized nonlinear adaptive control to systems which satisfy the

extended matching condition.

To overcome the requirement of matching condition, many researchers made contributions, e.g.,

Tsinias [83], Byrnes and Isidori [10], Kokotović and Sussmann [51], and Saberi, Kokotović, and

Sussmann [69]. Finally, Kanellakopoulos, Kokotović and Morse [42] gave the backstepping

design scheme. Backstepping was a new recursive procedure. The assumption of matching

condition was not required anymore.

Backstepping was first used in adaptive nonlinear control, and further developed into adaptive

observer backstepping for output feedback control. Kanellakopoulos, Kokotović, and Marino

[39] addressed the problem under restrictive structural and growth conditions on the nonlineari-

ties. Afterwards, Kanellakopoulos, Kokotović, and Morse [43] removed the growth restrictions,

but the output nonlinearities were not allowed to precede the control input. By developing a

new adaptive scheme, Marino and Tomei [59, 60] achieved global boundedness and tracking of

trajectories for systems in output feedback form. Praly and Jiang [65] solved the stabilization

for a class of systems broader than the output-feedback form. Teel and Praly [80, 82] extended

the result to the systems with uncertain nonlinearities.

Overparametrization was thought as a disadvantage of the backstepping. Jiang and Praly [38]

partially reduced its overparametrization, and with tuning functions, Kristić [56, 54] removed

the overparametrization. Recently, however, Beleznay and French [7] have shown that in some

cases, the overparametrization can reduce control cost, and has an advantageous aspect.

An extensive discussion of the development of these ideas can be found in [55].

1.2 High-gain Observer Designs

In linear control theory, the separation principle is a very convenient design tool for design

output feedback control. When a system is completely certain, the separation principle enables a

designer to separate a output feedback design into two steps, namely, a state feedback controller

design and an observer design. For bilinear systems with dissipative drift, Gauthier and Kupka

[31] also developed a separation principle.

However, in the presence of unknown parameters in a system, a design through the separation

principle cannot satisfy the control requirement, and may even result in instability. Moreover,

when nonlinearity is present in a system, the controller and observer cannot in general be de-

signed separately. Thus, for systems with uncertainty or nonlinearity, it is advantageous to de-
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velop conditions under which a similar separation principle can be utilized for designing output

feedback controllers.

High-gain feedback is a classical tool for desensitization and stabilization of minimum-phase

systems. From the middle of 1980s, Marino [58], Isidori and Krener [53], Isidori [36], Saberi

and Sannuti [70], and Khalil [49] used the high-gain feedback to stabilize input-output lineariz-

able systems. This comprises the early work on using high-gain observers to design output

feedback schemes for nonlinear systems with uncertainty. In 1992, Esfandiari and Khalil [15]

used the high-gain observer design to obtain the output feedback stabilization of fully lineariz-

able systems. In this paper a theory for the design was developed, the peaking phenomenon of

the design was studied, and recovery of the state feedback control was achieved by Tikhonov

theorem, a separation principle for nonlinear systems was obtained by the high-gain observer. In

1993 Khalil and Esfandiari [48] generalized this design to the systems depending on uncertain

parameters with non-zero dynamics. Other researchers such as Teel and Praly [81, 82] used this

technique to achieve semi-global stabilization. In 1996 Khalil [45] developed this design idea

to adaptive output feedback control of nonlinear systems.

Because of the innate peaking phenomenon of the high-gain observer design, the state feedback

control is required to be globally bounded. In [15, 45], saturation was introduced to obtain a

globally bounded control, overcoming the peaking phenomenon. Khalil [45] summarized these

developments. Atassi and Khalil [3] greatly generalized the design to generic systems and the

principal idea of this design. The design procedure is as follows. First, a globally bounded state

feedback control ( generally achieved by saturation ) is designed to meet the design objective.

Second, a high-gain observer, designed to be fast enough, recovers the performance achieved

under state feedback. This is the so called separation principle for nonlinear systems.

An early separation principle developed by Teel and Praly [81] did not guarantee performance,

it only guaranteed preservation of stability. Atassi and Khalil in [4] further developed other

high-gain observers.

1.3 Performance of Backstepping and High-gain Designs

The performance theory in output feedback control is still an open field. For the adaptive state

feedback control, in the past few years, French [25] initiated the work in the area of control com-

parison by performance. French, Szepesvári and Rogers [27] introduced a performance mea-

sure for approximate adaptive nonlinear control and obtained an upper bound of performance.

As to the comparison of performance for controllers, French [26] introduced a cost functional

to measure performance of control designs, comparing robust to adaptive backstepping. Sanei

and French [71, 72] compared two robust adaptive control designs. Beleznay and French [7]

compared the performances of adaptive backstepping and tuning functions designs.

For output feedback control, it is only possible to measure the output. Hence, the designs are
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more complicated, and it is harder to handle the resulting closed-loop systems. So, it is more

difficult to develop the corresponding performance theory. Khalil [47] initiated work about

comparison of controllers for output feedback. He used numerical simulation tools to compare

output feedback control designs. French, Szepesvári and Rogers [28] first obtained the bounds

for the performance of designs for output-feedback control analytically. It should be observed

that whilst there are many results concerning the transient performance of the output, see, e.g.,

[55], there is little work in the literature on non-singular costs for non-optimal designs, see

however [27, 71, 26, 7, 72] for related results and techniques.

The results in [47] are purely numerical, and give rise to many interesting questions, such as

• When do theKKK designs require greater control effort than theKhalil designs, and vice

versa?

• When do theKhalil designs have superior output transients to theKKK designs, and vice

versa?

• Are theKhalil andKKK designs sensitive to disturbances and plant perturbations?

In this thesis we will study these problems. In the first part, we will compare theKKK andKhalil

designs in two situations; in the second part, we will design robustKKK andKhalil controllers.

TheKhalil designs are applicable to affine systems of full relative degree, whilst theKKK de-

signs are applicable to an alternative class of systems, namely those which possess an output

feedback normal form. By considering systems which are both full relative degree and have

a output feedback normal form, we can compare the behaviour of the controllers on common

systems,1 as initiated in [47].

We introduce the measure of performance

P (Σ, Ξ) = ‖y‖2
L2(Tη) + ‖u‖L∞(R+)

wherey is the output, andu is the input, and the time setTη is defined by

Tη =
{
t ≥ 0

∣∣ |y(t)| > η
}

and η is a small positive number. By comparing the performance of controllers, we would

like to be able to characterize situations in which one design is preferable to another. Such

characterizations have obvious consequences for design choices, and also should lead to insight

into the dynamics and trade-offs inherent in these controllers.

It is impossible to compare two designs generally. So, we will characterize situations in which

one design is preferable to another.

The notion of stability in this part is the Lyapunov stability.
1Note also that such systems are characterized in a coordinate free manner, [55].
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1.3.1 Poor Information on Initial Conditions

Firstly, we will consider the system which can be written in output-feedback form

ẋi = xi+1 + ϕi(y), 1 ≤ i ≤ n− 1

ẋn = u + ϕn(y), xi(0) = x0i, 1 ≤ i ≤ n

y = x1

whereu is the control input,y is the measured output, and

x0 = (x01, · · · , x0n)T

is the initial condition of the state, andϕi are sufficiently smooth.

Let us consider a generic observer based controllerΞ(x̂0), wherex̂0 is the initial condition for

the observer. The performance of the closed-loop[Σ(x0), Ξ(x̂0)] is dependent on both the initial

statex0 and the initial condition for the observerx̂0. Whilst the initial statex0 is the property of

a system, the control designer has the freedom to chose the initial conditionx̂0 for the observer.

It is intuitive that good performance results from initializing the observer statex̂0 to be close to

the actual initial statex0. Of course, in practice, the initial state is often unknown, so it can be

hard to initialize in this manner. Nevertheless standard practice is to try to minimize

‖x̃0‖ = ‖x0 − x̂0‖

according to the best information available. However, we may well not possess complete in-

formation concerning the value of the initial condition of the state, that is we do not exactly

knowx0, and hence we have to takex̂0 to be the best estimate tox0. Then we are interested in

studying the situation in which our estimate ofx0 is not accurate and‖x̃0‖ is large, in particular

how does poor information onx0, ( which causes ‘bad’ choices ofx̂0 ), affect the performance

of the controllers?

We first consider an observer backstepping design [55] which achieves global regulation of the

output. Although the observer backstepping design has a global region of attraction (in(x0, x̂0)),
we will prove that the performance of the controller may become worse as the initial error‖x̃0‖
becomes large for any fixed initial condition of the state vectorx0.

Next, by a suitable coordinate transformation the system can also be written as integrator chain

with a matched nonlinearity.

żi = zi+1, 1 ≤ i ≤ n− 1

żn = u + ψ(z), zi(0) = z0i, 1 ≤ i ≤ n

y = z1
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whereψ(z) is to be specified later, and

z0 = (z01, · · · , z0n)T

is the initial condition. For the system, the high-gain designs treated on [15, 48, 3], can be

applied and semi-global regulation of the output can be achieved. For this system, ifϕi and

its higher derivatives are globally bounded, through the high-gain observer, for fixed initial

condition of the statez0 and any initial condition of the observerẑ0, we can design a globally

bounded controller, achieving bounded performance. That is, if the initial error

‖z̃0‖ = ‖z0 − ẑ0‖

becomes large, this design still achieves bounded performance.

1.3.2 Poor Information for Unknown Parameter

Secondly, we will consider a system in output-feedback normal form with an uncertain param-

eter

ẋi = xi+1, 1 ≤ i ≤ n− 1

ẋn = u + θϕ(y), xi(0) = x0i, 1 ≤ i ≤ n

y = x1

whereu is the control input,y is the measured output,

x0 = (x01, · · · , x0n)T

is the initial condition of the state, andϕ(y) is a locally Lipschitz continuous function.

This is a parametric output feedback system, for which bothKKK andKhalil controllers can be

designed to achieve regulation of the output and bounded performance.

To design aKhalil -type output feedback controller with a high-gain observer, we need first to

design a globally bounded state feedback controller. Generally, this is achieved by saturation of

the state feedback controller. But we need the saturated controller still to stabilize the system.

For this purpose, we need to determine suitable saturation levels. However, the required satu-

ration levels are typically dependent onθ, the unknown constant. Therefore, we have to first

quantify an a-priori estimate for the magnitude ofθ. Sinceθ is assumed to be unknown our

knowledge of it is typically poor. Hence we have to estimateθ conservatively. But when our

a-priori upper bound for|θ| is conservative, we will show that the performance of theKhalil

design becomes poor.

For aKKK design, the performance is independent of any a-priori upper bound for|θ|. There-

fore, the performance keeps uniformly bounded as the a-priori upper bound for|θ| becomes
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conservative. Hence, for this system we will establish a result with the contrary performance

relationship to that in above section.

1.4 Gap Metric Robust Designs

Next we consider the third problem-the robustness of backstepping and high-gain designs. The

definition for stability in this part is robust stability.

To design a controller for a plant, a mathematical model ( called the nominal plant ) for the plant

is necessary. But, in practice, the nominal mathematical model for the plant cannot completely

describe the actual plant–there always exists a difference between the nominal plant and the

‘true’ plant. On the other hand, when we measure a signal, what we measured is not exactly the

real signal, namely, there is a measurement disturbance. When we use the measured signals for

feedback control, another disturbance, the input disturbance, is typically present.

A closed-loop could become unstable if a controller cannot tolerate these kinds of uncertain-

ties. EI-Sakkary [14] gave an example that a small uncertainty changed the stability of the

closed-loop, which is described as follows. For a single-input and single-output linear system

represented by the transfer function

K(s) =
2

s− 1

the closed-loop is stabilized by unity feedback to give

1
1 + K(s)

=
s− 1
s + 1

If K is perturbed to

K1(s) = K(s) +
ε

s− 2

the additive uncertaintyε/(s− 2) results in a pole-zero pair close to the points = 2, and makes

1/(1+K1(s)) unstable for smallε. Rohrs in [68] gave examples, where existing adaptive control

designs became unstable in the presence of small plant perturbations, input and measurement

disturbances. These examples show that modelled or unmodelled uncertainties in plants and

loop systems are challenges to control designs, especially to nonlinear systems. For control

purposes, a basic requirement is that a controller designed for the nominal plant tolerates plant

perturbations, measurement disturbances and input disturbances, that is the controller is robust

to these kinds of uncertainties. Hence, the study of robust control is an important area in control

engineering.

Although the study of robustness for control designs is as old as feedback control, even for linear

systems effective systematic tools for robust control have only been developed since 1980’s.

An appropriate topological structure for studying the robustness of linear systems is the gap

metric ( the graph topology ) introduced by Zames and EI-Sakkary [91, 14]. The gap metric
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between two linear systems is defined as the gap of their graphs, which originated from the

notion of the distance between two sets ( see [44] ). The tolerable uncertainties are constrained

in the gap. The theory of robustness for linear systems is then well established. Vidyasagar

[84, 85] defined an alternative metric-the graph metric, which is topologically equivalent to

the gap metric. In contrast, other frameworks for studying robustness have restrictions; e.g.,

if there exists an additive uncertainty it is impossible to compare a stable closed-loop with an

unstable one, the order of parametric uncertainty cannot be changed, a small time delay is not

an allowable uncertainty, etc. However, it is pertinent to observe that the gap or graph notion of

distance corresponds naturally to the notion of coprime factor uncertainty.

For nonlinear systems, it had been a target to build up a corresponding gap metric theory. But,

it is difficult to cope with the complexity of nonlinear phenomena even in the absence of distur-

bances and other uncertainties. The robustness study of nonlinear systems is far less developed

than for linear systems. In 1997, in a fundamental paper [35], Georgiou and Smith established a

theory of gap metric for nonlinear case, and a series of applicable robust stability theorems were

obtained.

As we introduced previously, the backstepping ( see [55] ) is a well established constructive

design procedure, which can be applied to models without the matching condition. But, ordi-

nary backstepping designs do not guarantee robustness. In 1992 Freeman and Kokotović [19]

initiated the study of robust backstepping designs. Marino and Tomei [61], Qu [66], Slotine and

Hedreick [74] independently obtain robust backstepping results in 1993. In successive papers

[20, 22], robust backstepping designs were developed. The established results were summarized

in [23].

In the above work robust control Lyapunov functions were introduced as a design tool. Hence,

the uncertainties allowed in plants are only modelled dynamics. Un-modelled dynamics or plant

perturbations are not allowed. Another restriction is that the measurement disturbances are

required to enter system equations multiplied by a classK∞ function2 of the state magnitude.

That is, the measurement disturbances are in the set

Y (x) = x + ρ(x)B

whereρ is a classK∞ function, andB is the closed unit ball. This means that the effects of

measurement disturbances decrease to zero as the states are regulated to zero. But, in practice,

actual measurement disturbances do not satisfy this assumption.

Recently, many researchers further developed robust backstepping designs on some restrict con-

ditions. The results can be found in [24, 18, 1, 16, 2, 37]. The work of Freeman and Kokotović,

and other researchers, is only concerned with state feedback control. So far, the area of robust

backstepping designs for output feedback control is still open.

2A continuous functionγ : R+ → R+ is said to belong toK∞ if it is strictly increasing, andγ(0) = 0, and
γ(r) →∞ asr →∞.
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We have mentioned before that the high-gain observer was alternative design. Similarly, the

standard high-gain design does not guarantee the robustness. When a high-gain observer is

used to output feedback, it is required that the high-gain factor1/ε is large. Consequently, it is

believed that the high-gain observer designs are sensitive to loop disturbances and plant pertur-

bations. But it is surprising that the simulation results in [47] show that a high-gain observer

design exhibits almost the same level of degradation with the other designs in the presence of

disturbances. So far, there are no results about the robustness of high-gain designs except the

above simulation result. Therefore, it is important to investigate the robustness of high-gain

designs to loop disturbances and plant perturbations.

In this thesis, in the framework of gap metric we will consider robust backstepping for state

feedback and output feedback designs, and robust high-gain observer designs. Since standard

backstepping and high-gain designs do not guarantee robustness, we amend the backstepping

and high-gain designs to achieve the robustness of controllers to input and output disturbances.

Then, we use gap metric robustness framework of [35] to obtain the robustness of the controller

to plant perturbations.

The critical steps are designs of controllers and the construction of stable operators between the

external disturbances and the internal signals of a closed-loop.

1.4.1 Robust Backstepping Designs

In the framework of gap metric robustness, we will study robust backstepping design procedures.

The plant uncertainties can be modelled or unmodelled dynamics, that is plant perturbations are

also included. There is no restriction on input and measurement disturbances. The results can

even be global to disturbances. All the restrictions for plant uncertainties, input and measure-

ment disturbances are removed.

State Feedback Control

For state feedback control, we will consider a nominal plant in strict-feedback form

ẋ1i = x1(i+1) + ϕi(x11, · · · , x1i), 1 ≤ i ≤ n− 1

ẋ1n = u1 + ϕn

(
x11, · · · , x1(n−1), x1n

)
, x1i(0) = x0

1i, 1 ≤ i ≤ n

where we assume thatϕi, 1 ≤ i ≤ n satisfy

ϕi(0) = 0, 1 ≤ i ≤ n

and are Lipschitz continuous, and

x0
1 = (x0

11, · · · , x0
1n)T

is the initial condition.
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Since ordinary backstepping designs do not guarantee robustness, the designs in [55] cannot

be directly used to achieve our purpose. By an amended backstepping procedure, we design a

robust controller for the nominal plant. The controller achieves gain-function stability, and if

the initial condition is zero then the controller achieves stability, that is, the controller is robust

to input and measurement disturbances of the closed-loop. Then we make use of the gap metric

robustness results in [35] to obtain robustness of the closed-loop to plant perturbations which are

small in some sense. In this way, we show that for any perturbed plants the controller stabilizes

the closed-loop with input and measurement disturbances if the gap metric distance between the

nominal and a perturbed plant is less than a computable constant ( also see [88] ).

Output Feedback Control

For output feedback control, we will consider a nominal plant in output-feedback form, in which

nonlinearities only depend on the output

ẋ1i = x1(i+1) + ϕi(y1), 1 ≤ i ≤ n− 1

ẋ1n = u1 + ϕn(y1), x1i(0) = x0
1i, 1 ≤ i ≤ n

y1 = x11

whereϕi, i = 1, 2, · · · , n are either locally or global Lipschitz continuous, and satisfy

ϕi(0) = 0, 1 ≤ i ≤ n

and

x0
1 = (x0

11, · · · , x0
1n)T

is the initial condition.

Again, we amend the backstepping method, design a controller and an observer in the pres-

ence of input and measurement disturbances, proving it’s robustness. The closed-loop is gain-

function stable, and stable if the initial condition is zero.

If the nonlinearities are only locally Lipschitz continuous, the results are local to input and mea-

surement disturbances; if the nonlinearities are globally Lipschitz continuous, then the results

are global to input and measurement disturbances.

By the robustness results in [35], if the initial condition is zero we obtain the robustness of

the controller to plant perturbations in a gap metric sense. That is, for any perturbed plant the

controller stabilizes the closed-loop with input and measurement disturbances if the gap metric

distance between the nominal and perturbed plant is less than a computable constant.

A time delay in feedback control could destroy the stability of a closed-loop system. As an

application, we apply the theory we have established to a system with time delay, and prove that

if the time delay is suitably small, the controller is able to achieve stability of the closed-loop.
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1.4.2 Robust High-gain Designs

For robust high-gain control, we will consider a nonlinear nominal plant in normal form

ẋ1i = x1(i+1), 1 ≤ i ≤ n− 1

ẋ1n = u1 + ϕ(y1), x1i(0) = x0
1i, 1 ≤ i ≤ n

y1 = x11

where, for simplicity, we assumeϕ is Lipschitz continuous.

Since the standard high-gain observer does not guarantee robustness to loop disturbances, we

amend the high-gain observer and design a controller. Then we prove the controller is robust to

loop disturbances.

By gap metric theory, we show that this controller is able to stabilize the closed-loop for a

perturbed plant if the gap metric distance between the nominal plant and the perturbed plant

is smaller than a constant, which is independent of the high-gain factorε. That is the plant

perturbation margin is independent ofε, hence the controller is robust to loop disturbances and

plant perturbations.

1.5 Summary of Contents

• In Chapter2, we outline the standard observer backstepping and high-gain observer design

procedures. Then we summarize the major relevant results concerning the two kinds of

designs, which we will quote latter.

• In Chapter3, a non-singular cost functional for non-optimal output feedback designs is

introduced to measure the performance of a controller. Then we prove a proposition about

backstepping design for a two dimension system to illustrate that a good performance

comes from a small initial error.

• In Chapter4, we show that aKhalil design out-performs aKKK design when the informa-

tion on initial state is poor and leads to a large initial observer error.

• In Chapter5, we establish a result in the reverse direction to that of Chapter4. We consider

an output feedback system with an unknown parameter, and then show that an adaptive

KKK design out-performs an adaptiveKhalil design as the information on the size of the

parameter becomes conservative.

• In Chapter6, the required background knowledge on gap metric robustness is given.

• In Chapter7, a robust state feedback backstepping controller is designed for strict-feedback

form nominal plant, and it is proved that this controller is robust to loop disturbances and

has a non-zero plant perturbation margin.
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• In Chapter8, for the output-feedback nominal plant, we design output feedback back-

stepping controllers, and prove these controllers are robust to loop disturbances and have

non-zero plant perturbation margins.

• In Chapter9, by an amended high-gain observer design, a robust controller is constructed

for the nominal plant in normal form. It is proved that this controller is robust to loop

disturbances and has a non-zero plant perturbation margin.

• In Chapter10, overall conclusions and directions for future research are given.
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Chapter 2

Preliminaries

In this chapter we introduce the observer backstepping, adaptive observer backstepping and

high-gain observer design procedures, and some related standard results which we will use later.

2.1 Observer Backstepping Design Procedure

We simply state the observer backstepping design procedure and some results about the design

here, the related material can be found in [55].

The observer backstepping design can be applied to the output-feedback system, in which the

nonlinearities only depend on the output

ẋ1 = x2 + ϕ1(y)

ẋ2 = x3 + ϕ2(y)
...

ẋρ−1 = xρ + ϕρ−1(y)

ẋρ = xρ+1 + ϕρ(y) + bmβ(y)u (2.1)

...

ẋn−1 = xn + ϕn−1(y) + b1β(y)u

ẋn = ϕn(y) + b0β(y)u, xi(0) = x0i, 1 ≤ i ≤ n

y = x1

It is assumed that the system is minimum phase, that is,bmsm + · · · + b1s + b0 is a Hurwitz

polynomial, andβ(y) 6= 0 for anyy ∈ R.

15
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To derive an observer for the system, we rewrite the system in the form

ẋ = Ax + ϕ(y) + bβ(y)u, x(0) = x0

y = Cx

where

A =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
. . . . . . . . . . . . . . . . . . .

0 0 0 · · · 0 1
0 0 0 · · · 0 0




, x =




x1

x2

...

xn




, x0 =




x01

x02

...

x0n




and

ϕ(y) =




ϕ1(y)
ϕ2(y)

...

ϕn(y)




, b =




0
...

0
bm

...

b0




, C =
(
1, 0, · · · , 0

)

Let

x̂ =




x̂1

x̂2

...

x̂n




, x̂0 =




x̂01

x̂02

...

x̂0n




then an observer is defined by

˙̂x = Ax̂ + K(y − ŷ) + ϕ(y) + bβu, x̂(0) = x̂0

ŷ = Cx̂

where

K =




k1

k1

...

kn




, ki > 0, 1 ≤ i ≤ n

is chosen such that

A0 = A−KC

is Hurwitz, andx̂0 is the initial condition of the observer.
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Let

x̃ = x− x̂

be the observer error. Theñx satisfies

˙̃x = A0x̃, x̃(0) = x̃0

where

x̃0 = x0 − x̂0

is the initial error. Hence, the observer error decays exponentially.

Suppose that the tracking reference signalyr(t) ∈ Cρ[0,∞), and define the following recursive

expressions

ξ1(y) = y − yr

α1(y) = −c1ξ1 − d1ξ1 − ϕ1(y)

ξi = x̂i − αi−1

(
y, x̂1, . . . , x̂i−1, yr, · · · , y(i−2)

r

)
− y(i−1)

r

αi = −ciξi − ξi−1 − di

(
∂αi−1

∂y

)2

ξi − ki(y − x̂1)− ϕi(y)

+
∂αi−1

∂y
(x̂2 + ϕ1(y)) +

i−1∑

j=1

∂αi−1

∂x̂j
(x̂j+1 + kj(y − x̂1) + ϕj(y))

+
i−2∑

j=1

∂αi−1

∂y
(j)
r

y(j+1)
r , i = 2, 3, · · · , ρ

whereci, di, 1 ≤ i ≤ n are positive constants.

The controller is then defined as

u =
1

bmβ(y)

(
αρ − x̂ρ+1 − y(ρ)

r

)
(2.2)

For this controller, the following theorem ( see [55] ) holds.

Theorem 2.1.For the system (2.1), suppose thatbmsm+ · · ·+b1s+b0 is a Hurwitz polynomial,

andβ(y) 6= 0 for anyy ∈ R, and the reference signalyr(t) ∈ Cρ[0,∞). Then the controller

(2.2) guarantees global boundedness of signalx(t), x̂(t) andu for any initial conditionx0 and

initial observerx̂0, furthermore, achieves regulation of the tracking error

lim
t→∞(y(t)− yr(t)) = 0
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Proof. The proof follows [55]. First, the resulting error system is

ξ̇1 = −c1ξ1 + ξ2 − d1ξ1 + x̃2

ξ̇i = −ciξi + ξi−1 + ξi+1 − di

(
∂αi−1

∂y

)2

ξi − ∂αi−1

∂y
x̃2, 2 ≤ i ≤ ρ− 1

ξ̇ρ = −cρξρ + ξρ−1 − dρ

(
∂αρ−1

∂y

)2

ξρ − ∂αρ−1

∂y
x̃2

˙̃x = A0x̃

Let P0 be the positive definite symmetric solution of the Lyapunov equation

P0A0 + AT
0 P0 = −I

and define the Lyapunov function

V (ξ, x̃) =
ρ∑

j=1

(
1
2
ξ2
j +

1
dj

x̃T P0x̃

)

Then, along the solution of the closed-loop, it holds that

V̇ ≤ −
n∑

j=1

(
cjξ

2
j +

3
4dj

|x̃|2
)
≤ 0

Thus,ξ1, · · · , ξρ are bounded, and the tracking errorξ1 tends to zero ast goes to infinity.

The boundedness of other signals is established as follows. Sincex̃ andyr are bounded,y is

bounded. Hence,̂x1 = y− x̃1 is bounded. Sinceξ2 is bounded,̂x2 = ξ2 +α1(y, x̂1) is bounded.

In the same manner, it can be shown thatx̂1, · · · , x̂ρ are bounded. Note that the observer error

x̃ satisfies˙̃x = A0x̃, andA0 is Hurwitz, thenx̃ exponentially decays to zero. Hence,x1, · · · , xρ

are bounded.

The boundedness of signalsxρ+1, · · · , xn andx̂ρ+1, · · · , x̂n comes from the fact that the bound-

edness ofy implies the boundedness ofζ.

Finally, the controlu is bounded becausebmβ(y) is bounded away from zero.
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2.2 Adaptive Backstepping Design Procedure

The adaptive observer backstepping design can be applied to the parametric output-feedback

system

ẋ1 = x2 + ϕ0,1(y) +
p∑

j=1

θjϕj,1(y)

ẋ2 = x3 + ϕ0,2(y) +
p∑

j=1

θjϕj,2(y)

...

ẋρ−1 = xρ + ϕ0,ρ−1(y) +
p∑

j=1

θjϕj,ρ−1(y)

ẋρ = xρ+1 + ϕ0,ρ−1(y) +
p∑

j=1

θjϕj,ρ(y) + bmβ(y)u (2.3)

...

ẋn = ϕ0,n(y) +
p∑

j=1

θjϕj,n(y) + b0β(y)u, xi(0) = x0i, 1 ≤ i ≤ n

y = x1

whereθ1, · · · , θp andb0, · · · , bm are unknown constant parameters; the sign ofbm is known;

the polynomial

bmsm + · · ·+ b1s + b0

is Hurwitz;β(y) 6= 0 for all y ∈ R; only the outputy is measured.

The control objective is to track a given reference signalyr(t) with the outputy while keeping

all signals bounded. Assume that reference signalyr(t) and its firstρ derivatives are known and

bounded, andy(ρ)
r (t) is continuous.

First, rewrite the system in the form

ẋ = Ax + ϕ0(y) +
p∑

j=1

θjϕj(y) + bβ(y)u, x(0) = x0

y = Cx
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where

A =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
. . . . . . . . . . . . . . . . . . .

0 0 0 · · · 0 1
0 0 0 · · · 0 0




, x =




x1

x2

...

xn




, x0 =




x01

x02

...

x0n




and

ϕj(y) =




ϕj,1(y)
ϕj,2(y)

...

ϕj,n(y)




, 0 ≤ j ≤ p, b =




0
...

0
bm

...

b0




, C =
(
1, 0, · · · , 0

)

Choose the vector

K =




k1

k1

...

kn




, ki > 0, 1 ≤ i ≤ n

such that

A0 = A−KC

is Hurwitz, and define the filters

ξ̇0 = A0ξ0 + Ky, ξ0(0) = ξ0
0

ξ̇j = A0ξj + ϕj(y), ξj(0) = ξ0
j , 1 ≤ j ≤ p

v̇j = A0vj + en−jβ(y)u, vj(0) = v0
j , 1 ≤ j ≤ m

whereei is theith coordinate vector inRn.
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The controller is defined as

u =
1

β(y)

(
αρ − vm,ρ+1 + ϑ1,1y

(ρ)
r

)

ϑ̇1 = sgn(bm)Γω1(y, ξ̄(2), v̄(2), y(1)
r − ẏre1)ζ1

ϑ̇2 = Γ
(
ω2(y, ξ̄(2), v̄(2), ϑ̄(2), ȳ(1)

r ) + ζ1ep+m+1

)
ζ2 (2.4)

ϑ̇i = Γωi(y, ξ̄(i), v̄(i), ϑ̄(i−1), ȳ(i−1)
r ))ζi, i = 2, · · · ρ

x̂(0) = x̂0 = ξ0
0 +

p∑

j=1

θjξ
0
j +

m∑

j=0

bjv
0
j

ϑ(0) = ϑ0 = (ϑ01, ϑ02, · · · , ϑ0n)T

whereζi, ωi, αi, i = 1, · · · , n andȳr are defined by the following recursive expressions

ζ1 =y − yr

ζi =vm,i − αi−1(y, ξ̄(i), v̄(i), ϑ̄(i), ȳ(i−1)
r )− ϑ1,1y

(i)
r

α1 =− ϑT
1 ω1

α2 =− c2ζ2 − ϑ2,p+m+1ζ1 − d2

(
∂α1

∂y

)2

ζ2 +
∂α1

∂y
(ξ0,2 + ϕ0,1(y))− ϑT

2 ω2 + k2vm,1

+
∂α1

∂ξ0
(A0ξ0 + Ky + ϕ0(y)) +

p∑

j=1

∂α1

∂ξj
(A0ξj + ϕj(y))

+
p∑

j=1

∂α1

∂vj
A0vj +

(
∂α1

∂ϑj
+ ẏre

T
1

)
sgn(bm)Γ(ω1 − ẏre1)ζ1 +

∂α1

∂yr
ẏr

αi =− ciζi − ζi−1 − di

(
∂αi−1

∂y

)2

ζi +
∂αi−1

∂y
(ξ0,2 + ϕ0,1(y))− ϑT

i ωi + kivm,1

+
∂αi−1

∂ξ0
(A0ξ0 + Ky + ϕ0(y)) +

p∑

j=1

∂αi−1

∂ξj
(A0ξj + ϕj(y))

+
p∑

j=1

∂αi−1

∂vj
A0vj +

(
∂α1

∂ϑj
+ ẏre

T
1

)
sgn(bm)Γ(ω1 − ẏre1)ζ1

+
∂αi−1

∂ϑ2
Γ(ω2 + ζ1ep+m+1)ζ2 +

i−1∑

j=3

∂αi−1

∂ϑj
Γωjζj

i−1∑

j=1

∂αi−1

∂y
(j)
r

y(j+1)
r , i = 3, · · · , ρ

and

ωT
1 =(c1ζ1 + d1ζ1 + ξ0,2 + ϕ0,1 + ζ1,2, · · · , ϕp,1 + ξp,2, ξp,2, v0,2, · · · , vm−1,2)

ωT
i =− ∂αi−1

∂y
(ϕ1,1 + ξ1,2, · · · , ϕp,1 + ξp,2, · · · , v0,2, · · · , vm−1,2, vm,2), i = 2, · · · , ρ
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and

ξ̄(i) =(ξ0,1, · · · , ξ0,i, · · · , ξp,1, · · · , ξp,i), i = 1, · · · , ρ− 1

v̄(i) =(v0,1, · · · , v0,i, · · · , vm−1,1, · · · , vm−1,i, · · · , vm,1 · · · , vm,i), i = 1, · · ·n
ϑ̄(i) =(ϑT

1 , · · · , ϑT
i ), i = 1, · · · ρ

ȳ(i)
r =(yr, ẏr, · · · , y(i)

r ), i = 1, · · · ρ

For this controller, the closed-loop has following property.

Theorem 2.2. Consider the system (2.3) and the referenceyr(t) ∈ Cρ[0,∞). Then, for any

initial condition of the statex0 and any initial observer statêx0, the controller (2.4) guarantees

the boundedness of all signals and regulation of the tracking error

lim
t→∞ (y(t)− yr(t)) = 0

Proof. The complete proof can be found in [55]. We only give an outline here.

First, define

θ̄0 =
(

1
bm

,
θ1

bm
, · · · ,

θn

bm

)T

also define the estimate ofθ̄0 by ϑ1, and

V1 =
1
2
ζ2
1 +

|bm|
2

(θ̄0 − ϑ1)T Γ−1(θ̄0 − ϑ1) +
1
d1

εT P0ε

whereP0 is the positive definite solution of

P0A0 + AT
0 P0 = −I

and

ε =: x− (ξ0 + θξ1 + v0)

Then it can be shown that

V̇1 ≤ −c1ζ
2
1 −

3
4d1

εT ε + bmζ1ζ2

Define

θ̄ = (θ1, · · · , θp, b0, · · · , bm)T

and

V2 = V1 +
1
2
ζ2
2 +

1
2
(θ̄ − ϑ2)TΓ−1(θ̄ − ϑ2) +

1
d2

εT P0ε

Then

V̇2 ≤ −c1ζ
2
1 − c2ζ

2
2 −

3
4

(
1
d1

+
1
d2

)
εT ε + ζ2ζ3
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Finally, define

Vρ =
ρ∑

i=1

(
1
d2

ζi +
1
di

εT P0ε

)
+
|bm|
2

(θ̄0 − ϑ1)TΓ−1(θ̄− ϑ2) +
ρ∑

i=2

1
d2

(θ̄− ϑi)TΓ−1(θ̄− ϑi)

Then it can be shown that

V̇ρ ≤ −
ρ∑

i=1

(
ciζ

2
i +

3
4di

εT ε

)

Hence, the nonnegative functionVρ is non-increasing, thus,ζ1, · · · , ζρ, ϑ̄− ϑ1, · · · , ϑ̄− ϑρ are

bounded, and thusϑ1, · · · , ϑρ are bounded by constants depending only on the initial conditions

of the adaptive system. From this it can be proven that the other signals are bounded.

The convergence of tracking error can be obtained by LaSalle-Yoshizawa theorem ( see, e.g.,

[55] ) sinceζ1, · · · , ζρ andε converge to zero ast →∞.

2.3 High-gain Observer Design Procedure

The basic idea of high-gain observer designs is as follows ( see, e.g., [45, 3, 30, 31, 32] ). First,

design a globally bounded state feedback controller, which is usually obtained by saturation.

Second, a high-gain observer, which is defined through a high-gain factorε, is designed to

estimate the states. Third, replace the states by their observer variables and obtain an output

feedback controller.

If ε is sufficiently small, the behavior of the closed-loop under the output feedback controller

achieves the same properties of the closed-loop under the state feedback controller. Since the

state feedback controller and the high-gain observer can be designed separately, this class of

designs achieves a separation principle for nonlinear systems.

In this class of designs, the requirement of global boundedness of the state feedback controllers

is essential. So, saturation is usually applied to achieve this property. However, the saturation

levels must be high enough to guarantee stability of closed-loop under the state feedback control.

Here we give the design procedure of high-gain observer and related assumptions and theorems

of the design in [45, 3].
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Consider the system

ẋ1 = x2

ẋ2 = x3

... (2.5)

ẋn−1 = xn

ẋn = ψ(y, θ) + u, x1(0) = x0i, 1 ≤ i ≤ n

y = x1

whereu is the control input,y is the measured output,θ is the unknown parameter, the functionψ

is sufficiently smooth and locally Lipschitz continuous in its arguments, in addition,ψ(0, θ) = 0.

Introducing

A =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
. . . . . . . . . . . . . . . . . . .

0 0 0 · · · 0 1
0 0 0 · · · 0 0




, x =




x1

x2

...

xn




, x0 =




x01

x02

...

x0n




, B =




0
...

0
1




and

C =
(
1, 0, · · · , 0

)

we rewrite the system into

ẋ = Ax + B(ψ(x, θ) + u), x(0) = x0

y = Cx

The state estimate is generated by the high-gain observer

˙̂x = Ax̂ + H(y − x̂1), x̂(0) = x̂0

wherex̂0 is the initial condition of the observer, and

H = H(ε) =




β1

ε
β2

ε2

...
βn

εn




and the positive constantsβi , 1 ≤ i ≤ n, are chosen such that the roots of the equation

sn + β1s
n−1 + · · ·+ βn−1s + βn = 0

are in the open left-half plane, andε is a small positive constant to be specified.
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Control Design 1

First we follow the separation principle in [3] to design an output feedback controller.

We suppose there is a state feedback control

u = Γ(x, ϑ̂)
˙̂
ϑ = γ(x, ϑ̂), ϑ̂(0) = ϑ̂0

and the assumptions made about the system and controller are as follows.

Assumption2.1. Let Γ andγ satisfy

1. Γ andγ are local Lipschitz in their arguments over the domain of interest.Γ(0, 0) = 0
andγ(0, 0) = 0.

2. Γ andγ are globally bounded function ofx.

3. The origin is an globally asymptotically stable equilibrium point of the closed-loop sys-

tem.

The output feedback controller is given by

u = Γ(x̂, ϑ̂) (2.6a)

˙̂
ϑ = γ(x̂, ϑ̂), ϑ̂(0) = ϑ̂0 (2.6b)

Then for the closed-loop system, the following theorems hold, which are directly quoted from

[3].

Theorem 2.3. Suppose Assumption2.1 is satisfied, then there existsε∗1 such that, for every

ε : 0 < ε < ε∗1, the trajectories of the closed-loop under the output feed back controller, starting

in any compact set, are bounded for allt > 0.

Theorem 2.4. Suppose Assumption2.1 is satisfied, then there existsε∗2 such that, for every

ε : 0 < ε < ε∗2, the origin of the closed-loop system under the output feedback controller is

globally asymptotically stable.

Control Design 2

Now we follow the design in [45] to design an output feedback controller.

For some constantθm, write

Ω = {|θ| ≤ θm}

and

Ωδ = {|θ| ≤ θm + δ}
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whereΩ̂ is any compact set which satisfiesΩ̂ ⊇ Ωδ.

Then for the system (2.5), a state feedback controller is given by

u = µ(x, θ̂) = kx− θ̂ψ(y, θ) (2.7a)

˙̂
θ = ν(x, θ̂) = Proj(θ̂, φ), θ̂(0) = θ̂0 (2.7b)

where the vector

k = (k1, k2, · · · , kn)

is chosen such that matrixA + Bk is Hurwitz, and the projection Proj(θ̂, φ) is defined by

Proj(θ̂, φ) =

{
φ, if |̂θ| ≤ θm

φ− 1
δ (θ̂ − θm)φ, otherwise

and

φ(x) = 2xT P1Bψ(y)

The signals of the closed-loop under the state feedback controller are bounded. Take

U0 ≥ max |µ(x, θ̂)|, V0 ≥ max |ν(x, θ̂)|

and we saturate the functionµ andν as follows

µs(x, θ̂) = U0sat

(
µ(x, θ̂)

U0

)

νs(x, θ̂) = V0sat

(
ν(x, θ̂)

V0

)

We again use the high-gain observer

˙̂x = Ax̂ + H(y − x̂1), x̂(0) = x̂0

to estimate the states. Then we define an output feedback controller as

u = µs(x̂, θ̂) (2.8a)

˙̂
θ = νs(x̂, θ̂), θ̂(0) = θ̂0 (2.8b)

For the closed-loop, we have following theorem.

Theorem 2.5.For the system (2.5) and any initial conditionx0, suppose that the output feedback

controller is defined by (2.8). Then forθ0 ∈ Ω and θ̂0 ∈ Ω̂, there existsε∗ > 0 such that for

all 0 < ε < ε∗, all the signals of the closed-loop system are bounded, and mean square of the
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output is of orderO(ε)

lim
T→∞

1
T

∫ T

0
y(t)2dt = O(ε)

Proof. The system is of the form in [45]. The Assumptions 1 and 2 in [45] are naturally satisfied.

The controller is that in [45]. Therefore, this is the result of the first part of Theorem 2 in

[45].

In the next chapter, we will introduce a performance measurement and prove a result about the

choice of initial condition of the observer.



Chapter 3

Performance and Initialization of

Observer

In this chapter we consider a non-singular cost functional penalizing both the output transient

and the control effort to measure the performance of a controller. Then we prove a result which

illustrates that ‘good’ performance results from small initial observer error.

3.1 Performance of Controller

It should be observed that whilst there are many results concerning the transient performance

of the output, see, e.g., [55], there is little work in the literature on non-singular costs for non-

optimal designs, see however [26, 27, 7] and [29] for related results and techniques.

In particular, for a systemΣ with input u and outputy, and a controllerΞ mappingy 7→ u, we

consider the following cost which penalizes both the control and the output signal.

P (Σ, Ξ) = ‖y‖2
L2(Tη) + ‖u‖L∞(R+)

=
∫

L2(Tη)
y2dt + sup

t∈R+

|u(t)|

where the time setTη is defined by

Tη =
{
t ≥ 0

∣∣ |y(t)| > η
}

andη is a small positive number.

Such a cost penalizes the input and output response of the system whilsty(t) /∈ [−η, η], hence

28
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for a closed-loop whose goal is to regulatey to zero, keepingy, u bounded, this cost is finite and

is a reasonable penalty on the transient behavior.

Ever for a design which regulatesy to zero, it is possible thaty /∈ L2(R+), for example,y(t) =
1/
√

t ∈ L2(Tη), but 1/
√

t /∈ L2(R+). Therefore, in the definition of the performance, the

‖y‖L2(Tη) norm is introduced, instead of the norm‖y‖L2(R+), to guarantee the finiteness of the

cost. For the control input, we are concerned with the maximum value of the control input.

Hence, the norm‖u‖L∞(R+) is a proper measurement of this value.

Note that whilst a directL2 penalty on the output could be considered for some designs, the re-

laxation of the output penalty is physically meaningful, and considerably simplifies the technical

treatment.

3.2 Initialization of Observer

Let us first consider a generic observer based controllerΞ(x̂0), wherex̂0 is the initial condition

for the observer. The performance of the closed-loop[Σ(x0),Ξ(x̂0)] is dependent on both the

initial statex0 and the initial condition for the observer̂x0. Whilst the initial statex0 is the

property of a system, the control designer has the freedom to choose the initial conditionx̂0 for

the observer.

It is intuitive that good performance results from initializing the observer statex̂0 close to the

actual initial statex0. Of course, in practice, the initial state is often unknown, so it can be hard

to initialize in this manner. Nevertheless standard practice is to try to minimize the initial error

‖x̃0‖ = ‖x0 − x̂0‖

according to the best information available. To establish a rigorous justification for this intuitive

idea (or more precisely: to characterize the situations when it is valid) remains an open research

problem; here we simply illustrate the validity of this approach on a single example, as discussed

next.

Consider the 2-state system defined by

Σ0(x0) : ẋ1 = x2

ẋ2 = ϕ(y) + u, x(0) = (x01, x02)T

y = x1

whereϕ(y) is a Lipschitz continuous function. We consider aKKK controller ( see Chapter2 )
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defined as follows.

Ξ0
O(x̂0) : u = α2(y, x̂1, x̂2)

˙̂x1 = x̂2 + k1(y − x̂1)
˙̂x2 = k2(y − x̂1) + ϕ(y) + u, x̂(0) = (x̂01, x̂02)T

where

ξ1(y) =y

α1(y) =− c1ξ1 − d1ξ1

ξ2(y, x̂1, x̂2) =x̂2 − α1(y, x̂1)

α2(y, x̂1, x̂2) =− c2ξ2 − ξ1 − d2

(
∂α1

∂y

)2

ξ2 − k2(y − x̂1)− ϕ(y) +
∂α1

∂y
x̂2

andk1, k2, ci, di, 1 ≤ j ≤ 2 are positive constants.

Since we can measurex1, we can always takêx01 = x01. However,x02 may be unknown, and

so it is meaningful to compare the behaviour of the closed-loop s with the alternative choices of

x̂02 = x02, x̂02 = 0

We can then establish the following proposition.

Proposition 3.1.Consider the systemΣ0(x0) and the controllerΞ0(x̂0), then there existci, di, ki, i =

1, 2 such that

lim
x02→+∞

(
P (Σ0(x0),Ξ0

O((x01, 0)T ))− P (Σ0(x0), Ξ0
O((x01, x02)T ))

)
= +∞

Proof. Consider the closed-loop(Σ0(x0), Ξ0
O(x0)). First, observe that the observation error

x̃ = x− x̂

satisfies

˙̃x1 = −k1x̃1 + x̃2 (3.1a)

˙̃x2 = −k2x̃1, x̃(0) = x̃0 (3.1b)
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hence satisfies the equation

¨̃x1 + k1
˙̃x1 + k2x̃1 = 0 (3.2a)

x̃1(0) = x01 − x̂01 (3.2b)

˙̃x1(0) = x02 − x̂02 − k1(x01 − x̂01) (3.2c)

where

x̃0 = x0 − x̂0 =


 x01 − x̂01

x02 − x̂02




Secondly, note that the control signalu can be expressed as

Ξ0
O(x̂0) : u = α2(y, x̂1, x̂2) = k2x̂1 − h2x̂2 − hy − ϕ(y) (3.3)

where

h =
(
c2 + d2(c1 + d1)2

)
(c1 + d1) + k2 + 1

h2 = c2 + d2(c1 + d1)2 + c1 + d1

Hence, the closed-loop system can be written as

ẋ1 = x2 (3.4a)

ẋ2 = −hx1 + k2x̂1 − h2x̂2 (3.4b)

˙̂x1 = k1x1 − k1x̂1 + x̂2 (3.4c)

˙̂x2 = −h1x1 − h2x̂2 (3.4d)

where

h1 = h− k2 =
(
c2 + d2(c1 + d1)2

)
(c1 + d1) + 1

Consider the first situation̂x0 = x0, namely,x̃0 = 0. The solution of (3.1) is x̃ = 0, so

x̂(t) ≡ x(t), and the closed system (3.4) reduces to

ẋ1 = x2 (3.5a)

ẋ2 = −h1x1 − h2x2 (3.5b)
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Thus we have

ẍ1 + h2ẋ1 + h1x1 = 0 (3.6a)

x1(0) = x01, ẋ1(0) = x02 (3.6b)

Write the solution of above equation asx0
1(t), and observe thatx0

1(t) can be expressed as

x0
1(t) = x01q1(t) + x02q2(t)

whereq1, q2 are functions which are independent ofx01, x02. Moreover, we can choose1 ci, di, i =

1, 2 such thatq2(t) > 0 for t > 0, and further2 x0
1(t) > 0 for t > 0 if x02 > 0.

Now consider the second situationx̂01 = x01 andx̂02 = 0, namely,x̃01 = 0 andx̃02 = x02.

Hence, the problem (3.2) becomes

¨̃x1 + k1
˙̃x1 + k2x̃1 = 0 (3.7a)

x̃1(0) = 0, ˙̃x1(0) = x02 (3.7b)

The solution to the above problem can be written as

x̃1 = x02f1(t) (3.8)

wheref1(t) is a continuous function which is independent ofx02. At the same time,̃x2 can also

be written as

x̃2 = x02f2(t) (3.9)

wheref2(t) is a continuous function which is independent ofx02.

1For example, we can chooseci, di, i = 1, 2 such thath2
2 > 4h1, and let

λ1 = −1

2

(
h2 −

√
h2

2 − 4h1

)
, λ2 = −1

2

(
h2 +

√
h2

2 − 4h1

)

thenq1(t) andq2(t) can be written as

q1(t) =
1

λ1 − λ2

(
λ1e

λ2t − λ2e
λ1t

)
, q2(t) =

1

λ1 − λ2

(
eλ1t − eλ2t

)
> 0, t > 0

2Here,x0
1(t) can also be written as

x0
1(t) =

1

λ1 − λ2

(
(x02 − λ1x01) eλ1t − (x02 − λ2x01) eλ2t

)

It can verify that ifx02 > 0 thenẋ0
1(t) > 0 for t > 0. Note thatx0

1(0) = 0, thenx0
1(t) > 0 for t > 0.
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Now substitutêx = x− x̃ into the closed-loop (3.4), and rewrite the first two equations as

ẋ1 = x2 (3.10a)

ẋ2 = −h1x1 − h2x2 − k2x̃1 + h2x̃2 (3.10b)

Alternatively this can be expressed as

ẍ1 + h2ẋ1 + h1x1 = x02f(t) (3.11)

where

f(t) = −k2f1(t) + h2f2(t)

is also independent ofx02. Again we can choosek1, k2 such that3 f(t) > 0.

Solving the following problem

ẍ1 + h2ẋ1 + h1x1 = x02f(t) (3.12a)

x1(0) = x01, ẋ1(0) = x02 (3.12b)

we can express the solution of (3.12) as

x1(t) = x0
1(t) +

∫ t

0
φ(t− τ)x02f(τ)dτ

whereφ(t) is the solution of (3.6a) which satisfiesφ(0) = 0 andφ̇(0) = 1, namelyφ(t) = q2(t).

Write

g(t) =
∫ t

0
q2(t− τ)f(τ)dτ

then

x1(t) = x0
1(t) + x02g(t)

whereg(t) > 0.

3E.g., we can choosek2
2 > 4k2 andh2k1 > 2k2, and let

µ1 = −1

2
(k1 −

√
k2
1 − 4k2), µ2 = −1

2
(k1 +

√
k2
1 − 4k2)

then we get

f1(t) =
1

µ1 − µ2

(
eµ1t − eµ2t) , f2(t) =

1

µ1 − µ2

(−µ2e
µ1t + µ1e

µ2t)

f(t) =
1

µ1 − µ2

(
(−h2µ2 − k2)e

µ1t + (h2µ1 + k2)e
µ2t) > 0

.
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Writing

Tη =
{
t ≥ 0

∣∣|x1(t)| > η
}

T 0
η =

{
t ≥ 0

∣∣|x0
1(t)| > η

}

thenT 0
η ⊂ Tη sincex1(t) > x0

1(t). Hence,

‖x1‖2
L2(Tη) − ‖x0

1‖2
L2(T 0

η ) ≥
∫

T 0
η

(
(x1(t))2 − (x0

1(t))
2
)
dt

=x2
02a + x02b (3.13)

where

a =
∫

T 0
η

(
g(t)2 + 2q2(t)g(t)

)
dt

is a positive constant sinceg(t), q2(t) > 0, and

b =
∫

T 0
η

2x01q1(t)dt

is a constant which is independent ofx02.

Write the control input of controllerΞ0
O(x01, x02) as u0, and the control input of controller

Ξ0
O(x01, 0) asu1. Then by a calculation, we can obtain

‖u0‖ ≤ x02a0 + b0 (3.14a)

‖u1‖ ≤ x02a1 + b1 (3.14b)

sinceϕ is Lipschitz continuous, whereai, bi, i = 1, 2, are positive constants which are indepen-

dent ofx02. Therefore, from (3.13) and (3.14), we obtain

lim
x02→+∞

1
x2

02

(
P (Σ0(x0), Ξ0

O(x01, 0))− P (Σ0(x0), Ξ0
O(x01, x02))

)

= lim
x02→+∞

1
x2

02

(
‖x1‖2

L2(Tη) − ‖x0
1‖2

L2(T 0
η )

)
+

1
x2

02

(‖u1‖ − ‖u0‖) ≥ a > 0

So, finally, we obtain that

lim
x02→+∞

(
P (Σ0(x0), Ξ0

O(x01, 0))− P (Σ0(x0), Ξ0
O(x01, x02)

)
= +∞

This completes the proof.
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This proposition shows that asx02 becomes large, the difference of performance can be larger

than any positive constant. Therefore, for this system, it is advantageous to initialize the second

state of the observer close to the actual state rather than to initialize it at0, that is, a better perfor-

mance comes from a small initial error. In the following chapter, we will study the performance

behaviour ofKKK andKhalil designs as the initial error becomes large.



Chapter 4

Performance of Output-feedback

System

From the discussion in previous chapter, we know that we should minimize the initial error to

optimize performance. However, we may well not possess complete information concerning

the value of the initial condition of the states, and hence we have to take the initial observer

to be the best estimate to initial condition of the states. Then we are interested in studying the

situation in which our estimate of initial condition of the states is not accurate and leads to a

large initial error, and study how the poor information on initial condition of the states affect the

performance of the controllers.

4.1 Problem Formulation

In this chapter we consider a system which can be expressed in the output-feedback form

Σ(x0) : ẋi = xi+1 + ϕi(y), 1 ≤ i ≤ n− 1 (4.1a)

ẋn = u + ϕn(y), xi(0) = x0i, 1 ≤ i ≤ n (4.1b)

y = x1 (4.1c)

whereu is the control input,y is the only measured output, and

x0 =




x01

x02

...

x0n




36
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is the initial condition of the states, and the functionsϕi, 1 ≤ i ≤ n are sufficiently smooth and

locally Lipschitz continuous, andϕi(0) = 0, 1 ≤ i ≤ n.

This is an output-feedback system of full relative degree. General output-feedback systems and

the observer backstepping designs have been given in Chapter2. One characteristic of such

systems is that the nonlinearities only depend on the outputy. For this output-feedback system

of full relative degree both adaptive observer backstepping (KKK ) and high-gain observer

designs (Khalil ) can be used to achieve regulation of output. We consider the situation where

we do not exactly knowx0, and hence we have to takex̂0 ( the initial observer ) to be the best

estimate ofx0. Then we study the performance of theKKK andKhalil designs based on the

situation in which our estimate ofx0 is not accurate and

x̃0 = x0 − x̂0

is ‘large’.

As discussed in Chapter3 the following cost functional

P (Σ(x0), Ξ) = ‖y‖L2(Tη) + ‖u‖L∞(R+), Tη =
{
t ≥ 0

∣∣ |y(t)| > η
}

is employed to measure the performance of a controllerΞ. Through this performance measure

we aim to characterize when one design is preferable to another.

4.2 Observer Backstepping Design

Let us first consider a genericKKK design observer based controller. Following the observer

backstepping design procedure in Chapter2 or [55] with ρ = n, yr(t) ≡ 0, theKKK design for

systemΣ(x0) is as follows.

First, rewrite the systemΣ(x0) as

Σ(x0) : ẋ = Ax + ϕ(y) + Bu, x(0) = x0

y = Cx

where

x =




x1

x2

...

xn




, x0 =




x01

x02

...

x0n




, ϕ(y) =




ϕ1(y)
ϕ2(y)

...

ϕn(y)



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A =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
. . . . . . . . . . . . . . . . . . .

0 0 0 · · · 0 1
0 0 0 · · · 0 0




, B =




0
...

0
1




, C =
(
1, 0, · · · , 0

)

An observer is defined by

˙̂x = Ax̂ + K(y − ŷ) + ϕ(y) + Bu, x̂(0) = x̂0 (4.2a)

ŷ = Cx̂ (4.2b)

where

K = (k1, k2, · · · , kn)T , ki > 0, 1 ≤ i ≤ n

is chosen such that

A0 = A−KC

is Hurwitz, andx̂0 is the initial condition of the observer.

Then define

ξ1(y) =y

α1(y) =− c1ξ1 − d1ξ1 − ϕ1(y)

ξi(y, x̂1, · · · , x̂i) =x̂i − αi−1(y, x̂1, . . . , x̂i−1)

αi(y, x̂1, · · · , x̂i) =− ciξi − ξi−1 − di

(
∂αi−1

∂y

)2

ξi − ki(y − x̂1)− ϕi(y)

+
∂αi−1

∂y
(x̂2 + ϕ1(y)) +

i−1∑

j=1

∂αi1

∂x̂j
(x̂j+1 + kj(y − x̂1) + ϕj(y))

i = 2, 3, · · · , n

whereci, di, 1 ≤ i ≤ n are positive constants. The controller is then defined as

ΞO(x̂0) : u = αn(y, x̂1, · · · , x̂n)
˙̂x = Ax̂ + K(y − ŷ) + ϕ(y) + Bu, x̂(0) = x̂0

ŷ = Cx̂

The following result summarizes the standard properties of the closed-loop.

Proposition 4.1. Consider the closed-loop system(Σ(x0), ΞO(x̂0)). For any initial condition

x0 ∈ Rn andx̂0 ∈ Rn, the following hold
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1. The signalsx, x̂, u andy are bounded;

2. The output is regulated to zero

lim
t→∞y(t) = 0

3. The performance measure is finite

P
(
Σ(x0),ΞO(x̂0)

)
< ∞

Proof. From Theorem2.1, we directly obtain 1 and 2, and we only prove 3 here.

For any positive numberη, since the design guarantees the regulation of the output, then after a

finite time, we havey(t) < η, that is the measure ofTη : m(Tη) is finite. Hence, the boundedness

of ‖y‖L2(Tη) is achieved.‖u‖L∞ is also finite sinceu(t) is bounded. The boundedness of the

performance follows directly.

Although theKKK design achieves global regulation of the output, which has a global region

of attraction (in(x0, x̂0)), we will prove that the performance of the controller can degrade

arbitrarily as the initial error‖x̃0‖ becomes large for any fixed initial state conditionx0.

We now establish the critical performance property for theKKK design, which states that the

performance gets arbitrarily large as the initial observer error increases.

Theorem 4.2. For any choice of the controller gainski, 1 ≤ i ≤ n, and for any fixed initial

statex0 of the systemΣ(x0), let x̂0 be the initial observer state, and

x̃0 = x0 − x̂0

Then the performance of the controllerΞO(x̂0) has the following property

lim sup
‖x̃0‖→∞

P
(
Σ(x0), ΞO(x̂0)

)
= ∞ (4.3)

Proof. For convenience of notation, introduce

ξi(0) = ξi(y, x̂1, · · · , x̂i)|t=0

αi(0) = αi(y, x̂1, · · · , x̂i)|t=0

j = 1, 2, · · · , n
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To prove this theorem, it suffices to show that

lim sup
‖x̃0‖→∞

‖u‖L∞(R+) = ∞

Sinceu(t) is continuous, to establish the above condition, we only need to show

lim sup
‖x̃0‖→∞

u(0) = lim sup
‖x̃0‖→∞

αn(0) = ∞ (4.4)

Let C ⊂ Rn−1 be a compact set, define

Cr =
{
x̂0 ∈ Rn

∣∣(x̂01, · · · , x̂0,n−1) ∈ C; x̂0n = r
}

and consider the initial condition of the observerx̂0 ∈ Cr. Then sincex0 is fixed, if we can

prove that

lim
r→∞ sup

x̂0∈Cr

αn(0) = ∞ (4.5)

then (4.4) will hold.

We now establish (4.5). Since allϕi and their derivatives are continuous functions it follows

thatαi andξi are continuous functions of their variables. Note that

ξi(0) =x̂0i − αi−1(0)

αi(0) =− ciξi(0)− ξi−1(0)− di

(
∂αi−1

∂y

∣∣∣∣
t=0

)2

ξi(0)

− ki

(
x01 − x̂01)− ϕi(x01

)

+
i−1∑

j=1

(
∂αi−1

∂x̂j

∣∣∣∣
t=0

) (
x̂0,j+1 + kj(x01 − x̂01) + ϕj(x01)

)

and hence, for1 ≤ i ≤ n− 1, ξi(0) ,αi(0) are independent of̂x0n, i.e. bounded independently

of r. Therefore there existsM > 0 dependent onC andx01 but not onr, for which

sup
x̂0∈Cr

|ξi(0)| ≤ M, sup
x̂0∈Cr

|αi(0)| ≤ M, 1 ≤ i ≤ n− 1

Now we computeαn(0). First, we have

ξn(0) = x̂0n − αn−1(0) = r − αn−1(0)
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and so

αn(0) =− ciξn(0)− ξn−1(0)− dn

(
∂αn−1

∂y

∣∣∣∣
t=0

)2

ξn(0)

− kn

(
x01 − x̂01)− ϕn(x01)

)

+
n−1∑

j=1

(
∂αn−1

∂x̂j

∣∣∣∣
t=0

)(
x̂0,j+1 + kj(x01 − x̂01) + ϕj(x01)

)

=

(
−cn − dn

(
∂αn−1

∂y

∣∣∣∣
t=0

)2
)

r +
(

∂αn−1

∂̂n−1

∣∣∣∣
t=0

)
r

+ F (x01, x̂01, · · · , x̂0,n−1)

where

F (x01, x̂01, · · · , x̂0,n−1)

=

(
cn + dn

(
∂αn−1

∂y

∣∣∣∣
t=0

)2

− ∂αn−1

∂x̂n−1

∣∣∣∣
t=0

)
αn−1(0)

+ ξn−1(0)− kn

(
x01 − x̂01)− ϕn(x01)

)

+
n−2∑

j=1

(
∂αn−1

∂x̂j

∣∣∣∣
t=0

)(
x̂0,j+1 + kj(x01 − x̂01) + ϕj(x01)

)

is independent of̂x0n, namelyr. Now consider the second term of the expression forαn(0).

∂αi

∂x̂i
= −ci

∂ξi

∂x̂i
− di

(
∂αi−1

∂y

)2 ∂ξi

∂x̂i
+

∂αi−1

∂x̂i−1

= −ci − di

(
∂αi−1

∂y

)2

+
∂αi−1

∂x̂i−1

Therefore, by recursive substitution we obtain

∂αn−1

∂x̂n−1
=

n−1∑

j=2

(
−cj − dj

(
∂αj−1

∂y

)2
)

+
∂α1

∂x̂1

=
n−1∑

j=2

(
−cj − dj

(
∂αj−1

∂y

)2
)

sinceα1 is independent of̂x1.
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Hence,

αn(0) = r
n∑

j=2

(
−cj − dj

(
∂αj−1

∂y

∣∣∣∣
t=0

)2
)

+ F (x01, x̂01, · · · , x̂0,n−1)

Sincecj anddj are all positive numbers, andF is independent ofr, this establishes (4.5) as

required.

4.3 High-gain Observer Design

By a suitable coordinate transformation the systemΣ(x0) can also be written as integrator chain

with a matched nonlinearity1. Concretely, we define a coordinate transformation

T : Rn → Rn, z = T(x)

by

T : z1 = x1, z2 = x2 + ψ1(x1), · · · , zn = xn + ψn−1(x1, x2, · · · , xn−1)

where

ψi(x1, · · · , xi) = ϕi(x1) +
i−1∑

j=1

∂ψi−1

∂xj
(xj+1 + ϕj(x1)) , 1 ≤ i ≤ n (4.6)

Then in thez coordinates,Σ(x0) is of the form

Σ(z0) : ż = Az + B(ψ(z) + u), z(0) = z0 (4.7a)

y = Cz (4.7b)

where

z0 = T(x0)

ψ(z) = ψn

(
T−1(z)

)
(4.8)

ψn(x) = ψn(x1, · · · , xn)

Remark4.3. Σ(z0) andΣ(x0) actually present the same system in different coordinates, but,

for convenience, we will useΣ(x0) to denote the original system andΣ(z0) to denote (4.7)

respectively.

Remark4.4. It can be seen from the definition of transform thatT is invertible. Furthermore,

bothT andT−1 are smooth sinceϕi, 1 ≤ i ≤ n are smooth. Hence, the mappingT is a global

1A high-gain observer can also be designed for the original systems, see, e.g., [30, 32]. Here, we define the
controller via this transformation.
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diffeomorphism inRn.

Remark4.5. Since the outputy is unchanged by the transformationT, and the control inputu

is independent of the change of variables, the performanceP is independent ofT.

TheKhalil designs considered in [15, 82, 48, 82, 3] can be applied to the systemΣ(z0). Typical

results establish semi-global regulation of the output. TheKhalil designs utilize a high-gain

observer and a nonlinear separation principle which allow the observer and a globally bounded

state feedback controller to be designed separately, and then combined using certainty equiva-

lence, to ensure semi-global results and closeness of the output feedback controllers trajectory to

the underlying state feedback controller’s trajectory. For the systemΣ(x0), if ϕi and its higher

derivatives are globally bounded, it is straightforward to design a globally bounded state feed-

back controller achieving bounded performance. Hence through the high-gain observer we can

design an output feedback controller, which, for fixed initial condition of the statez0 = T(x0)
and any initial condition of the observerẑ0 also has bounded performance. Furthermore, if the

initial error

z̃0 = z0 − ẑ0

becomes ‘large’, this design still achieves a bounded performance independent of the initial

condition of the observer.

To design an output feedback controller, we first give a state feedback controller forΣ(z0). The

controller

u = −ψ(z) + v (4.9)

feedback linearizes the systemΣ(z0), yielding

ż = Az + Bv, z(0) = z0 (4.10a)

y = Cz (4.10b)

We first design a bounded state feedback controller for the linear system (4.10a). For this

purpose we introduce the asymptotically null controllability with bounded control ( ANCBC ),

which was studied in [78]. Then the existence of a bounded state feedback controller is equiva-

lent to ANCBC.

Definition 4.6. A linear system is called asymptotically null controllable with bounded control

( ANCBC ) with boundM if for every statez there exists an open-loop controlv : [0,∞) that

steersz to the origin in the limit ast → +∞ and satisfies|v(t)| < M for all t.

The study of such problems is motivated by the possibility of actuator saturation or constraints

on actuators, reflected sometimes also in bounds on available power supply or rate limits.

The theory of controllability of linear systems with bounded control is a well-studied topic.

Schmitendorf and Barmish [73] published the fundamental paper, and Sontag [77] discussed the
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different and more algebraic approach. Sussmann, Sontag and Yang [78] gave a well known

property that ANCBC is equivalent to a algebraic condition , which is stated as the following

lemma.

Lemma 4.7. The system (4.10a) is asymptotically null controllable with bounded control if and

only if

1. A has no eigenvalues with positive real part;

2. The pair(A,B) is stabilizable in the ordinary sense, i.e., there exists a matrixF such that

A + BF is Hurwitz.

From this lemma, we have following lemma.

Lemma 4.8. The system (4.10a) is asymptotically null controllable with bounded control.

Proof. First, all the eigenvalues ofA are zero, namely, without positive real parts. Second, the

pair (A,B) is stabilizable. Hence, the system (4.10a) is null controllable with bounded control

by Lemma4.7.

Furthermore, such a bounded state feedback controller for the system (4.10a) is given in [78],

that is we have

Lemma 4.9. The bounded state feedback controller for the system (4.10a)

v = −
n∑

i=1

δisat(hi(z)) (4.11)

achieves global asymptotic stability for the resulting closed-loop system, where0 < δ ≤ 1
4 ,

eachhi : Rn → R, 1 ≤ i ≤ n, is a linear function, andsat(·) is the saturation function defined

by

sat(w) =





−1, w < −1

w, −1 ≤ w ≤ 1

1, w > 1

Proof. The detail of the proof can be found in [78]. We give an outline here.
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First, for everyε > 0, there exists a linear change of coordinates(z1, · · · , zn) → (ξ1, · · · , ξn)

which transform (4.10a) into the form

ξ̇1 = εn−1ξ2 + εn−2ξ3 + · · ·+ εξn + v

ξ̇2 = εn−2ξ3 + · · ·+ εξn + v

...

ξ̇n−1 = εξn + v

ξ̇n = v

We will show that, whenε ≤ 1
4 , the feedback controller

v = −εsat(ξn)− ε2sat(ξn−1)− · · · − εnsat(ξ1)

stabilizes (4.10a). In fact, for any trajectoryt → ξ of the resulting closed-loop system, thenth

coordinateξn will enter and stay in the interval(−1
2 , 1

2) after a finite time. So,sat(ξn) will be

equal toξn, and the expression forv gives

v = −εξn − ε2sat(ξn−1)− · · · − εnsat(ξ1)

Next, consider the equatioṅξn−1 = εξn+v. Then it follows that, after a finite time, this equation

has the form

ξ̇n−1 = εn−2ξ3 + · · ·+ εξn

We now conclude thatξn−1 will enter and stay in the interval(−1
2 , 1

2) after a finite time, andv

will be given by the expression

v = −εξn − ε2ξn−1 − · · · − εnsat(ξ1)

Continuing in this way, we see that after a finite time,v will be given by

v = −εξn − ε2ξn−1 − · · · − εnξ1 (4.12)

It is clear that the closed-loop system of (4.10a) under the state feedback (4.12) is asymptotically

stable.
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From Lemma 4.9, the state feedback controller

Ξs : u = −ψ(z)−
n∑

i=1

δisat(hi(z)) (4.13)

globally asymptotically stabilizes the origin of systemΣ(z0).

Now we design a output feedback controller forΣ(z0). Following [15, 3], we define a high-gain

observer as
˙̂z = Aẑ + H(y − ẑ1), ẑ(0) = ẑ0 (4.14)

where

H = H(ε) =




β1

ε
β2

ε2

...
βn

εn




andε is a positive constant to be specified. The positive constantsβi , 1 ≤ i ≤ n, are chosen

such that the roots of the equation

sn + β1s
n−1 + · · ·+ βn−1s + βn = 0

are in the open left-half plane.

To apply the nonlinear separation principle, the state feedback controller is required to be glob-

ally bounded. Generally, this property can be achieved by saturating the controller outside some

set. But in our case we are interested in the initial condition of the observer becoming large.

Instead, we introduce further assumptions onϕi to ensure thatψ is globally bounded.

Lemma 4.10. For systemΣ(x0), supposeϕi ∈ Cn−i(R), ϕ
(k)
i ∈ L∞(R), 1 ≤ i ≤ n; 1 ≤

k ≤ n, thenψ defined by (4.8) lies inL∞(Rn).

Proof. Sinceϕi ∈ Cn−i(R), ϕ
(k)
i ∈ L∞(R), from (4.6) we have thatψn(x) is continuous and

in L∞(Rn). Noting that the mappingT is a global diffeomorphism, we know thatψ(z) also is

continuous and inL∞(Rn).

Suppose that the conditions of Lemma4.10are satisfied, then the state feedback controller (4.13)

is globally bounded, so an output feedback controller for systemΣ(z0) can be taken as

ΞH(ε)(ẑ0) : u = −ψ(ẑ)−
n∑

i=1

δisat(hi(ẑ)) (4.15a)

˙̂z = Aẑ + H(y − ẑ1), ẑ(0) = ẑ0 (4.15b)
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For the systemΣ(z0) and the output feedback controllerΞH(ε)(ẑ0), the relevant properties of

the closed-loop are summarized below.

Proposition 4.11. For systemΣ(z0), suppose thatz0 = T (x0), x0 is fixed, and the assumption

of Lemma4.10is satisfied. Then for anỹz0 = z0 − ẑ0 there existsε∗ such that for allε : 0 <

ε < ε∗ the output feedback controllerΞH(ε)(ẑ0) guarantees the following:

1. The signalsz, ẑ, u andy are bounded;

2. The output is regulated to zero

lim
t→∞y(t) = 0

3. The performance is finite

P
(
Σ(z0), ΞH(ε)(ẑ0)

)
< ∞

Proof. First, the function

π(z) = −ψ(z)−
n∑

i=1

δisat(hi(z))

is locally Lipschitz continuous sinceψ(z) is continuous and
∑n

i=1 δisat(hi(z)) is bounded.

Second,π(z) is bounded from Lemma4.10. Third, the origin is an asymptotically stable equi-

librium of the closed-loop under state feedback control. Hence the conditions of Assumption

2.1 in Chapter2 are satisfied.

Take any compact setC ∈ Rn andĈ ∈ Rn such thatz0 ∈ C and ẑ0 ∈ Ĉ, then 1, 2 follow

directly from Theorem 2.3 and 2.4 in Chapter2. For 3, the finiteness of‖y‖L2(Tη) is obtained

from 2. Note thatψ is continuous and̂z is bounded by 1. Hence,‖u‖L∞(R+) is also finite. So,

P
(
Σ(x0), ΞH(ε)(ẑ0)

)
is finite.

Now it is straightforward to uniformly bound the performance of systemΣ(z0) for the Khalil

design.

Theorem 4.12. Let x0 be fixed and consider the systemΣ(x0), and letz0 = T (x0). Letϕi ∈
Cn−i(R), ϕ

(k)
i ∈ L∞(R), 1 ≤ i ≤ n; 1 ≤ k ≤ n. Then there is a positive constantM ,

such that for anỹz0 there existsε > 0 for which the controllerΞH(ε)(ẑ0) achieves a uniformly

bounded performance

P
(
Σ(z0), ΞH(ε)(ẑ0)

)
< M (4.16)
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Proof. First note that

P
(
Σ(z0), ΞH(ε)(ẑ0)

)
=

∫

Tη

|y|2dt + ‖u‖L∞(R+) =
∫

Tη

|z1(t, ε)|2dt + ‖u‖L∞(R+) (4.17)

From Lemma4.10, we know thatψ(ẑ) is bounded. So, the control inputu has a bound which

is independent of̂z0. By Proposition4.11, if ε is small enough, thenz1(t, ε) tends uniformly in

t to z̄1(t), which is independent of̂z0 and uniformly bounded. Hence,z̄1(t) has a bound that

is independent of̂z0. Also the measure of the time setTη is also independent of̂z0 and finite.

Hence the integral in (4.17) is finite and the bound is independent ofẑ0. Therefore, we can find

a constantM such that (4.16) holds.

4.4 Comparison of Performance

Theorem4.2shows that for fixed initial statex0, when the initial error‖x̃0‖ becomes large, the

performance of theKKK design is not uniformly bounded even ifϕi and its higher derivatives

are globally bounded. On the other hand, Theorem4.12 shows that for theKhalil design, if

ϕi and its higher derivatives are globally bounded, then for any initial errorz̃0, through the

high-gain factor, we can design a globally bounded controller, achieving a uniformly bounded

performance. Hence we obtain the following comparative result.

Corollary 4.13. For the systemΣ(x0), if ϕi ∈ Cn−i(R), ϕ(k)
i ∈ L∞(R), 1 ≤ i ≤ n, then for

any initial condition of the observer̂z0 there existε > 0 andx̂0 such that

P
(
Σ(z0), ΞH(ε)(ẑ0)

)
< P

(
Σ(x0),ΞO(x̂0)

)

Proof. This follows directly from Theorem4.2and4.12.

We have now established the following results: For output feedback system, the performance of

KKK design is sensitive to the initial conditions of the observer. The performance of theKKK

design is not uniformly bounded in the initial error between the initial conditions of the state

and the initial conditions of the observer. When the initial error becomes large, the performance

becomes large. Whereas, for theKhalil design, for any initial error, by choosing small high-gain

factor, we can design a globally bounded controller, achieving an uniformly bounded perfor-

mance. Therefore, if the initial error is large or in the case that we have poor information on the

initial conditions of the state, theKhalil design has better performance than theKKK design. In

the next chapter, we will consider the second problem, that is, when do theKhalil designs have

superior output transients to theKKK designs?



Chapter 5

Performance of Parametric

Output-feedback System

In the Chapter 4, we comparedKKK andKhalil designs on the output-feedback system when

the initial error is large. In this chapter, we are going to compare the two kinds of designs on

the system in output-feedback normal form with an uncertain parameter. We will consider the

situation when the a-priori estimate for the unknown parameter becomes conservative and leads

to a choice of ‘large’ bound for the unknown parameter, and also study how the ‘bad’ choice

affects the performance of controllers.

5.1 Problem Formulation

We consider a parametric output-feedback system of the form

Σ(θ, x0) : ẋi = xi+1, 1 ≤ i ≤ n− 1 (5.1a)

ẋn = u + θψ(y), xi(0) = x0i, 1 ≤ i ≤ n (5.1b)

y = x1 (5.1c)

whereu is the control input,y is the measured output, and

x0 =




x01

x02

...

x0n




49
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is the initial condition of the state, and the functionsψ are sufficiently smooth and locally Lips-

chitz continuous, andψ(0) = 0; andθ ∈ R is an unknown constant.

This is a parametric output-feedback system in normal form. General parametric output-feedback

systems and the adaptive observer backstepping design was given in Chapter2. Again, for this

parametric output-feedback system in normal form, adaptive versions of both parametric ob-

server backstepping and high-gain observer designs can be used to achieve regulation of the

output.

To investigate the performance of the two designs and compare them, the same cost functional

P (Σ(θ, x0), Ξ) = ‖y‖2
L2(Tη) + ‖u‖L∞(R+), Tη =

{
t ≥ 0

∣∣ |y(t)| > η
}

is introduced to measure the performance of a controllerΞ. By this performance we again would

like to be able to characterize another situation in which one design is preferable to another.

To design aKhalil -type output feedback controller with a high-gain observer, we need first to

design a globally bounded state feedback controller. Generally, this is achieved by saturation

of the state feedback controller. But we also need that the saturated controller stabilizes the

system. For this purpose, we need to determine suitable saturation levels. However, the required

saturation levels are typically dependent onθ, the unknown constant. Therefore, we have to first

quantify an a-priori estimated for the magnitude ofθ. Sinceθ is assumed to be unknown our

knowledge of it is typically poor. Hence we have to estimateθ conservatively. But when our

a-priori upper bound for|θ| is conservative, we will show that the performance of theKhalil

design becomes poor. For aKKK design, however, the performance is independent of any a-

priori upper bound for|θ|. Therefore, the performance keeps uniformly bounded as the a-priori

upper bound for|θ| becomes conservative. Hence, for this system we will establish a result with

the opposite performance relationship to obtained in Chapter4.

5.2 Adaptive Observer Backstepping Design

We first consider aKKK design for the system. Following the adaptive observer backstepping

design procedure in Chapter2, the construction of a controller is obtained as follows.

Rewrite the systemΣ(θ, x0) in the form

Σ(θ, x0) : ẋ = Ax + B(θψ(y) + u), x(0) = x0 (5.2a)

y = Cx (5.2b)
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whereA,B, C, as in previous chapters, are defined by

x =




x1

x2

...

xn




, x0 =




x01

x02

...

x0n




A =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
. . . . . . . . . . . . . . . . . . .

0 0 0 · · · 0 1
0 0 0 · · · 0 0




, B =




0
...

0
1




, C =
(
1, 0, · · · , 0

)

TheKKK design for the parametric output-feedback systemΣ(θ, x0) is given as follows.

Choose a vectorK such that

A0 = A−KC

is Hurwitz, and define the filters1

ξ̇0 = A0ξ̇0 + Ky, ξ0(0) = ξ0
0

ξ̇1 = A0ξ1 + Bψ(y), ξ1(0) = ξ0
1

v̇0 = A0v0 + enu, v0(0) = v0
0

The controller is defined by

ΞA(ϑ0, x̂0) : u = αn

ϑ̇1 = Γω1(y, ξ̄(2), v̄(2))ζ1

ϑ̇2 = Γ
(
ω2(y, ξ̄(2), v̄(2), ϑ̄(2)) + ζ1e2

)
ζ2

ϑ̇i = Γωi(y, ξ̄(i), v̄(i), ϑ̄(i−1))ζi, i = 3, · · ·n
x̂(0) = x̂0 = ξ0

0 + θξ0
1 + v0

0

ϑ(0) = ϑ0 = (ϑ01, ϑ02, · · · , ϑ0n)T

whereei denotes theith coordinate vector inRn, andζi, ωi, αi, ξ̄(i), v̄(i), ϑ̄(i), i = 1, · · · , n are

1The filters can removed, see [67].



Chapter 5 Performance of Parametric Output-feedback System 52

defined by the following recursive expressions

ζ1 =y

ζi =v0,i − αi−1(y, ϑ̄i)

α1 =− ϑT
1 ω1

α2 =− c2ζ2 − ϑ2,2ζ1 − d2

(
∂α1

∂y

)2

ζ2 +
∂α1

∂y
ξ0,2 − ϑT

2 ω2 + k2v0,1

+
∂α1

∂ξ0
(A0ξ0 + Ky) +

∂α1

∂ξ1
(A0ξ1 + Bψ(y)) +

∂α1

∂v0
A0v0 +

∂α1

∂ϑ1
Γω1ζ1

αi =− ciζi − di

(
∂αi−1

∂y

)2

ζi +
∂αi−1

∂y
ξ0,2 − ϑT

i ωi + kiv0,1

+
∂αi−1

∂ξ0
(A0ξ0 + Ky) +

∂αi−1

∂ξ1
(A0ξ1 + Bψ(y))

+
∂αi−1

∂v0
A0v0 +

∂αi−1

∂ϑ1
Γω1ζ1

+
∂αi−1

∂ϑ2
Γ(ω2 + ζ1e2)ζ2 +

i−1∑

j=3

∂αi−1

∂ϑj
Γωjζj , i = 3, · · · , n

and

ωT
1 =(c1ζ1 + d1ζ1 + ξ0,2, v0,2)

ωT
i =− ∂αi−1

∂y
(ξ1,2, v0,2), i = 2, · · · , n− 1

ωT
n =− ∂αn−1

∂y
(ψ + ξ1,2, v0,2)

and

ξ̄(i) =(ξ0,1, · · · , ξ0,i, · · · , ξ1,1, · · · , ξ1,i), i = 1, · · · , n

v̄(i) =(v0,1, · · · , v0,i), i = 1, · · ·n
ϑ̄(i) =(ϑT

1 , · · · , ϑT
i ), i = 1, · · ·n

We summarize the relevant properties of this controller in the following proposition.

Proposition 5.1. Consider the systemΣ(θ, x0), then for anyx̂0, ϑ0, the controllerΞA(ϑ0, x̂0)

guarantees global boundedness of all signalsx(t), ξi(t), vi(t), and regulation of the output, i.e.

lim
t→∞y(t) = 0
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Moreover, the controller achieves bounded performance

P
(
Σ(θ, x0), ΞA(ϑ0, x̂0)

)
< ∞

for fixedx0 andx̂0.

Proof. The boundedness of signals and regulation ofy are obtained from Theorem2.2. We only

prove the performance is bounded.

For any positive numberη, because the design guarantees the regulation of the output, then

after a finite time, we havey(t) < η, that is to say the measure ofTη is finite. Hence, the

boundedness of‖y‖L2(Tη) is achieved, and‖u‖L∞ is also finite sinceu(t) is uniformly bounded.

Then boundedness of the performance follows directly.

5.3 High-gain Observer Design

We design aKhalil controller using the nonlinear separation principle [3]. The standard steps in

this synthesis procedure is as follows: first design a state feedback controller; then saturate the

controller outside some sets based on our a-priori knowledge of the worst case bounds for the

closed-loop signals; next replace the unmeasurable state variables by the estimated states from

a high-gain observer. This defines an output feedback control.

5.3.1 Control Design

First, we design a state feedback controller based on Lyapunov theory, and obtain an a-priori

worst case estimates for the bounds of the closed-loop signals.

We chose a vector

k = (k1, k2, · · · , kn)

such that matrixA+Bk is Hurwitz, and let matrixP1 be the positive definite symmetric matrix

solution of the Lyapunov equation

(A + Bk)T P1 + P1(A + Bk) = −I

Suppose thatθm is the a-priori estimate of upper bound for the magnitude of the unknown
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parameterθ, and we define a state feedback controller as in Chapter2 ( also see [45] )

Ξs(θ̂0, x0) : u = µ(x, θ̂) = kx− θ̂ψ(y) (5.3a)

˙̂
θ = ν(x, θ̂) = Proj(θ̂, φ), θ̂(0) = θ̂0 (5.3b)

where

φ(x) = 2xT P1Bψ(y)

Consider the Lyapunov function

V (x, θ − θ̂) = xT P1x +
1
2
(θ − θ̂)2

then along the solutions of the closed-loop , we have

V̇ =xT P1ẋ + ẋT P1x− (θ − θ̂) ˙̂
θ

=xT P1(Ax + B(θψ(y) + u)) + (Ax + B(θψ(y) + u))T P1x− (θ − θ̂) ˙̂
θ

=xT P1(Ax + B(θψ(y) + kx− θ̂ψ(y))) + (Ax + B(θψ(y) + kx− θ̂ψ(y)))T P1x

− (θ − θ̂) ˙̂
θ

=xT
(
(A + Bk)T P1 + P1(A + Bk)

)
x + (θ − θ̂)

(
φ− Proj(θ̂, φ)

)

≤− xT x ≤ 0

this suffices to show global stability and regulation of the output to zero by LaSalle’s theorem.

To design an output feedback controller through a high-gain observer, the functionsµ andν

should be globally bounded [3]. So, we saturateµ andν outside some suitably defined sets

which ensure that the modified controller still stabilizes the system. For this purpose, we utilize

a-priori estimates ofx andθ̂.

Firstly, from V̇ ≤ 0, we have

1
2
(θ − θ̂)2 ≤ V (t) ≤ V (0) = xT

0 P1x0 +
1
2
(θ − θ̂0)2

Hence

|θ̂| ≤ θm +
√

2λ(P1)χ2
m + (θm + |θ̂0|)2 =: Θ0 (5.4)

whereθm, χm are the a-priori estimates of upper bound for the magnitude of the unknown

parameterθ and the magnitude of the initial statex0, andλ(P1) is the largest eigenvalue ofP1.
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Similarly

‖x‖ = (xT x)
1
2 ≤

(
1

λ(P1)
xT P1x

) 1
2

≤
(

1
λ(P1)

V (0)
) 1

2

≤
(

1
λ(P1)

(
λ(P1)χ2

m +
1
2
(θm + |θ̂0|)2

)) 1
2

=: X0 (5.5)

whereλ(P1) is the smallest eigenvalue ofP1, and

|y| = |x1| ≤ ‖x‖ ≤ X0 (5.6)

Finally, from (5.3a)

|µ| ≤ nkX0 + Θ0Ψ0 =: U0 (5.7)

where

k = max
1≤j≤n

{|kj |}

Ψ0 = sup
|x1|≤X0

{|ψ(x1)|}

On the other hand, suppose thatp is the biggest element in the last row ofP1, then by (5.3b) we

obtain

|ν| ≤ np‖x‖Ψ0 ≤ npX0Ψ0 =: V0 (5.8)

Now we saturateµ andν as follows.

µs(x, θ̂) = U0sat

(
µ(x, θ̂)

U0

)

νs(x, θ̂) = V0sat

(
ν(x, θ̂)

V0

)

to obtain a globally bounded state feedback controller

Ξb
s(θm, χm, θ̂0, x0) : u = µs(x, θ̂) (5.9a)

˙̂
θ = νs(x, θ̂), θ̂(0) = θ̂0 (5.9b)
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Consequently aKhalil controller can be obtained as

ΞH(ε)(θm, χm, θ̂0, x̂0) : u = µs(x̂, θ̂) (5.10a)

˙̂
θ = νs(x̂, θ̂), θ̂(0) = θ̂0 (5.10b)

˙̂x = Ax̂ + H(y − x̂1), x̂(0) = x̂0 (5.10c)

The properties of this controller are summarized in the following result.

Proposition 5.2. For the systemΣ(θ, x0), if |θ| ≤ θm and |θ̂0| < Θ0, then whenε is small

enough, the controllerΞH(ε)(θm, χm, θ̂0, x̂0) guarantees global boundedness of all signals, and

the mean square of the output is of orderO(ε)

lim
T→∞

1
T

∫ T

0
y(t)2dt = O(ε)

Moreover, ifε < η, then the controller achieves bounded performance

P
(
Σ(θ, x0),ΞH(ε)(θm, χm, θ̂0, x̂0)

)
< ∞

Proof. The systemΣ(θ, x0) is of the form of (2.5) in Chapter2, and the controller is defined as

per (2.8) in Theorem2.5. Therefore, we obtain the boundedness of all signals and the regulation

of the output by Theorem2.5.

The proof of the boundedness of the performance follows from the boundedness of the closed-

loop signals.

5.3.2 Performance

First we establish the following lemma, which shows that asε → 0, the control signal necessarily

reaches the saturation levelU0.

Lemma 5.3. Suppose that the system and controller satisfy the condition of Proposition5.2,

and let

e0j = x0j − x̂0j , 1 ≤ j ≤ n

and suppose that at least one ofe0j , 1 ≤ j ≤ n−1, is not equal to zero. Then for the closed-loop
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(Σ(θ, x0), ΞH(ε)(θm, χm, θ̂0, x̂0)), we have2

lim
ε→0

‖u‖L∞(R+) = U0 (5.11)

Proof. From the definition of the controllerΞH(ε)(θm, χm, θ̂0, x̂0), it suffices to prove that

lim
ε→0

(
sup
t∈R+

‖x̂(t)‖
)

= ∞ (5.12)

Now let

ej = xj − x̂j , 1 ≤ j ≤ n

ζj =
1

εn−j
ej , 1 ≤ j ≤ n

Then the closed-loop(Σ(θ, x0), ΞH(ε)(θm, χm, θ̂0, x̂0)) is given by

ẋ = Ax + B(θ̂ψ(y) + µs(x̂, θ̂)), x(0) = x0 (5.13a)

˙̂
θ = νs(x̂, θ̂), θ̂(0) = θ̂0 (5.13b)

εζ̇ = Dζ + εB(θ̂ψ(y) + µs(x̂, θ̂)), ζ(0) = ζ0 (5.13c)

whereL = (α1, α2, · · · , αn)T , the matrixD = A− LC is Hurwitz and

ζ0 =
( e01

εn−1
, · · · ,

e0,n−1

ε
, e0n

)T

To prove (5.12) it is enough to show

lim
ε→0

(
sup
t∈R+

‖e(t)‖
)

= ∞ (5.14)

Sinceξn = en, it is sufficient to show

lim
ε→0

(
sup
t∈R+

|ζn(t)|
)

= ∞ (5.15)

On the other hand, let

t = ετ

2In practice, the limitε → 0 means thatε is sufficiently small.
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then (5.13c) can be written as

dζ

dτ
= Dζ + εB(θ̂ψ(y) + µs(x̂, θ̂)), ζ(0) = ζ0 (5.16)

Whenε is small enough, the outputy = x1 converges uniformly int to the solution of the state

feedback closed-loop system, and hence is uniformly bounded, thereforeψ(y) is uniformly

bounded. So, the termB(θ̂ψ(y) + µs(x̂, θ̂)) in (5.16) is bounded uniformly inτ . Therefore,

whenε → 0, the solution of (5.16) is convergent uniformly inτ to the solution of following

equation
dη

dτ
= Dη, η(0) = ζ0 (5.17)

Hence, we only need to show

lim
ε→0

(
sup
t∈R+

|ηn(t)|
)

= ∞ (5.18)

Note that

D =




−d1 1 0 · · · 0

−d2 0 1 · · · 0

. . . . . . . . . . . . . . . . . . . . .

−dn−1 0 0 · · · 1

−dn 0 0 · · · 0




and by induction we can show that

Dj =




∗ · · · ∗1j 1 0 · · · 0

∗ · · · ∗ ∗ 1 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

∗ · · · ∗ ∗ ∗ · · · 1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

∗ · · · −βn 0 0 · · · 0




, 1 ≤ j ≤ n (5.19)

where the “*”s are elements which do not need to be specified. Let

s = min
1≤j≤n−1

{j |e0j 6= 0}

and consider the time

tε = εγε
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where

γε = ε
n−s−β

s

and

β =
1
2

min
{

n− s

s + 1
, 1

}

Note the solution of (5.17) is given by

η(τ) = eDτζ0

i.e. equivalently by

η(t) = eD t
ε ζ0 (5.20)

Hence

η(tε) = eDγεζ0

Now

eDγε =I + γεD +
γ2

ε

2!
D2 + · · ·+ γs

ε

s!
Ds + o

(
γ

s+ 1
2

ε

)

=




· · · ∗1s ∗ · · · ∗ ∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

· · · −βn
γs

ε
s! + o

(
γ

s+ 1
2

ε

)
o

(
γ

s+ 1
2

ε

)
· · · o

(
γ

s+ 1
2

ε

)
1 + o

(
γ

s+ 1
2

ε

)




where the “*”s are elements which do not need to be specified. Noting thate0j = 0 for

1 ≤ j ≤ s− 1, yields

ηn(tε) =
(
−αn

γs
ε

s!
+ o

(
γ

s+ 1
2

ε

))
e0s

εn−s
+ o

(
γ

s+ 1
2

ε

)
e0,s+1

εn−s−1
+ · · ·

+ o

(
γ

s+ 1
2

ε

)
e0,n−1

ε
+

(
1 + o

(
γ

s+ 1
2

ε

))
e0n

=− βne0s

s!εβ
+ e0n + o(ελ) (5.21)

where

λ =
n− s + β

2s
> 0

But by assumption,βn > 0, ande0s 6= 0. Therefore, (5.21) implies (5.18). This completes the

proof.
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From this lemma, we obtain the following theorem.

Theorem 5.4. Let θ, x0 be fixed, and suppose|x0| ≤ χm. Consider the systemΣ(θ, x0) and

the controllerΞH(ε)(θm, χm, θ̂0, x̂0). Suppose the system and controller satisfy the condition of

Proposition5.2, and at least one of the initial errorse0j , 1 ≤ j ≤ n − 1, is not equal to zero.

Then for the closed-loop system(Σ(θ, x0),ΞH(ε)(θm, χm, θ̂0, x̂0)), we have

lim
ε→0

(
lim

θm→∞
P

(
Σ(θ, x0), ΞH(ε)(θm, χm, θ̂0, x̂0)

))
= ∞

Proof. For the closed-loop system(Σ(θ, x0),ΞH(ε)(θ̂0, x̂0)), the saturation levelsΘ0 andU0

for the output feedback controller are dependent onθm, the a-priori estimate of upper bound for

the unknown parameterθ. Whenθm is large, from (5.4)-(5.7), Θ0 andU0 are large. By Lemma

5.3, as the high-gain factorε is small,‖u‖L∞(R+) is also large, that is the performance becomes

large.

5.4 Comparison of Performance

For the systemΣ(θ, x0), as the a-priori estimate of upper boundθm for the uncertain parameterθ

becomes conservative, Proposition5.1shows that theKKK design guarantees uniform bounded

performance of the controllers; whereas, Theorem5.4shows that the performance of theKhalil

design becomes large. Here we have the following comparative result.

Corollary 5.5. For the systemΣ(θ, x0), if the estimate of bound for the unknown parameterθ

is conservative enough, and the gain factorε is small enough, then

P
(
Σ(θ, x0),ΞA(ϑ0, x̂0)

)
< P

(
Σ(θ, x0),ΞH(ε)(θ̂0, x̂0)

)

Proof. The result follows directly from Proposition5.1and Theorem5.4.

Therefore we have established the following result for parametric output feedback system.

The performance of theKKK design is independent of the a-priori estimate bound of the un-

certain parameter. When the a-priori estimate becomes conservative the performance remains

uniformly bounded.

Whilst, for theKhalil design, the performance is dependent on the saturation levels for the

controller and the adaptive law, that is dependent on the a-priori estimate bound of the uncertain

parameter, and the performance becomes large as the a-priori estimate becomes conservative.
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Hence, if we have poor information for the unknown parameter and the a-priori estimate bound

is conservative, theKKK design has better performance than theKhalil design.

In the next chapters, we will study robustKKK andKhalil designs.
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Gap Metric Robustness

62



Chapter 6

Preliminaries

In this chapter, we give the required background on robust stability. We introduce the tools for

robustness analysis of linear systems, in which the framework of gap metric is of advantage.

Naturally, for the robust stability of nonlinear systems gap metric is also a powerful tool. Hence,

we will employ the framework of gap metric of nonlinear systems for the study of robustKKK

andKhalil designs. We give some established related results about the gap metric for nonlinear

systems and the definition of local stability.

6.1 Feedback Configuration and Stability

LetU ,Y be appropriate signal spaces such asLp(R+,Rn). In this thesis we will be mostly con-

cerned withp = ∞. Consider a standard feedback configuration with input and measurement

FIGURE 6.1: Standard Feedback Configuration

disturbances shown inFIGURE 6.1, and described by the equations

y1 = Σu1, u2 = Ξy2

y0 = y1 + y2, u0 = u1 + u2

whereΣ is a nominal plant, andΞ is a controller,u0 ∈ U , y0 ∈ Y are input and measurement

disturbances respectively.
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Stability of Linear systems

If Σ, Ξ are linear, we useΣ(s), Ξ(s), alternatively,Σ, Ξ to denote their respective transfer func-

tions. Then stability can be defined by the transfer functions.

Definition 6.1. SupposeΣ, Ξ are linear, we define the closed-loop[Σ,Ξ] to be stable if the

transfer function matrix

Π =:


 I

Σ


 (I − ΞΣ)−1(I,−Ξ)

is stable, that isΠ ∈ H∞, whereH∞ is the space of transfer functions of stable linear, time-

invariant, continuous time, systems.

In the linear case, the signals satisfy

(
u1

y1

)
= Π

(
u0

y0

)

Hence, we have that ∥∥∥∥∥

(
u1

y1

)∥∥∥∥∥ ≤ ‖Π‖
∥∥∥∥∥

(
u0

y0

)∥∥∥∥∥

If U = Y = Lp, 1 ≤ p ≤ ∞, then‖Π‖ < ∞ if and only if Π ∈ H∞.

In particular, ifp = 2, then

‖Π‖ = ‖Π(s)‖H∞

and ifp = ∞, then

‖Π‖ =
∫ ∞

0
‖g(t)‖dt

whereg is the impulse response ofΠ, i.e.

(
u1

y1

)
= g ∗

(
u0

y0

)

in the time domain, and ‘*’ denotes convolution.

On the other hand, if there exists a constantΓ such that

∥∥∥∥∥

(
u1

y1

)∥∥∥∥∥ ≤ Γ

∥∥∥∥∥

(
u0

y0

)∥∥∥∥∥ (6.1)

that is, the operator (
u0

y0

)
7→

(
u1

y1

)
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is bounded, then the closed-loop system is stable. Therefore, for a linear system, stability is

equivalent to (6.1). For nonlinear systems we use boundedness of the operator as a definition of

stability.

Stability

We define stability by a closed-loop operator, and generalize the definition of stability to non-

linear systems.

Graph of a Plant

Let U ,Y be appropriate signal spaces, and consider a nominal causal plantΣ and a causal

controllerΞ. Write

UΣ = Dom(Σ) =
{
u ∈ U∣∣Σu ∈ Y}

YΞ = Dom(Ξ) =
{
y ∈ Y∣∣Ξy ∈ U}

then

Σ : UΣ → Y, Ξ : YΞ → U

and let

W = U × Y

Then the graph of the plant is defined as

GΣ =

{(
u

Σu

)
: u ∈ UΣ, Σu ∈ Y

}
⊂ W

Similarly the graph of the control operator is defined as

GΞ =

{(
Ξy

y

)
: y ∈ YΞ, Ξy ∈ U

}
⊂ W

Closed-loop Operator and Stability

Write

w0 =

(
u0

y0

)
, w1 =

(
u1

y1

)
, w2 =

(
u2

y2

)

Then we define the closed-loop operator by

HΣ,Ξ : W →W ×W, HΣ,Ξ : w0 7→ (w1, w2)

Note that this operator is not always defined, e.g., if the closed-loop is not stable, thenw1 /∈ W.
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To study the stability of closed-loop systems, another two operators are introduced. Write

M = GΣ, N = GΞ

and define

ΠM//N = Π1HΣ,Ξ : W →W

ΠN//M = Π2HΣ,Ξ : W →W

whereΠi : W ×W → W denotes the natural projection onto theith component (i = 1, 2) of

W ×W. Hence

ΠM//N : w0 7→ w1

ΠN//M : w0 7→ w2

Definition 6.2. The closed-loop[Σ,Ξ] is said to be stable if the operatorΠM//N has a finite

induced norm, i.e.

‖ΠM//N ‖ = sup
w0 6=0

‖ΠM//Nw0‖
‖w0‖ = sup

w0 6=0

‖w1‖
‖w0‖ < ∞

Remark6.3. For linear systems, this definition is equivalent to Definition6.1due to inequality

(6.1). Further, observe that stability ofΠM//N implies stability ofΠN//M, and vice versa.

Hence, this is an appropriate generalization applicable to nonlinear systems.

The notion of stability for nonlinear control can be relaxed to the gain-function stability. Here,

the gain-function of the operatorΠM//N is defined as

g[ΠM//N ](α) = sup
‖w0‖≤α

‖ΠM//Nw0‖, α > 0

Definition 6.4. The closed-loop[Σ, Ξ] is said to be gain-function (gf)-stable ifg[ΠM//N ](α)

remains finite for allα ≥ 0.

This permits a notion of bounded input−output stability in which large signals can be amplified

at different levels to small signals.

It can be seen that if there exists a positive constantΓ such that

‖w1‖ ≤ Γ‖w0‖, ∀w0 ∈ W

then[Σ, Ξ] is stable; if there exists a continuous functionγ(·) > 0 such that

‖w1‖ ≤ γ(‖w0‖), ∀w0 ∈ W
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then[Σ, Ξ] is gf-stable.

6.2 Plant Uncertainty and Robust Stability

A control design is based on a nominal mathematical modelΣ, which approximately describes

the physical plantΣ1. There is always a plant perturbation ( or plant uncertainty )∆.

Uncertainties can be in many forms, and may have complex structures. Generally speaking, the

following types of uncertainties are studied in robust stability.

Additive and Multiplicative Uncertainty

The model uncertainties are expressed by additive perturbations

Σ1 = Σ + ∆, ∆ ∈ H∞, ‖W1∆W2‖H∞ < 1 (6.2)

whereW1,W2 are the weights. At frequencies at which the frequency response of the plant is

well known, the weights are chosen to be large to force∆ to be small there; at frequencies at

which the frequency response of the plant is highly uncertain, the weights are chosen to be small

to allow∆ to be large.

Multiplicative Uncertainties are weighted additive uncertainties, where the perturbed plants are

of the form

Σ1 = (I + ∆)Σ, ∆ ∈ H∞, ‖W1∆W2‖H∞ < 1 (6.3)

and the symbols are the same as those in the additive uncertainty.

Additive and multiplicative uncertainty models are appropriate for describing low frequency

(e.g., parametric) uncertainties.

Inverse Multiplicative Uncertainty

Inverse multiplicative uncertainties are those where the perturbed plants are of the form

Σ1 = (I −∆)−1Σ, ∆ ∈ H∞, ‖W1∆W2‖H∞ < 1 (6.4)

andI −∆ is in invertible.

Inverse multiplicative uncertainty models are appropriate for describing high frequency unmod-

elled dynamics.

Coprime Factor Uncertainty

Coprime factor uncertainties are a suitable model for combining uncertainties at both low and

high frequencies, i.e. they combine features from all three of the simpler models ( additive,
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multiplicative, and inverse multiplicative ) outlined above.

GivenM, N ∈ H∞, if there existX, Y such that

XM + Y N = I, X, Y ∈ H∞ (6.5a)

then we say thatM andN areright coprime.

Let Σ ∈ RH∞, whereRH∞ is the space of rationalH∞ functions. We say that the ordered

pair {N, M} is a right coprime factorizationof Σ if N andM are right coprime, andM is

invertible, and

Σ = NM−1

Moreover, if the pair{N, M} satisfies

M∗M + N∗N = I (6.6)

then we say that the ordered pair{N,M} is anormalized right coprime factorizationof the plant

Σ, whereM∗, N∗ are the conjugates ofM, N respectively. The condition (6.6) is equivalent to

∥∥∥∥∥

(
N

M

)
V

∥∥∥∥∥ = ‖V ‖, ∀V ∈ L2

Left coprime, left coprime factorization, and normalized left coprime factorization can be de-

fined similarly.

Suppose that

Σ = NM−1, M, N ∈ RH∞

is a normalized right coprime factorization of the plantΣ. Then coprime factor perturbations

take the form

Σ1 = (N + ∆N )(M + ∆M )−1,

∥∥∥∥∥

(
∆N

∆M

)∥∥∥∥∥
∞

<
1
γ

whereγ > 1.

An extensive discussion of these different uncertainty descriptions can be found in e.g., [86].

Robust Stability

A stable closed-loop[Σ, Ξ] may become unstable because of the plant perturbations. Hence, the

robust stability problem is defined as follows.

Definition 6.5. For a set of plantsP, a controllerΞ is said to be robust if[Σ, Ξ] is stable for all

Σ ∈ P.
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For our cases, the robustness problem is to design a controllerΞ for the nominal plantΣ such

that the closed-loops[Σ1, Ξ] are stable for all∆ or (∆M ,∆N )T in some set.

6.2.1 Gap Metric

The idea of the gap metric robust stability results are as follows. First, for a nominal plantΣ
design a controllerΞ to stabilize the closed-loop[Σ, Ξ]. Second, define a gap metric distance

δ(Σ,Σ1) between the nominalΣ and any perturbed plantΣ1. Third, if the controller has such

property that the closed-loop[Σ1, Ξ] is stable if the gap metricδ(Σ,Σ1) is smaller than some

computable constant, then we obtain the robust stability.

For linear case, Zames and EI-Sakkary [91] first introduced the gap metric. InL2 context, some

equivalent expressions for the gap metric [33, 35, 86] are as follows.

~δ0(Σ, Σ1) = sup
m1∈M1,‖m1‖6=0

inf
m∈M,‖m‖6=0

‖m1 −m‖
‖m‖

~δ1(Σ, Σ1) = ‖(ΠM1 −ΠM)ΠM‖

~δ(Σ, Σ1) =

{
infΦ∈O ‖(Φ− I)|M‖, if O 6= ∅
∞, if O = ∅

~δg(Σ, Σ1) = inf
(∆N ,∆M )T∈H∞

{‖(∆N , ∆M )T ‖H∞
∣∣Σ1 = (N + ∆N )(M + ∆M )−1

}

where

O = {Φ : M→M1 |Φ is causal, bijective andΦ(0) = 0}

andM1 = GΣ1 , and(M, N) are normalized right coprime factorizations ofΣ, andΠK denotes

the orthogonal projection onto a closed subspaceK ⊂ W.

It has been shown that~δ0(Σ, Σ1), ~δ1(Σ, Σ1), ~δ(Σ, Σ1) and~δg(Σ, Σ1) are equal ( see, e.g., [35,

86] ). The main result for gap metric robustness is given in the following theorem.

Theorem 6.6. For a linear plantΣ, if there exits a controllerΞ such that the closed-loop[Σ, Ξ]

is stable, and the gap metric~δ(Σ, Σ1) is smaller than some positive constantbΣ,Ξ, the gap robust

margin, then the closed-loop[Σ1,Ξ] is also stable.

If the plantΣ and a controllerΞ have transfer functionsΣ(s) andΞ(s), it can be shown that the

parallel operatorΠM//N has transfer function

Π =:

(
I

Σ

)
(I − ΞΣ)−1(I,−Ξ)
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and the gap robust margin is ( see [57] )

bΣ,Ξ =





∥∥∥∥∥

(
I

Σ

)
(I − ΞΣ)−1(I,−Ξ)

∥∥∥∥∥
−1

H∞
, if [Σ, Ξ] is stable

0, otherwise

A more useful equation for computing the robust marginbΣ,Ξ can be obtained by the coprime

factorizations. LetΣ have the coprime factorizations

Σ = NM−1, M, N ∈ RH∞

Σ = M̃−1Ñ , M̃ , Ñ ∈ RH∞

andU, V, Ũ , Ṽ be matrices overH∞ such that

V M + UN = I

M̃Ṽ + ÑŨ = I

Then for someQ ∈ RH∞, it can be shown [86] that

Π =

(
I

Σ

)
(I − ΞΣ)−1(I,−Ξ) =

(
M

N

)
(Ṽ + QÑ,−(Ũ + QM̃))

andbΣ,Ξ can be written as [57]

bΣ,Ξ =
1√∥∥∥ŨM̃∗ + Ṽ Ñ∗ + Q

∥∥∥
2

L∞
+ 1

This is a convenient formula to calculate the robust margin. So far, for linear systems, the

robustness analysis is easy to handle using the gap metric.

6.3 Gap Metric of Nonlinear Systems

It can be seen that this framework for studying robustness of linear systems is effective and

produces powerful results. So, it is a natural development to generalize this framework to the

nonlinear case. In 1997 Georgiou and Smith [35] published a key paper, in which a proper

definition of gap metric for nonlinear plants was obtained and a series of results were established.

In 2003, Bian and French [9] proved that the gap of Georgiou and Smith was equal to a gap

metric which is defined through the coprime factorizations of nonlinear plants.
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6.3.1 Gap Metric

The gap metric for nonlinear plants introduced by Georgiou and Smith [35] is defined as follows.

Definition 6.7. For nonlinear plantsΣ andΣ1, we define the gap metric betweenΣ1 andΣ as

~δ(Σ, Σ1) =





infΦ∈O ‖(Φ− I)|M‖, if O 6= ∅
∞, if O = ∅

δ(Σ, Σ1) = max{~δ(Σ, Σ1), ~δ(Σ1,Σ)}

where

O = {Φ : M→M1 |Φ is causal, bijective andΦ(0) = 0}

andM1 = GΣ1 .

This definition is indeed a generalization of theL2 linear case. There is no restriction on the

underlying signal space norms, and we will be interested in applying the results in theL∞

setting. Related notion and the results can found in [35, 8, 9].

The significance for the introduction of the gap metric lies in the following theorems.

Theorem 6.8. Consider the feedback system in Figure6.1, and let[Σ, Ξ] be stable. If a plant

Σ1 is such that

~δ(Σ,Σ1) <
1

‖ΠM//N ‖
(6.7)

then[Σ1, Ξ] is also stable, and

‖ΠM1//N ‖ ≤ ‖ΠM//N ‖
1 + ~δ(Σ,Σ1)

1− ‖ΠM//N ‖~δ(Σ, Σ1)
(6.8)

The proof of this theorem can be found in [35].

Theorem6.8 shows that if a robust controllerΞ for the plantΣ is designed, then the controller

is able to stabilize another plantΣ1 provided that the gap metric betweenΣ andΣ1 is suitably

small. Hence, this theorem provides a framework to design a robust controller in the presence

of input and measurement disturbances and plant perturbations.

6.3.2 Local Stability

The above definition of stability is global for the disturbances, which is a very strong require-

ment. As an alternative to gain-function stability, we relax the notion of stability to stability on
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a bounded set.

Definition 6.9. Let S be a bounded set inW, the closed-loop[Σ,Ξ] is said to be stable onS if

the operatorΠM//N |S has a finite induced norm.

The corresponding relaxations of the notion of global stability are the notions of semi-global

and local stability which are defined as follows.

Definition 6.10. Let Σ be a plant, andSr ∈ W be a ball with the radiusr > 0. If for any

positive constantr > 0, there exists a controllerΞr such that the closed-loop[Σ,Ξr] is stable

on the ballSr, then we say that the closed-loop[Σ,Ξ] is semi-globally stable.

Definition 6.11. Let Σ be a plant, and letΞ be a controller. If there exists an open bounded set

S : 0 ∈ S ⊂ W such that the closed-loop[Σ, Ξ] is stable onS, then we say that the closed-loop

is locally stable.

For local stability, we have the following theorem.

Theorem 6.12.Consider the feedback system in Figure.6.1, and let[Σ, Ξ] be stable onSr with

‖ΦM//N |Sr‖ = α

For a perturbed plantΣ1, suppose there exists a mappingΦ : M∩ Sαr →M1 ∩W such that

‖(Φ− I)|M∩Sαr‖ = π <
1
α

(6.9)

andΨ = (Φ − I)ΠM//N is continuous and compact with‖Ψ|Sr‖ < 1. Then the closed-loop

[Σ1,Ξ] is stable onS(1−απ)r, further

‖ΠM1//N |S(1−απ)r
‖ ≤ (1 + π)α

1− απ
(6.10)

The proof can be found in [35].
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Robust State Feedback Backstepping

Designs

In this chapter, we use gap metric robustness framework of Chapter6 to develop a robust back-

stepping design procedure for state feedback control.

In 1995, Freeman [17] gave a counterexample to show that for general nonlinear systems, global

internal stabilizability does not imply the global external stabilizability for small sensor distur-

bances. This means that a standard backstepping design does not automatically guarantee ro-

bustness to measurement disturbances. On the other hand, Freeman and Kokotović [21] also

showed that the plant in strict-feedback form is input/output stabilizable. So, it is possible to

design a controller such that the closed-loop is stable in the presence of external disturbances.

We consider the standard feedback configuration inFIGURE 6.1 and a nominal plant in strict-

feedback form, and using a backstepping method, we design a robust controller for the nominal

plant in the presence of input and measurement disturbances. Then we make use of the robust-

ness results in Chapter6 to obtain the robustness of the closed-loop to plant perturbations which

are small in the sense of the gap metric, that is, we show that the controller stabilizes the closed-

loop for any perturbed plant in the presence of input, measurement and system disturbances

if the gap metric distance between the nominal and perturbed plant is less than a computable

constant.

A related construction of such a gain-function for the stable operator can be found in [23].

However, in that case, only the measurement disturbances in the formρ(|x|)B ( whereB denotes

the unit ball in a signal space, andρ is aK∞ function ) are allowed. So, the measurement

disturbances are required to enter the system equations multiplied by a classK∞ function of the

state magnitude. This means that the effect of measurement disturbances decreases to zero as the

states are regulated to zero. However, actual measurement disturbances could be independent of

the state size, and have complex structures. In our results this restriction is not required.

73
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The critical step is the construction of a stable operator between the external disturbances and

the internal signals of the closed-loop.

7.1 Problem Formulation

We consider a system which is defined by the following nominal plant in strict-feedback form

Σ(x0
1) : ẋ1i = x1(i+1) + ϕi(x11, · · · , x1i), 1 ≤ i ≤ n− 1 (7.1a)

ẋ1n = u1 + ϕn

(
x11, · · · , x1(n−1), x1n

)
, x1i(0) = x0

1i, 1 ≤ i ≤ n (7.1b)

whereu1 ∈ R is the input, and

x0
1 =




x0
11

x0
12
...

x0
1n




is the initial condition. Throughout this chapter, we always assume that everyϕi satisfies

ϕi(0) = 0. We further assume that everyϕi is globally Lipschitz continuous, that is there

exists a constantLi such that for anyω(i)
1 , ω

(i)
2 ∈ Ri,

∣∣∣ϕi

(
ω

(i)
1

)
− ϕi

(
ω

(i)
2

)∣∣∣ ≤ Li

∥∥∥ω
(i)
1 − ω

(i)
2

∥∥∥ , i = 1, · · · , n (7.2)

Here, we consider state feedback control, hence

y1 = x1 =




x11

x12

...

x1n




We consider the signal spaces

U = L∞(R+)

and

Y = L∞(R+)× · · · × L∞(R+) = L∞(R+,Rn)

Then

Σ(x0
1) : UΣ → Y : Σu1 7→ y1

The norm of the spaceY is defined as

‖ · ‖∞ =
(‖ · ‖2

∞ + · · ·+ ‖ · ‖2
∞

) 1
2
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With the input and measurement disturbancesu0 andy0, we will use a backstepping procedure

to design a controllerΞ : y2 7→ u2 to achieve gain-function stability for the nominal plant

Σ, and stability under zero initial condition. Furthermore, by gap metric theory, if the gap
~δ(Σ,Σ1) between a perturbed plantΣ1 and the nominal plantΣ is small, then the controllerΞ
also stabilizes the plantΣ1.

7.2 Control Design

For the sake of convenience, we introduce following notation

z =




z1

z2

...

zn




, x
(i)
1 =




x11

x12

...

x1i




, z(i) =




z1

z2

...

zi




By a similar backstepping design procedure to [55]1 , we definezi, αi, i = 0, 1, · · · , n by

z0 = 0

α0 = 0

zi = x1i − αi−1

(
x

(i−1)
1

)

αi

(
x

(i)
1

)
= −cizi − κizi − zi−1 +

i−1∑

j=1

∂αi−1

∂x1j
x1(j+1), i = 1, · · · , n− 1

αn (x1) = −cnzn − κnzn − zn−1 +
n−1∑

j=1

∂αn−1

∂x1j
x1(j+1) − κzn

whereci, i = 1, · · · , n andκ can be any positive constants, andκi, i = 1, · · · , n are to be

specified later.

Forzi, αi, i = 1, · · · , n, we first give three lemmas.

Lemma 7.1. For i = 1, · · · , n, αi is linear with respect to its variables. Thus,∂αi−1

∂x1j
, i =

1 · · · , n− 1; j = 1 · · · , i− 1 is constant.

Furthermore, there exists a positive constanta such that for anyω ∈ Rn, it holds

|αn(ω)| ≤ a‖ω‖ (7.3)

1This is not standard backstepping.
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Proof. We use mathematical induction to prove the first claim.

Firstly, z0 andα0(x11) are linear with respect tox11, hence∂α0
∂x11

is a constant.

Secondly, suppose thatz1, · · · , zi−1 andα1(x11), · · · , αi−1

(
x

(i−1)
1

)
are linear with respect to

the variables. Then∂αi−1

∂x1j
, j = 1 · · · , i− 1 are constants, and

zi

(
x

(i)
1

)
= x1i − αi−1

(
x

(i−1)
1

)

is also linear. Hence, it can be claimed thatαi

(
x

(i)
1

)
is also linear from the definition. This

completes the proof for this first part of this lemma.

To prove (7.3), first note thatαn(ω) is linear from above claim, so there exists a vectora ∈ Rn

such that

αn(ω) = a · ω

By Cauchy-Schwartz Inequality, it follows that

|αn(ω)| ≤ ‖a‖‖ω‖

Hence (7.3) holds with

a = ‖a‖

Lemma 7.2. Let

Ti : x
(i)
1 7→ z(i), i = 1, · · · , n

then the transformationsTi, i = 1, · · · , n are linear and invertible.

Proof. From above lemma,αi andzi, i = 0, 1, · · · , n are linear with respect tox(i)
1 . Hence the

transformationsTi, i = 1, · · · , n are also linear.

We use mathematical induction to prove the claim thatTi, i = 1, · · · , n are invertible.

First, we have

T1 : z1 = x11

hence,T1 is invertible.
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Second, we assume thatTi is invertible, and prove thatTi+1 is also invertible. In fact

x
(i+1)
1 = z

(i+1)
1 + αi

(
x

(i)
1

)

and by the assumption thatTi is invertible, we have

x
(i)
1 = T−1

i z
(i)
1

Therefore, we obtain

x
(i+1)
1 = z

(i+1)
1 + αi

(
T−1

i z
(i)
1

)

that is,Ti+1 is invertible.

By the principle of induction, we have proved our claim.

Lemma 7.3. Write

a(i−1)j =
∂αi−1

∂x1j
, 1 ≤ j < i ≤ n− 1

and

Mi = Li‖T−1
i ‖+

i−1∑

j=1

Lj |a(i−1)j |‖T−1
j ‖, i = 1, · · · , n

Then everyMi, i = 1, · · · , n is constant and independent ofκj , j = i, · · · , n.

Proof. It is easy to obtain thatMi, i = 1, · · · , n are constants sinceαi, i = 0, 1, · · · , n are

linear with respect tox(i)
1 .

We use induction to prove the second claim, that is, we prove that everyzi, i = 0, 1, · · · , n only

depends onκj , j = 0, 1, · · · , i− 1.

First,z1 is independent of anyκj .

Second, suppose thatzi−1 only depends onκj , j = 0, 1, · · · , i − 2. Then, by the definition,zi

only depends onαi−1, which only depends onκj , j = 0, 1, · · · , i− 1.

By induction, we have proved our claim.

By above lemma,Mi is depends onκ1, · · · , κi−1, so, we chooseκi, i = 1, · · · , n such that

κi ≥ n

2c
M2

i , i = 1, · · · , n (7.4)
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where

c = min
1≤i≤n

{ci}

We assume hereafter that (7.4) holds, and define a controllerΞ : YΞ → U as follows.

Ξ : u2 = −αn(−y2) (7.5)

We will show that this controller makes the closed-loop gain-function stable, and stable if the

initial conditionx0
1 is zero.

7.3 Stability of Closed-loop

As we stated before, let‖ · ‖ denote the Euclidian norm, and‖ · ‖∞ denote theL∞ norm.

Theorem 7.4. Let the plantΣ(x0
1) and controllerΞ be defined by (7.1) and (7.5). Then there

exists a continuous functionγ : R2
+ → [0, +∞) such that for all(u0, y0)T ∈ L∞(R+) ×

L∞(R+,Rn)
∥∥(u1, y1)T

∥∥
∞ ≤ γ

(∥∥(u0, y0)T
∥∥
∞ , ‖x0

1‖
)

(7.6)

that is, the closed-loop[Σ(x0
1), Ξ] is gf-stable.

Moreover, ifx0
1 = 0, then there exists a positive constantΓ such that for all(u0, y0)T ∈

L∞(R+)× L∞(R+,Rn))

∥∥(u1, y1)T
∥∥
∞ ≤ Γ

∥∥(u0, y0)T
∥∥
∞ (7.7)

that is, the closed-loop[Σ(0), Ξ] is stable.

Proof. For convenience of notation, we write

zi = zi

(
x

(i)
1

)
, αi = αi

(
x

(i)
1

)
, ϕi = ϕi

(
x

(i)
1

)

in the proof.
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Firstly

żi = ẋ1i − α̇i−1

= x1(i+1) + ϕi −
i−1∑

j=1

∂αi−1

∂x1j

(
x1(j+1) + ϕj

)

= zi+1 + αi + ϕi −
i−1∑

j=1

a(i−1)j

(
x1(j+1) + ϕj

)

= zi+1 − cizi − zi−1 − κizi +
i−1∑

j=1

a(i−1)jx1(j+1) + ϕi −
i−1∑

j=1

a(i−1)j

(
x1(j+1) + ϕj

)

= zi+1 − cizi − zi−1 − κizi + ϕi −
i−1∑

j=1

a(i−1)jϕj , i = 1, 2, · · · , n− 1

Sincezn andαn are linear, and

y1 = x1, y2 = x2, u1 + u2 = u0, y1 + y2 = y0

we obtain

żn = ẋ1n − α̇n−1

= u1 + ϕn −
n−1∑

j=1

a(n−1)j

(
x1(j+1) + ϕj

)

= u0 − u2 + ϕn −
n−1∑

j=1

a(n−1)j

(
x1(j+1) + ϕj

)

= u0 + αn(−y2) + ϕn −
n−1∑

j=1

a(n−1)j

(
x1(j+1) + ϕj

)

= αn(y1) + ϕn −
n−1∑

j=1

a(n−1)j

(
x1(j+1) + ϕj

)
+ u0 − αn(y1 + y2)

= αn(x1) + ϕn −
n−1∑

j=1

a(n−1)j

(
x1(j+1) + ϕj

)
+ u0 − αn(x0)

= −cnzn − zn−1 + ϕn −
n−1∑

j=1

a(n−1)jϕj − κzn + u0 − αn(y0)

Consider the Lyapunov function

V (z1, · · · , zn) =
1
2

n∑

i=1

z2
i
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differentiating along the trajectory of the closed-loop, and writingzn+1 = 0, then we have

V̇ =
n∑

i=1

ziżi

=
n∑

i=1

zi


zi+1 − cizi − zi−1 − κizi + ϕi −

i−1∑

j=1

a(i−1)jϕj




− κzn
2 + zn(u0 − αn(y0))

= −
n∑

i=1

ciz
2
i +

n∑

i=1


−κiz

2
i +


ϕi +

i−1∑

j=1

a(i−1)jϕj


 zi




− κzn
2 + zn

(
u0 − αn(y0)

)

By Young’s Inequality (see, e.g., [55] ), we obtain

V̇ ≤ −
n∑

i=1

ciz
2
i +

n∑

i=1

1
4κi


ϕi −

i−1∑

j=1

∂αi−1

∂x1j
ϕj




2

+
1
4κ

(u0 − αn(y0))
2

Sinceϕi, i = 1, 2, · · · , n are globally Lipschitz continuous, andϕi(0) = 0, i = 1, 2, · · · , n,

then for allω ∈ R it hold

|ϕi(ω)| ≤ Li|ω|, i = 1, 2, · · · , n

hence, by (7.4) we have

∣∣∣∣∣∣
ϕi −

i−1∑

j=1

∂αi−1

∂x1j
ϕj

∣∣∣∣∣∣
≤ |ϕi|+

i−1∑

j=1

∣∣∣∣
∂αi−1

∂x1j

∣∣∣∣ |ϕj |

≤ Li‖x(i)
1 ‖+

i−1∑

j=1

|a(i−1)j |Lj‖x(j)
1 ‖

≤ Li‖T−1
i z(i)‖+

i−1∑

j=1

Lj |a(i−1)j |‖T−1
j z(j)‖

≤ Li‖T−1
i ‖‖z‖+

i−1∑

j=1

Lj |a(i−1)j |‖T−1
j ‖‖z‖

= Mi‖z‖

≤
√

2cκi

n
‖z‖
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By Lemma7.1

|u0 − αn(y0)| ≤ |u0|+ |αn(y0)|

≤ ‖u0‖∞ + a‖y0‖∞

Finally, we obtain

V̇ ≤ −
n∑

i=1

ciz
2
i +

c

2n
‖z‖2 +

1
4κ

(‖u0‖∞ + a‖y0‖∞)2

≤ −1
2

n∑

i=1

ciz
2
i +

1
4κ

(‖u0‖∞ + a‖y0‖∞)2

Hence,V (t) decreases outside the compact set

R =

{
z ∈ Rn

∣∣∣
n∑

i=1

ciz
2
i ≤

1
2κ

(‖u0‖∞ + a‖y0‖∞)2
}

Now define

R1 =

{
z ∈ Rn

∣∣∣
n∑

i=1

z2
i ≤

1
2cκ

(‖u0‖∞ + a‖y0‖∞)2
}

where

c = min{ci : 1 ≤ i ≤ n}

so, we obtain that if

V (0) ≤ 1
2cκ

(‖u0‖∞ + a‖y0‖∞)2

thenV (t) remains inR1 for all time t ≥ 0; if

V (0) >
1

2cκ
(‖u0‖∞ + a‖y0‖∞)2

thenV (t) monotonously decrease fromt = 0 until z reachesR1. Hence, we obtain

V (t) ≤ max
{

V (0),
1

2cκ
(‖u0‖∞ + a‖y0‖∞)2

}

Therefore

‖z‖ =
√

(2V ) ≤ max
{√

2V (0),
1√
cκ

(‖u0‖∞ + a‖y0‖∞)
}

= max
{
‖z0‖, 1√

cκ
(‖u0‖∞ + a‖y0‖∞)

}



Chapter 7 Robust State Feedback Backstepping Designs 82

where

z0 = z(0)

Let

l = max{1, a}

and note that

‖z0‖ = ‖Tnx0
1‖ ≤ ‖Tn‖‖x0

1‖

‖u0‖∞ + a‖y0‖∞ ≤ l(‖u0‖∞ + ‖y0‖∞)

≤ l
√

2
(‖u0‖2

∞ + ‖y0‖2
∞

) 1
2

= l
√

2
∥∥(u0, y0)T

∥∥
∞

Then we have

‖z‖∞ ≤ max

{
‖Tn‖‖x0

1‖, l

√
2
cκ

∥∥(u0, y0)T
∥∥
∞

}

Since

‖y1‖ = ‖x1‖ = ‖T−1
n z‖ ≤ ‖T−1

n ‖‖z‖

we obtain that

‖y1‖∞ ≤ ‖T−1
n ‖‖z‖∞

≤ ‖T−1
n ‖max

{
‖Tn‖‖x0

1‖, l

√
2
cκ

∥∥(u0, y0)T
∥∥
∞

}

= h
(∥∥(u0, y0)T

∥∥
∞ , ‖x0

1‖
)

with

h
(∥∥(u0, y0)T

∥∥
∞ , ‖x0

1‖
)

= ‖T−1
n ‖max

{
‖Tn‖‖x0

1‖, l

√
2
cκ

∥∥(u0, y0)T
∥∥
∞

}
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Moreover, we have

‖u1‖∞ ≤ ‖u0‖∞ + ‖u2‖∞
= ‖u0‖∞ + ‖ − αn(−x2)‖∞
≤ ‖u0‖∞ + ‖αn(x1)− αn(−x2)‖∞ + ‖αn(x1)‖∞
≤ ‖u0‖∞ + a‖y0‖∞ + a‖x1‖∞
≤ l
√

2
∥∥(u0, y0)T

∥∥
∞ + ah

(∥∥(u0, y0)T
∥∥
∞ , ‖x0

1‖
)

Let

γ
(∥∥(u0, y0)T

∥∥
∞ , ‖x0

1‖
)

=
((

l
√

2
∥∥(u0, y0)T

∥∥
∞ + ah

(∥∥(u0, y0)T
∥∥
∞ , ‖x0

1‖
))2

+
(
h

(∥∥(u0, y0)T
∥∥
∞ , ‖x0

1‖
))2

) 1
2

then we have

∥∥(u1, y1)T
∥∥
∞ = (‖u1‖2

∞ + ‖y1‖2
∞)

1
2

≤ γ
(∥∥(u0, y0)T

∥∥
∞ , ‖x0

1‖
)

This completes the proof of (7.6).

As to (7.7), note that ifx0
1 = 0, then

h
(∥∥(u0, y0)T

∥∥
∞ , ‖x0

1‖
)

= ‖T−1
n ‖l

√
2
cκ

∥∥(u0, y0)T
∥∥
∞

thus

γ
(∥∥(u0, y0)T

∥∥
∞ , ‖x0

1‖
)

=




(
l
√

2
∥∥(u0, y0)T

∥∥
∞ + a‖T−1

n ‖l
√

2
cκ

∥∥(u0, y0)T
∥∥
∞

)2

+

(
‖T−1

n ‖l
√

2
cκ

∥∥(u0, y0)T
∥∥
∞

)2



1
2

= l

√
2
cκ

((√
cκ + a‖T−1

n ‖)2 + ‖T−1
n ‖2

) 1
2
∥∥(u0, y0)T

∥∥
∞

= Γ
∥∥(u0, y0)T

∥∥
∞
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Therefore (7.7) holds with

Γ = l

√
2
cκ

((√
cκ + a‖T−1

n ‖)2 + ‖T−1
n ‖2

) 1
2

By gap metric theory, we obtain the following result for any perturbed plant.

Theorem 7.5. Let the nominal plantΣ(0) and controllerΞ be defined by (7.1) and (7.5). Then

there exists a positive constantΓ such that for any perturbed plantΣ1 which satisfies

~δ(Σ(0), Σ1) <
1
Γ

the closed-loop[Σ1, Ξ] is also stable, and

‖ΠM1//N ‖ ≤ Γ
1 + ~δ(Σ(0), Σ1)

1− Γ~δ(Σ(0), Σ1)

Proof. By Theorem7.4, we obtain that there exists a constantΓ > 0 such that

‖ΠM//N ‖ ≤ Γ

Then, since

~δ(Σ(0), Σ1) < Γ−1

it holds that

~δ(Σ(0), Σ1) <
1

‖ΠM//N ‖
Lastly, from Theorem6.8 in Chapter6, the proof is complete.

In above work, we have assumed that all the states are measured and used for feedback control.

But, in some cases only the first state is measurable and can be used for feedback, this is the

problem of output feedback control. Hence, in the next chapter we will consider the case of

robust output feedback control.



Chapter 8

Robust Output Feedback Backstepping

Designs

In the previous chapter, we studied a robust backstepping design for state feedback control. In

this chapter we consider robust backstepping for output feedback control, which is not consid-

ered in [23].

We will consider a nominal plant in output-feedback form and the standard feedback configura-

tion in FIGURE 6.1. We design a robust controller for the nominal plant in the presence of input

and measurement disturbances. Then we make use of the robustness results in Chapter6 to ob-

tain the robustness of the closed-loops to plant perturbations which are small in the sense of the

gap metric. That is, as in Chapter7, we show that the controllers stabilize the closed-loops for

any perturbed plants in the presence of input, measurement and system disturbances if the gap

metric distance between the nominal and a perturbed plant is less than a computable constant.

In this chapter, we will relax the nonlinearities to be locally Lipschitz continuous and get local

results. If the nonlinearities are globally Lipschitz continuous, the results are global.

As an application, we use the theory we established to a system with time delay, and prove that

if the time delay is suitably small, the controller is able to achieve stability of the closed-loop.

85
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8.1 Problem Formulation

We consider a nominal plant in output-feedback form

Σ(x0
1) : ẋ1i = x1(i+1) + ϕi(y1), 1 ≤ i ≤ n− 1 (8.1a)

ẋ1n = u1 + ϕn(y1), x1i(0) = x0
1i, 1 ≤ i ≤ n (8.1b)

y1 = x11 (8.1c)

wherey1 ∈ R is the measured output,u1 ∈ R is the input, andϕi : R → R, i = 1, 2, · · · , n

are assumed to be either locally or globally Lipschitz continuous, and satisfyϕi(0) = 0, i =
1, 2, · · · , n, and

x0
1 =




x0
11

x0
12
...

x0
1n




is the initial condition.

With respect to the nominal plantΣ, our main purpose is to use backstepping procedure to

design a output feedback controllerΞ : y2 7→ u2, achieving gain-function stability for the plant

Σ, and stability under zero initial conditions.

We consider the signal spaces

U = Y = L∞(R+)

then the output-feedback form plantΣ(x0
1) mapsUΣ ⊆ L∞(R+) into L∞(R+).

We introduce the following notation

x1 =




x11

x12

...

x1n




, A =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
. . . . . . . . . . . . . . . . . . .

0 0 0 · · · 0 1
0 0 0 · · · 0 0




, B =




0
...

0
1




, ϕ(y) =




ϕ1(y)
ϕ2(y)

...

ϕn(y)




and

C = (1, 0, · · · , 0)

to rewrite the plant (8.1) as

Σ(x0
1) : ẋ1 = Ax1 + ϕ(y1) + Bu1, x1(0) = x0

1 (8.2a)

y1 = Cx1 (8.2b)
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For subsequent use, we give two lemmas here.

Lemma 8.1. If ϕi, i = 1, 2, · · · , n are locally Lipschitz continuous, andϕi(0) = 0, i =

1, 2, · · · , n, then for anyρ > 0 there exist constantsLi(ρ) < ∞, i = 1, 2, · · · , n and δ > 0

such that for allω ∈ [0, ρ] and|ω0| < δ,

|ϕi(ω)− ϕi(ω − ω0)| ≤ Li(ρ)|ω0|, i = 1, 2, · · · , n (8.3)

and

|ϕi(ω)| ≤ Li(ρ)|ω|, i = 1, 2, · · · , n (8.4)

Proof. 1 Since everyϕi, i = 1, 2, · · · , n is locally Lipschitz continuous, then for anyω there

exist constantsLi(ω) < ∞ andδi(ω) > 0 such that for any|ω0| < δi(ω), we have

|ϕi(ω)− ϕi(ω − ω0)| ≤ Li(ω)|ω0|

The family of open sets{(ω − δi(ω), ω + δi(ω))}ω∈[0,ρ] covers the closed set[0, ρ], hence, by

the finite cover theorem2, there exist finite open sets

(ωj − δi(ωj), ωj + δi(ωj)), ωj ∈ [0, ρ], j = 1, 2, · · · , m

such that

[0, ρ] ⊆
m⋂

j=1

(ωj − δi(ωj), ωj + δi(ωj))

Then, for anyω ∈ [0, ρ], there existsj : 1 ≤ j ≤ m such that

ω ∈ (ωj − δi(ωj), ωj + δi(ωj))

So, for|ω0| < δi(ωj), we have

|ϕi(ω)− ϕi(ω − ω0)| ≤ Li(ω)|ω0|

Now let

Li(ρ) = max
1≤j≤m

{Li(ωj)}

1If we further assume thatϕi, i = 1, 2, · · · , n are differentiable, then the proof can be simply obtained by the
mean value theorem.

2See, e.g., Q. Douglas, Mathematical Analysis, Clarendon Press, Oxford, 1955
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δ = min
1≤j≤m,1≤i≤n

{δi(ωj)}

thenLi(ρ) < ∞ andδ > 0, furthermore, (8.3) holds for allω ∈ [0, ρ] and|ω0| < δ.

As for (8.4), if ω = 0, it holds; if |ω| > 0, takemω points$j , j = 0, 1, · · · ,mω such that

0 = $0 < $1 < · · · < $mω−1 < $mω = ω

$mω −$mω−1 < δ

Then from the result of first part

|ϕi(ω)| =
∣∣∣∣∣∣

mω∑

j=1

ϕi($j)− ϕi($j−1)

∣∣∣∣∣∣

≤
mω∑

j=1

|ϕi($j)− ϕi($j−1)|

≤
mω∑

j=1

Li(ρ)|$j −$j−1|

= Li(ρ)|$mω −$0|

= Li(ρ)|ω|

This completes the proof.

Lemma 8.2. If ϕi, i = 1, 2, · · · , n are globally Lipschitz continuous, andϕi(0) = 0, i =

1, 2, · · · , n, then there exist constantsLi, i = 1, 2, · · · , n such that for allω ∈ R

|ϕi(ω)| ≤ Li|ω|, i = 1, 2, · · · , n (8.5)

Proof. The proof can be obtained from the globally Lipschitz condition and thatϕi(0) = 0, i =

1, 2, · · · , n.

8.2 Control Design And Stability Analysis

We first consider the case when the nonlinearities are locally Lipschitz continuous, and design an

output feedback control which is valid locally, before considering globally Lipschitz continuous

nonlinearities as a special situation and obtaining a global result.
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For our purpose, we first use an amended observer backstepping procedure to design a linear

transformation, and further define a state feedback linear controller. Next, we introduce an

amended observer to obtain our output feedback controller. Then we make use of the robustness

results in Chapter6 to get the robustness of the controller to plant perturbations in a gap metric

sense.

8.2.1 Local Lipschitz Condition

For plantΣ(x0
1), suppose thatϕi, i = 1, 2, · · · , n are locally Lipschitz continuous. Since only

the local Lipschitz conditions are assumed, our results will be local.

Take any positive constantsci, di; i = 1, 2, · · · , n andκ. Supposeρ is a positive constant, and

take a positive constantl which satisfies

l ≥ 1
4

n∑

i=1

1
di

i∑

j=1

Lj(ρ)2 (8.6)

whereLi(ρ), i = 1, 2, · · · , n are the constants in (8.3) of Lemma8.1.

Write

z = (z1, z2, · · · , zn)T

and by the backstepping design procedure3, define a transformationT : x1 7→ z as follows

z1(x11) =x11 (8.7a)

α1(x11) =− c1z1 − d1z1 − lz1 (8.7b)

zi(x11, · · · , x1i) =x1i − αi−1(x11, · · · , x1(i−1)) (8.7c)

αi(x11, · · · , x1i) =− cizi − zi−1 − di


1 +

i−1∑

j=1

(
∂αi−1

∂x1j

)2

 zi

+
i−1∑

j=1

∂αi−1

∂x1j
x1(j+1), i = 2, 3, · · · , n (8.7d)

αn(x11, · · · , x1n) =αn(x1)

=− cnzn − zn−1 − dn


1 +

n−1∑

j=1

(
∂αn−1

∂x1j

)2

 zn − κzn

+
n−1∑

j=1

∂αn−1

∂x1j
x1(j+1) (8.7e)

For the transformationT andαi, we have the following lemmas.

3This is different from the standard backstepping in [55]



Chapter 8 Robust Output Feedback Backstepping Designs 90

Lemma 8.3. For i = 1, · · · , n, zi andαi are linear with respect to their variables. The trans-

formationT is also linear and invertible. Furthermore, there exists a positive constanta such

that for anyω ∈ Rn

|αn(ω)| ≤ a‖ω‖ (8.8)

Proof. We use induction to prove thatzi, αi are linear.

First,z1 andα1(x11) are linear with respect tox11, hence∂α1
∂x11

is a constant.

Second, suppose thatz1, · · · , zi−1 andα1(x11), · · · , αi−1(x11, · · · , x1(i−1)) are linear with re-

spect to the variables. Then∂αi−1

∂x1j
, j = 1 · · · , i − 1 are constants, andzi(x11, · · · , x1i) =

x1i − αi−1(x11, · · · , x1(i−1)) is also linear. Hence, it can be claimed thatαi(x11, · · · , x1i) is

also linear from the definition. This completes the proof the claim.

ThatT is linear and invertible can be proved the same way as Lemma7.2.

As to the (8.8), it can be proved the same way as Lemma7.1.

As in Chapter7, a state feedback controller can be defined as

Ξo : u1 = αn(x1)

Consider the Lyapunov function

V (z1, · · · , zn) =
1
2

n∑

i=1

z2
i

differentiating along the trajectories of the closed-loop, following the proof of Theorem7.4, we

can prove that the closed-loop[Σ(x0
1)),Ξo] is locally gain-function stable, and the closed-loop

[Σ(0)), Ξo] is locally stable.

But in our case, since only the first statex11 is measurable, and onlyx21 = y0−x11 can used for

control designs, to implement control, an observer forx2 is utilized to estimate the other states.

First, write

x̂2 =




x̂21

x̂22

...

x̂2n




, x̂0
2 =




x̂0
21

x̂0
22
...

x̂0
2n



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and define an observer4 by

˙̂x2 = Ax̂2 −K(y2 − ŷ2)− ϕ(−y2)−Bu2, x̂2(0) = x̂0
2 (8.9a)

ŷ2 = Cx̂2 (8.9b)

where

K =




k1

k2

...

kn




is chosen such thatA0 = A−KC is Hurwitz. Note that̂x0
2 is the initial observer, andy2 = x21.

To obtain an output feedback controller, write

x̂∗2 =




x̂22

...

x̂2n


 ∈ Rn−1

and we define the output feedback controller as

Ξ(x̂0
2) : u2 = −αn(−y2,−x̂∗2)

˙̂x2 = Ax̂2 + K(y2 − ŷ2)− ϕ(−y2)−Bu2, x̂2(0) = x̂0
2 (8.10)

ŷ2 = Cx̂2

We first establish a lemma for the estimate error.

Lemma 8.4. Letx1 be the state in the plant (8.2), andx̂2 be the observer state in (8.9), and let

x̃ = x1 + x̂2 (8.11)

be the perturbed observer error, thenx̃ satisfies

˙̃x = A0x̃ + ϕ(y1)− ϕ(−y2)−Ky0 + Bu0, x̃(0) = x̃0 (8.12)

where

x̃0 = x0
1 + x̂0

2

4This is also different from the observer in [55].
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Moreover, if|y1| ≤ ρ and|y0| < δ, then there exist constantsb andνρ such that

‖x̃‖∞ ≤ b
(‖x̃0‖+ νρ‖y0‖∞ + ‖u0‖∞

)
(8.13)

Proof. 5 Note that

y1 + y2 = y0, u1 + u2 = u0

and then from (8.2) and (8.9), it follows thatx̃ satisfies (8.12).

Now we estimatẽx. By (8.12), we obtain that

x̃ = x̃0eA0t +
∫ t

0
eA0(t−τ)

(
ϕ(y1(τ))− ϕ(−y2(τ))−Ky0(τ) + Bu0(τ)

)
dτ (8.14)

Let λi, i = 1, · · · , n be the eigenvalues of matrixA0. Since the matrixA0 is Hurwitz, the real

parts of all its eigenvalues are negative. Letµ be a positive constant such that

−µ > Reλi, i = 1, · · · , n

then there exists a positive constantb such that

‖eA0t‖ ≤ be−µt (8.15)

Hence

‖x̃(t)‖ ≤‖x̃0eA0t‖+
∫ t

0
‖eA0(t−τ)‖

(
‖ϕ(y1(τ))− ϕ(−y2(τ))‖+ ‖Ky0(τ)‖+ ‖Bu0(τ)‖

)
dτ

≤‖x̃0‖‖eA0t‖+
∫ t

0
‖eA0(t−τ)‖




(
n∑

i=1

(
ϕi(y1(τ))− ϕi(−y2(τ))

)2
) 1

2

+

(
n∑

i=1

k2
i

) 1
2

|y0(τ)|+ |u0(τ)|

 dτ

≤b‖x̃0‖e−µt +
∫ t

0
‖eA0(t−τ)‖




(
n∑

i=1

(
ϕi

(
y1(τ)

)− ϕi

(
y1(τ)− y0(τ)

))2
) 1

2

+

(
n∑

i=1

k2
i

) 1
2

|y0(τ)|+ |u0(τ)|

 dτ

5By ISS stability, a simple proof can be obtained.
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As |y1(τ)| < ρ and|y0(τ)| < δ, from (8.3) it follows that

‖x̃(t)‖ ≤b‖x̃0‖+ b

∫ t

0
e−µ(t−τ)




(
n∑

i=1

Li(ρ)2
∣∣y0(τ)

∣∣2
) 1

2

+

(
n∑

i=1

k2
i

) 1
2

|y0(τ)|+ |u0(τ)|

 dτ

≤b‖x̃0‖+ b







(
n∑

i=1

Li(ρ)2
) 1

2

+

(
n∑

i=1

k2
i

) 1
2


 ‖y0‖∞ + ‖u0‖∞




∫ t

0
e−µ(t−τ)dτ

≤b


‖x̃0‖+

1
µ




(
n∑

i=1

Li(ρ)2
) 1

2

+

(
n∑

i=1

k2
i

) 1
2


 ‖y0‖∞ + ‖u0‖∞




=b
(‖x̃0‖+ νρ‖y0‖∞ + ‖u0‖∞

)

with

νρ =
1
µ




(
n∑

i=1

Li(ρ)2
) 1

2

+

(
n∑

i=1

k2
i

) 1
2




Therefore (8.13) holds.

Since we only assume that the nonlinear terms of the plant are locally Lipschitz continuous, we

can only hope for local stability results. For convenience we introduce the following notations:

c = min
1≤i≤n

{ci}, c0 = max
1≤i≤n

{ci}, M = max
{
1 + 3a2b2, a

(
1 + 3b2ν2

ρ

)}

π1 =
ρ
√

2cκ

3
√

M
, π2 =

ρ
√

2cκ

3
√

3ab
, π3 =

2ρ
√

c

3‖T‖√c0
, πδ = min{π1, δ}

Theorem 8.5. Consider the plantΣ(x0
1) defined by (8.1), and letϕi, i = 1, 2, · · · , n be locally

Lipschitz continuous. Consider the controllerΞ(x̂0
2) defined by (8.7) and (8.10). Then

1. For any disturbance(u0, y0)T∈L∞(R+)×L∞(R+), ‖(u0, y0)T ‖∞ ≤ πδ, initial state

x0
1 ∈ Rn, ‖x0

1‖ ≤ π3, and initial error x̃0 ∈ Rn, ‖x̃0‖ ≤ π2, there exists a positive

constantγρ such that
∥∥(u1, y1)T

∥∥
∞ ≤ γρ (8.16)

that is, the closed-loop system[Σ(x0
1), Ξ(x̂0

2)] is locally gain-function stable.

2. If x0
1 = x̂0

2 = 0, then for any disturbance(u0, y0)T∈L∞(R+)×L∞(R+), ‖(u0, y0)T ‖∞ ≤
πδ, there exists a positive constantΓρ such that

∥∥(u1, y1)T
∥∥
∞ ≤ Γρ

∥∥(u0, y0)T
∥∥
∞ (8.17)
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that is, the closed-loop system[Σ(0), Ξ(0)] is locally stable.

Proof. Let us first establish 1.

Throughout the proof, for simplicity of notation, we will useαi to denoteαi(x11, · · · , x1i), zi

to denotezi(x11, · · · , x1i), ϕi to denoteϕi(x11), and

a(i−1)j =
∂

∂x1j
αi−1

(
x11, · · · , x1(i−1)

)
, i = 1, · · · , n, j = 1, · · · , i− 1

Consider the Lyapunov function

V (z1, · · · , zn) =
1
2

n∑

i=1

z2
i (8.18)

then we can establish that

V̇ ≤ −
n∑

i=1

ciz
2
i + c

(
2ρ

3

)2

(8.19)

In fact, along the solution of the closed-loop, we have

ż1 = ẏ1 = ẋ11 =x12 + ϕ1

=z2 + α1 + ϕ1

=z2 − c1z1 − d1z1 + ϕ1 − lz1

and

żi =ẋ1i − α̇i−1

=x1(i+1) + ϕi −
i−1∑

j=1

∂αi−1

∂x1j

(
x1(j+1) + ϕj

)

=zi+1 + αi + ϕi −
i−1∑

j=1

a(i−1)j

(
x1(j+1) + ϕj

)

=zi+1 − cizi − zi−1 − di


1 +

i−1∑

j=1

a2
(i−1)j


 zi +

i−1∑

j=1

a(i−1)jx1(j+1)

+ ϕi −
i−1∑

j=1

a(i−1)j

(
x1(j+1) + ϕj

)

=zi+1 − cizi − zi−1 − di


1 +

i−1∑

j=1

a2
(i−1)j


 zi + ϕi −

i−1∑

j=1

a(i−1)jϕj , i = 2, 3, · · · , n− 1
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and

żn =ẋ1n − α̇n−1

=u1 + ϕn −
n−1∑

j=1

a(n−1)j

(
x1(j+1) + ϕj

)

=u0 − u2 + ϕn −
n−1∑

j=1

a(n−1)j

(
x1(j+1) + ϕj

)

=u0 + αn(−y2,−x̂∗2) + ϕn −
n−1∑

j=1

a(n−1)j

(
x1(j+1) + ϕj

)

Noting thatαn is linear with respect to its variables, we obtain

żn =u0 + αn(y1, x
∗
1)− αn(y1 + y2, x

∗
1 + x̂∗2) + ϕn −

n−1∑

j=1

a(n−1)j

(
x1(j+1) + ϕj

)

=u0 + αn(x1)− αn(y0, x̃
∗) + ϕn −

n−1∑

j=1

a(n−1)j

(
x1(j+1) + ϕj

)

=− cnzn − zn−1 − dn


1 +

n−1∑

j=1

a2
(n−1)j


 zn + ϕn −

n−1∑

j=1

a(n−1)jϕj + u0 − αn(y0, x̃
∗)

Write z0 = 0, zn+1 = 0, then along the solution of the closed-loop, we have

V̇ =
n∑

i=1

ziżi

=
n∑

i=1

zi


zi+1 − cizi − zi−1 − di


1 +

i−1∑

j=1

a2
(i−1)j


 zi + ϕi −

i−1∑

j=1

a(i−1)jϕj




− lz2
1 − κzn

2 +
(
u0 − αn(y0, x̃

∗)
)
zn

=−
n∑

i=1

ciz
2
i − lz2

1 +
n∑

i=1


−diz

2
i + ziϕi +

i−1∑

j=1

(
−dia

2
(i−1)jz

2
i − a(i−1)jziϕj

)



− κzn
2 + zn

(
u0 − αn(y0, x̃

∗)
)

By Young’s Inequality, we obtain

V̇ ≤−
n∑

i=1

ciz
2
i − lz2

1 +
n∑

i=1

1
4di


ϕ2

i +
i−1∑

j=1

ϕ2
j


 +

1
4κ

(
u0 − αn(y0, x̃

∗)
)2

=−
n∑

i=1

ciz
2
i − lz2

1 +
1
4

n∑

i=1

1
di

i∑

j=1

ϕ2
j +

1
4κ

(
u0 − αn(y0, x̃

∗)
)2
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and we now claim thaty1(t) < ρ for all t ≥ 0.

For a contradiction, assume the claim does not hold, i.e., there at lest exists a finite timet∗ > 0

such thaty1(t∗) ≥ ρ. Let ts be the smallest time at which|y1(ts)| = ρ. Then we get the

following claims: First,ts > 0 since|y1(0)| = |x0
11| ≤ ‖x0

1‖ < ρ. Second, fort ∈ [0, ts), we

have|y1(t)| < ρ.

For t ∈ [0, ts), it holds that|y1(t)| < ρ. Hence, fort ∈ [0, ts), by Lemma8.1, we obtain that

V̇ ≤ −
n∑

i=1

ciz
2
i − lz2

1 +
1
4

n∑

i=1

1
di

i∑

j=1

Lj(ρ)2y2
1 +

1
4κ

(
u0 − αn(y0, x̃

∗)
)2

= −
n∑

i=1

ciz
2
i − lz2

1 +
1
4

n∑

i=1

1
di

i∑

j=1

Lj(ρ)2z2
1 +

1
4κ

(
u0 − αn(y0, x̃

∗)
)2

≤ −
n∑

i=1

ciz
2
i +

1
4κ

(
u0 − αn(y0, x̃

∗)
)2

(8.20)

We now estimate the last term forτ ∈ [0, ts) andt ∈ [0, τ ]. By Lemma8.4, we have

1
4κ

(
u0 − αn(y0, x̃

∗)
)2 ≤ 1

2κ

(
u2

0 + αn(y0, x̃
∗)2

)

≤ 1
2κ

(
‖u0‖2

∞ + a2‖(y0, x̃
∗)T ‖2

L∞[0,τ)

)

≤ 1
2κ

(
‖u0‖2

∞ + a2
(
‖y0‖2

∞ + ‖x̃∗‖2
L∞[0,τ)

))

≤ 1
2κ

(
‖u0‖2

∞ + a2
(
‖y0‖2

∞ + b2
(‖x̃0‖+ ν‖y0‖∞ + ‖u0‖∞

)2
))

≤ 1
2κ

(
‖u0‖2

∞ + a2
(
‖y0‖2

∞ + 3b2
(‖x̃0‖2 + ν2‖y0‖2

∞ + ‖u0‖2
∞

)))

=
1
2κ

(
(1 + 3a2b2)‖u0‖2

∞ + (a2 + 3b2ν2)‖y0‖2
∞ + 3a2b2‖x̃0‖2

)

≤ 1
2κ

M‖(u0, y0)T ‖2
∞ +

3
2κ

a2b2‖x̃0‖2 (8.21)

From‖(u0, y0)T ‖∞ ≤ πδ ≤ π1 and‖x̃0‖∞ ≤ π2, we obtain that

1
4κ

(
u0 − αn(y0, x̃

∗)
)2 ≤ 1

2κ
Mπ2

1 +
3
2κ

a2b2π2
2

≤ 2cρ2

9
+

2cρ2

9

= c

(
2ρ

3

)2
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So, fort ∈ [0, τ) we have

V̇ ≤−
n∑

i=1

ciz
2
i + c

(
2ρ

3

)2

(8.22)

ThereforeV (t) decreases outside the compact set

R =

{
z ∈ Rn

∣∣∣∣∣
n∑

i=1

ciz
2
i ≤ c

(
2ρ

3

)2
}

Since
n∑

i=1

ci(z0
i )2 ≤ c0‖z0‖2 ≤ c0‖T‖2‖x0

1‖2 ≤ c0‖T‖2π2
3 < c

(
2ρ

3

)2

we havez0 ∈ R. So, we obtain that for allt ∈ [0, τ), z(t) ∈ R1, which is defined by

R1 =

{
z ∈ Rn

∣∣∣ =
n∑

i=1

z2
i ≤

(
2ρ

3

)2
}

Hence

y2
1 = x2

11 = z2
1 ≤ ‖z‖2 <

(
2ρ

3

)2

, t ∈ [0, τ)

or

|y1(t)| < 2ρ

3
, t ∈ [0, τ)

From this we obtain that for anyτ < ts

‖y1‖L∞[0,τ ] <
2ρ

3

This is contrary to the fact that

‖y1‖L∞[0,ts] = ρ

and‖y1‖L∞[0,τ ] is continuous with respect toτ sincey1(t) is continuous.

This completes the proof of the claim, and shows that

‖y1‖∞ = ‖y1‖L∞[0,+∞) < ρ
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Now we prove thatu1 is also bounded. In fact

u1 = u0 − u2

= u0 + αn(−y2,−x̂∗2)

= u0 + αn(y1 − y0, x
∗
1 − x̃∗)

= u0 + αn(y1, x
∗
1)− αn(y0, x̃

∗)

= u0 + αn(x1)− αn(y0, x̃
∗)

sinceαn is linear. Hence

‖u1‖∞ ≤ ‖u0‖∞ + ‖αn(x1)‖∞ + ‖αn(y0, x̃
∗)‖∞

≤ ‖u0‖∞ + a‖x1‖∞ + a‖(y0, x̃
∗)‖∞

= ‖u0‖∞ + a
(
‖x1‖∞ + (‖y0‖2

∞ + ‖x̃∗‖2
∞)

1
2

)
(8.23)

Since‖u0‖∞, ‖y0‖∞ are bounded by the assumptions of the theorem, we need only show that

‖x̃∗‖∞ and‖x1‖∞ are bounded.

From the first part of the proof, we have obtained that|y1(t)| < ρ for all t ∈ [0,+∞), therefore,

(8.13) holds for allt ∈ [0, +∞). So

‖x̃∗‖∞ ≤ ‖x̃‖∞ ≤ b
(‖x̃0‖+ νρ‖y0‖∞ + ‖u0‖∞

)
(8.24)

is bounded. Fromz(t) ∈ R1, and

‖x1‖∞ = ‖T−1z‖∞ ≤ ‖T−1‖‖z‖∞ (8.25)

we know that‖x1‖∞ is also bounded. Hence‖u1‖∞ is bounded.

Therefore we have established 1. Now we establish 2.

Sincex0
1 = x̂0

2 = 0, we havẽx0 = 0. From (8.21), we obtain

1
4κ

(
u0 − αn(y0, x̃

∗)
)2 ≤ M

2κ
‖(u0, y0)T ‖2

∞
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Hence

V̇ ≤ −
n∑

i=1

ciz
2
i +

M

2κ
‖(u0, y0)T ‖2

∞ (8.26)

Similarly, we can obtain

‖z‖∞ ≤
√

M

2cκ
‖(u0, y0)T ‖∞ (8.27)

So

‖y1‖∞ ≤ ‖z‖∞ ≤
√

M

2cκ
‖(u0, y0)T ‖∞ (8.28)

By (8.23), (8.24), (8.25) and (8.27), we have

‖u1‖∞ ≤ ‖u0‖∞ + a
(
‖x1‖∞ + (‖y0‖2

∞ + ‖x̃∗‖2
∞)

1
2

)

≤ ‖u0‖∞ + a

(
‖T−1‖‖z‖∞ +

(
‖y0‖2

∞ + (νρ‖y0‖∞ + ‖u0‖∞)2
) 1

2

)

≤ ‖u0‖∞ + a

(
‖T−1‖

√
M

2cκ
‖(u0, y0)T ‖∞ +

(
‖y0‖2

∞ + (νρ‖y0‖∞ + ‖u0‖∞)2
) 1

2

)

≤ ‖u0‖∞ + a

(
‖T−1‖

√
M

2cκ
‖(u0, y0)T ‖∞ +

(‖y0‖2
∞ +

(
2ν2

ρ‖y0‖2
∞ + 2‖u0‖2

∞
)) 1

2

)

Let

λρ = max{2, 1 + 2ν2
ρ}

then

‖u1‖∞ ≤ ‖(u0, y0)T ‖∞ + a

(
‖T−1‖

√
M

2cκ
‖(u0, y0)T ‖∞ +

√
λρ‖(u0, y0)T ‖∞

)

≤
(

1 + a‖T−1‖
√

M

2cκ
+

√
λρ

)
‖(u0, y0)T ‖∞ (8.29)

Write

Γρ =
M

2cκ
+

(
1 + a‖T−1‖

√
M

2cκ
+

√
λρ

)2

(8.30)

then by (8.28) and (8.29), we obtain that

‖(u1, y1)T ‖∞ ≤ Γρ‖(u0, y0)T ‖∞

Thus, we have established 2.
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Since we only assume that the nonlinearities of the plant are locally Lipschitz continuous, the

results are only local, which are weaker than semi-global. It remains an open question as to

whether semi-global results can be obtained.

The purpose of the framework of gap metric robustness is to allow plant perturbations. If the

plantΣ and controllerΞ satisfy the conditions of Theorem8.5, and let

W = L∞(R+)× L∞(R+), Sr =
{
s ∈ W∣∣‖s‖ ≤ r

}

then‖ΠM//N |Sπδ
‖ is finite by Theorem8.5, and we can obtain the following result.

Theorem 8.6. Let plantΣ(0) and controllerΞ(0) satisfy the conditions of Theorem8.5, and let

‖ΠM//N |Sπδ
‖ = α

LetΣ1 denote a perturbed plant, and suppose there exists a mappingΦ : M∩Sαπδ
→M1∩W

such that

‖(Φ− I)|M∩Sαπδ
‖ = π <

1
α

(8.31)

and

Ψ = (Φ− I)ΠM//N

is continuous and compact with

‖Ψ|Sπδ
‖ < 1

then the closed-loop[Σ1, Ξ(0)] is stable onS(1−απ)πδ
with

‖ΠM1//N |S(1−απ)πδ
‖ ≤ (1 + π)α

1− απ
(8.32)

that is, the closed-loop is locally stable.

Proof. Since‖ΠM//N |Sπδ
‖ is finite by Theorem8.5, the result follows from Theorem6.12.

We will give an application of the global version of this result in Section 8.3.

8.2.2 Global Lipschitz Condition

For the nominal plantΣ(x0
1), if we suppose that the nonlinearitiesϕi, i = 1, 2, · · · , n are glob-

ally Lipschitz continuous, then Lemma8.2holds, and we can obtain a global result for(u0, y0)T ,

x̃0 andx0
1.
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Takeci, di; i = 1, 2, · · · , n andκ as any positive constants. LetLi, i = 1, 2, · · · , n be the

constants defined in Lemma8.2. We takel such that

l ≥ 1
4

n∑

i=1

1
di

i∑

j=1

L2
j (8.33)

Defineαn, and the observer, and the controllerΞ(x̂0
2) the same way as (8.7), (8.9) and (8.10).

Then we have the following lemma.

Lemma 8.7. Let x̃ be the perturbed observer error defined as in Lemma8.4. Then

‖x̃‖∞ ≤ b
(‖x̃0‖+ ν‖y0‖∞ + ‖u0‖∞

)
(8.34)

whereb andµ are constants.

Proof. The proof is almost the same as that of Lemma8.4, hence, it is omitted.

From this lemma we can prove the following theorem.

Theorem 8.8.Consider the plantΣ(x0
1) defined by (8.1), and letϕi, i = 1, 2, · · · , n be globally

Lipschitz continuous. Let the controllerΞ(x̂0
2) be defined by (8.7), (8.9) and (8.10). Then

1. There exists a continuous functionγ : R3
+ → (0,+∞) such that for any(u0, y0)T ∈

L∞(R+)× L∞(R+), x̃0 ∈ Rn andx0
1 ∈ Rn, we have

∥∥(u1, y1)T
∥∥
∞ ≤ γ

(∥∥(u0, y0)T
∥∥
∞ , ‖x̃0‖∞, ‖x0

1‖∞
)

(8.35)

that is, the closed-loop system[Σ(x0
1), Ξ(x̂0

2)] is globally gf-stable.

2. If x0
1 = x̂0

2 = 0, then there exists a positive constantΓ such that for any(u0, y0)T ∈
L∞(R+)× L∞(R+), we have

∥∥(u1, y1)T
∥∥
∞ ≤ Γ

∥∥(u0, y0)T
∥∥
∞ (8.36)

that is, the closed-loop system[Σ(0), Ξ(0)] is globally stable.

Proof. Again consider the Lyapunov function

V (z1, · · · , zn) =
1
2

n∑

i=1

z2
i
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Following the proof of Theorem8.5, we obtain that fort ∈ [0,∞)

V̇ ≤ −
n∑

i=1

ciz
2
i +

1
4κ

(‖u0‖∞ + ‖αn(y0, x̃
∗‖∞)2

By Lemma8.3, Lemma8.7, and by noting that‖x̃∗‖ ≤ ‖x̃‖, we have

‖αn(y0, x̃
∗)‖∞ ≤ a(‖y0‖2

∞ + ‖x̃∗‖2
∞)

1
2

≤ a
(
‖y0‖2

∞ + b2
(‖x̃0‖+ ν‖y0‖∞ + ‖u0‖∞

)2
) 1

2

Let

a∗ = max{1, a2}, ι = max{1, ν}

then

(‖u0‖∞ + ‖αn(y0, x̃
∗)‖∞)2 ≤

(
‖u0‖∞ + a

(
‖y0‖2

∞ + b2
(‖x̃0‖+ ν‖y0‖∞ + ‖u0‖∞

)2
) 1

2

)2

≤2
(
‖u0‖2

∞ + a2
(
‖y0‖2

∞ + b2
(‖x̃0‖+ ν‖y0‖∞ + ‖u0‖∞

)2
))

≤2
(
a∗‖(u0, y0)T ‖2

∞ + a2b2
(‖x̃0‖+ ι‖(u0, y0)T ‖∞

)2
)

=2g
(‖(u0, y0)T ‖∞, ‖x̃0‖)2

(8.37)

where

g = g(p, q) =
(
a∗p2 + a2b2(q + ιp)2

) 1
2

Thus

V̇ ≤−
n∑

i=1

ciz
2
i +

1
2κ

g2
(‖(u0, y0)T ‖∞, ‖x̃0‖)

Following the same argument in Theorem8.5, we obtain

‖z‖∞ ≤ max
{
‖z0‖, 1√

2cκ
g

(‖(u0, y0)T ‖∞, ‖x̃0‖)
}

Note that we have

‖y1‖ = ‖x11‖ = ‖z1‖ ≤ ‖z‖
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On the other hand,

‖y1‖ = ‖x11‖ ≤ ‖x1‖ = ‖T−1z1‖ ≤ ‖T−1‖‖z‖

Hence

‖y1‖ ≤ min{1, ‖T−1‖}‖z‖

Note that

‖z0‖ = ‖Tx0
1‖ ≤ ‖T‖‖x0

1‖

and write

β = min{1, ‖T−1‖}

therefore

‖y1‖∞ ≤ β‖z‖∞

≤ β max
{
‖T‖‖x0

1‖,
1√
2cκ

g
(‖(u0, y0)T ‖∞, ‖x̃0‖)

}

≤ β max
{
‖T‖‖x0

1‖,
1√
2cκ

g
(‖(u0, y0)T ‖∞, ‖x̃0‖)

}

= h
(∥∥(u0, y0)T

∥∥ , ‖x̃0‖, ‖x0
1‖

)
(8.38)

where

h(p, q, s) = β max
{
‖T‖s, 1√

2cκ
g(p, q)

}

Moreover, we have

|αn(x1)| ≤ a‖x1‖ = a‖T−1z‖ ≤ a‖T−1‖‖z‖ ≤ a‖T−1‖‖z‖∞

≤ a‖T−1‖max
{
‖T‖‖x0

1‖,
1√
2cκ

g
(‖(u0, y0)T ‖∞, ‖x̃0‖)

}

= h∗
(∥∥(u0, y0)T

∥∥ , ‖x̃0‖, ‖x0
1‖

)
(8.39)

where

h∗(p, q, s) = a‖T−1‖max
{

s‖T‖, 1√
2cκ

g(p, q)
}
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Hence

‖u1‖∞ ≤ ‖u0‖∞ + ‖u2‖∞
= ‖u0‖∞ + ‖ − αn(−y2,−x̂∗2)‖∞
≤ ‖u0‖∞ + ‖αn(y1, x

∗
1)− αn(−y2,−x̂∗2)‖∞ + ‖αn(y1, x

∗
1)‖∞

= ‖u0‖∞ + ‖αn(y0, x̃
∗)‖∞ + ‖αn(x1)‖∞

≤
√

2g
(‖(u0, y0)T ‖∞, ‖x̃0‖) + h∗

(∥∥(u0, y0)T
∥∥ , ‖x̃0‖, ‖x0

1‖
)

(8.40)

Therefore from (8.38) and (8.40), we obtain

‖(u1, y1)T ‖∞
=

(‖u1‖2
∞ + ‖y1‖2

∞
) 1

2

≤
[ (√

2g
(‖(u0, y0)T ‖∞, ‖x̃0‖) + h∗

(∥∥(u0, y0)T
∥∥ , ‖x0

1‖, ‖x̃0‖)
)2

+ h
(∥∥(u0, y0)T

∥∥ , ‖x̃0‖, ‖x0
1‖

)2
] 1

2
(8.41)

Let

γ(p, q, s) =
((√

2g(p, q) + h∗(p, q, s)
)2

+ h(p, q, s)2
) 1

2

(8.42)

then we have

∥∥(u1, y1)T
∥∥ ≤ γ

(∥∥(u0, y0)T
∥∥ , ‖x̃0‖, ‖x0

1‖
)

(8.43)

This completes the proof of (8.35).

To prove (8.36), note that

g(p, 0) =
(
a∗ + a2b2ι2

) 1
2 |p|

h∗(p, 0, 0) =
‖T−1‖√

2cκ
g(p, 0)

and

h(p, 0, 0) =
β√
2cκ

g(p, 0)
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therefore

γ(p, 0, 0) =
((√

2g(p, 0) + h∗(p, 0, 0)
)2

+ h(p, 0, 0)2
) 1

2

=

((√
2 +

‖T−1‖√
2cκ

)2

+
β2

2cκ

) 1
2 (

a∗ + a2b2ι2
) |p|

Let

Γ =

((√
2 +

‖T−1‖√
2cκ

)2

+
β2

2cκ

) 1
2 (

a∗ + a2b2ι2
)

(8.44)

then

∥∥(u1, y1)T
∥∥
∞ ≤ γ

(∥∥(u0, y0)T
∥∥
∞ , 0, 0

)
= Γ

∥∥(u0, y0)T
∥∥
∞ (8.45)

Therefore (8.36) holds.

For plant perturbations, we obtain the following robustness result.

Theorem 8.9. Let the plantΣ(x0) and the controllerΞ(x̂0) satisfy the conditions of Theorem

8.8. Then there existsΓ > 0 such that if a plantΣ1 satisfies

~δ(Σ(0), Σ1) <
1
Γ

(8.46)

the closed-loop[Σ1, Ξ(0)] is also stable, and

‖ΠM1//N ‖ ≤ Γ
1 + ~δ(Σ(0), Σ1)

1− Γ~δ(Σ(0), Σ1)
(8.47)

Proof. By Theorem8.8, there exists a constantΓ > 0 such that

‖ΠM//N ‖ ≤ Γ

or
1
Γ
≤ 1
‖ΠM//N ‖

Hence, if~δ(Σ(0), Σ) < Γ−1, we obtain that

~δ(Σ(0), Σ1) <
1

‖ΠM//N ‖

From Theorem6.8 in Chapter6, the proof is completed.
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8.3 Application to a System with Time Delay

In this section we analyse the robustness of stability for a system perturbed by a time delay. We

first consider a nominal plant without time delay, and design a robust backstepping controller

to stabilize the closed-loop. Then we consider the system with time delay as a perturbed plant,

by above robustness results we have built up, we show that the controller is able to stabilize the

system with time delay if the time delay is less than a computable constant.

Suppose the nominal plantΣ is defined by

Σ : ẋ11 = x12 − 2y1 + sin y1

ẋ12 = u1 − y1, x11(0) = 0, x12 = 0

y1 = x11

where

ϕ1(y1) = −2y1 + sin y1, ϕ2(y1) = −y1

are globally Lipschitz continuous.

By (8.10), the backstepping robust controllerΞ is designed as

Ξ : u2 = −α2(−y2,−x̂22) = −b1y2 − b2x̂22

˙̂x21 = x21 + k1(y2 − ŷ2)− 2y2 + sin y2

˙̂x22 = k2(y2 − ŷ2)− y2, x̂2(0) = 0

ŷ2 = x̂21

where

b1 = a1c2 + 1 + d2(1 + a2
1)a1

b2 = c2 + d2(1 + a2
1) + a1

a1 = c1 + d1 + l

Then, from Theorem8.8, the closed-loop[Σ, Ξ] is stable.

Now we consider the effect of time delay on the closed-loop. Suppose a plantΣ1 is defined by

Σ1 : ẋ11(t) = x12(t)− 2y1(t) + sin y1(t)

ẋ12(t) = u1(t)− y1(t), x11(0) = 0, x12 = 0

y1(t) = x11(t− ς)

whereς is the time delay.
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We define a mappingΦ : M→M1 by

Φ

(
u1(t)
x11(t)

)
=

(
u1(t)

x11(t− ς)

)

then we have

‖Φ− I‖ = sup
‖(u1(t),x11(t))T ‖∞ 6=0

‖(u1(t), x11(t− ς))T − (u1(t), x11(t))T ‖∞
‖(u1(t), x11(t))T ‖∞

= sup
‖(u1(t),x11(t))T ‖∞ 6=0

‖(0, x11(t− ς)− x11(t))T ‖∞
‖(u1(t), x11(t))T ‖∞

≤ sup
‖(u1(t),x11(t))T ‖∞ 6=0

‖ẋ11‖∞ς

‖(u1(t), x11(t))T ‖∞

by the mean value theorem.

To estimate‖ẋ11‖∞, rewrite the plantΣ as

ẋ1 = Dx1 + J1 sinx11 + J2u1, x1(0) = 0 (8.48)

where

x1 =

(
x11

x12

)
, D =

(
−2 1
−1 0

)
, J1 =

(
1
0

)
, J2 =

(
0
1

)

It can be verified thatD is Hurwitz, and the two eigenvalues are−1. Hence, there exists a

constantb∗ such that

‖eDt‖ ≤ b∗e−
1
2
t

Further, we rewrite (8.48) as the integral equation

x1(t) =
∫ t

0
eD(t−τ)

(
J1 sinx11(τ) + J2u1(τ)

)
dτ (8.49)

So,

‖x1‖∞ ≤
∫ t

0
‖eDt(−τ)‖‖J1 sinx11 + J2u1‖∞dτ

≤
∫ t

0
b∗e−

1
2
(t−τ)‖(sinx11, u1)T ‖∞dτ

≤ 2b∗‖(u1, x11)T ‖∞ (8.50)
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since| sinx11| ≤ |x11|. Therefore, from the plantΣ, we obtain

‖ẋ11‖∞ ≤ ‖ẋ1‖∞
≤ ‖D‖‖x1‖∞ + ‖J1 sinx11 + J2u1‖∞
≤ (2b∗‖D‖+ 1)‖(u1, x11)T ‖∞
= σ‖(u1, x11)T ‖∞

where

σ = 2b∗‖D‖+ 1

is a positive constant.

Hence

‖Φ− I‖ ≤ σζ

By the definition of directed gap, we obtain that

~δ(Σ, Σ1) ≤ σς

On the other hand, we know that if

~δ(Σ,Σ1) ≤ 1
‖ΠM//N ‖

then the closed-loop[Σ1, Ξ] is stable. Hence, we obtain that if

ς ≤ 1
σ‖ΠM//N ‖

then the closed-loop[Σ, Ξ1] is stable, that is, if the time delay is less than some computable

quantity6, the controller designed for the nominal plant is able to stabilize the closed-loop with

the presence of time delay.

So far, we have studied robust backstepping for state feedback and output feed back control. In

the next chapter, we will consider the robustness of high-gain observer designs.

6The norm‖ΠM//N ‖ can estimated by following the proof of Theorem 8.5.



Chapter 9

Robust High-gain Observer Designs

When the high-gain observer is applied to output feedback, it is required that the high-gain factor

ε is small enough. This results in the concern that the robustness to loop disturbances and plant

perturbations for this control design may be sensitive toε, and may degrade asε becomes small.

Indeed it is believed that the high-gain observer design is sensitive to loop disturbances and

plant perturbations. But it is surprising that the simulation results in [47] show that the high-gain

observer design exhibits almost the same level of degradation as other designs in the presence

of disturbances. To date, there are no results about the robustness of high-gain designs.

In this chapter, we consider the standard feedback configuration inFIGURE 6.1, and employ an

amended high-gain observer design to design a controller, and prove the controller is robust to

disturbances and small plant perturbations, and not sensitive toε, providedthe initial error is

zero. For these results, the plant is restricted to have a matched, globally Lipschitz nonlinearity

depending on the output only, hence the results in this chapter only represent a preliminary

investigation into the robustness of high-gain observer designs.

9.1 Problem Formulation

To investigate the robustness of high-gain designs to loop disturbances and plant perturbations,

we consider a nonlinear nominal plant in normal form

Ξ(x0
1) : ẋ1i = x1(i+1), 1 ≤ i ≤ n− 1 (9.1a)

ẋ1n = u1 + ϕ(y1), x1i(0) = x0
1i, 1 ≤ i ≤ n (9.1b)

y1 = x11 (9.1c)

where, for simplicity, we assumeϕ : R→ R is globally Lipschitz continuous, andϕ(0) = 0.

109



Chapter 9 Robust High-gain Observer Designs 110

We first rewrite the system as

Σ(x0
1) : ẋ1 = Ax1 + B(ϕ(y1) + u1), x1(0) = x0

1 (9.2a)

y1 = Cx1 (9.2b)

where

A =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
. . . . . . . . . . . . . . . . . . .

0 0 0 · · · 0 1
0 0 0 · · · 0 0




, B =




0
...

0
1




, x1 =




x11

x12

...

x1n




, x0
1 =




x0
11

x0
12
...

x0
1n




and

C = (1, 0, · · · , 0)

We consider the standard feedback configuration inFIGURE 6.1. We first design an output

feedback controllerΞ : y2 7→ u2, which is robust to loop disturbances, then we prove this

controller has a non-zero gap metric margin to any plant perturbations.

We will consider the signal spaces

U = Y = L∞(R+)

then the output-feedback form plantΣ(x0
1) mapsUΣ ⊆ L∞(R+) into L∞(R+).

9.2 Control Design

We first amend the standard high-gain observer in [48, 45, 3] so that it can be used for our design

purpose. Here, we define a high-gain observer as

˙̂x2 = Ax̂2 −H(y2 − ŷ2) + Bkx̂2, x̂2(0) = x̂0
2 (9.3a)

ŷ2 = Cx̂2 (9.3b)

where

H =




β1

ε
β2

ε2

· · ·
βn

εn




(9.4)
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and

k = (k1, · · · , kn)

is chosen such thatA + Bk is Hurwitz.

Then we define a controller as

ΞH(ε)(x̂
0
2) : u2 = ϕ(−y2) + kx̂2 (9.5a)

˙̂x2 = Ax̂2 + H(y2 − ŷ2) + Bkx̂2, x̂2(0) = x̂0
2 (9.5b)

ŷ2 = Cx̂2 (9.5c)

9.3 Robustness Analysis

First we prove a lemma about the estimate of the observer error.

Lemma 9.1. Letx1 be the state of the plant in (9.2), andx̂2 be observer state in (9.3), and let

x̃ = x1 + x̂2

be the perturbed observer error. Then there exist positive constantsb andβ such that

‖x̃‖∞ ≤ b

εn−1
‖x̃0‖+ εβ‖(u0, y0)T ‖∞

Proof. The closed-loop[Σ(x0
1), ΞH(ε)(x̂0

2)] can be written as

ẋ1 = Ax1 + B
(
ϕ(y1)− ϕ(−y2)− kx̂2 + u0

)

˙̂x2 = Ax̂2 + H
(
y0 − (x11 + x̂21)

)
+ Bkx̂2

Write

x̃ = x1 + x̂2, x̃i = x1i + x̂2i, i = 1, 2, · · · , n

then, from above two equations, we obtain

˙̃x = Ax̃−Hx̃1 + Hy0 + B(ϕ(y1)− ϕ(−y2) + u0) (9.6)

Let

ξi =
x̃i

εn−i
, i = 1, 2, · · · , n
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and we write (9.6) as

εξ̇ = Dξ + ε
(
Ey0 + B(ϕ(y1)− ϕ(−y2) + u0)

)
(9.7)

where

D = A−EC

and

E =




β1

β2

· · ·
βn




It can be verified that the matrixD is Hurwitz ( see Chapter2 ).

By a time transformationt = ετ , (9.7) can be written as

dξ

dτ
= Dξ + ε

(
Ey0 + B(ϕ(y1)− ϕ(−y2) + u0)

)
(9.8)

Solving (9.8), we obtain

ξ(τ) = eDτξ0 + ε

∫ τ

0
eD(τ−s)

(
Ey0(s) + B

(
ϕ
(
y1(s)

)− ϕ
(− y2(s)

)
+ u0(s)

))
ds (9.9)

where

ξ0 =




x̃0
1

...
x̃0

i

εi−1

...
x̃0

n
εn−1




SinceD is Hurwitz, all the real parts of the eigenvalues ofD are negative. We take a positive

constantµ such that−µ is greater than all the real parts of the eigenvalues ofD, then there exists

a positive constantb such that

‖eDτ‖ ≤ be−µτ
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On the other hand, by Lipschitz condition there exists a positive constantL such that

|ϕ(y1)− ϕ(−y2)| ≤ L|y1 + y2| = L|y0|

Sinceε is a small constant, without loss of generality, we assume thatε < 1. Therefore, from

(9.9), we obtain

‖ξ(τ)‖ ≤ ‖ξ0‖‖eDτ‖+ ε

∫ τ

0
‖eD(τ−s)‖ (‖Ey0‖+

(‖ϕ(y1)− ϕ(−y2)‖
)

+ ‖u0‖
)
ds

≤ ‖ξ0‖be−µτ + ε

∫ τ

0
be−µ(τ−s)

(
(‖E‖+ L)‖y0‖∞ + ‖u0‖∞

)
ds

≤ b

εn−1
‖x̃0‖+

bε

µ

(
(‖E‖+ L)‖y0‖∞ + ‖u0‖∞

)

≤ b

εn−1
‖x̃0‖+ εβ‖(u0, y0)T ‖∞

where

β =
b
√

2
µ

max{‖E‖+ L, 1}

Therefore

‖ξ‖∞ ≤ b

εn−1
‖x̃0‖+ εβ‖(u0, y0)T ‖∞

Again fromε < 1, and

x̃i = εn−iξi, i = 1, 2, · · · , n

we obtain‖x̃‖ ≤ ‖ξ‖, further

‖x̃‖∞ ≤ ‖ξ‖∞ ≤ b

εn−1
‖x̃0‖+ εβ‖(u0, y0)T ‖∞

and the proof is complete.

Now we state and prove the main result of this chapter.

Theorem 9.2. Let the plantΣ(x0
1) and controllerΞH(ε)(x̂0

2) be defined by (9.1) and (9.5). Then

1. For any ε < 1, there exists a continuous functionγε : R3
+ → [0, +∞) such that for all

(u0, y0)T∈L∞(R+)×L∞(R+)

∥∥(u1, y1)T
∥∥
∞ ≤ γε

(∥∥(u0, y0)T
∥∥
∞ , ‖x̃0‖, ‖x0

1‖∞
)

(9.10)

that is, the closed-loop[Σ(x0
1), ΞH(ε)(x̂0

2)] is gf-stable.
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2. If x0
1 = x̂0

2 = 0, then for anyε < 1, there exists a positive constantΓ, which is independent

of ε, such that for all(u0, y0)T∈L∞(R+)×L∞(R+)

∥∥(u1, y1)T
∥∥
∞ ≤ Γ

∥∥(u0, y0)T
∥∥
∞ (9.11)

that is, the closed-loop[Σ(0),Ξ(0)] is stable.

Proof. Let Q be the solution of the equation

(A + Bk)T Q + Q(A + Bk) = −2I

and consider the Lyapunov function

V (x11, · · · , x1n) = xT
1 Qx1 (9.12)

then along the trajectories of the closed-loop, we have

V̇ = ẋT
1 Qx1 + xT

1 Qẋ1

=
(
Ax1 + B(ϕ(y1) + u1)

)T
Qx1 + xT

1 Q
(
Ax1 + B(ϕ(y1) + u1)

)

=
(
Ax1 + B

(
ϕ(y1) + u0 − u2

))T
Qx1 + xT

1 Q
(
Ax1 + B

(
ϕ(y1) + u0 − u2

))

=
(
Ax1 + B

(
ϕ(y1) + u0 − kx̂2 − ϕ(−y2)

))T
Qx1

+ xT
1 Q

(
Ax1 + B

(
ϕ(y1) + u0 − kx̂2 − ϕ(−y2)

))

= xT
1

(
(A + Bk)T Q + Q(A + Bk)

)
x1 + 2BT Qx1

(
ϕ(y1) + ϕ(−y2)− kx̃ + u0

)

= −2xT
1 x1 + 2BT Qx1

(
ϕ(y1)− ϕ(−y2)− kx̃ + u0

)

= −2‖x1‖2 + 2BT Qx1

(
ϕ(y1)− ϕ(−y2)− kx̃ + u0

)

Let

Q = {qij}n×n

and

q1 = max
1≤j≤n

{|q1j |}

then

BT Qx1 ≤ q1‖x1‖
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On the other hand, from the Lipschitz condition and Lemma9.1, we obtain

ϕ(y1)− ϕ(−y2)− kx̃ + u0

≤L‖y0‖∞ + ‖k‖‖x̃‖∞ + ‖u0‖∞

≤l
√

2‖(u0, y0)T ‖∞ + ‖k‖
(

b

εn−1
‖x̃0‖+ εβ‖(u0, y0)T ‖∞

)

≤ b∗

εn−1
‖x̃0‖+ β∗‖(u0, y0)T ‖∞

where

l = max{L, 1}

b∗ = ‖k‖b

β∗ = l
√

2 + ‖k‖β

andε is assumed to be smaller than1. Hence

2BT Qx1

(
ϕ(y1)− ϕ(−y2)− kx̃ + u0

) ≤ 2q1

(
b∗

εn−1
‖x̃0‖+ β∗‖(u0, y0)T ‖∞

)
‖x1‖

Therefore

V̇ = −2‖x1‖2 + 2BT Qx1

(
ϕ(y1)− ϕ(−y2)− kx̃ + u0

)

≤ −‖x1‖2 − ‖x1‖2 + 2q1

(
b∗

εn−1
‖x̃0‖+ β∗‖(u0, y0)T ‖∞

)
‖x1‖

By Young’s Inequality, we obtain that

V̇ ≤ −‖x1‖2 + q2
1

(
b∗

εn−1
‖x̃0‖+ β∗‖(u0, y0)T ‖∞

)2

Define a compact set as follows

R =
{

x1 ∈ Rn
∣∣∣‖x1‖ ≤ q1

(
b∗

εn−1
‖x̃0‖+ β∗‖(u0, y0)T ‖∞

)}

thenV decreases monotonically outsideR. Hence

V (x1(t)) ≤ max
{

V (0), sup
{

V (x1)|‖x1‖ = q1

(
b∗

εn−1
‖x̃0‖+ β∗‖(u0, y0)T ‖∞

)}}
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On the other hand,

λ(Q)‖x1‖2 ≤ V (x1) ≤ λ̄(Q)‖x1‖2

and

V (0) ≤ λ̄(Q)‖x0
1‖2

Therefore

‖x1‖∞ ≤ max





√
λ̄(Q)
λ(Q)

‖x0
1‖, q1

√
λ̄(Q)

(
b∗

εn−1
‖x̃0‖+ β∗‖(u0, y0)T ‖∞

)



Write

g(p, q, r) = max





√
λ̄(Q)
λ(Q)

r, q1

√
λ̄(Q)

(
b∗

εn−1
q + β∗p

)



then the above inequality can be rewritten as

‖x1‖∞ ≤ g
(‖(u0, y0)T ‖∞, ‖x̃0‖, ‖x0

1‖
)

Hence

‖y1‖∞ = ‖x11‖∞
≤ ‖x1‖∞
≤ g

(‖(u0, y0)T ‖∞, ‖x̃0‖, ‖x0
1‖

)

Next we estimateu1. First

u1 = u0 − u2

= u0 − ϕ(−y2)− kx̂2

= u0 + ϕ(y1)− ϕ(−y2)− k(x1 + x̂2)− ϕ(y1) + kx1

= u0 + ϕ(y1)− ϕ(−y2)− kx̃− ϕ(y1) + kx1
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Note thatϕ is Lipschitz, andϕ(0) is zero, hence

‖u1‖∞ ≤ ‖u0‖∞ + ‖ϕ(y1)− ϕ(−y2)‖∞ + ‖k‖‖x̃‖∞ + ‖ϕ(y1)‖∞ + ‖k‖‖x1‖∞
≤ ‖u0‖∞ + L‖y1 + y2‖∞ + ‖k‖‖x̃‖∞ + L‖y1‖∞ + ‖k‖‖x1‖∞

≤ ‖u0‖∞ + L‖y0‖∞ + ‖k‖
(

b

εn−1
‖x̃0‖+ εβ‖(u0, y0)T ‖∞

)

+ Lg
(‖(u0, y0)T ‖∞, ‖x̃0‖, ‖x0

1‖
)

+ ‖k‖g (‖(u0, y0)T ‖∞, ‖x̃0‖, ‖x0
1‖

)

≤ l
√

2‖(u0, y0)T ‖∞ + ‖k‖
(

b

εn−1
‖x̃0‖+ εβ‖(u0, y0)T ‖∞

)

+ (L + ‖k‖)g (‖(u0, y0)T ‖∞, ‖x̃0‖, ‖x0
1‖

)

Write

h(p, q, r) = l
√

2p + ‖k‖
(

b

εn−1
q + βp

)
+ (L + ‖k‖)g (p, q, r)

then we obtain

‖u1‖∞ ≤ h
(‖(u0, y0)T ‖∞, ‖x̃0‖, ‖x0

1‖
)

where we again have usedε ≤ 1.

Therefore, write

γε(p, q, r) =
(
g(p, q, r)2 + h(p, q, r)2

) 1
2

then we have built up the following inequality

‖(u1, y1)T ‖∞ =
(‖u1‖2

∞ + ‖u1‖2
∞

) 1
2

≤
(
g

(‖(u0, y0)T ‖∞, ‖x̃0‖, ‖x0
1‖

)2
+ h

(‖(u0, y0)T ‖∞, ‖x̃0‖, ‖x0
1‖

)2
) 1

2

= γε

(‖(u0, y0)T ‖∞, ‖x̃0‖, ‖x0
1‖

)

that is, the closed-loop is gf-stable.

If x0
1 = 0 andx̂0

2 = 0, thenx̃0 = 0. From the definitions of functionsg andh

g(p, 0, 0) = q1β
∗
√

λ̄(Q)p
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hence

h(p, 0, 0) = (l
√

2 + ‖k‖β)p + (L + ‖k‖)g(p, 0, 0)

= (l
√

2 + ‖k‖β)p + (L + ‖k‖)q1β
∗p

=
(

l
√

2 + ‖k‖β + (L + ‖k‖)q1β
∗
√

λ̄(Q)
)

p

and

γε(p, 0, 0) =
(
g(p, 0, 0)2 + h(p, 0, 0)2

) 1
2

=

((
q1β

∗
√

λ̄(Q)p
)2

+
((

l
√

2 + ‖k‖β + (L + ‖k‖)q1β
∗
√

λ̄(Q)
)

p

)2
) 1

2

=

(
(q2

1(β
∗)2λ̄(Q) +

(
l
√

2 + ‖k‖β + (L + ‖k‖)q1β
∗
√

λ̄(Q)
)2

) 1
2

p

Let

Γ =

(
(q2

1(β
∗)2λ̄(Q) +

(
l
√

2 + ‖k‖β + (L + ‖k‖)q1β
∗
√

λ̄(Q)
)2

) 1
2

then, it follows that (9.11) holds, andΓ is independent ofε.

A robust stability result can be given as follows.

Theorem 9.3. Let the plantΣ(x0
1) and controllerΞH(ε)(x̂0

2) be defined by (9.1) and (9.5). Then

there existsΓ > 0 such that if a plantΣ1 satisfies

~δ(Σ(0), Σ1) <
1
Γ

(9.13)

the closed-loop[Σ1, Ξ(0)] is also stable, and

‖ΠM1//N ‖ ≤ Γ
1 + ~δ(Σ(0), Σ1)

1− Γ~δ(Σ(0), Σ1)
(9.14)

Proof. By Theorem9.2, we have shown that there existsΓ > 0 such that

‖ΠM//N ‖ ≤ Γ

Then, if

~δ(P, P1) <
1
Γ
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it holds that

~δ(P, P1) <
1

‖ΠM//N ‖
Hence, by Theorem6.8in Chapter6, the closed-loop[Σ1, Ξ(0)] is stable, and (9.14) holds.

SinceΓ is independent ofε < 1, the allowed plant margin is not sensitive toε as ε → 0.

However, it is very important to observe that these results depends heavily on the assumption

that there is no initial observer error.

The bounds obtained in (9.10) are sensitive to smallε, and so one would expect that any robust

stability result for non-zero initial conditions will indicate a sensitivity toε > 0.



Chapter 10

Conclusions and Future Work

We summarize the results obtained in this thesis and give some possible areas for future work.

PartI Through the comparison of performances forKKK andKhalil designs, we have estab-

lished the following results.

• For output feedback system, the performance ofKKK design is sensitive to the initial

condition of the observer. The performance of theKKK design is not uniformly bounded

in the initial error between the initial condition of the state and the initial condition of the

observer. When the initial error gets large, the performance gets large. Whereas, for the

Khalil design, for any initial error, by choosing small high-gain factor, we can design a

globally bounded controller, achieving uniformly bounded performance. Therefore, if the

initial error is large or in the case that we have poor information for the initial condition

of the state, theKhalil design has better performance than theKKK design.

• For parametric output feedback system, the performance of theKKK design is indepen-

dent of the a-priori estimate bound of the uncertain parameter. When the a-priori estimate

becomes conservative the performance remains uniformly bounded. Whilst, for theKhalil

design, the performance is dependent on the saturation levels for the controller and the

adaptive law, that is dependent on the a-priori estimate bound of the uncertain parameter,

and the performance becomes large as the a-priori estimate becomes conservative. Hence,

if we have poor information for the unknown parameter and the a-priori estimate bound

is conservative, theKKK design has better performance than theKhalil design.

The primary contribution of this part is to provide rigorous statements and proofs of the intu-

itively reasonable trade-offs in performance between the differing classes of designs. The results

have been expressed in qualitative terms only, the purpose of the thesis is to illustrate the asymp-

totic differences between the designs. It should also be noted that the results are asymptotic in

nature, that is they require some parameter (either an initial condition or an uncertainty level)

120
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to be large in order to make the required comparison. Of course, in practice these parame-

ters cannot be arbitrarily large without causing the control to run into physical limits. A more

quantitative approach is challenging, as achieving tight bounds on non-singular performance is

difficult. This is an interesting avenue for future research.

PartII Within the framework of nonlinear gap metric, we have established the following re-

sults.

• Following the backstepping design approach, we have built up a design procedure to de-

sign a controller for plant in strict-feedback form. This controller is robust to input and

measurement disturbances and plant perturbation. The controller achieves gain-function

stability for the plant with input and measurement disturbances. If the initial states are

zero, the controller achieves stability for the plant with input and measurement distur-

bances, and achieves stability for any perturbed plant with input and measurement distur-

bances if the gap metric between the plants and the strict-feedback plant is less than some

constant.

• We have established a robust backstepping design procedure for a nominal plant in out-

put feedback form. This output-feedback controller is robust to input and measurement

disturbances and plant perturbations within the framework of nonlinear gap metric.

If the nominal plant nonlinearities are locally Lipschitz continuous, the controller achieves

local gain-function stability for the plant with input and measurement disturbances; fur-

ther, if the initial states are zero, the controller achieves local stability for the plant with

input and measurement disturbances, and achieves stability for any perturbed plant with

input and measurement disturbances if the gap metric between the plant and the output-

feedback plant is less than some constant.

If the nominal plant nonlinearities are globally Lipschitz continuous, the controller achieves

global gain-function stability for the plant with input and measurement disturbances; fur-

ther, if the initial states are zero, the controller achieves global stability for the plant with

input and measurement disturbances, and achieves stability for any perturbed plant with

input and measurement disturbances if the gap metric between the plant and the output-

feedback plant is less than some constant.

• We have developed a robust high-gain observer design procedure for the nominal plant

in output feedback normal form. The controller achieves gain-function stability for the

plant with input and measurement disturbances. If the initial states are zero, the controller

achieves stability for the plant with input and measurement disturbances, achieves sta-

bility for any perturbed plant with input and measurement disturbances if the gap metric

between the plants and the strict-feedback plant is less than some constant. The allowed

plant perturbation margin is bounded independently of the high-gain factor.

The contributions of this part is to show that by proper amendments of designs, we achieve
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the robustness of backstepping and high-gain designs. For the amended high-gain designs, the

robust stability margin for plant perturbations is independent of the high-gain factor.

This thesis therefore represents the start of an approach to apply recent operator based techniques

to address long-stability robustness questions in constructive nonlinear control. The study of

performance of control designs for nonlinear systems is largely an open field in control theory,

especially for output feedback designs. There are still many problems which need to be studied.

Next we list some of the possible topics for future work.

Topics related to PartI:

• For high dimensional output feedback systems, to show that observer backstepping design

has better performance in the situation whenx̃0 is small to that wheñx0 is large.

• To compare the performance of adaptive observer backstepping design with high-gain

observer design for a system with uncertain parameters and nonlinearities dependent onx,

rather than only dependent on the outputy. When the bound for the uncertain parameters

becomes large it is anticipated that the adaptive observer backstepping design is superior

to the high-gain observer design.

• To study the performance of other output feedback designs and compare them. For ex-

ample, Khalil [47] used simulation to compare the performance of a variety of different

output feedback nonlinear adaptive controllers, we may compare those techniques analyt-

ically.

Topics related to PartII :

• To construct semi-global results under the locally Lipschitz assumption on the nonlinear-

ities of the systems, possibly by designing nonlinear controllers.

• To calculate gap metric distances for a variety of plant perturbations other than time delay,

to widen applications, see, e.g., [34, 35].

• To study how to choose the gains in the controllers to optimize the robustness margins.

• To compare theKKK andKhalil designs in the framework of gap metric, e.g., compare

the two designs by comparing their robustness margins.

• For the plant in normal form, which the nonlinearity depends on all the states other than

the output, design a high-gain observer controller in the framework of gap metric.

• To investigate the sensitivity of the robustness margin in high-gain observer designs to the

high-gain factorε, in the presence of initial observer errors.
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[22] R. Freeman and P. Kokotović, Backstepping design with nonsmooth nonlinearities, Pro-

ceedings of IFAC Nonlinear Control Systems Design Symposium (Tahoe City, California),

IFAC, June 1995, pp. 483–488.

[23] , Robust nonlinear control design: State-space andLyapunov techniques, Systems

& Control: Foundation & Applications, Birkḧauser, 1996.
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