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NONLINEAR OUTPUT FEEDBACK CONTROL: An Analysis of Performance and Robustness

by Chengkang Xie

By considering a non-singular performance cost functional, observer backstepping designs and
adaptive observer backstepping designs are compared to high-gain observer designs for an out-
put feedback system and a parametric output feedback system. For the output feedback system,
if the initial error between the initial condition of the state and the initial condition of the ob-
server is large, the high-gain observer design has better performance than the observer backstep-
ping design. Whilst, for the parametric output feedback system, if the a-priori estimate for the
bound of the uncertain parameter is conservative, the adaptive observer backstepping design has
better performance than the high-gain observer design.

In the sense of gap metric robustness, by a backstepping procedure, a robust state feedback
controller is developed for the nominal plant in strick-feedback form. For the closed-loop, the
controller achieves gain-function stability, and stability if the initial condition is zero. By the

gap metric robustness theory, the controller achieves robustness to plant perturbations which are
small in gap sense. In this way, it is shown that for any perturbed plant the controller stabilizes
the closed-loop in the presence of input and measurement disturbances if the gap metric distance
between the nominal and perturbed plant is less than a computable constant.

For output feedback control, a nominal plant in output-feedback form is considered, and the
observer backstepping procedure is amended to design a robust controller and an observer in the
presence of input and measurement disturbances. The closed-loop is shown to be gain-function
stable, and stable if the initial condition is zero. If the nonlinearities are only locally Lipschitz
continuous, the results are only local to input and measurement disturbances; if the nonlinearities
are globally Lipschitz continuous, then results are global to input and measurement disturbances.
By gap metric robustness theory, if the initial condition is zero the controller is shown to be
robust to plant perturbations in a gap metric sense. As an application, the theory is applied to a
system with time delay, and it is shown that if the time delay is suitably small, the controller is
able to achieve stability of the closed-loop.

To investigate the robustness of high-gain designs to loop disturbances and plant perturbations,
a restricted class of nonlinear nominal plant in normal form are considered. An amended high-
gain observer control design is shown to be robust to loop disturbances and has a non-zero plant
perturbation margin, which is independent of the high-gain factor.
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Symbol Description

x state vector

Z state estimate vector

z error vector
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Ry the interval[0, co)
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X(s), X transfer function (linear case)
n(X) number of open right-half plane polesYfs)
= controller

(X, =] system, controller interconnection
P, P[3, =] performance
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Chapter 1

Introduction

Control theory and engineering is the study of techniques that allow humans to achieve a desired
behaviour of a plant. To manipulate the behaviour of the plant, a controller is designed to realize
this purpose. The connection of the plant and the controller is called a control system. To de-
sign a controller and put the controller into practice, a mathematical model which describes the
physical plant must be built, which is called the nominal plant. So, in general, a nominal control
system is in the form of mathematical equations. In the term of mathematics, the following
paragraph characterizes the purpose of control.

Generally speaking, the objective in a control system is to make some output, say
y, behave in a desired way by manipulating some input,.sa¥he simplest ob-
jective might be to keep small (or close to some equilibrium pointh regulator
problem-or to keepy — » small forr, a reference or command signal, in some
set-a servomechanism or servo problem.

John Doyle, Bruce Francis, Allen Tannenbalif][

A control system can be open-loop or closed-loop. In a open-loop control system, the controller
is designed without using measurable information, whereas, in a closed-loop control system,
the controller uses measurable information for feedback comparison, that is feedback control.
The purpose of feedback is to reduce the effect of uncertainties in the system, such uncertainties
are from uncertainties in the dynamics ( i.e., the mismatch between the nominal and the real
plant ) or external disturbances. If all the states of a system are measurable and can be used for
feedback, the control is referred to as state feedback, if only some of the states or a combination
of some states is measurable for feedback, the control is referred to as output feedback. If
the mathematical model for a plant is linear, the system is called linear system, otherwise, the
system is termed nonlinear. Furthermore, a mathematical model only approximates the physical
plant: uncertainties or plant perturbations arise from the mismatch. Loop disturbances also arise
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from the imprecise measurement of the output and the inaccurate implementation of the control
input. A controller is required to be ‘robust’ to these perturbations and disturbances.

Control engineering is a very wide discipline, and has a long history. It has been developed with
the advance of technology. Over the last forty years, with great industrial demand, the field of
control has been greatly advanced and widely used. Nowadays, control systems play a crucial
roles in many areas such as manufacturing, aerospace and transportation, and military weapon
systems ( see, for example, Hurr®Z]). To solve increasing control problems, improve control
performance and robustness, many new control principles and methods are being developed.

In the past two decades, many of control techniques have been developed for nonlinear systems
using feedback control. Most of the results, however, assume full state feedback. Efforts to
extend some of these results to output feedback have naturally included the idea of designing an
observer to estimate the state of the system from its output, see5€,R0[60,32).

In recent years, a number of techniques have been developed for controlling nonlinear systems
using output feedback control. Among them, high-gain observer and observer backstepping are
two classes of important designs. The first class of controllers are based on high-gain observers
with saturated controls, see, e.dl5[31, 48,32, 81, 182, 45, 46, 3,6]. We refer to this class

of control designs akhalil designs. The second class of controllers are based on backstepping
techniques, see, e.g5q, 51, 169, 140, 141, 142, 58, 161, [6Q, 55], and we refer to this class of
controllers akKK designs.

Despite their status as two important design types, their performance theory and robustness to
loop disturbances and plant perturbations, in most cases, are still open questions. In this thesis,
first, we are interested in introducing performance measurement and comparing the two kinds of
output feedback control designs analytically; second, we study the robustness of the two kinds
of designs in the framework of gap metric. The thesis is divided into two parts. The first part
is about performance comparison, see Xie and Fre@¢h30, 90]. The second part is robust
backstepping and high-gain observer designs, see Xie and Figfjch [

1.1 Backstepping Designs

Backstepping design is being developed with the need to cope with the presence of unknown
parameters and breaking matching condition in models.

In 1980s, researchers, e.g., Isid@g] introduced differential-geometric theory of nonlinear
feedback control to linearize nonlinear systems. Nonlinear control theory made great progress.
But this class of designs require the matching condition for systems, and are restricted to the sys-
tems without unknown parameters. To cope with the unknown parameters motivated the study
of adaptive control. In the early research, the matching condition was still required. C2hig [

first designed a robotic adaptive controller in 1988, but his design needed to measure joint ac-
celerations, which was impractical. Afterwards, other researchers, e.g., Slotine &% 16][
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Middleton and Goodwinig2], and Ortega and Spon@®4], designed controllers without this
condition. Taylor, Kokotoui, Marino and Kanellakopoulo§g] further developed the adaptive
control designs, and got a general design idea. On the other hand, researchers, e.g., Kanel-
lakopoulos, Kokotowi and Marino 0] and Campion and Bastirb][1]] tried to remove the
matching condition, and generalized nonlinear adaptive control to systems which satisfy the
extended matching condition.

To overcome the requirement of matching condition, many researchers made contributions, e.g.,
Tsinias B3], Byrnes and Isidori10], Kokotovi¢ and Sussman®l], and Saberi, Kokoto, and
Sussmanng9]. Finally, Kanellakopoulos, Kokoto@iand Morse42] gave the backstepping
design scheme. Backstepping was a new recursive procedure. The assumption of matching
condition was not required anymore.

Backstepping was first used in adaptive nonlinear control, and further developed into adaptive
observer backstepping for output feedback control. Kanellakopoulos, Kokotovil Marino

[39] addressed the problem under restrictive structural and growth conditions on the nonlineari-
ties. Afterwards, Kanellakopoulos, Kokotéyiand Morse43] removed the growth restrictions,

but the output nonlinearities were not allowed to precede the control input. By developing a
new adaptive scheme, Marino and Ton#9,|60] achieved global boundedness and tracking of
trajectories for systems in output feedback form. Praly and Ji@Sigsplved the stabilization

for a class of systems broader than the output-feedback form. Teel and &,é82][extended

the result to the systems with uncertain nonlinearities.

Overparametrization was thought as a disadvantage of the backstepping. Jiang an88Praly [
partially reduced its overparametrization, and with tuning functions, Krj58, 54] removed

the overparametrization. Recently, however, Beleznay and Fr&hblayje shown that in some
cases, the overparametrization can reduce control cost, and has an advantageous aspect.

An extensive discussion of the development of these ideas can be fous&.in [

1.2 High-gain Observer Designs

In linear control theory, the separation principle is a very convenient design tool for design
output feedback control. When a system is completely certain, the separation principle enables a
designer to separate a output feedback design into two steps, namely, a state feedback controller
design and an observer design. For bilinear systems with dissipative drift, Gauthier and Kupka
[31] also developed a separation principle.

However, in the presence of unknown parameters in a system, a design through the separation
principle cannot satisfy the control requirement, and may even result in instability. Moreover,
when nonlinearity is present in a system, the controller and observer cannot in general be de-
signed separately. Thus, for systems with uncertainty or nonlinearity, it is advantageous to de-
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velop conditions under which a similar separation principle can be utilized for designing output
feedback controllers.

High-gain feedback is a classical tool for desensitization and stabilization of minimum-phase
systems. From the middle of 1980s, Mari], Isidori and Krener$3], Isidori [36], Saberi

and SannutiTQ], and Khalil [49] used the high-gain feedback to stabilize input-output lineariz-
able systems. This comprises the early work on using high-gain observers to design output
feedback schemes for nonlinear systems with uncertainty. In 1992, Esfandiari and KSalil [
used the high-gain observer design to obtain the output feedback stabilization of fully lineariz-
able systems. In this paper a theory for the design was developed, the peaking phenomenon of
the design was studied, and recovery of the state feedback control was achieved by Tikhonov
theorem, a separation principle for nonlinear systems was obtained by the high-gain observer. In
1993 Khalil and Esfandiaré8] generalized this design to the systems depending on uncertain
parameters with non-zero dynamics. Other researchers such as Teel an8@R &) ised this
technique to achieve semi-global stabilization. In 1996 Khdh| developed this design idea

to adaptive output feedback control of nonlinear systems.

Because of the innate peaking phenomenon of the high-gain observer design, the state feedback
control is required to be globally bounded. [B[!45], saturation was introduced to obtain a
globally bounded control, overcoming the peaking phenomenon. KK&]ishimmarized these
developments. Atassi and KhalB][greatly generalized the design to generic systems and the
principal idea of this design. The design procedure is as follows. First, a globally bounded state
feedback control ( generally achieved by saturation ) is designed to meet the design objective.
Second, a high-gain observer, designed to be fast enough, recovers the performance achieved
under state feedback. This is the so called separation principle for nonlinear systems.

An early separation principle developed by Teel and Pi&1} did not guarantee performance,
it only guaranteed preservation of stability. Atassi and Khalil4hflirther developed other
high-gain observers.

1.3 Performance of Backstepping and High-gain Designs

The performance theory in output feedback control is still an open field. For the adaptive state
feedback control, in the past few years, FreriZdj [nitiated the work in the area of control com-
parison by performance. French, Sze@esand Rogersd7] introduced a performance mea-

sure for approximate adaptive nonlinear control and obtained an upper bound of performance.
As to the comparison of performance for controllers, Frei@f ihtroduced a cost functional

to measure performance of control designs, comparing robust to adaptive backstepping. Sanei
and FrenchT1, 72] compared two robust adaptive control designs. Beleznay and Fré&hch |
compared the performances of adaptive backstepping and tuning functions designs.

For output feedback control, it is only possible to measure the output. Hence, the designs are
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more complicated, and it is harder to handle the resulting closed-loop systems. So, it is more
difficult to develop the corresponding performance theory. Khdlf] finitiated work about
comparison of controllers for output feedback. He used numerical simulation tools to compare
output feedback control designs. French, Szempesind Rogersd§] first obtained the bounds

for the performance of designs for output-feedback control analytically. It should be observed
that whilst there are many results concerning the transient performance of the output, see, e.g.,
[55], there is little work in the literature on non-singular costs for non-optimal designs, see
howeverR7,[71,126,7,72] for related results and techniques.

The results in47] are purely numerical, and give rise to many interesting questions, such as
e When do theKKK designs require greater control effort than Kielil designs, and vice
versa?

e When do theKhalil designs have superior output transients tokK& designs, and vice
versa?

e Are theKhalil andKKK designs sensitive to disturbances and plant perturbations?
In this thesis we will study these problems. In the first part, we will comparkEiti€andKhalil
designs in two situations; in the second part, we will design rokst andKhalil controllers.

The Khalil designs are applicable to affine systems of full relative degree, whilstKikede-

signs are applicable to an alternative class of systems, hamely those which possess an output
feedback normal form. By considering systems which are both full relative degree and have
a output feedback normal form, we can compare the behaviour of the controllers on common
systems, as initiated in#7).

We introduce the measure of performance

P(3,8) = llyliz(r,) + lull Lo

wherey is the output, and is the input, and the time s&}, is defined by

T,={t>0]|y@®)|>n}

andn is a small positive number. By comparing the performance of controllers, we would
like to be able to characterize situations in which one design is preferable to another. Such
characterizations have obvious consequences for design choices, and also should lead to insight
into the dynamics and trade-offs inherent in these controllers.

It is impossible to compare two designs generally. So, we will characterize situations in which
one design is preferable to another.

The notion of stability in this part is the Lyapunov stability.

!Note also that such systems are characterized in a coordinate free m&Bher, |
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1.3.1 Poor Information on Initial Conditions

Firstly, we will consider the system which can be written in output-feedback form

=i +ei(y), 1<i<n—1
Tn =u+en(y), x(0)=2z0, 1<i<n

y=x
whereu is the control inputy is the measured output, and
zo = (zo1,*+ , Ton)"

is the initial condition of the state, ang are sufficiently smooth.

Let us consider a generic observer based contral{ép ), wherez is the initial condition for
the observer. The performance of the closed-lad), Z(Z0)] is dependent on both the initial
statexg and the initial condition for the observég. Whilst the initial statex is the property of
a system, the control designer has the freedom to chose the initial congjtionthe observer.

It is intuitive that good performance results from initializing the observer s{ate be close to
the actual initial stateg. Of course, in practice, the initial state is often unknown, so it can be
hard to initialize in this manner. Nevertheless standard practice is to try to minimize

1Zol| = [lzo — Zoll

according to the best information available. However, we may well not possess complete in-
formation concerning the value of the initial condition of the state, that is we do not exactly
know zq, and hence we have to takg to be the best estimate 1¢. Then we are interested in
studying the situation in which our estimateagfis not accurate anfiiz, || is large, in particular

how does poor information any, ( which causes ‘bad’ choices 6f ), affect the performance

of the controllers?

We first consider an observer backstepping desk&hwhich achieves global regulation of the
output. Although the observer backstepping design has a global region of attraction (g)),
we will prove that the performance of the controller may become worse as the initia||€gtpr
becomes large for any fixed initial condition of the state vegtor

Next, by a suitable coordinate transformation the system can also be written as integrator chain
with a matched nonlinearity.

2.:/L':Zi+17 1§7J§TL—1
Zn=u+Y(z), z(0)=2zyu 1<i<n

y=z
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wherei)(z) is to be specified later, and

20 = (201, » 20n) "

is the initial condition. For the system, the high-gain designs treated®m8, 3], can be
applied and semi-global regulation of the output can be achieved. For this systemaritl

its higher derivatives are globally bounded, through the high-gain observer, for fixed initial
condition of the statey and any initial condition of the observég, we can design a globally
bounded controller, achieving bounded performance. That is, if the initial error

120l = |lz0 — 20|

becomes large, this design still achieves bounded performance.

1.3.2 Poor Information for Unknown Parameter

Secondly, we will consider a system in output-feedback normal form with an uncertain param-
eter

d?i:ﬂfi_;,_], 1§z§n—1
Tn=u+0p(y), xi(0)==xz0, 1<i<n

Y=
whereu is the control inputy is the measured output,
20 = (o1, ,Zon)"

is the initial condition of the state, andy) is a locally Lipschitz continuous function.

This is a parametric output feedback system, for which Bd€K andKhalil controllers can be
designed to achieve regulation of the output and bounded performance.

To design &halil -type output feedback controller with a high-gain observer, we need first to
design a globally bounded state feedback controller. Generally, this is achieved by saturation of
the state feedback controller. But we need the saturated controller still to stabilize the system.
For this purpose, we need to determine suitable saturation levels. However, the required satu-
ration levels are typically dependent nthe unknown constant. Therefore, we have to first
guantify an a-priori estimate for the magnitudefof Sincef is assumed to be unknown our
knowledge of it is typically poor. Hence we have to estinfawonservatively. But when our
a-priori upper bound fofd| is conservative, we will show that the performance of iielil

design becomes poor.

For aKKK design, the performance is independent of any a-priori upper bound| forhere-
fore, the performance keeps uniformly bounded as the a-priori upper boung tmecomes
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conservative. Hence, for this system we will establish a result with the contrary performance
relationship to that in above section.

1.4 Gap Metric Robust Designs

Next we consider the third problem-the robustness of backstepping and high-gain designs. The
definition for stability in this part is robust stability.

To design a controller for a plant, a mathematical model ( called the nominal plant ) for the plant

is necessary. But, in practice, the nominal mathematical model for the plant cannot completely
describe the actual plant-there always exists a difference between the nominal plant and the
‘true’ plant. On the other hand, when we measure a signal, what we measured is not exactly the
real signal, namely, there is a measurement disturbance. When we use the measured signals for
feedback control, another disturbance, the input disturbance, is typically present.

A closed-loop could become unstable if a controller cannot tolerate these kinds of uncertain-
ties. El-Sakkary14] gave an example that a small uncertainty changed the stability of the
closed-loop, which is described as follows. For a single-input and single-output linear system
represented by the transfer function

the closed-loop is stabilized by unity feedback to give

1 s—1

1+ K(s) s+1

If K is perturbed to

s—2

the additive uncertainty/(s — 2) results in a pole-zero pair close to the paint 2, and makes
1/(1+K;(s)) unstable for smaH. Rohrs in 58] gave examples, where existing adaptive control
designs became unstable in the presence of small plant perturbations, input and measurement
disturbances. These examples show that modelled or unmodelled uncertainties in plants and
loop systems are challenges to control designs, especially to nonlinear systems. For control
purposes, a basic requirement is that a controller designed for the nominal plant tolerates plant
perturbations, measurement disturbances and input disturbances, that is the controller is robust
to these kinds of uncertainties. Hence, the study of robust control is an important area in control
engineering.

Although the study of robustness for control designs is as old as feedback control, even for linear
systems effective systematic tools for robust control have only been developed since 1980's.
An appropriate topological structure for studying the robustness of linear systems is the gap
metric ( the graph topology ) introduced by Zames and EI-Sakk@ity14]. The gap metric
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between two linear systems is defined as the gap of their graphs, which originated from the
notion of the distance between two sets ( &t ]. The tolerable uncertainties are constrained

in the gap. The theory of robustness for linear systems is then well established. Vidyasagar
[84, 85] defined an alternative metric-the graph metric, which is topologically equivalent to
the gap metric. In contrast, other frameworks for studying robustness have restrictions; e.g.,
if there exists an additive uncertainty it is impossible to compare a stable closed-loop with an
unstable one, the order of parametric uncertainty cannot be changed, a small time delay is not
an allowable uncertainty, etc. However, it is pertinent to observe that the gap or graph notion of
distance corresponds naturally to the notion of coprime factor uncertainty.

For nonlinear systems, it had been a target to build up a corresponding gap metric theory. But,
it is difficult to cope with the complexity of nonlinear phenomena even in the absence of distur-
bances and other uncertainties. The robustness study of nonlinear systems is far less developed
than for linear systems. In 1997, in a fundamental pe®&lr [eorgiou and Smith established a
theory of gap metric for nonlinear case, and a series of applicable robust stability theorems were
obtained.

As we introduced previously, the backstepping ( &%} ] is a well established constructive
design procedure, which can be applied to models without the matching condition. But, ordi-
nary backstepping designs do not guarantee robustness. In 1992 Freeman and &{kejtovi
initiated the study of robust backstepping designs. Marino and T@1igiQu |66], Slotine and
Hedreick [74] independently obtain robust backstepping results in 1993. In successive papers
[20,122], robust backstepping designs were developed. The established results were summarized
in [23].

In the above work robust control Lyapunov functions were introduced as a design tool. Hence,
the uncertainties allowed in plants are only modelled dynamics. Un-modelled dynamics or plant
perturbations are not allowed. Another restriction is that the measurement disturbances are
required to enter system equations multiplied by a ckagsfunctior? of the state magnitude.

That is, the measurement disturbances are in the set

Y(z) =2+ p(x)B

wherep is a class, function, andB is the closed unit ball. This means that the effects of
measurement disturbances decrease to zero as the states are regulated to zero. But, in practice,
actual measurement disturbances do not satisfy this assumption.

Recently, many researchers further developed robust backstepping designs on some restrict con-
ditions. The results can be found 24; 18,1, /16, 2, 37]. The work of Freeman and Kokotdyi

and other researchers, is only concerned with state feedback control. So far, the area of robust
backstepping designs for output feedback control is still open.

2A continuous functiony : RT — R* is said to belong tdC., if it is strictly increasing, andy(0) = 0, and
~v(r) — oo asr — oo.
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We have mentioned before that the high-gain observer was alternative design. Similarly, the
standard high-gain design does not guarantee the robustness. When a high-gain observer is
used to output feedback, it is required that the high-gain facteis large. Consequently, it is
believed that the high-gain observer designs are sensitive to loop disturbances and plant pertur-
bations. But it is surprising that the simulation results4i] [show that a high-gain observer
design exhibits almost the same level of degradation with the other designs in the presence of
disturbances. So far, there are no results about the robustness of high-gain designs except the
above simulation result. Therefore, it is important to investigate the robustness of high-gain
designs to loop disturbances and plant perturbations.

In this thesis, in the framework of gap metric we will consider robust backstepping for state
feedback and output feedback designs, and robust high-gain observer designs. Since standard
backstepping and high-gain designs do not guarantee robustness, we amend the backstepping
and high-gain designs to achieve the robustness of controllers to input and output disturbances.
Then, we use gap metric robustness frameworBgffo obtain the robustness of the controller

to plant perturbations.

The critical steps are designs of controllers and the construction of stable operators between the
external disturbances and the internal signals of a closed-loop.

1.4.1 Robust Backstepping Designs

In the framework of gap metric robustness, we will study robust backstepping design procedures.
The plant uncertainties can be modelled or unmodelled dynamics, that is plant perturbations are
also included. There is no restriction on input and measurement disturbances. The results can
even be global to disturbances. All the restrictions for plant uncertainties, input and measure-
ment disturbances are removed.

State Feedback Control

For state feedback control, we will consider a nominal plant in strict-feedback form

T = Tyig1) T @i(T11,0,7), 1<i<n-—1

B1n = U1+ @n (T11, 7 T1o1), T1) . 21(0) =af;, 1<i<n

where we assume that, 1 < i < n satisfy

and are Lipschitz continuous, and
0 0 0\T
zy = (T11, " 5 T1p)

is the initial condition.
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Since ordinary backstepping designs do not guarantee robustness, the deskfijsamifiot

be directly used to achieve our purpose. By an amended backstepping procedure, we design a
robust controller for the nominal plant. The controller achieves gain-function stability, and if
the initial condition is zero then the controller achieves stability, that is, the controller is robust

to input and measurement disturbances of the closed-loop. Then we make use of the gap metric
robustness results iB%] to obtain robustness of the closed-loop to plant perturbations which are
small in some sense. In this way, we show that for any perturbed plants the controller stabilizes
the closed-loop with input and measurement disturbances if the gap metric distance between the
nominal and a perturbed plant is less than a computable constant ( al8&Jsee [

Output Feedback Control

For output feedback control, we will consider a nominal plant in output-feedback form, in which
nonlinearities only depend on the output

T = i34 T @i(yr), 1<i<n—1
P = w1 +n(y1), 21:(0) =12y, 1<i<n

Y1 = Z11
whereyp;, i = 1,2, --- ,n are either locally or global Lipschitz continuous, and satisfy
QDZ‘(O):O, 1<i<n

and

‘T(l) = (:E(l)lv T ’Jj(l)n)T

is the initial condition.

Again, we amend the backstepping method, design a controller and an observer in the pres-
ence of input and measurement disturbances, proving it's robustness. The closed-loop is gain-
function stable, and stable if the initial condition is zero.

If the nonlinearities are only locally Lipschitz continuous, the results are local to input and mea-
surement disturbances; if the nonlinearities are globally Lipschitz continuous, then the results
are global to input and measurement disturbances.

By the robustness results iBY], if the initial condition is zero we obtain the robustness of
the controller to plant perturbations in a gap metric sense. That is, for any perturbed plant the
controller stabilizes the closed-loop with input and measurement disturbances if the gap metric
distance between the nominal and perturbed plant is less than a computable constant.

A time delay in feedback control could destroy the stability of a closed-loop system. As an
application, we apply the theory we have established to a system with time delay, and prove that
if the time delay is suitably small, the controller is able to achieve stability of the closed-loop.
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1.4.2 Robust High-gain Designs

For robust high-gain control, we will consider a nonlinear nominal plant in normal form

T = Z1gi41), 1<i<n-—1
i1, =u1 +o(y1), 21(0)=2;, 1<i<n

Y1 =T
where, for simplicity, we assumeis Lipschitz continuous.

Since the standard high-gain observer does not guarantee robustness to loop disturbances, we
amend the high-gain observer and design a controller. Then we prove the controller is robust to
loop disturbances.

By gap metric theory, we show that this controller is able to stabilize the closed-loop for a
perturbed plant if the gap metric distance between the nominal plant and the perturbed plant
is smaller than a constant, which is independent of the high-gain factdhat is the plant
perturbation margin is independenta&fhence the controller is robust to loop disturbances and
plant perturbations.

1.5 Summary of Contents

¢ In Chaptel2, we outline the standard observer backstepping and high-gain observer design
procedures. Then we summarize the major relevant results concerning the two kinds of
designs, which we will quote latter.

e In Chaptel3, a non-singular cost functional for non-optimal output feedback designs is
introduced to measure the performance of a controller. Then we prove a proposition about
backstepping design for a two dimension system to illustrate that a good performance
comes from a small initial error.

¢ In Chapted, we show that &halil design out-performs KKK design when the informa-
tion on initial state is poor and leads to a large initial observer error.

e In Chapte’, we establish a result in the reverse direction to that of Chdpi#fe consider
an output feedback system with an unknown parameter, and then show that an adaptive
KKK design out-performs an adaptikdalil design as the information on the size of the
parameter becomes conservative.

¢ In Chaptei6, the required background knowledge on gap metric robustness is given.

¢ In Chaptei7, a robust state feedback backstepping controller is designed for strict-feedback
form nominal plant, and it is proved that this controller is robust to loop disturbances and
has a non-zero plant perturbation margin.
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e In Chapter8, for the output-feedback nominal plant, we design output feedback back-
stepping controllers, and prove these controllers are robust to loop disturbances and have
non-zero plant perturbation margins.

¢ In Chapte(9, by an amended high-gain observer design, a robust controller is constructed
for the nominal plant in normal form. It is proved that this controller is robust to loop
disturbances and has a non-zero plant perturbation margin.

¢ In Chapteil0, overall conclusions and directions for future research are given.
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Chapter 2

Preliminaries

In this chapter we introduce the observer backstepping, adaptive observer backstepping and
high-gain observer design procedures, and some related standard results which we will use later.

2.1 Observer Backstepping Design Procedure

We simply state the observer backstepping design procedure and some results about the design
here, the related material can be found58][

The observer backstepping design can be applied to the output-feedback system, in which the
nonlinearities only depend on the output

&1 =22+ 01(y)
Ty = w3+ 02(y)

Ep—1=12p+ Pp-1(y)
Tp = Tpr1+ @p(y) + bmB(y)u (2.1)

Tp-1=Tn + On-1(y) + b16(y)u
En = on(y) +bofy)u, x;(0)=z0, 1<i<n

y=1a

It is assumed that the system is minimum phase, tha&t,jsT + - -- + bi1s + by is a Hurwitz
polynomial, and3(y) # 0 for anyy € R.

15
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To derive an observer for the system, we rewrite the system in the form

&= Az + p(y) +bB(y)u, (0) = xo
y=Cx
where
010 --- 00
xr1 Zo1
o1 --- 00 . oo
A i [ 3 Tr = 9 o =
01 '
0 Tn Ton
and
0
©1(y)
P2(y) 0
@(y) - ) b - bm ) C - (L 07 ,0)
on(y) :
bo
Let
1 Zo1
. ) . Zo2
xTr = i N "L‘O =
i'n -i'On
then an observer is defined by
=A%+ K(y—19)+¢y) +bbu, £(0)=2o
g=0C%
where
k1
k1
K = _ , k>0, 1<i<n
kyn
is chosen such that
Ay=A—-KC

is Hurwitz, andz is the initial condition of the observer.
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Let

where

Tog = xo — Zo
is the initial error. Hence, the observer error decays exponentially.

Suppose that the tracking reference sigpét) € C*[0, co), and define the following recursive
expressions

61(2/) =Y —Yr
ai(y) = —ci& — di&r — v1(y)
& =T — 1 (yvijlv ey T Yy 7%@_2)) — 0y

Oai_q

2
o ==& — &1 —d; ( By ) & —kily —21) — wi(y)

8@1'_ R Gai_ N ~
+ oy L (@ +g1(y) + Z 87-1(%“ +ki(y — 1) + i (y))
j=1
i—2 dar
himl (1)
+ S Yr y 1—2737"’”0
jz; oy

wherec;, d;, 1 < i < n are positive constants.

The controller is then defined as

(ap = Zpe1 = ) (2.2)

For this controller, the following theorem ( sé&5] ) holds.

Theorem 2.1. For the systerrid. 1), suppose that,,,s™ +- - - + b1s+ by is a Hurwitz polynomial,
and(y) # 0 for anyy € R, and the reference signal.(t) € C*[0,00). Then the controller
(2.2) guarantees global boundedness of signdl), Z(¢) andw for any initial conditionz and
initial observerz, furthermore, achieves regulation of the tracking error

lim (y(t) — v, (£)) = 0

t—o00
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Proof. The proof follows [B5]. First, the resulting error system is

€1 = —c16y + & — di€1 + 3o

——1I2, 2<i1<p-—-1

§i=—cibi+ &1+ & —di (

é =—ck,+&-1—d Lap_l 2{ —aap_li’
p— ~CpSp p—1 p Ay p Ay 2

T = AoT

Oa;— 1) é. aaz 1~

Let Py be the positive definite symmetric solution of the Lyapunov equation
PyAy + A(Z;PO =1

and define the Lyapunov function

-5 )

]:
Then, along the solution of the closed-loop, it holds that

n

. 3 .
V=) <cj§j2-+4dj\x12> <0

j=1
Thus,&y, - -+, &, are bounded, and the tracking erégitends to zero asgoes to infinity.

The boundedness of other signals is established as follows. Siandy, are boundedy is
bounded. Hence;, = y — Z; is bounded. Sincg; is boundedis = &2+ a1 (y, 1) is bounded.

In the same manner, it can be shown that- - - , 2, are bounded. Note that the observer error
 satisfiest = Az, and Ay is Hurwitz, theni exponentially decays to zero. Heneg, - - - ,Tp

are bounded.

The boundedness of signais; 1, - - - ,z, andz,,1, - - - , &, comes from the fact that the bound-
edness of; implies the boundedness ¢f

Finally, the controk is bounded becaude,3(y) is bounded away from zero. O
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2.2 Adaptive Backstepping Design Procedure

The adaptive observer backstepping design can be applied to the parametric output-feedback
system

&1 = x2+ po,1(y) + Z 0ji1(y)

iy =3+ 002(y) + Y 0;052(y)

ip—l =Tp + (PO,p—l(y) + Z gjwj,p—l(y)

i,p = Tp+1 + $0,p— 1 + Z 6]90] o\Y + bmﬂ( ) (23)

j:n:SDOn +Zej90jn +b0/8( ) xi(o):inv 1<i<n
Yy=x1

whereb,,--- ,0, andby, - - - , by, are unknown constant parameters; the sigh,pfs known;
the polynomial
bs™ 4 -+ bis + by

is Hurwitz; 5(y) # 0 for all y € R; only the outputy is measured.

The control objective is to track a given reference sigpét) with the outputy while keeping
all signals bounded. Assume that reference sign@) and its firstp derivatives are known and
bounded, an@ﬁ”) (t) is continuous.

First, rewrite the system in the form

&= Az + @o(y +29J‘Pj ) +08(y)u,  x(0) = o

y=Cx
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where
0 0 - 0
1 Zo1
0 0 1 . .
2 02
A= ... , X = , Xo =
0 0 O 0
000 00 “n Lon
and
0
‘Pj,l(y)
©j2(y ‘ 0
wity) =" ,0<j<p, b= b |’ C:<170, -70)
‘Pj,n(y)
bo
Choose the vector
k1
ky
K= |, k>0 1<i<n
ky
such that
Ag=A—-KC
is Hurwitz, and define the filters
€0 = Aoko + Ky, £(0) =&
& =A+oi(y), &0)=¢, 1<j<p
0j = Agvj + en—jB(y)u, vj(0)=wv;, 1<j<m

wheree; is theith coordinate vector ifR".
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The controller is defined as

1
u = @ <ap — Ump+1 + ﬂl,lyﬁp)>
01 = sgn(bm)Lwi (y, €@, 5@, 4D — g,e1)G
Uy =T (wg(y, £ 5@ 9@ gy 4 C16p+m+1) G2 (2.4)

191' = Fwi(yv 5(2)7 Q_}(i)a’g(i_l)7 g'r('z_l)))é-l’ 1= 25 P
p m
2(0) =20 =&+ > _0:8) + > bjv)
j=1 j=0
9(0) = Yo = (Yo1, 02, - - , Jon)”

where(;, w;, oy, i = 1,--- ,n andy, are defined by the following recursive expressions

1=y — Yr

Gi =Um,i — ai—1(y, 5(1)7 5(i)71§(i)

gy - 191,13/7(~i)

)

o] = — 19{(4)1

Jda oo
ag = — 202 — V2 prm+1G1 — d2 ( 1> G2+ 87;(50,2 + ©0,1(y) — Y3 w2 + kavm1

65 S (Aot + Ky + woly +Z A05]+80g( )

8041 oo . Oaq .
8 Ao + (819 + yr€1> sgn(bm)I(w1 — gre1)Cr + ({Tyryr

doi—1\? . | Oaia T
=—6G—Gi-1—d; (Cf,y> G+—F5— By (€02 + ©o,1(y)) — Vi wi + kivm,1

80[2'_ P 8042-_
+ e (Ao + Ky + o(v) + D 5t (Ao +24(v)
8o o 0¢;
" iy da; .
—i—Z 90, Agvj + 99, + greq ) sgn(bm)I'(w1 — gre1)Ca
j=1 J
i—1
dai— Oa;— Oay_1 )
81921 (w2 + C1eprm+1)G2 + Z lI‘w]CJ Z Wyfgﬂ)’ i=3,-,p
Jj=3 j=1 OYr

and

wi =(c1C1 +diCi + o2+ @01 +C12 01 +Ep 2y Ep2, V0.2, Umn—1,2)

T aal_l .
w; = — 8y (801,1—’_51,27'” 7¢p,1+€p727"' 7’1)0727”' 7vm—1,27vm,2)a Z:27"' , P
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and

f_(i)Z(fo,l,"',50,1',"',§p,1,"',§p,i), i=1,---,p—1
7@ =(V0,1, " V06 s Ume1.1y " s Um—1ir " s Umd " s Umi)y G=1,---m
OO =T, 9, i=1,--p

I =y ), i=1p

For this controller, the closed-loop has following property.

Theorem 2.2. Consider the systen2Q) and the reference,.(t) € C?[0,00). Then, for any
initial condition of the state:y and any initial observer stat#,, the controller2.4) guarantees
the boundedness of all signals and regulation of the tracking error

lim (y(t) —yr(t)) =0

t—o0

Proof. The complete proof can be found 5]. We only give an outline here.

T
o (L0 o
b b, bim

also define the estimate éf by 9;, and

First, define

12

_ _ 1
7(90 —9)TT7 10y — 91) + —eT Poe

1
Vi=<G+ &

2

whereP, is the positive definite solution of
PyAo + Agpo =T

and
e=:x— (§ + & + vo)

Then it can be shown that 5
Vi <—al— ele+bpCil

4dy
Define
0 — (01, ,0p,b0, - ,bm)T
and
Vo=Vi+ %gg + %(5 —9s)TT (6 — ) + deeTPOE
Then

. 3/1 1
Vo < —c1(f — eald — 1 <d1 + d2> ele + (als
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Finally, define

%
Co
l\?
+
=
‘»a
%
<
5
=
!
=
s

Vp_z< sTP5> |bm|(90—19)TI‘ o=

Z

Then it can be shown that ,
. 3
2 T
V<=2 (%‘ * 14 8)

Hence, the nonnegative functidf is non-increasing, thus;, - - - ,(,, 9 — ¥1,--- ,J — 9, are
bounded, and thug,, - - - , 9, are bounded by constants depending only on the initial conditions
of the adaptive system. From this it can be proven that the other signals are bounded.

The convergence of tracking error can be obtained by LaSalle-Yoshizawa theorem ( see, e.g.,
[55] ) since(y, - - - , ¢, ande converge to zero as— oc. O

2.3 High-gain Observer Design Procedure

The basic idea of high-gain observer designs is as follows ( see,45¢3, B0, 31,132] ). First,

design a globally bounded state feedback controller, which is usually obtained by saturation.
Second, a high-gain observer, which is defined through a high-gain facierdesigned to
estimate the states. Third, replace the states by their observer variables and obtain an output
feedback controller.

If € is sufficiently small, the behavior of the closed-loop under the output feedback controller
achieves the same properties of the closed-loop under the state feedback controller. Since the
state feedback controller and the high-gain observer can be designed separately, this class of
designs achieves a separation principle for nonlinear systems.

In this class of designs, the requirement of global boundedness of the state feedback controllers
is essential. So, saturation is usually applied to achieve this property. However, the saturation
levels must be high enough to guarantee stability of closed-loop under the state feedback control.

Here we give the design procedure of high-gain observer and related assumptions and theorems
of the design in45, 3].
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Consider the system

1 = X9

.ﬁg = I3
(2.5)

Tp—1 = Tn

Tn =Y(y,0) +u, x1(0)=2¢, 1<i<n

y=x

whereu is the control inputy is the measured outputjs the unknown parameter, the functipn
is sufficiently smooth and locally Lipschitz continuous in its arguments, in addifigh f) = 0.

Introducing
Lo-0 T To1 0
0 . . .
2 02 :
A i T 5 T = 9 o = ) B = '
0 1 0
0 .. 0 In Lon 1

and

we rewrite the system into

&= Az + B(¢(z,0) +u), xz(0)=xg
y=Cz

The state estimate is generated by the high-gain observer
T=Ai+H(y—i1), #(0)=i

wherez is the initial condition of the observer, and

H=H(e) =
Bn
6’)1
and the positive constants, 1 < ¢ < n, are chosen such that the roots of the equation
"+ Bis" T 4t fpo1s + B =0

are in the open left-half plane, amds a small positive constant to be specified.
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Control Design 1
First we follow the separation principle iB][to design an output feedback controller.

We suppose there is a state feedback control

and the assumptions made about the system and controller are as follows.

Assumptior2.1 LetI and~ satisfy
1. I" and~ are local Lipschitz in their arguments over the domain of interBgh, 0) = 0
andv(0,0) = 0.
2. I" and~ are globally bounded function of.
3. The origin is an globally asymptotically stable equilibrium point of the closed-loop sys-

tem.

The output feedback controller is given by

u=T(&,7) (2.6a)
9 =~(&,9), 9(0) =Dy (2.6b)

Then for the closed-loop system, the following theorems hold, which are directly quoted from

[3].

Theorem 2.3. Suppose Assumpti¢hl is satisfied, then there exist$ such that, for every
€ : 0 < € < €], the trajectories of the closed-loop under the output feed back controller, starting
in any compact set, are bounded for atb 0.

Theorem 2.4. Suppose Assumpti¢hl is satisfied, then there exist$ such that, for every

e : 0 < e < €5, the origin of the closed-loop system under the output feedback controller is
globally asymptotically stable.

Control Design 2

Now we follow the design in45] to design an output feedback controller.

For some constar,,, write
Q={[0] <0}

and
Qs = {10 <0, + 6}
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where(} is any compact set which satisfi@sD €.
Then for the systen(£), a state feedback controller is given by

p(z,0) = kx — 0y (y,0) (2.7a)

u

A~ ~

6 = v(z,0) = Proi(d, ), 6(0) = by (2.7b)

where the vector
k - (kl)k27'” )kn)

is chosen such that matrix + Bk is Hurwitz, and the projection Pr(cﬁ, ¢) is defined by

L 9, if 0] < O,
Proj(8, ¢) = ” i _
¢ — 5(0 —0p,)9, otherwise

and
¢(a) = 207 PLBY(y)
The signals of the closed-loop under the state feedback controller are bounded. Take

Up > max |u(xz,0)], Vo> max |v(z,0)]

and we saturate the functipnandv as follows

115, 0) = Upsat (M(§;9)>

We again use the high-gain observer
T=Ai+H(y—i1), #(0)=ig
to estimate the states. Then we define an output feedback controller as

15(, 0) (2.8a)
vs(2,0), 0(0) =0 (2.8b)

u

0

For the closed-loop, we have following theorem.

Theorem 2.5. For the systenid.5) and any initial conditionr, suppose that the output feedback
controller is defined by2.8). Then forg, € Q andd, € €, there existg* > 0 such that for
all 0 < e < €*, all the signals of the closed-loop system are bounded, and mean square of the
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output is of ordeiO(¢)

lim 1/7 (£)2dt = O(e)
T—oo 1 0 y - ¢

Proof. The system is of the form ii@B]. The Assumptions 1 and 2 id§] are naturally satisfied.
The controller is that in45]. Therefore, this is the result of the first part of Theorem 2 in
[45]. O

In the next chapter, we will introduce a performance measurement and prove a result about the
choice of initial condition of the observer.



Chapter 3

Performance and Initialization of

Observer

In this chapter we consider a non-singular cost functional penalizing both the output transient
and the control effort to measure the performance of a controller. Then we prove a result which
illustrates that ‘good’ performance results from small initial observer error.

3.1 Performance of Controller

It should be observed that whilst there are many results concerning the transient performance
of the output, see, e.gl5%], there is little work in the literature on non-singular costs for non-
optimal designs, see howev2g[ 27, 7] and [29] for related results and techniques.

In particular, for a syster with input « and outputy, and a controlleE mappingy — u, we
consider the following cost which penalizes both the control and the output signal.
P(2,E) = |lyl2a(z) + lull oy

:/ y2dt + sup [u(t)
LQ('T,]) teR4

where the time sef,, is defined by
T, ={t > 0] lyt)| > n}

andn is a small positive number.
Such a cost penalizes the input and output response of the systemyhilgt [—n, ], hence

28
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for a closed-loop whose goal is to regulgt® zero, keeping, u bounded, this cost is finite and
is a reasonable penalty on the transient behavior.

Ever for a design which regulatggo zero, it is possible that ¢ L?(R. ), for exampley(t) =

1/vt € L*(T,), but1/y/t ¢ L*(R;). Therefore, in the definition of the performance, the
|yl 22(z,) norm is introduced, instead of the nofy||.2(r, ), to guarantee the finiteness of the
cost. For the control input, we are concerned with the maximum value of the control input.
Hence, the nornfjul| ., ) is @ proper measurement of this value.

Note that whilst a direct.? penalty on the output could be considered for some designs, the re-
laxation of the output penalty is physically meaningful, and considerably simplifies the technical
treatment.

3.2 Initialization of Observer

Let us first consider a generic observer based contrélles), wherez is the initial condition
for the observer. The performance of the closed-Ipofx,), =(zo)] is dependent on both the
initial statexy and the initial condition for the observép. Whilst the initial staterq is the
property of a system, the control designer has the freedom to choose the initial cofglition
the observer.

It is intuitive that good performance results from initializing the observer siatdose to the
actual initial staterg. Of course, in practice, the initial state is often unknown, so it can be hard
to initialize in this manner. Nevertheless standard practice is to try to minimize the initial error

| Zo|l = [|zo — Zol|

according to the best information available. To establish a rigorous justification for this intuitive
idea (or more precisely: to characterize the situations when it is valid) remains an open research
problem; here we simply illustrate the validity of this approach on a single example, as discussed
next.

Consider the 2-state system defined by

Y0(zo) 1 41 =m0
o= @(y) +u, (0)= (vo1,702)"

y=x

wherep(y) is a Lipschitz continuous function. We consideKKK controller ( see Chapt@)
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defined as follows.

E0(20) 1 u = ao(y,&1,42)
.@ = Iy —i—kl( 1)
By =ko(y — 21) + o(y) +u, (0) = (Zo1, Bo2)”
where
§1(y) =
ai(y) =— & — di&
Ea(y, &1, 22) =T2 — o (y, &1)
an(y, 1. 82) = — eay — & — dy | 21 §—k( 1) — o) + 225
2\Y,X1,x2) = 262 1 2 8y 2 2 21 ey 8y2

andkq, k2, ¢;, d;, 1 < j < 2 are positive constants.

Since we can measusg, we can always takey; = xp1. However,zg, may be unknown, and
so it is meaningful to compare the behaviour of the closed-loop s with the alternative choices of

To2 = To2, To2 =10

We can then establish the following proposition.
Proposition 3.1. Consider the systeii’ () and the controlleE® (i), then there exist;, d;, k;, i =

1,2 such that

im (P (@0), 2 (w01, 0)7)) = P(E° (o), b ((zo1,z02)"))) = +00
Proof. Consider the closed-loofx’(z¢), 2% (z¢)). First, observe that the observation error

IS
Il
&

|
=

satisfies
I = —kiZ1 + & (3.1a)
Ty = —koiy, #(0) =g (3.1b)
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hence satisfies the equation

.%1 + k1i’1 + ko1 =0 (3.2a)
21(0) = zo1 — Zo1 (3.2b)
71(0) = wog — To2 — k1 (w01 — To1) (3.2¢0)
where
To1 — To1

To =T — Tog =
To2 — Zo2

Secondly, note that the control signatan be expressed as
E(#0) : u= an(y, #1,82) = kad1 — oy — hy — ¢(y) (3-3)

where

h = (62 + da(c1 + d1)2) (c14+di)+ka+1

hy = co +da(c1 +dy)* + 1+ dy

Hence, the closed-loop system can be written as

I = x9 (3.4a)
&g = —hxy + ko@1 — haio (3.4b)
21 = ki1 — k&1 + @ (3.4c)
To = —hix1 — hods (3.4d)

where

hi=h—ky= (62 +da(c1 + d1)2) (1 +di)+1

Consider the first situatioty = x9, hamely,Z; = 0. The solution of 8.1) is Z = 0, so

Z(t) = z(t), and the closed systelfi.g) reduces to

T1 = X2 (358)

.fg = —h1$1 — hgﬂ:‘g (35b)
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Thus we have

T+ hot1 + hiz1 =0 (3.6a)

21(0) = zo1, £1(0) = 202 (3.6b)
Write the solution of above equation a%t), and observe that!(¢) can be expressed as

2i(t) = 201q1(t) + T02q2(t)

whereg; , ¢ are functions which are independentgf, z¢2. Moreover, we can chocse;, d;, i =

1,2 such that(t) > 0 for ¢t > 0, and furthe? z9(¢t) > 0 for t > 0 if 2 > 0.

Now consider the second situatiég; = x¢; andzge = 0, namely,zg; = 0 andZgs = zg2.

Hence, the problenB(2) becomes

T1+ k12 + kodiy =0 (3.7a)

£1(0) =0, 21(0) = zop (3.7b)
The solution to the above problem can be written as
Ty = woa f1(t) (3.8)

wheref;(t) is a continuous function which is independent:gf. At the same timeg, can also

be written as

Ty = z02f2(1) (3.9

wherefy(t) is a continuous function which is independent:gf.

'For example, we can choosg d;, i = 1,2 such that3 > 4h;, and let

1 1
M=-3 (hQ— T —4h1) S de=—3 (h2+\/hg —4h1)

theng1 (t) andg2(t) can be written as

1
Y

q(t)

(M = xae™), ga(t) = X ! R (M =€) >0, t>0
1 — A2

Here, ! (t) can also be written as

0 1

z1(t) = N ((9602 — A1Zo1) ettt — (zo2 — A2xo1) eht)

It can verify that ifzo2 > 0 thenz9(¢) > 0 for ¢ > 0. Note thatz?(0) = 0, thenz{(¢) > 0 for ¢ > 0.
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Now substitutez = x — Z into the closed-loop3.4), and rewrite the first two equations as

i1 = oo (3.10a)

To = —hix1 — hoxo — koX1 + hoZs (3.10b)
Alternatively this can be expressed as
T1 + hod1 + hix1 = l‘ogf(t) (3.11)

where

f(t) = —kafi(t) + hafa(t)
is also independent afy,. Again we can choosk,, k2 such that f(t) > 0.

Solving the following problem

T+ hox1 + hix1 = l‘ogf(t) (3.12a)

z1(0) = o1, 41(0) = o2 (3.12b)
we can express the solution &.12) as
t
o1(t) = 0(6) + [ 0(t ~ o (r)ir
0

whereg(t) is the solution of8.69 which satisfie)(0) = 0 and$(0) = 1, namelyp(t) = ga(t).
Write
t
= — d
o) = [ wit=m)siryar

then

whereg(t) > 0.

3E.g., we can chooseé > 4ks andhsk, > 2ks, and let

1 . 1
[ = 7§(k1 — M), p2 = f§(k1 + M)

1 . 1
= ——— (M=), fo(t) = ——
1 — 2 H1 — p2

1
t) = —haps — k2)e"t + (hap + k2)e?) >0
f(t) prr— ((=hapz — k2) (hapr + k2)e"")

then we get

pit uzt)

() (—poe"" + pre
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Writing
Ty = {t = 0lles(8)] > n}
T = {1 > 0[[a(0)] > n}
thenZ,’ C 7, sincex; (t) > x9(t). Hence,

ol ~ Wbl > [ (@) = @he)?) o

n

:1:(2)2a + x02b (3.13)

where

a= [ {9(0® + 20a(09(0) di
/];70
is a positive constant sinegt), ¢2(t) > 0, and
b= / 2x01q1(t)dt
7y
is a constant which is independentigf,.

Write the control input of controlleE%(ml,xm) asu’, and the control input of controller

=2 (z01,0) asu'. Then by a calculation, we can obtain

[u°[| < wo2a0 + bo (3.14a)

|lut]| < wooar + by (3.14b)

sincey is Lipschitz continuous, wherg, b;, i = 1,2, are positive constants which are indepen-

dent ofzgs. Therefore, from3.13 and 3.14), we obtain

lim - (P(2°(20), 2% (201, 0)) — P(S°(20), Z% (o1, 702)))

Tp2—+00 Ty
_ : 1 2 012 1 1 0
= Jim = (Il — 198l ) + o (el = 1l) > a >0

So, finally, we obtain that

lim (P(Eo(xo), Eoo(l'()l, O)) — P(Zo(xo), EOO(CL‘Ol, .’Eog)) = +0o0

To2—+00

This completes the proof. O
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This proposition shows that ag, becomes large, the difference of performance can be larger
than any positive constant. Therefore, for this system, it is advantageous to initialize the second
state of the observer close to the actual state rather than to initialidg that is, a better perfor-
mance comes from a small initial error. In the following chapter, we will study the performance
behaviour oKKK andKhalil designs as the initial error becomes large.



Chapter 4

Performance of Output-feedback

System

From the discussion in previous chapter, we know that we should minimize the initial error to
optimize performance. However, we may well not possess complete information concerning
the value of the initial condition of the states, and hence we have to take the initial observer
to be the best estimate to initial condition of the states. Then we are interested in studying the
situation in which our estimate of initial condition of the states is not accurate and leads to a
large initial error, and study how the poor information on initial condition of the states affect the
performance of the controllers.

4.1 Problem Formulation

In this chapter we consider a system which can be expressed in the output-feedback form

Y(xo): Fi=wxiy1+@i(y), 1<i<n-—1 (4.1a)
En =u+@n(y), zi(0) =m0, 1<i<n (4.1b)
Y= (4.1c)

whereu is the control inputy is the only measured output, and

Zo1

Zo2
g =

Ton

36
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is the initial condition of the states, and the functignsl < ¢ < n are sufficiently smooth and
locally Lipschitz continuous, angd;(0) =0, 1 < < n.

This is an output-feedback system of full relative degree. General output-feedback systems and
the observer backstepping designs have been given in Ctipténe characteristic of such
systems is that the nonlinearities only depend on the owytpkibr this output-feedback system

of full relative degree both adaptive observer backsteppiiéglK ) and high-gain observer
designs Khalil ) can be used to achieve regulation of output. We consider the situation where
we do not exactly knowty, and hence we have to takg ( the initial observer ) to be the best
estimate ofry. Then we study the performance of tk&K andKhalil designs based on the
situation in which our estimate af, is not accurate and

Ci‘o =Ty — .’io
is ‘large’.
As discussed in Chapt8rthe following cost functional
P(2(20),2) = |yl 2z, + lullze@y), Ty={t=>0]ly(t)] > n}

is employed to measure the performance of a contralefhrough this performance measure
we aim to characterize when one design is preferable to another.

4.2 Observer Backstepping Design

Let us first consider a generi¢KK design observer based controller. Following the observer
backstepping design procedure in Chagier [55] with p = n, y,(t) = 0, theKKK design for
system>(zo) is as follows.

First, rewrite the systerii(z() as

Y(zo): & =Ax+¢(y) + Bu, z(0)==xg
y=Cx

where
T1 zo1 P1 (?J)
T2 B o2 ©2(y)



Chapter 4 Performance of Output-feedback System 38

010 -+ 00 0
0 0 0 .
A= o=, c=(10..0)
0 00 1 0
0 00 0 0 1
An observer is defined by
t=Ar+ K(y—9) +¢(y) + Bu, 2(0) =29 (4.2a)
y=Czx (4.2b)

where
K = (ki ko, k)T, ki>0,1<i<n

is chosen such that
Ag=A—-KC

is Hurwitz, andz is the initial condition of the observer.

Then define

&ily) =y

a1(y) = — 11 — di§1 — p1(y)
§iy, @1, -+, T) =2 — o1 (Y, T1, -+, Ti1)

R . dai_1\’ .
ai(y, L1, &) = — & —&-1—di <6y> & —ki(y — 1) — i(y)
dai—q . — dai .
a9y (2 +¢1(y)) + ; T@j(ﬂﬁjﬂ +kj(y — 21) + »;(y))
i=2,3,---,n

whereg;, d;, 1 < i < n are positive constants. The controller is then defined as

Eo(Zo) : u=an(y, &1, - ,Tn)
t=Ai+K(y—19)+ o)+ Bu, #0)=i
§=Ck

The following result summarizes the standard properties of the closed-loop.

Proposition 4.1. Consider the closed-loop systéi(x), ZEo(Z)). For any initial condition

xo € R™ andzg € R™, the following hold
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1. The signalse, z, v andy are bounded;

2. The output is regulated to zero
limy(t) =0

t—o00

3. The performance measure is finite
P(%(x0),E0(#0)) < 00

Proof. From Theoren®.1, we directly obtain 1 and 2, and we only prove 3 here.

For any positive numbey, since the design guarantees the regulation of the output, then after a
finite time, we have(t) < ), thatis the measure @f, : m(7,) is finite. Hence, the boundedness
of [|y[|z2(7,) is achieved.||u| L= is also finite sinceu(t) is bounded. The boundedness of the

performance follows directly. O

Although theKKK design achieves global regulation of the output, which has a global region
of attraction (in(zo, Zp)), we will prove that the performance of the controller can degrade
arbitrarily as the initial errof{z¢|| becomes large for any fixed initial state conditian

We now establish the critical performance property for kieK design, which states that the
performance gets arbitrarily large as the initial observer error increases.

Theorem 4.2. For any choice of the controller gains, 1 < ¢ < n, and for any fixed initial

statex, of the systerx:(x), let zy be the initial observer state, and
Zo = o — Zo
Then the performance of the control€p () has the following property

limsup P (%(z0), E0(Z0)) = oo 4.3)

%ol —o0

Proof. For convenience of notation, introduce

&(0) =&y, 21, ,Z4)|i=0
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To prove this theorem, it suffices to show that

lim sup ||u|| oo (v, ) = 00
[[Zo || —o0

Sinceu(t) is continuous, to establish the above condition, we only need to show

lim sup u(0) = lim sup @, (0) = oo (4.4)

o[l —o0 [|Zol|—o0

LetC ¢ R*! be a compact set, define
C, = {@0 € R”‘(:%Oh o on_1) € C; oy = 7’}

and consider the initial condition of the obsenigr € C,. Then sincer is fixed, if we can
prove that

lim sup «a,(0) = o0 (4.5)

T 20eCr

then @.4) will hold.

We now establish4.5). Since allp; and their derivatives are continuous functions it follows

thata; and¢; are continuous functions of their variables. Note that

£i(0) =Zo; — —1(0)

01
Jy

t0> 2 &i(0)

@i(0) = — ¢;&i(0) — &§-1(0) — d; <

— ki(zo1 — Z01) — i(zo1)

i—1
Oa—1
T2 < 0z;

) (Z0,4+1 + kj(zor — Zo1) + @j(wo1))
t=0

and hence, fot <i <n — 1, &;(0) ,;(0) are independent afy,,, i.e. bounded independently

of r. Therefore there existd/ > 0 dependent o4’ andx(; but not onr, for which
sup [£(0)] < M, sup |a;(0)] < M, 1<i<n-1

To€eCyr o€l

Now we computey, (0). First, we have

gn(()) = i’On — an,l(O) =T — Oénfl(())
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and so
Oap—1 2
0n(0) = — i60(0) — 612 (0) — d 22 60
Y =0
— kn(z01 — Z01) — @n(@01))
n—1 da .
+ ( 87}_ ) (#0,j+1 + kj(zo1 — Zo1) + wj(zor))
j=1 IJ t=0
2
=|—c,—d, <8an_1 > r+ <8an_1 ) r
9y 1o In—1 l—o
+ F(xo1, Zo1, -+ s Zon—1)
where
F(xo1, o1, ,%0,n-1)

2
Oauy—1
— ax Qn—1 (O)
t:0> Olin—1 t:O)

+ &n—1(0) — kp (201 — Z01) — @nlwo1))

) (Zo,j4+1 + kj(zo1 — Zo1) + ¢j(z01))
=0

is independent af,,,, namelyr. Now consider the second term of the expressiomfd).

oo 0&; 4 dai—1\? 06 Bai
! 8y 692*1 6ii,1

8% 9w
_ Oai—1\* | Do
= —c —d; ( By ) + R

Therefore, by recursive substitution we obtain

|
—

n
aan—l

. 304];1 2 8041
Din <_Cﬂ_df( By ) )+ 921

<
— N

- (o-a (%))

J

3

||
N

sinceq; is independent af; .
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Hence,

"~ (904'71
an(0) =7 2 (—cj —d; ( ajy

Jj=

9
) > + F(zo1,Zo1,** ;L0,n—1)
=0

Sincec; andd; are all positive numbers, antl is independent of, this establishesA(S) as

required. O

4.3 High-gain Observer Design

By a suitable coordinate transformation the sysk&m,) can also be written as integrator chain
with a matched nonlinearity Concretely, we define a coordinate transformation

T: R" — R", z=T(x)

by
T: z1 =21, o =22+ Y1(x1), -+, 2n = Tp + VYn_1(x1,22, -+, Tp_1)
where
i—1 8¢'_1
ien, s m) = gilm) + ) =5 = (@i (), 1<i<n (4.6)
=1 "

Then in thez coordinatesy(zg) is of the form

Y(z0): 2=Az+4+ B(W(z) +u), =2(0)==z (4.7a)
y=Cz (4.7b)
where
zZ0 — T(:L’o)
U(2) = ¥n (T7'(2)) (4.8)

"¢n($) = ¢n($1, T 71'71)

Remark4.3. X(zp) andX(zo) actually present the same system in different coordinates, but,
for convenience, we will us&(x() to denote the original system ant{zy) to denote 4.7)

respectively.

Remark4.4. It can be seen from the definition of transform tAats invertible. Furthermore,

bothT andT ! are smooth since;, 1 < i < n are smooth. Hence, the mappifigs a global

A high-gain observer can also be designed for the original systems, seel36,82]] Here, we define the
controller via this transformation.
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diffeomorphism inRk™.
Remark4.5. Since the outpuy is unchanged by the transformati@h and the control input

is independent of the change of variables, the performé&hisendependent oT'.

TheKbhalil designs considered iik, 82,148,182, 3] can be applied to the systentz,). Typical

results establish semi-global regulation of the output. Khalil designs utilize a high-gain
observer and a nonlinear separation principle which allow the observer and a globally bounded
state feedback controller to be designed separately, and then combined using certainty equiva-
lence, to ensure semi-global results and closeness of the output feedback controllers trajectory to
the underlying state feedback controller’s trajectory. For the syster), if ¢; and its higher
derivatives are globally bounded, it is straightforward to design a globally bounded state feed-
back controller achieving bounded performance. Hence through the high-gain observer we can
design an output feedback controller, which, for fixed initial condition of the state T'(x)

and any initial condition of the observéy also has bounded performance. Furthermore, if the
initial error

Z0 = 20 — 20

becomes ‘large’, this design still achieves a bounded performance independent of the initial
condition of the observer.

To design an output feedback controller, we first give a state feedback controltef:fgr The
controller
u=—Y(z)+v (4.9)

feedback linearizes the systentz), yielding

z2=Az+ Bv, z(0)=z (4.10a)
y=0Cxz (4.10b)

We first design a bounded state feedback controller for the linear syséeb®4). For this
purpose we introduce the asymptotically null controllability with bounded control ( ANCBC ),
which was studied iri48]. Then the existence of a bounded state feedback controller is equiva-
lentto ANCBC.

Definition 4.6. A linear system is called asymptotically null controllable with bounded control

( ANCBC ) with bound) if for every statez there exists an open-loop controt [0, oo) that

steers: to the origin in the limit ag — +occ and satisfiesv(t)| < M for all ¢.

The study of such problems is motivated by the possibility of actuator saturation or constraints
on actuators, reflected sometimes also in bounds on available power supply or rate limits.

The theory of controllability of linear systems with bounded control is a well-studied topic.
Schmitendorf and BarmisT 8] published the fundamental paper, and Sontafjdliscussed the
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different and more algebraic approach. Sussmann, Sontag and #@rgaje a well known
property that ANCBC is equivalent to a algebraic condition , which is stated as the following
lemma.

Lemma 4.7. The systemd(10g) is asymptotically null controllable with bounded control if and
only if
1. A has no eigenvalues with positive real part;

2. The pair(A, B) is stabilizable in the ordinary sense, i.e., there exists a métrixich that

A + BF is Hurwitz.

From this lemma, we have following lemma.
Lemma 4.8. The systené(10g) is asymptotically null controllable with bounded control.
Proof. First, all the eigenvalues of are zero, namely, without positive real parts. Second, the

pair (A, B) is stabilizable. Hence, the systeth109 is null controllable with bounded control

by Lemme4.7. O

Furthermore, such a bounded state feedback controller for the sy41#ds) (s given in [79],
that is we have

Lemma 4.9. The bounded state feedback controller for the systefO§)
v=—>Y d&sat(hi(z)) (4.11)
=1

achieves global asymptotic stability for the resulting closed-loop system, Where) < 1,

eachh; : R" — R, 1 <i < n,is alinear function, andat(-) is the saturation function defined

by
-1, w<-1
sat(w) = w, —1<w<1
1, w>1

Proof. The detail of the proof can be found i@d]. We give an outline here.
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First, for every= > 0, there exists a linear change of coordingtes- - - , z,) — (£1,---,&n)

which transform/4.104 into the form

Gr=e" Y+ bt ebn o

b ="+ +eby+u

én—l = Egn +v

én =
We will show that, when < i the feedback controller

v = —esat(&,) — e%sat(&p_1) — - - - — e™sat(&1)

stabilizes|4.109. In fact, for any trajectory — ¢ of the resulting closed-loop system, thth

1

coordinate,, will enter and stay in the intervdl-, 1) after a finite time. Sosat(¢,) will be

equal to¢,,, and the expression fergives
v=—e&, — 525at(§n_1) — - —e"sat(&)

Next, consider the equati(ft;l_l = e&,+v. Thenitfollows that, after a finite time, this equation
has the form

bn1 =23+ + ey

11

We now conclude thag, 1 will enter and stay in the interval-3, 5) after a finite time, ana

will be given by the expression
v=—ey — % — - — e"sat(&)
Continuing in this way, we see that after a finite timeyill be given by
v=—el, — 1 — - — " (4.12)

Itis clear that the closed-loop system!4f10g under the state feedback 12) is asymptotically

stable. O
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From Lemma 4.9, the state feedback controller
B u=—tp(z) = Y d'sat(hi(z)) (4.13)

globally asymptotically stabilizes the origin of systéifz).

Now we design a output feedback controller ¥{rzy). Following [15,3], we define a high-gain
observer as

F=A:+Hy-%), 20)=% (4.14)
where
B
H=H(e)=| °
Bn

ande is a positive constant to be specified. The positive consfantd < i < n, are chosen
such that the roots of the equation

ST+ B8 4 Bus1s 4 By =0

are in the open left-half plane.

To apply the nonlinear separation principle, the state feedback controller is required to be glob-
ally bounded. Generally, this property can be achieved by saturating the controller outside some
set. But in our case we are interested in the initial condition of the observer becoming large.

Instead, we introduce further assumptionsmmo ensure tha is globally bounded.

Lemma 4.10. For systen®(zg), supposep; € C"(R), gogk) € L¥R), 1<i<n 1<
k < n, theny defined by4.8) lies in L>°(R™).

(k) ¢ L>(R), from (4.€) we have that),,(z) is continuous and

i

Proof. Sincey; € C"¢(R), ¢
in L>°(R™). Noting that the mappin@ is a global diffeomorphism, we know that =) also is

continuous and il >°(R™). O

Suppose that the conditions of Lem#h4d Oare satisfied, then the state feedback controdldrd
is globally bounded, so an output feedback controller for sysi¢eg) can be taken as

Ene(fo) 1 u=—9(2) = Y _ 'sat(hi(2)) (4.15a)

Z2=A:+H(y—-2%), 20)=% (4.15b)
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For the systenkt(zo) and the output feedback control€y; ) (2o), the relevant properties of
the closed-loop are summarized below.

Proposition 4.11. For systenm(zg), suppose thaty = T'(z), xo is fixed, and the assumption
of Lemmad.10is satisfied. Then for anyy = zy — Zg there exists™* such that for alle : 0 <

€ < ¢ the output feedback controll& ;) (Zp) guarantees the following:

1. The signals, %, u andy are bounded;

2. The output is regulated to zero

limy(t) =0

t—o00

3. The performance is finite

P(3(20), Ep(e)(20)) < o0

Proof. First, the function

n

(z) = —9(z) = Y d'sat(hi(2))

=1
is locally Lipschitz continuous sincg(z) is continuous and .., §’sat(h;(z)) is bounded.
Secondy(z) is bounded from Lemmad.1Q Third, the origin is an asymptotically stable equi-
librium of the closed-loop under state feedback control. Hence the conditions of Assumption

2.1 in ChapteP are satisfied.

Take any compact sé€t € R” andC € R" such thaty € C and, € C, then 1, 2 follow
directly from Theorem 2.3 and 2.4 in Chap®rFor 3, the finiteness dfy||.2(7, is obtained
from 2. Note that) is continuous and is bounded by 1. Hencéiyu|| 1~ ) is also finite. So,

P(E(JB0>,EH(E)(20>) is finite. O

Now it is straightforward to uniformly bound the performance of sysfm,) for the Khalil
design.

Theorem 4.12. Let 2y be fixed and consider the systéifi), and letzy = T'(zg). Lety; €
C"(R), ¢

such that for any, there exists > 0 for which the controlle= . (2o) achieves a uniformly

k) o L*(R), 1 <i <mn; 1<k < n. Then there is a positive constahf,

[

bounded performance
P(3(20),Epr(e)(%0)) < M (4.16)
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Proof. First note that

P(%(20), Ep(e (20)) Z/T lyPdt + ||ull Lo (e, :/T |21 (t,e)Pdt + |ull o,y (4.17)
n n

From Lemmad4.1Q we know that)(Z2) is bounded. So, the control inputhas a bound which
is independent of,. By Propositiord.1], if € is small enough, thes (¢, €) tends uniformly in
t to z1(t), which is independent of, and uniformly bounded. Hence; (t) has a bound that
is independent ofy. Also the measure of the time sg} is also independent af, and finite.
Hence the integral ind(17) is finite and the bound is independentigf Therefore, we can find

a constani\/ such that'4.1€) holds. O

4.4 Comparison of Performance

Theoremd.2 shows that for fixed initial statey, when the initial errof|Zy|| becomes large, the
performance of th&KKK design is not uniformly bounded evenygf and its higher derivatives

are globally bounded. On the other hand, Theoret® shows that for th&halil design, if

; and its higher derivatives are globally bounded, then for any initial exypthrough the
high-gain factor, we can design a globally bounded controller, achieving a uniformly bounded
performance. Hence we obtain the following comparative result.

Corollary 4.13. For the systent(xy), if ¢; € C”*i(R),cpl(.k) € L*(R),1 < i < n, then for

any initial condition of the observey, there exist > 0 andz, such that
P(3(20), En(e)(%0)) < P(E(20), Eo(i0))
Proof. This follows directly from Theoremd.2 and4.12. O

We have now established the following results: For output feedback system, the performance of
KKK design is sensitive to the initial conditions of the observer. The performance kkilkke
design is not uniformly bounded in the initial error between the initial conditions of the state
and the initial conditions of the observer. When the initial error becomes large, the performance
becomes large. Whereas, for Kikalil design, for any initial error, by choosing small high-gain
factor, we can design a globally bounded controller, achieving an uniformly bounded perfor-
mance. Therefore, if the initial error is large or in the case that we have poor information on the
initial conditions of the state, th€halil design has better performance thanki& design. In

the next chapter, we will consider the second problem, that is, when d¢hélé designs have
superior output transients to tk&K designs?



Chapter 5

Performance of Parametric

Output-feedback System

In the Chapter 4, we compar&KK andKhalil designs on the output-feedback system when

the initial error is large. In this chapter, we are going to compare the two kinds of designs on
the system in output-feedback normal form with an uncertain parameter. We will consider the
situation when the a-priori estimate for the unknown parameter becomes conservative and leads
to a choice of ‘large’ bound for the unknown parameter, and also study how the ‘bad’ choice

affects the performance of controllers.

5.1 Problem Formulation

We consider a parametric output-feedback system of the form

2(0,900): i‘i:xiJrl, 1§i§n—1
Tp=u+0P(y), xi0) =20, 1<i<n

y=x1
whereu is the control inputy is the measured output, and

Zo1

02
g =

Ton

49

(5.1a)
(5.1b)
(5.1¢)
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is the initial condition of the state, and the functiafigre sufficiently smooth and locally Lips-
chitz continuous, ang(0) = 0; andf € R is an unknown constant.

This is a parametric output-feedback system in normal form. General parametric output-feedback
systems and the adaptive observer backstepping design was given in hajgam, for this
parametric output-feedback system in normal form, adaptive versions of both parametric ob-
server backstepping and high-gain observer designs can be used to achieve regulation of the
output.

To investigate the performance of the two designs and compare them, the same cost functional

P(S(0,20),2) = 9220,y + lull iy Ty = {¢ > 0] y(®)] > n}

is introduced to measure the performance of a contrall@y this performance we again would
like to be able to characterize another situation in which one design is preferable to another.

To design &halil -type output feedback controller with a high-gain observer, we need first to
design a globally bounded state feedback controller. Generally, this is achieved by saturation
of the state feedback controller. But we also need that the saturated controller stabilizes the
system. For this purpose, we need to determine suitable saturation levels. However, the required
saturation levels are typically dependentpithe unknown constant. Therefore, we have to first
guantify an a-priori estimated for the magnitudefofSinced is assumed to be unknown our
knowledge of it is typically poor. Hence we have to estimatonservatively. But when our
a-priori upper bound foff| is conservative, we will show that the performance of iimelil

design becomes poor. Fork&KK design, however, the performance is independent of any a-
priori upper bound fotd|. Therefore, the performance keeps uniformly bounded as the a-priori
upper bound foff| becomes conservative. Hence, for this system we will establish a result with
the opposite performance relationship to obtained in Chdpter

5.2 Adaptive Observer Backstepping Design

We first consider &KK design for the system. Following the adaptive observer backstepping
design procedure in Chapi2rthe construction of a controller is obtained as follows.

Rewrite the syster(6, z¢) in the form

Y(0,x9): &=Ax+ BOyY(y)+u), x(0)==x (5.2a)
y=Cx (5.2b)
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whereA, B, C, as in previous chapters, are defined by

o) 01
) 02
T = ) Ty =
T Ton
0 0 .
0 0 ,
A= - B=|"[, C:(l,o, ,0)
0 0 0 1 0
0 0 1

TheKKK design for the parametric output-feedback sysk(t, =) is given as follows.

Choose a vectoK such that
Ag=A—-KC

is Hurwitz, and define the filte¥s

o = Aoko + Ky, £(0) =&
& = Aéi + Byly), &(0)=¢

0o = Agvo + epu, v(0) = v8

The controller is defined by

=a(do, Z0) : u =y
91 = Twy(y,€?,0®)¢
dy =T (w2(y,€®,5®,9%) + Grez) Go
by = Tan(y, €0 50 36-D)¢, i=3...n
2(0) = @0 = & + 0&7 +vp
9(0) = 9o = (Yo1,%02, " -+ ,%0n)"

wheree; denotes théth coordinate vector ilR", and¢;, w;, o, £, 50, 90§ =1,... nare

The filters can removed, se&7].
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defined by the following recursive expressions

1=y
G =voi — ai—1(y,9")
ol = — 19{(.01

oa \? da
g = — 202 — V22¢1 — d2 <1> G2+ 7150,2 — 9T ws + koo 1

dy dy
day o oo do
—(A K —(A B —A —T
+ ag0( 0éo + Ky) + 851( o1 + Bip(y)) + Fo Aovo + 55 w1y
0ai1\® | Ooig T
o =—¢iG — d; G+ §0,2 — V; wi + kivo
dy dy
+ 2%t e+ Ky + 295 (Aoes + Bu(y)
ogy T T Tgg s TR
a1 Joiq
+ Ovg Aovo + 091 TwiG
Dot it oo
+ 90, F<"’2+C162)@+;aﬂj Tw;¢j, i=3,-",n
and
wi =(e1¢1 + di¢1 + €o,2,v0,2)
Oa;— .
%‘T:— %yl(&,z’voz), 1=2,---,n—1
o == 200y 4 g5,m0)
n ay 1,2, V0,2
and

g(i) o1y &0 &1y, &14), i=1,---,n
@(Z) :(,UO,l?' .. 7v07i)’ 1= 17 B )

9@ (191T7... 7192.T)’ i=1,--n

We summarize the relevant properties of this controller in the following proposition.

Proposition 5.1. Consider the system(6, z), then for anyz, ¥y, the controller= 4 (Jy, Zo)

guarantees global boundedness of all signals), &;(t), v;(t), and regulation of the output, i.e.

limy(t) =0

t—o00
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Moreover, the controller achieves bounded performance
P(E(Q, wo), EA(ﬁo, i’o)) < 00
for fixedzy and zy.

Proof. The boundedness of signals and regulation afe obtained from Theoreth2. We only

prove the performance is bounded.

For any positive numben, because the design guarantees the regulation of the output, then
after a finite time, we havg(t) < 7, that is to say the measure @j is finite. Hence, the
boundedness dffy| .2 (7,) is achieved, anflul| .~ is also finite sincex(t) is uniformly bounded.

Then boundedness of the performance follows directly. O

5.3 High-gain Observer Design

We design &halil controller using the nonlinear separation princif@e The standard steps in

this synthesis procedure is as follows: first design a state feedback controller; then saturate the
controller outside some sets based on our a-priori knowledge of the worst case bounds for the
closed-loop signals; next replace the unmeasurable state variables by the estimated states from
a high-gain observer. This defines an output feedback control.

5.3.1 Control Design

First, we design a state feedback controller based on Lyapunov theory, and obtain an a-priori
worst case estimates for the bounds of the closed-loop signals.

We chose a vector
k - <k17k27'.' 7kn)

such that matrixd 4+ Bk is Hurwitz, and let matrixP; be the positive definite symmetric matrix
solution of the Lyapunov equation

(A+ Bk)'P, + Pi(A+Bk) =1

Suppose thaf,, is the a-priori estimate of upper bound for the magnitude of the unknown
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parametef, and we define a state feedback controller as in Ch2gtetso see45| )

Es(Bo,20) = w= p(x,0) = kx — (y) (5.3a)

6 = v(z,0) = Proj(d, ), 6(0) = by (5.3b)

where
¢(z) = 227 P Bij(y)

Consider the Lyapunov function
N T 1 N\ 2
V(z,0 —0) =z Pz + 5(0—9)

then along the solutions of the closed-loop , we have

V =T P + i Pz — (6 — 6)
—2TPy(Az + B(60(y) +u)) + (Az + B(0d(y) + ) Pz — (6 — )0
=2" Pi(Az + B(0y(y) + kz — 04 (y))) + (Az + B(0P(y) + ka — 0y (y)))" Prz
—(0—0)0
—27 ((A+ Bk)TPy + Py(A+ Bk)) z + (0 — 0) (¢ — Proj(é, ¢)>

S—xTxSO

this suffices to show global stability and regulation of the output to zero by LaSalle’s theorem.

To design an output feedback controller through a high-gain observer, the funatiomdy
should be globally bounded@]. So, we saturatg: and v outside some suitably defined sets
which ensure that the modified controller still stabilizes the system. For this purpose, we utilize
a-priori estimates aof andé.

Firstly, fromV < 0, we have
1 A2 T 1 A \2
SO —=0) S V(1) < V(0) = Prag + (0 — o)

Hence

18] < B+ \2NPLXZ, + (6 + 160])? = O (5.4)

whereb,,, x. are the a-priori estimates of upper bound for the magnitude of the unknown
parameter) and the magnitude of the initial statg, and\(P;) is the largest eigenvalue &f.
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Similarly
3 1 3
T, N\ T
z||=(x"z)2 < ' Px| < V(0
Joll = )% < (579 Fie) < (55V )
1 (Pp) +1(0 + 16])? Tox (5.5)
where)(P;) is the smallest eigenvalue &%, and
ly| = |z1| < [|lz]] < Xo (5.6)
Finally, from (5.3¢)
|| < nkXo+ ©q¥o =: Uy (5.7)

where
k= lrgjagn{\kj!}

Yo = sup {[¢(z1)[}

lz1|<Xo

On the other hand, suppose thas the biggest element in the last row8f, then by 6.3k) we

obtain

| < npllz|| Vo < npXoW¥o =: Vo

Now we saturate: andv as follows.

ps(z,0) = Upsat (,u(x,é))

U

0

vs(z,0) = Vosat (V(f/’e)>

to obtain a globally bounded state feedback controller

Eg(‘gmaXmaéme) : U = ,us(l‘,ﬂ)

(5.8)

(5.9a)
(5.9b)
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Consequently &halil controller can be obtained as

Ett(e)(Om, Xoms 00, 0) 1w = pio(,0) (5.10a)
6= uy(2,0), 6(0)=0 (5.10b)
T=Ai+H(y—i1), #(0)=ig (5.10c)

The properties of this controller are summarized in the following result.

Proposition 5.2. For the systent (0, zo), if || < 6,, and |fy| < ©g, then wher is small
enough, the controlleE (¢ (0., Xm. 0o, Zo) guarantees global boundedness of all signals, and

the mean square of the output is of ordefe)

lim 1/7 (£)2dt = O(e)
T—oo 1 0 y o ¢

Moreover, ife < n, then the controller achieves bounded performance
P(E(Q, xo), EH(E)(em’ Xm) éOa 1%0)) < 00

Proof. The systent (0, x() is of the form of 2.5) in Chaptei2, and the controller is defined as
per 2.8 in Theoren.E. Therefore, we obtain the boundedness of all sighals and the regulation

of the output by Theorel®.E.

The proof of the boundedness of the performance follows from the boundedness of the closed-

loop signals. O

5.3.2 Performance

First we establish the following lemma, which shows that as 0, the control signal necessarily
reaches the saturation levéj.

Lemma 5.3. Suppose that the system and controller satisfy the condition of PropaSiZpn
and let

eoj:xoj—ioj, 1<7<n

and suppose that at least oneegf, 1 < j < n—1, is not equal to zero. Then for the closed-loop
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(2(8, 20), Z1(6) (O, Xm b0, #0)), we havd

limJu| oo () = Uo (5.11)
Proof. From the definition of the controllet ;¢ (0., Xm, 0o, Zo), it suffices to prove that
lim (sup ||:%(t)\|> =00 (5.12)

—0 \ter+

Now let

Then the closed-loof>(0, 7o), Zg(e) (O Xm; b0, Zo)) is given by

& = Az + B(0y(y) + ps(#,9)),  (0) = xo (5.13a)
6= vy(2,0), 6(0) = b, (5.13b)
e = D¢+ eB(0Y(y) + p*(2,0)),  ¢(0) =G (5.13¢)
whereL = (a1, a9, ,a,)7, the matrixD = A — LC is Hurwitz and
_ (€1 Con-1 T
CO - <€n_1 ) ) c 76071)

To prove 6.12) it is enough to show

lim (sup He(t)H> =00 (5.14)
=0 \ter+

Sinceg,, = e,, itis sufficient to show

lim <Sup |Cn(t)|> =00 (5.15)

=0 \ter+

On the other hand, let

t=e€T

2In practice, the limit — 0 means that is sufficiently small.
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then 6.13¢ can be written as

d . .

B = D+ eBHYY) + (@), C0) =G (5.16)
Whene is small enough, the outpyt= xz; converges uniformly int to the solution of the state
feedback closed-loop system, and hence is uniformly bounded, thergfgieis uniformly
bounded. So, the terd® (A (y) + (&, 0)) in (5.16 is bounded uniformly in-. Therefore,

whene — 0, the solution of §.1€) is convergent uniformly inr to the solution of following

equation
dn
—=Dn. n(0)=0 (5.17)
-
Hence, we only need to show
lim (sup |77n(t)> =0 (5.18)
=0 \ter+
Note that
—d; 1 0 0
—dy 0 1 0
D=1| ...
—dp—1 0 0 1
—d, 0 0 0
and by induction we can show that
* x5 1 0 0
* * x 1 0
i | C1<j<n (5.19)
% —B, 0 0 0

where the “*’s are elements which do not need to be specified. Let

o e 20
s lgrjnglg_l{ﬂeoﬁ}

and consider the time

te = €
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where

and

() =e”"(o
i.e. equivalently by

n(t) = ePe (o (5.20)
Hence

n(te) = e ¢
Now

2 s 1
PV = 4 D + %Dz oo+ %Ds +o <7§+2>

where the “*’s are elements which do not need to be specified. Notingethat= 0 for

1< j< s—1,yields

Ve s+3 €0 st3 ) €0,54+1
nn(te):<—0én;!+0<’)/e 2)) 6n_58+0<’75 2)671_85_1_‘_.“
+1N\ egn— 1

+o<vf 2) e 1+<1+o(vf+2>)60n

Breos
== 5 + eon + o(€V) (5.21)

where

n—s+p

_— >
2s

A= 0

But by assumption3,, > 0, andegs # 0. Therefore,'$.21) implies 5.18). This completes the

proof. 0
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From this lemma, we obtain the following theorem.

Theorem 5.4. Let 4, x be fixed, and supposey| < x.,. Consider the systel(0, z() and
the controller= ) (0, Xm. bo, Zo). Suppose the system and controller satisfy the condition of
Proposition5.2, and at least one of the initial errorg;,1 < j < n — 1, is not equal to zero.

Then for the closed-loop syst&d(0, zo), Z g (c) (O, Xm. 00, %0)), we have

e—0 \ 6,,—00

lim ( lim P (Z(@,xo),EH(E)(Hm,Xm,éQ,iro))> = 0

Proof. For the closed-loop systefit(6, zo), Z ) (60, %0)), the saturation level®, and Uy

for the output feedback controller are dependent,gnthe a-priori estimate of upper bound for
the unknown parametér Whené,, is large, from6.4)-(5.7), ©9 andU, are large. By Lemma
5.3, as the high-gain factaris small,||u|| &+ is also large, that is the performance becomes

large. O

5.4 Comparison of Performance

For the systemx(6, x), as the a-priori estimate of upper bouhgfor the uncertain parametér
becomes conservative, Proposited shows that th&KKK design guarantees uniform bounded
performance of the controllers; whereas, Theokedshows that the performance of tKaalil
design becomes large. Here we have the following comparative result.

Corollary 5.5. For the systent(6, xo), if the estimate of bound for the unknown paraméter

is conservative enough, and the gain factés small enough, then
P(E(G, :130), EA(Q%, io)) < P(E(Q, .ro), EH(E)(éO, .QAZ()))
Proof. The result follows directly from Propositidhl and Theorern®.4. O

Therefore we have established the following result for parametric output feedback system.

The performance of thEKKK design is independent of the a-priori estimate bound of the un-
certain parameter. When the a-priori estimate becomes conservative the performance remains
uniformly bounded.

Whilst, for the Khalil design, the performance is dependent on the saturation levels for the
controller and the adaptive law, that is dependent on the a-priori estimate bound of the uncertain
parameter, and the performance becomes large as the a-priori estimate becomes conservative.
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Hence, if we have poor information for the unknown parameter and the a-priori estimate bound
is conservative, thEKKK design has better performance thanklnalil design.

In the next chapters, we will study robu6kKK andKhalil designs.
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Chapter 6

Preliminaries

In this chapter, we give the required background on robust stability. We introduce the tools for
robustness analysis of linear systems, in which the framework of gap metric is of advantage.
Naturally, for the robust stability of nonlinear systems gap metric is also a powerful tool. Hence,
we will employ the framework of gap metric of nonlinear systems for the study of redCist
andKhalil designs. We give some established related results about the gap metric for nonlinear
systems and the definition of local stability.

6.1 Feedback Configuration and Stability

Letl/, Y be appropriate signal spaces suctL&&R*, R™). In this thesis we will be mostly con-
cerned withp = oco. Consider a standard feedback configuration with input and measurement

U U1 Z Y1

=) Yo
e Y2

U2

FIGURE 6.1: Standard Feedback Configuration

disturbances shown iRIGURE 6.1, and described by the equations

Y1 = Xuq, uz = 2y
Yo =yY1+ Y2, Uo=u1+ ug

whereX is a nominal plant, ané& is a controllerug € U, yo € Y are input and measurement
disturbances respectively.

63
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Stability of Linear systems

If X, = are linear, we us&(s), Z(s), alternatively,>, = to denote their respective transfer func-
tions. Then stability can be defined by the transfer functions.

Definition 6.1. SupposeX, = are linear, we define the closed-lopp, =] to be stable if the

transfer function matrix

is stable, that i1 € H.., whereH, is the space of transfer functions of stable linear, time-

invariant, continuous time, systems.

In the linear case, the signals satisfy

(o) =m(n)
o )=l (o )]

fUU=Y=LP 1<p< oo, then|II|| < occifandonlyifll € H.

Hence, we have that

< ||II|

In particular, ifp = 2, then
L[| = [IT1(8) || 7ee

and ifp = oo, then

1 = / gyt

whereg is the impulse response o, i.e.

()= ()

in the time domain, and *’ denotes convolution.

On the other hand, if there exists a consfaisuch that

=)
()= ()

<T

that is, the operator
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is bounded, then the closed-loop system is stable. Therefore, for a linear system, stability is
equivalent tol6.1). For nonlinear systems we use boundedness of the operator as a definition of
stability.

Stability

We define stability by a closed-loop operator, and generalize the definition of stability to non-
linear systems.

Graph of a Plant

Let U, ) be appropriate signal spaces, and consider a nominal causal’pland a causal
controller=. Write
Us, = Dom(X) = {u € U‘Eu S y}

Y= =Dom(Z) = {y € Y|Zy e U}

then

and let
W=Ux)Y

Then the graph of the plant is defined as

g2:{< b ):UEUE,ZUEJJ}CW
Yu

Similarly the graph of the control operator is defined as

QE:{<:y>:y6yE,EyEL{}CW
Y

Closed-loop Operator and Stability

uo (58 u9
wo = , w1 = y W2 =
Yo Y Y2

Then we define the closed-loop operator by

Write

Hy=z: W —-WxW, Hy=:wyr— (w1, ws)

Note that this operator is not always defined, e.qg., if the closed-loop is not stabley;tlgeny.
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To study the stability of closed-loop systems, another two operators are introduced. Write
M=Gs, N=G=

and define
HM//N = HlHE,E W —-W

HN//M :HQHEEZ W —-w

wherell; : W x W — W denotes the natural projection onto thie componenti = 1, 2) of
W x W. Hence
HM//N LWy = W

Hprjm o wo — we

Definition 6.2. The closed-loog¥, =] is said to be stable if the operathr,, /- has a finite

induced norm, i.e.

vy arwoll — fJw]
[[woll wo£0 [[wol

ITLrq/ arl] = sup < 00
wp#0

Remark6.3. For linear systems, this definition is equivalent to Definifofidue to inequality
(6.1). Further, observe that stability &f,,, implies stability ofIl,,, ., and vice versa.

Hence, this is an appropriate generalization applicable to nonlinear systems.

The notion of stability for nonlinear control can be relaxed to the gain-function stability. Here,
the gain-function of the operatdt,, - is defined as

gl n)(@) = sup [ Trg arwoll, @ >0

llwoll<e

Definition 6.4. The closed-loog, =] is said to be gain-function (gf)-stablegfIl v/ nr] ()

remains finite for alkv > 0.

This permits a notion of bounded inpubutput stability in which large signals can be amplified
at different levels to small signals.

It can be seen that if there exists a positive condiaguch that
[wi] < Tjwol|, Ywo € W
then[X, =] is stable; if there exists a continuous functipn) > 0 such that

Jwi ] < ~y(llwoll), Ywo € W



Chapter 6 Preliminaries 67

then[X, Z] is gf-stable.

6.2 Plant Uncertainty and Robust Stability

A control design is based on a nominal mathematical magl@hich approximately describes
the physical planE;. There is always a plant perturbation ( or plant uncertainty )

Uncertainties can be in many forms, and may have complex structures. Generally speaking, the
following types of uncertainties are studied in robust stability.

Additive and Multiplicative Uncertainty

The model uncertainties are expressed by additive perturbations
$1=Y4A, Ac€cH, |WiAWs||x, <1 (6.2)

whereWy, W, are the weights. At frequencies at which the frequency response of the plant is
well known, the weights are chosen to be large to fakct be small there; at frequencies at
which the frequency response of the plant is highly uncertain, the weights are chosen to be small
to allow A to be large.

Multiplicative Uncertainties are weighted additive uncertainties, where the perturbed plants are
of the form
Y21=I+A)%E, A€cHow, |[[WiAWs|x, <1 (6.3)

and the symbols are the same as those in the additive uncertainty.

Additive and multiplicative uncertainty models are appropriate for describing low frequency
(e.g., parametric) uncertainties.

Inverse Multiplicative Uncertainty

Inverse multiplicative uncertainties are those where the perturbed plants are of the form
Si=(I-A)'E, A€Hw, [[WiAWa|y, <1 (6.4)

and/ — A isin invertible.

Inverse multiplicative uncertainty models are appropriate for describing high frequency unmod-
elled dynamics.

Coprime Factor Uncertainty

Coprime factor uncertainties are a suitable model for combining uncertainties at both low and
high frequencies, i.e. they combine features from all three of the simpler models ( additive,
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multiplicative, and inverse multiplicative ) outlined above.

GivenM, N € H, if there existX,Y such that
XM+YN=1, XY € Hs (6.5a)

then we say thad/ and N areright coprime

Let Y € RH., WhereRH is the space of rationdl., functions. We say that the ordered
pair { N, M} is aright coprime factorizatiorof X if NV and M are right coprime, and/ is
invertible, and

Y=NM"!

Moreover, if the paif N, M } satisfies
M*M + N*N =1 (6.6)

then we say that the ordered péiv, M } is anormalized right coprime factorizatiaof the plant
3, whereM™, N* are the conjugates @ff, N respectively. The conditior6(€) is equivalent to

()

Left coprime, left coprime factorization, and normalized left coprime factorization can be de-
fined similarly.

=V, vwelrl’

Suppose that
Y=NM"1' MNeRH«

is a normalized right coprime factorization of the plaht Then coprime factor perturbations
take the form

<

o0

A
1= (N 4+ Ax)(M + Ay~ L, N 1
Apy vy

wherey > 1.
An extensive discussion of these different uncertainty descriptions can be found i8€}.g., [
Robust Stability

A stable closed-loop:, =] may become unstable because of the plant perturbations. Hence, the
robust stability problem is defined as follows.

Definition 6.5. For a set of plant®, a controller= is said to be robust iz, =] is stable for all

Y eP.
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For our cases, the robustness problem is to design a conteoftarthe nominal plan® such
that the closed-loopi, Z] are stable for al\ or (A, Ax)? in some set.

6.2.1 Gap Metric

The idea of the gap metric robust stability results are as follows. First, for a nominal>plant
design a controlleE to stabilize the closed-loofx, =]. Second, define a gap metric distance
d(%, %) between the nominal and any perturbed plait;. Third, if the controller has such
property that the closed-lodi, =] is stable if the gap metrig(X, ¥;) is smaller than some
computable constant, then we obtain the robust stability.

For linear case, Zames and El-Sakk&@9][first introduced the gap metric. Ih? context, some
equivalent expressions for the gap metfg,|35, 8€] are as follows.

2 . [m1 —ml|
00(%,51) = sup —_—

( mieMamif£0  meMmllz0  |lm|
01(2, 1) = ||(TTpg, — Tug) g

. inf d—1 if &

5.5 = infeco ||( Nl l O #

0, ifO=0o

5,(2, %) = inf {IAN, Ar) T 30 |21 = (N + AN)(M + Ap) 7t

(AN, An)TEH

where
O ={?: M — M; | is causal, bijective an®(0) = 0}

andM; = Gy, and(M, N) are normalized right coprime factorizationsXfandIIx denotes
the orthogonal projection onto a closed subspéce W.

It has been shown thah (3, 1), 61 (2, %1), 6(2, 1) andd, (S, ) are equal ( see, e.g34,
86] ). The main result for gap metric robustness is given in the following theorem.

Theorem 6.6. For a linear plant, if there exits a controlleE such that the closed-lodp, =]
is stable, and the gap metr&ﬁz, Y1) is smaller than some positive constafits, the gap robust

margin, then the closed-lodp;, Z] is also stable.

If the plantX and a controlleE have transfer functions(s) and=(s), it can be shown that the
parallel operatofl ,, /s has transfer function

I =: ( ! >(I—EE)_1(I,—E)
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and the gap robust margin is ( s&4][)

-1
, If [X,E]is stable

Hoo
0, otherwise

A more useful equation for computing the robust margir: can be obtained by the coprime
factorizations. Lek have the coprime factorizations

Y=NM"' MNeRH«

S=M"'N, M,N € RHs

andU, V, U,V be matrices oveH., such that
VM+UN=1
MV +NU =1

Then for some&) € RH,, it can be showngd6] that

o— ( ! >(I—EZ)_1(I,—E)= ( %)(‘7+QN7—(U+QM))

andbs; = can be written as37]

1

by,

4]

 Nloir+ 75 1o 11
Jl ..

This is a convenient formula to calculate the robust margin. So far, for linear systems, the
robustness analysis is easy to handle using the gap metric.

6.3 Gap Metric of Nonlinear Systems

It can be seen that this framework for studying robustness of linear systems is effective and
produces powerful results. So, it is a natural development to generalize this framework to the
nonlinear case. In 1997 Georgiou and Smig][published a key paper, in which a proper
definition of gap metric for nonlinear plants was obtained and a series of results were established.
In 2003, Bian and Frencl9] proved that the gap of Georgiou and Smith was equal to a gap
metric which is defined through the coprime factorizations of nonlinear plants.
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6.3.1 Gap Metric

The gap metric for nonlinear plants introduced by Georgiou and SB#fihq defined as follows.

Definition 6.7. For nonlinear plant¥ andX;, we define the gap metric betweEn andX as

- inf d—17 , TO#£o
o5, = | meco @ =Dl 0 #
0, ifO=0o

- -

5(2, 21) = max{é(Z, 21), (21, E)}

where

O={®: M — M;|®is causal, bijective an@(0) = 0}

and/\/l1 = gzl .

This definition is indeed a generalization of thé linear case. There is no restriction on the
underlying signal space norms, and we will be interested in applying the results itrthe
setting. Related notion and the results can foun@8,8, 9].

The significance for the introduction of the gap metric lies in the following theorems.

Theorem 6.8. Consider the feedback system in Figéré, and let[>, =] be stable. If a plant

31 is such that

- 1
5(8,5) < ——— (6.7)
Tyl
then[X,, E] is also stable, and
146(,%
Mty ncll < Mgy (%, 21) 6.8)

1 — Mgy /arll6(32,31)

The proof of this theorem can be found B].

Theorem6.8 shows that if a robust controll& for the plantX is designed, then the controller

is able to stabilize another plaht provided that the gap metric betweEBrand:; is suitably

small. Hence, this theorem provides a framework to design a robust controller in the presence
of input and measurement disturbances and plant perturbations.

6.3.2 Local Stability

The above definition of stability is global for the disturbances, which is a very strong require-
ment. As an alternative to gain-function stability, we relax the notion of stability to stability on
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a bounded set.

Definition 6.9. Let S be a bounded set W/, the closed-loops, =] is said to be stable ofi if

the operatoil /|5 has a finite induced norm.

The corresponding relaxations of the notion of global stability are the notions of semi-global
and local stability which are defined as follows.

Definition 6.10. Let > be a plant, ands, € W be a ball with the radius > 0. If for any
positive constant > 0, there exists a controlléf, such that the closed-lodi, Z,] is stable

on the ballS,, then we say that the closed-lo@p, =] is semi-globally stable.

Definition 6.11. Let 3 be a plant, and I6E be a controller. If there exists an open bounded set
S :0 € S C W such that the closed-lodR, =] is stable onS, then we say that the closed-loop

is locally stable.

For local stability, we have the following theorem.

Theorem 6.12. Consider the feedback system in Fig@r#. and let[X, =] be stable orf, with
1@ py/nls |l = a

For a perturbed plan®;, suppose there exists a mappibg M N S, — My N W such that

1
I(® = Dlmesa, =7 < = (6.9)

andV¥ = (® — I, is continuous and compact with¥'[s, || < 1. Then the closed-loop
[¥1, ] is stable onS(; _q),, further

(1+ma

(VY I (6.10)

— QT

The proof can be found ir8F].



Chapter 7

Robust State Feedback Backstepping

Designs

In this chapter, we use gap metric robustness framework of Chépaettevelop a robust back-
stepping design procedure for state feedback control.

In 1995, Freemarill/] gave a counterexample to show that for general nonlinear systems, global
internal stabilizability does not imply the global external stabilizability for small sensor distur-
bances. This means that a standard backstepping design does not automatically guarantee ro-
bustness to measurement disturbances. On the other hand, Freeman and EdRaf@iso

showed that the plant in strict-feedback form is input/output stabilizable. So, it is possible to
design a controller such that the closed-loop is stable in the presence of external disturbances.

We consider the standard feedback configuratioRi®URE 6.1 and a nominal plant in strict-
feedback form, and using a backstepping method, we design a robust controller for the nominal
plant in the presence of input and measurement disturbances. Then we make use of the robust-
ness results in Chaptéito obtain the robustness of the closed-loop to plant perturbations which
are small in the sense of the gap metric, that is, we show that the controller stabilizes the closed-
loop for any perturbed plant in the presence of input, measurement and system disturbances
if the gap metric distance between the nominal and perturbed plant is less than a computable
constant.

A related construction of such a gain-function for the stable operator can be foug@]in [
However, in that case, only the measurement disturbances in thefarihB (whereB denotes

the unit ball in a signal space, apdis a K, function ) are allowed. So, the measurement
disturbances are required to enter the system equations multiplied by &gldsmction of the

state magnitude. This means that the effect of measurement disturbances decreases to zero as the
states are regulated to zero. However, actual measurement disturbances could be independent of
the state size, and have complex structures. In our results this restriction is not required.

73
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The critical step is the construction of a stable operator between the external disturbances and
the internal signals of the closed-loop.

7.1 Problem Formulation

We consider a system which is defined by the following nominal plant in strict-feedback form

S(al) s @1 =240 +eilei, o ,2y), 1<i<n-—1 (7.1a)

1 = U1+ @n (T11,  T1o1), T1n) . 21(0) =2, 1<i<n  (7.1b)

whereu; € R is the input, and

0
T11

0 1‘92
1

1
is the initial condition. Throughout this chapter, we always assume that eyesgatisfies
©i(0) = 0. We further assume that evepy is globally Lipschitz continuous, that is there
exists a constant; such that for anw!” w{" € R?,

Vi (wgi)) — (wé”)‘ <L Hwy) _ wéz‘)

L i=1,---.n (7.2)

Here, we consider state feedback control, hence

T11

T2

Tin
We consider the signal spaces

U= L®R")
and
Y=L°R") x - x L°R") = L®(R",R")

Then

Y(@)) :Us — YV Sug ey

The norm of the spac¥ is defined as

1
I lloo = (I 13+ + 1 113) 2
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With the input and measurement disturbanegandy,, we will use a backstepping procedure
to design a controlleE : y» — wuy to achieve gain-function stability for the nominal plant
33, and stability under zero initial condition. Furthermore, by gap metric theory, if the gap
5(2, Y1) between a perturbed plakt and the nominal plant is small, then the controll€E

also stabilizes the plani;.

7.2 Control Design

For the sake of convenience, we introduce following notation

21 11 1
Z2 ; T12 Z2
Z = ) :Egl) = ’ Z(Z) = .
Zn T1q Zi
By a similar backstepping design procedureB|t , we definez;, a;,i = 0,1,--- ,n by
20 — 0
ag = 0

_ (i-1)
Zi =21 — -1 (g

; 0
a; <$§Z)> —CiZ — KiZi — Zi—1 + Z i 1 1(j+1)> t=1,---,n—1

8@ 1
(079 (xl) = —CpZn — KnZn — Zn—1 + Z 81;11]' T1(j+1) — RZn
wherec;,i = 1,--- ,n andk can be any positive constants, andi = 1,--- ,n are to be
specified later.
Forz;,a;,i=1,--- ,n, we first give three lemmas.
Lemma 7.1. For ¢ = 1,--- ,n, oy is linear with respect to its variables. Thu%o%, 7 =
15

l1---,n—1;5=1---,i— 1isconstant.

Furthermore, there exists a positive constarsiich that for anw € R", it holds

|an(w)| < aflwl] (7.3)

1This is not standard backstepping.
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Proof. We use mathematical induction to prove the first claim.
Firstly, zo andag(z11) are linear with respect t;;, hence(% is a constant.

Secondly, suppose that, - - - , z;—1 anday (z11), -+, @1 (xgi_l)) are linear with respect to

the variables. Theﬁggg—l‘;, j=1---,i—1are constants, and

Zj (xgl)) =T1 — Q-1 (xgi_l))

is also linear. Hence, it can be claimed th@t(asgi)) is also linear from the definition. This

completes the proof for this first part of this lemma.

To prove [7.9), first note thatv, (w) is linear from above claim, so there exists a veetar R™
such that

ap(w)=a-w

By Cauchy-Schwartz Inequality, it follows that
| (w)] < [lallflwl]

Hence [7.3) holds with

a = |al
O
Lemma 7.2. Let
T, 2$§i) »—»z(i), 1=1,---.,n
then the transformation®;,: = 1,--- ,n are linear and invertible.
Proof. From above lemmay; andz;, i = 0,1, --- ,n are linear with respect tﬁgi). Hence the
transformationdl’;, i = 1,--- ,n are also linear.
We use mathematical induction to prove the claim fiati = 1, - - - , n are invertible.

First, we have

T1 21 =211

hence[T; is invertible.
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Second, we assume tHEt is invertible, and prove thdr'; . ; is also invertible. In fact
x§i+1) _ Z§i+l) Fa (ﬂz))
and by the assumption thay, is invertible, we have

o) =T

Therefore, we obtain
xgz'ﬂ) _ Z§i+1) T oy <Tf1z§i)>

that is, T, is invertible.
By the principle of induction, we have proved our claim. O

Lemma 7.3. Write

8ai_1 .
agi—1y; = , 1<j<i<n—1
(i—1)j 8$1j =7 >

and

i—1

—1 —1 .
M; = LillT; M + > Lilagon 1T, i =1,

j=1
Then evenyV/;, i = 1,--- ,nis constant and independentwf, j =,--- ,n.
Proof. It is easy to obtain thad/;, : = 1,--- ,n are constants since;, ¢ = 0,1,--- ,n are
linear with respect to:gi).
We use induction to prove the second claim, that is, we prove that eyery= 0,1, --- ,n only

dependsom;, j =0,1,--- ,i — 1.
First, z; is independent of any;.

Second, suppose that_; only depends om;, j = 0,1,--- ,% — 2. Then, by the definitionz;

only depends on;_1, which only depends or;, j =0,1,--- ,i — 1.

By induction, we have proved our claim. O

By above lemmaj/; is depends omq, - - - , k;_1, SO, we choose;, i = 1,--- ,n such that
Ki> M2, i=1,---,n (7.4)

= 2¢ Y
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where

c= 1I§rllléln{cl}

We assume hereafter thit4) holds, and define a controll&r: V= — U as follows.
E: 0 oug = —ap(—y2) (7.5)

We will show that this controller makes the closed-loop gain-function stable, and stable if the
initial conditionz{ is zero.

7.3 Stability of Closed-loop

As we stated before, Iét- || denote the Euclidian norm, afid ||, denote the.> norm.

Theorem 7.4. Let the plant:(z9) and controller= be defined by7.1) and 7.5). Then there
exists a continuous function : R — [0,+o00) such that for all(ug,yo)? € L®(RT) x
L®(RT,R")

[ (s, y0) ™| < (|| (uos wo) ™|, 1291 (7.6)
that is, the closed-loof®(zY), =] is gf-stable.
Moreover, ifz) = 0, then there exists a positive constdntsuch that for all(ug, yo)? €

L>®(RT) x L>®(R*T,R"))

190" o < Tl o, 0) | (7.7)

o0

that is, the closed-loof(0), =] is stable.

Proof. For convenience of notation, we write

Fi = Zi (I’gz)> ;O =0y (ﬁgz)> s Pi = i (m%”)

in the proof.



Chapter 7 Robust State Feedback Backstepping Designs 79

Firstly

2 = X1 — Q1

i—1

80&‘_1
SEACOREIEDY 79;?. (#1641 + ¢5)
j=1 "
i—1
=Zi+1 T o + i — Za(iq)j (371(j+1) + SOj)
j=1

i—1 i—1
= Zibl — Gz — Zi-1 — KiZi + Z a(i-1)jT1(j+1) T i — Z A(i-1)j (931(j+1) + SOj)

= =1
i—1

= Zi41 — CiZi — Zi—1 — KiZi + 9 — g a1, 1=1,2,---,n—1
i=1

Sincez,, anda,, are linear, and

Y1 = 1, Y2 = T2, Ul + Uz = Ug, Y1+ Y2 = Yo

we obtain

Z.n = "Eln - O.énfl

n—1
= U1+ ¢n — Z a1y (T1G+1) + ¢5)
j=1
n—1
=Ug — U2 + Pp — Z A(n—-1)j (561(j+1) + <Pj)
j=1
n—1
= up + an(—y2) + on — Z A(n—1)j (1171(j+1) + @j)
j=1
n—1
= an(y1) + on — > am-1); (T1(11) + 25) + 10 — an(y1 + y2)
j=1
n—1
= an (1) + on — Z a1y (T1(j11) + #5) + o — an(zo)
j=1
n—1
= —CpZn — Zn—1 1+ Pn — Z A(n—1)jPj — KZn + Ug — Oén(yo)
j=1

Consider the Lyapunov function
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differentiating along the trajectory of the closed-loop, and writiRg; = 0, then we have

n
V= E Ziéi
=1

n i—1
= § Zi | Zit1l = CiZi — Zi-1 — KiZi t Pi — E a(i-1)jPj
i=1 j=1

— K2n” + 2n(uo — an(yo))
n n i—1
== Z cizf + Z —kizf + | @i + Z a(i-1)j%;5 | %
i=1 i=1 j=1
— kzp? + 2 (uo — ozn(yo))

By Young's Inequality (see, e.g5¥] ), we obtain

2
n

n i—1

. 1 Ooj_1 1 2

V<-— E CiZi2 + E 47/{@ i — 3:;13' Pj + 1k (uo — an(yo))
i—1 i1 j=1

Sincey;, i = 1,2,--- ,n are globally Lipschitz continuous, ang(0) =0, i = 1,2,---
then for allw € R it hold
lpi(wW)| < Lifwl], i =1,2,---,n

hence, by T.4) we have

i—1
ooy

—1 Z Oaij—q
O0x1; i i =

8x1j

|05

i—1
i —

Jj=1

i—1
< Lille?+ Y lag-n, L=
j=1
i—1
< Lill T 29 + > Lylag_,] T 29
j=1

i—1
< Lill T2+ Lilag—n; 1T =]
7=1

= Mi| 2|

2ck;

< Il

n

7n’
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By Lemma/.1l

up — an(yo)| < |uol + [en(yo)l

< [luolloo + allyolloo

Finally, we obtain

n
. c 1
V<- Zl ciz + %IIZH2 + 1= luolloo + allyolloo)?
(2
< —chzz + |’u0H<>o+aHyOHOO>
Hence,V (t) decreases outside the compact set

n
1
R = {z € R”) E : cizi < E(HUOHOO + a!yoHoo)Q}
P

Now define

Rl—{ZERn

1
> < 5ol ol

where

c=min{¢ :1<i<n}

S0, we obtain that if

‘ -

V(0) < 5—(lluollee + allyoll)

CKR

| \/ )

thenV/(¢) remains inR; for all time¢ > 0; if

1
5 (lluolloo + allyolloo)?

V(0) > S

thenV/(¢) monotonously decrease frafm= 0 until z reache®R ;. Hence, we obtain

1
L (uolle +a||yor|oo>2}

V(t) < max {V(O), Ser

Therefore

o1 = VT < max { VAT, ——(luolloc + aHyoHoo)}

= Imax

— =

K }<||uouoo+a||yo||oo>}
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where
20 = 2(0)
Let
| = max{1,a}
and note that
129 = [ Tpaf]| < IT [ 23]

luolloo + @llyolloo < I(]Juolloo + l|Yolloo)
1
< V2 (Jluoll% + llvoll%) 2

= 1v/2| (o, yo) |

o0

2
2]lo0 < maX{IITnHHw?H, W H(uO,yo)THoo}

Then we have

Since
lyall = [zl = 1T, 2l < 1T =]
we obtain that

lyilloo < IT5 2]l

- 2
< [Tl maX{IITnHIIx(fH, W H(uO,yo)THoo}

=R (|| (uo, y0)" || . - 1291)

with

2
A ([l a0, 0)" | - 1231) = HT;lllmaX{llTnHllx?H, o H(umyo)THoo}
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Moreover, we have

[urlloo < fluolloo + [luzflo
= [luolloo + || = an(—22)llo
< luolloo + llan (1) = an(=22)lloc + [ln(21)lloo
< [luolle + allyolloo + allz1llo

< l\/§ H(u(]ay())THOO + ah (H(u07y0)THoo ’ H.%'?”)

Let

v (|| (a0, o)™ ||, > 112811)

1

= (200 o D)+ 0 00 1))

then we have

[ Cur, 1) 7|, = (lurll + llyil%)

< (|| (uo, o)™ ||, > 112811)

This completes the proof ¥ (€).

As to (7.7), note that ifz{ = 0, then
h([| (w0, yo) ]| o+ l12811) = HTgl”l\/gH(anyO)THoo
thus
7 (1[0, 50) |- 121)

( M 3 w00+l T 10y 2 H<uo,yo>THoo) : (HT#W@ H<“07y0>T“oo> )

=1y 2 ((Vem+al T ) 4 1T12) o )7

=T (uo, 50)" |
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Therefore[7.7) holds with

2 _ _
r= z\/; ((m+ ol T ) + HTanQ)

N

By gap metric theory, we obtain the following result for any perturbed plant.

Theorem 7.5. Let the nominal planE(0) and controller= be defined byd.1) and (7.5). Then

there exists a positive constantuch that for any perturbed plait; which satisfies

5(2(0), %) <

= =

the closed-loopX;, =] is also stable, and

149(2(0),%1)
I <T =
N N SO

Proof. By Theoreni7.4, we obtain that there exists a constBnt 0 such that

Mgy ywll < T
Then, since
5(2(0),%,) <T7!
it holds that
- 1
6(2(0),%1) < =
[yl
Lastly, from Theoren6.8in Chapte(®, the proof is complete. O

In above work, we have assumed that all the states are measured and used for feedback control.
But, in some cases only the first state is measurable and can be used for feedback, this is the
problem of output feedback control. Hence, in the next chapter we will consider the case of
robust output feedback control.



Chapter 8

Robust Output Feedback Backstepping

Designs

In the previous chapter, we studied a robust backstepping design for state feedback control. In
this chapter we consider robust backstepping for output feedback control, which is not consid-
ered in R3].

We will consider a nominal plant in output-feedback form and the standard feedback configura-
tion in FIGUREG.1. We design a robust controller for the nominal plant in the presence of input
and measurement disturbances. Then we make use of the robustness results ir6Zbayiter

tain the robustness of the closed-loops to plant perturbations which are small in the sense of the
gap metric. That is, as in Chapiérwe show that the controllers stabilize the closed-loops for

any perturbed plants in the presence of input, measurement and system disturbances if the gap
metric distance between the nominal and a perturbed plant is less than a computable constant.

In this chapter, we will relax the nonlinearities to be locally Lipschitz continuous and get local
results. If the nonlinearities are globally Lipschitz continuous, the results are global.

As an application, we use the theory we established to a system with time delay, and prove that
if the time delay is suitably small, the controller is able to achieve stability of the closed-loop.

85
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8.1 Problem Formulation

We consider a nominal plant in output-feedback form

S@Y): du=aie i), 1<i<n-—1 (8.1a)
T = u1 + @n(y1), x1;(0) = 29, 1<i<n (8.1b)
Y1 = T11 (8.1¢c)

wherey; € R is the measured outpui; € R is the input, andp; : R - R, i =1,2,--- |n
are assumed to be either locally or globally Lipschitz continuous, and satigfy = 0, i =
1,2,---,n,and

is the initial condition.

With respect to the nominal plant, our main purpose is to use backstepping procedure to
design a output feedback controlier: y» — us9, achieving gain-function stability for the plant
3}, and stability under zero initial conditions.

We consider the signal spaces
U=Y =L*R")

then the output-feedback form plaxifz{) mapsiss, € L>°(R*) into L*°(R™).

We introduce the following notation

0 0
T11 0 e1(y)
x 00 : ©2(y)
12 . 2
T = CA= o , B=1"1, ¢ly) = .
000 --- 01 0
in 000 - 00 ! Pnly)
and
C = (1,0, ,0)
to rewrite the plant8.1) as
S(af) ;@1 = Az +¢(y1) + Bu,  1(0) = 2] (8.2a)

y1=Cn (8.2b)
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For subsequent use, we give two lemmas here.

Lemma 8.1. If ¢;, i = 1,2,--- ,n are locally Lipschitz continuous, angd;(0) = 0, i =
1,2,---,n, then for anyp > 0 there exist constants;(p) < oo, i = 1,2,--- ;nandd > 0

such that for allw € [0, p] and |wo| < 0,

lpi(w) — pi(w —wo)| < Li(p)|wol, i =1,2,--,n (8.3)
and
Proof. X Since everyyp;, i = 1,2,--- ,n is locally Lipschitz continuous, then for anythere

exist constantg,;(w) < oo andé;(w) > 0 such that for anywy| < 0;(w), we have

lpi(w) — i(w — wo)| < Li(w)|wol

The family of open set$(w — d;(w),w + di(w)) }wepo,o COVeErs the closed s, p], hence, by

the finite cover theorefpthere exist finite open sets
(wj — di(wy), wj + 0i(wy)), wj € 0,p], 7 =1,2,-+,m

such that

Opgﬂ di(w;), wj + di(w;))

Then, for anyw € [0, p], there existg : 1 < j < m such that
w € (wj — bi(w)), wj + di(wy))
So, for|wp| < 6;(w;), we have

|pi(w) = pi(w — wo)| < Li(w)|wol

Now let
Li(p) = max {L;(w
i(p) = max {Lifw;)}
LIf we further assume thap;, i = 1,2, -- ,n are differentiable, then the proof can be simply obtained by the

mean value theorem.
’See, e.g., Q. Douglas, Mathematical Analysis, Clarendon Press, Oxford, 1955
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6= min  {d(w;)}

1<j<m,1<i<n

thenZ;(p) < oo andd > 0, furthermore,8.3) holds for allw € [0, p] and|wy| < 4.

As for (8.4), if w = 0, it holds; if |w| > 0, takem,, pointsw;, j =0,1,--- ,m,, such that
O=wmp<w1 < <wpm,—-1 < Wy, =W
Wy, — Tmy—1 < 0
Then from the result of first part
lpi(w)| = Z‘Pz (@) — pi(wj-1)

< Z‘% wj — ¥ w] 1)’

J=1
<) Li(p)lw; — wj
j=1
= Li(p)|wm,, — w0l
= Li(p)|wl|
This completes the proof. O

Lemma 8.2. If ¢;, i = 1,2,--- ,n are globally Lipschitz continuous, ang;(0) = 0, i =

1,2,--- ,n, then there exist constanis, i = 1,2,--- ,n such that for allv € R

|90’L(w)|§LZ|w‘v i=1,2,---,n (85)
Proof. The proof can be obtained from the globally Lipschitz condition andh@) = 0, i =
1,2,--- ,n. O
8.2 Control Design And Stability Analysis

We first consider the case when the nonlinearities are locally Lipschitz continuous, and design an
output feedback control which is valid locally, before considering globally Lipschitz continuous
nonlinearities as a special situation and obtaining a global result.
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For our purpose, we first use an amended observer backstepping procedure to design a linear
transformation, and further define a state feedback linear controller. Next, we introduce an
amended observer to obtain our output feedback controller. Then we make use of the robustness
results in ChapteB to get the robustness of the controller to plant perturbations in a gap metric
sense.

8.2.1 Local Lipschitz Condition

For plantX (), suppose thap;, i = 1,2,--- ,n are locally Lipschitz continuous. Since only
the local Lipschitz conditions are assumed, our results will be local.

Take any positive constants d;; i = 1,2,--- ,n andk. Suppose is a positive constant, and
take a positive constahwhich satisfies

A
127> =) L) (8.6)
i=1 " j=1
whereL;(p), i = 1,2,--- ,n are the constants ii8(3) of Lemma8.1.
Write
z = (217227“ ' 7Zn)T

and by the backstepping design procedudefine a transformatiol : z; — z as follows

z1(w11) =211 (8.7a)
Oq($11) = —C121 — d121 — lZl (87b)

zi(z11, 7 5 1) =21 — i1 (@11, 75U1(i—1)) (8.7¢)

=1 9 N\ 2
Qi(T1n,- e 2) = = Gz~ zie1 = di 1+Z(83:1_‘ > B
J

Oa;—
+Z e e, i=2.3,m (8.7d)

an(l'llp T axln) :an(xl)
2
aan 1
= —CpZp — Zn—-1 —dn 1+§ Zn — RZn
(91'1]

Oovy—1
2 Ty TG+ (8.7¢)

For the transformatio and«;, we have the following lemmas.

3This is different from the standard backstepping58|[
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Lemma8.3.Fori =1, --- ,n, z; anda; are linear with respect to their variables. The trans-
formationT is also linear and invertible. Furthermore, there exists a positive constauich
that for anyw € R

()] < allw] (8.8)

Proof. We use induction to prove thaf, «; are linear.

First, z; anday (z11) are linear with respect te; henceg;% is a constant.
Second, suppose that, - - - , z;—1 anday (x11), -+, a1 (211, - ,3:1(1-_1)) are linear with re-

spect to the variables. The%*;l%l, j=1---,i—1 are constants, and(z11, - ,z1;) =
J
r1; — a;—1(T11, -+ , T1(i—1)) IS @lso linear. Hence, it can be claimed thafziy,- -, z1;) is

also linear from the definition. This completes the proof the claim.
ThatT is linear and invertible can be proved the same way as Leihga

As to the 8.8), it can be proved the same way as Lemiha. O

As in Chaptef7, a state feedback controller can be defined as

—_

Eo i u1l = ap(z)

Consider the Lyapunov function

differentiating along the trajectories of the closed-loop, following the proof of The@tdmve
can prove that the closed-lodB(z!)), Z,] is locally gain-function stable, and the closed-loop
[2(0)), Z,] is locally stable.

But in our case, since only the first statg is measurable, and onky; = yo—x11 can used for
control designs, to implement control, an observerdors utilized to estimate the other states.

First, write

T h
~0
L9

NO

N -0
T2n Lop
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and define an observiby
To = AZg — K(y2 — 92) — @(—y2) — Bug, 22(0) = i3 (8.9a)
g2 = Co (8.9b)
where
k1
ko
K= .
kn,

is chosen such thaty = A — K C is Hurwitz. Note that?] is the initial observer, angh = ;.

To obtain an output feedback controller, write

jZn

and we define the output feedback controller as

B(9) : uz = —an(—ya, —23)
.%2 = AZ9 + K(yg — :l)Q) — (p(—yQ) — Bus, fg(O) = :%(2) (810)
g2 = Ciy

We first establish a lemma for the estimate error.

Lemma 8.4. Letz; be the state in the plan8(2), andi, be the observer state i8.€), and let

A~

T =x1+ o
be the perturbed observer error, theérsatisfies
&= AoZ + o(y1) — @(—y2) — Kyo + Buo,

where

“This is also different from the observer [59].

(8.11)

#(0) = 2° (8.12)
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Moreover, if|y1| < p and|yo| < 6, then there exist constamisand v, such that
1100 < b (121 + wpllgollso + lluolloo) (8.13)

Proof. ® Note that

Y1 +Y2 =Y, ul+u2="u
and then from8.2) and 8.9), it follows thatZz satisfies8.12).

Now we estimaté&:. By (8.12), we obtain that

7= 70/t 4 / eo(t=7) (go(yl (1)) — o(—y2(7)) — Kyo(r) + Bu0(7)>d7' (8.14)
0

Let)\;, i = 1,--- ,n be the eigenvalues of matri%,. Since the matrixd, is Hurwitz, the real

parts of all its eigenvalues are negative. Ldie a positive constant such that
—u>Rel, 1=1,---|n
then there exists a positive constarsuch that
[eo]| < bert (8.15)
Hence

sl <2+ [ e (lola(r) — e=sar ) + 1Kol + [ Buo(r)] )r
0

n

<l + [ et ) (Z (%<y1<7>>—%<—y2<7>>)2>

[SIE

SbHi:OHe“t—i—/o leot=] ( (cpi(yl(f))—soi(yl(T)—yo(T)))2>

°By ISS stability, a simple proof can be obtained.
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As|y1(7)] < pand|yo(T)| < 4, from (8.9 it follows that

7l Sb”‘%O”M/ o (ZL Juo(7) > (Zk2> lyo(7)| + [uo(7)| | dr
n 5 n 5 .
<b||Z°|| + b ( Li(ﬂ)2> + (Z kf) 19010 + |[20]]o0 / o~ =T g7
=1 i=1 0

1
2

n % n
<b ||330H+* < Li(p ) +<Zk¢2> 190l[00 + [luolloo
=1 =1

=b (12°]1 + vpllyollo + lluollc)

with

1

v, = ; <Z Li(p)2> + (Z k?)
=1 =1

Therefore8.13) holds. O

Since we only assume that the nonlinear terms of the plant are locally Lipschitz continuous, we
can only hope for local stability results. For convenience we introduce the following notations:

c= min {¢}, c= 112&);{@}, M = max {1+ 3a’?,a(1+ 3b2V§)}

1<i<n

PV 2¢ck PV 2¢ck 2p\/c in{m. o}
T = , My = , M3=_—————© 75 =min{my,
T3V T 3VBab T 3Tl 1

Theorem 8.5. Consider the planE(z)) defined by8.1), and lety;, i = 1,2,--- ,n be locally
Lipschitz continuous. Consider the controligfzJ) defined by8.7) and 8.10). Then

1. For any disturbance(ug, yo)7 € L2 (R*)x L= (R*), ||(uo,v0)? ||co < s, initial state

O e R, |29 < 73, and initial error 70 € R™, ||7%| < 72, there exists a positive

constanty, such that

| (ur, )" < 7 (8.16)
that is, the closed-loop systd(z?), Z(29)] is locally gain-function stable.

2. If 29 = 29 = 0, then for any disturbancgu, yo)? € L (R*) x L= (R™), ||(u0, ¥0) T ||ec <

75, there exists a positive constdry such that

H(ulayl)THoo SFpH(UanO)THOO (817)
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that is, the closed-loop systegi(0), Z(0)] is locally stable.

Proof. Let us first establish 1.

Throughout the proof, for simplicity of notation, we will usg to denotew;(z11,- -+ , x1;), 2
to denotez; (z11, - - - , 15), i to denotep;(z11), and
aG-1)j = iai—l (xlh"' 7'%'1(7;—1)) y t=1-n, g=1,-i—-1
81'1]'

Consider the Lyapunov function

1
V(zi, -y 2n) = 22;21-2 (8.18)
then we can establish that ,
. n 2p
V< — 22 = 8.19
<= ez te < 3 > (8.19)

=1

In fact, along the solution of the closed-loop, we have

21 =11 = T11 =T12 + ¥1
=z2 + a1+ 1

=29 —c121 —d121 + o1 — =1
and

2p =T — Q-1

i—1
Oai—q
=T1(ian) + 0= D 5 (1) +95)
j=1 L
i—1
=Zit1 + a; + @ — Z agi-1); (T1G+1) + 95)
j=1

i—1 i—1
2
=zi+1 — Ci% —2i—1 — d; | 1+ Z ag-1); | % + Z A(i—1)jL1(j4+1)
=1 =1

i—1
+ i = > ag-n; (11G+1) + ¢5)
j=1
i—1 i—1
=Zi41 — Gz — Zi-1 —d; [ 1+ Za?i,l)j 2 + Qi — Za(iq)j%‘, 1=2,3,---,n—1
j=1 j=1
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and

Zl'n :iln - dn—l
n—1
=u1 + pn — Z A(n—1); ($1(j+1) + ©5)
j=1
n—1
=Ug — U2 + Pn — Z A(n—-1)j (951(]'+1) + <Pj)
j=1
n—1
=ug + an(—y2, —23) + on — Z a(n-1y; (T1(541) + ¥5)
j=1

Noting thata, is linear with respect to its variables, we obtain

n—1
Zn =t + an(y1, 1) — an(y1 + y2, 27 + 23) + 05 — Z Q(n—1)j (351(j+1) + Soj)
j=1
n—1
=ug + an(21) — an(yo, %) + ©n — Z A(n—1)j (331(j+1) + SOj)
j=1
n—1
=—cCpZn — Zn—1 —dp [ 1+ Za%n_l)j Zn + Pn — Z A(n—1)jPj + o — an(yo, T")
; =

Write zp = 0, z,+1 = 0, then along the solution of the closed-loop, we have

n
V = Z ZZ'Z"Z'
=1
i—1

n _
= Z Zi | Zi41l — CiZp — Zi—1 — d; | 1+ Z a%ifl)j Zi + i — Z a(i—1);P;j
— — =

— 12} — Kz + (uo — an(yo,i*))zn
n
=— Zci — 122+ Z —d;2? + 201 + Z ( d; UL(Z 1% — a(i_l)jzigpj)
i=1
— Kzn? + 2p, (uo — an(yo, %))

By Young's Inequality, we obtain
n n 1 i—1 1 )
’ L2 7.2 - 2 2 o o ~ %
Vs—;czzi lzl+;4di «pﬁj;cpj + 4,2 (w0 = an(v0, 7))

n ) ) 1 n 1 % ) 1 o2
:_Zcizi_ZZ1+ZZEZ%+Q(UO_&”(‘UO’$ ))
i=1 =1 " j=1
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and we now claim thag; (¢t) < pforall ¢t > 0.

For a contradiction, assume the claim does not hold, i.e., there at lest exists a finité tinte
such thaty, (t*) > p. Letts be the smallest time at whicly; (t5)|] = p. Then we get the
following claims: Firstts > 0 since|y;(0)| = |z%,| < ||29]| < p. Second, for € [0,t), we

have|y, (t)| < p.

Fort € [0,t5), it holds thatly; (¢)| < p. Hence, fort € [0, t5), by Lemma8.1, we obtain that

VS_ZCi’Zz lzl—i— Z ZL (O_an(y07 ))2
i=1

n

ORI 3 ZL P22+ (w0~ an(o0,2))°
=1

& 1
< =Y e+ o (w0 — anlyo, @) (8.20)
=1

We now estimate the last term fore [0, ¢;) andt € [0, 7]. By Lemme8.4, we have

1
@(UO*an(yo, )) <—(u0+an(y0, “)?)
1 2 2 Tn2
<5 (ol + a1 (w0, &) 3 (o))
1
<o (Il + a2 (ol + 13 Bcpo))
1
<o (ol + a2 (loll% + 22120+ vlolloe + 1uoll)?)
1
SE(HUO”Q +a (||y0||2 +3b2(||x0||2+1/2||y0|\2 +||UO”2 )))
1 ~
:ﬂ( 1+3a2b2 Hu0||2 ((12+3b27/2)||y0||go—|—3(L2b2‘|1,‘0||2)
1 3
<o -M|l(uo,y0) " 113 + o —a”b?|2°]* (8.21)

From||(uo, y0)” [leo < 75 < m and||3%|| s < 72, we obtain that

1 s 2 1 3
ﬂ(uo — an(yo,7))" < ﬂMﬂf + ﬂa%%g
2cp®  2cp?
< +
-9 9
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So, fort € [0, 7) we have

. n 25\ 2
V- adte <3"> (8.22)

=1

ThereforeV (t) decreases outside the compact set
n 2
2
g cz-zi2 <c <p) }
, 3
=1

n 2
2
>l < ol P < alTIIAIP < clTiPe? < e (%)
=1

R—{ZER”

Since

we havez € R. So, we obtain that for all € [0, 7), 2(¢) € Ry, which is defined by
n 2)0 2
— n| _ 2
Rl—{zeR —;zi < <3> }

2p 2
=i =2 <P < () e o)

Hence

3

or

2
Ol <3, tefo)

From this we obtain that for any < ¢,

2p
Y1l zoojo,7 < 3

This is contrary to the fact that
||yl||L°°[0,tS] =p

and||y1 || (0,-] is continuous with respect tosincey (¢) is continuous.

This completes the proof of the claim, and shows that

y1lloo = Y1l Lo (0,400) < P
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Now we prove that:; is also bounded. In fact

Ul = up — U2

= ug + an(—y2, —13)
= ug + an(y1 — yo,x] — T°)
= uo + an (Y1, 27) — an(yo, °)
= up + ap(r1) — an(yo, T°)

sincea, is linear. Hence

[utlloo < fluolloo + [lan (1) lloo + llan(yo: )0
< luolloo + allz1loc + all (3o, 7)o

o 1
= llwolloo +a (l1lloe + lyoliZ + 117112)%) (8.23)

Since||uo ||, [|¥0|lco @re bounded by the assumptions of the theorem, we need only show that

|Z* ]| @and||z1||oc are bounded.

From the first part of the proof, we have obtained thatt)| < p forall t € [0, +00), therefore,
(8.13 holds for allt € [0,400). So

17 o0 < l1Zlloo < b (IZ°1] + vp 130l + lluolloc) (8.24)
is bounded. From(¢) € Ry, and
z1lloo = T 2lloe < T [l|2]lo (8.25)

we know thatl|z ||« is also bounded. Hendg:; || is bounded.
Therefore we have established 1. Now we establish 2.

Sincex? = 29 = 0, we havei® = 0. From 8.21), we obtain

1 a2 M
R(UO — an(y0, %)) < ﬂH(UO,yo)THio
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Hence
V< - § izl + —Mu(uo y0) 7|12 (8.26)
T = b2k ’ o0
Similarly, we can obtain
M T
0o S/ — , 0o 27
l#lloe < 4/ 5 l(uo, o) (8.27)
So
M T
lnllse < l12llo0 </ 5 -0, 30) 7] (8.28)

By (8.29), (8.29), (8.25 and 8.27), we have

~ 1
[urfloo < HUOHooJra 21 ]loo + (Hyo||§o+|!flf*\|§o)2)

1
2\ 2
1T [2]l00 + (HyoHioJr(VpHyollooJrHUOHoo)) )

M 1

< Jluolloe +a (r Uy 5o 10 0) oo + (H9ol% + (plolloe + Iluolloe)) )
1

(HT ol 90) o + (ol + (2uzuyo||2+2uuo||2))2)

< Juolloo + @

< ||u0||oo +a

Let
Ap = max{2,1+ QV/%}

then

T 1y [ M T T

utlloo < (20, 90)" oo +a | [T ﬂ”(u(byﬂ) oo + v/ Apll (20, 90) " oo
1 M T
< | 1+al T 5+ VA | (0, 50)" lloo (8.29)

Write

2
M | M
Iy=—+1+a|T7 '/ — + VA 8.30
p 2%+<+all 1 5o T p> (8.30)

then by 8.28) and 8.29, we obtain that

I(ur, 1) oo < Tl (w0, 90) "l

Thus, we have established 2. O
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Since we only assume that the nonlinearities of the plant are locally Lipschitz continuous, the
results are only local, which are weaker than semi-global. It remains an open question as to
whether semi-global results can be obtained.

The purpose of the framework of gap metric robustness is to allow plant perturbations. If the
plantX and controllef= satisfy the conditions of Theore&?s, and let

W= L®[R*Y) x L°(RY), S, = {s € W||s]| <r}

then|[ILyvy//xls,, || is finite by Theoren8.5, and we can obtain the following result.

Theorem 8.6. Let plant¥(0) and controller=(0) satisfy the conditions of Theorerg, and let

ITady/alseg |l = @

LetX; denote a perturbed plant, and suppose there exists a magpint N Sor, — MiNW
such that

1
1@ = Dlmasan | =7 < =~ (8.31)

and

U= (2 —Dnmyn

is continuous and compact with

1¥]s, [l <1
then the closed-loof¥;, Z(0)] is stable onS(;_ o), With

(1+7ma
1—am

Tt/ /A 1S 01— myms | < (8.32)

that is, the closed-loop is locally stable.

Proof. Since||Ilr//x|s,, || is finite by Theorerd.5, the result follows from Theore@1z [

We will give an application of the global version of this result in Section 8.3.

8.2.2 Global Lipschitz Condition

For the nominal planE(zY), if we suppose that the nonlinearities i = 1,2, --- ,n are glob-
ally Lipschitz continuous, then Lemr&a2 holds, and we can obtain a global resultfag, vo)”,

7% anda?.
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Takec;,d;; ¢ = 1,2,--- ,n andk as any positive constants. Lét, : = 1,2,--- ,n be the
constants defined in Lemnr&?2. We takel such that

1> ii;i@ (8.33)
1 %=1

1=

Definea,, and the observer, and the controligizy) the same way a$(7), (8.9) and 8.10).
Then we have the following lemma.

Lemma 8.7. Let Z be the perturbed observer error defined as in Ler@4aThen
1Z[loe < b (12°1] + vllyolloo + lluolloc) (8.34)
whereb and i are constants.

Proof. The proof is almost the same as that of LenBrd hence, it is omitted. O

From this lemma we can prove the following theorem.

Theorem 8.8. Consider the planE(zY) defined by8.1), and lety;, i = 1,2, --- ,n be globally
Lipschitz continuous. Let the controllE(2J) be defined byg,7), (8.9 and 8.10. Then

1. There exists a continuous functign: R3 — (0, +o00) such that for any(ug, yo)? €

L®(R*Y) x L®(R*), 7% € R® andz! € R", we have
| Cur, )" ]| o < v ([ (w0, 90) ]| o 5 187 oo 127 0) (8.35)

that is, the closed-loop systdd(z}), Z(29)] is globally gf-stable.

2. If m(f = mg = 0, then there exists a positive constdhsuch that for an)(uo,yo)T €

L>®(R*) x L>®(R™), we have
H(ulayl)THOO SFH(UanO)THOO (836)
that is, the closed-loop systgi(0), =(0)] is globally stable.

Proof. Again consider the Lyapunov function
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Following the proof of Theorer.5, we obtain that fot € [0, o)

n
. 1 »
V<= e+ 1. luolloo + flam (yo, @ loc)?
=1

By Lemma8.3 Lemma8.7, and by noting thalfz*|| < ||z||, we have

. . 1
llon (40, ) loo < alllyollZ + [1E*(|3)2

N|=

~ 2
< a(Ilyoll% + 82 (12°] + ¥ l1yolloe + luolloc)*)

Let

a* = max{1,a?}, . = max{1,v}

then

1\ 2
~ % 2 ~ 2\ 2
(lolloe + llan(yo, ) 0)? < <|ruouoo +a (Jlgoll% + 0% (1°) + vilyolloo + luoll)*) )

~ 2
<2 (Jluol% + a® (llyoll + 0% (1] + vlolloo + l1uoll)*))
* ~ 2
<2 (0" (0, 30) 7 12 + a2 (12°] + el (0, 30) 1) )

—29 (1/(u0,%0) lloos 17°]1) (8.37)

where

=

9=9(p,q) = (a"p* + a**(q + p)?)

Thus

n
. 1 -
V<-— g Cz'ZiQ + %92 (H(umyO)T”om HxOH)
=1

Following the same argument in Theor&&, we obtain

1 ~
fetoe < maoe {1271, g (1)l 12°1)

Note that we have

g1l = llenall = [lzll < [I=]]
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On the other hand,
lyall = [l < llzall = [Tzl < T2

Hence

Iy1]l < min{1, [TH}2]
Note that

129 = 72| < ||T[|[|2]]
and write

B = min{1,||T~}

therefore

o1l < Bzl
1

< [fmax Tmo,i U, Too,fco }

< s {8l g (1.0 s 1)

1 N
< 5max{|yT||Hm9||, ——9 (II(u0, y0)" lloo, [12°]])

V2ck

= h (|| (uo, o) || 12°1, [l271)) (8.38)

where

hip.a.5) = g { [T, ()}

Moreover, we have

lon(1)] < aflar]l = o T7 2] < a THl|2)l < @l T7H[]12]loc

1
< a||T7Y | max{ | T|||2Y]], — w0, 40) T |lso, ||E° }
< ol v { Tl g (o, 0)” e 12°1)

= " (|| (o, yo) 7| 12°]], [129])) (8.39)

where

" _ 1
¥ 0.0.5) =l T {1 T ()}
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104
Hence

l[utlloo < [Juolloo + [Juzlloo

= |luollos + || = an(—y2, —23) oo

< luolloo + llan(yr, 27) — an(—=y2, =23)[loo + [[an(y1, 27)[l o

= [luolloo + latn(y0: Z*) [loc + [l (z1) oo

< V29 (10, 90)" lloos 12°1) 4+ h* (|| (w0, wo) ||, 12°1], [129]) (8.40)

Therefore from8.38) and 8.40), we obtain
(1) oo
1
= (% + [l %) 2
T ~0 * T 0 ~0 2
< | (V29 (I (0, 50) loos 12°11) + B* (|| o, o)™ | 1, 12°1) )
1
~ 212
o+ (| o ) 1200 91 (8.41)
Let
1
N 2 9 2
v(p g, 8) = ((\/59(19, q) +h"(p. g, S)) + h(p,q,s) ) (8.42)
then we have
[ Curs )™ || < v (| (wos o)™ || 11200, [l (8.43)

This completes the proof c8(35).

To prove 8.36), note that
1
9(p,0) = (a* + a®b*?)? |p]

1T

h*(p,0,0) = N 9(p,0)

and
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therefore
) Y
10.0.0) = ( (V2a(0.0) 4 1°(9.0.0)) "+ hip.0.07
_ [ S P
((\@—Fm + o (a* +a’b*%) |p|
Let )
_ TN L B2\7 o o
b <(\/§+ V2ckK + 2ck (a Fatb ) (8.44)
then
| (e, y) ™| < (][ (w0, w0) ™ ||, - 0,0) = T'[| (uo, o)™ || .. (8.45)
Thereforel8.36€) holds. O

For plant perturbations, we obtain the following robustness result.

Theorem 8.9. Let the plantz(z") and the controller=(2") satisfy the conditions of Theorem

8.8 Then there existB > 0 such that if a plan®; satisfies

> 1
0(2(0),%) < T (8.46)
the closed-loopX;, Z(0)] is also stable, and
1 +8(5(0), %)
II <T = 8.47
Mgy /vl < T TR R0). 5 (8.47)

Proof. By TheorenB.§, there exists a constaht> 0 such that

[Ty il <T

or
1

S —
vy

1
T
Hence, if5(2(0), £) < I'"!, we obtain that

1

5(2(0),81) < ———
Y M

From Theoren6.8in Chapte(®, the proof is completed. O
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8.3 Application to a System with Time Delay

In this section we analyse the robustness of stability for a system perturbed by a time delay. We
first consider a nominal plant without time delay, and design a robust backstepping controller
to stabilize the closed-loop. Then we consider the system with time delay as a perturbed plant,
by above robustness results we have built up, we show that the controller is able to stabilize the
system with time delay if the time delay is less than a computable constant.

Suppose the nominal plahtis defined by
> ill = 12 — 2y1 + siny1

T12 = U1 — Y1, 211(0) =0, z12 =0

Y1 =211
where
e1(y1) = —2y1 +sinyi,  w2(y1) = -y
are globally Lipschitz continuous.
By (8.10), the backstepping robust controlEris designed as
B up = —a(—y2, —T22) = —b1y2 — badar
To1 = 91 + k1(y2 — G2) — 2y2 + sinys

Too = ka(y2 — 2) — Yo, 22(0) =0

Y2 = T21
where

by = arco + 1+ do(1 4 ad)ay
by = co 4+ da(1+a?) +ay
ar=c1+d+1
Then, from TheorerB.8 the closed-loop, =] is stable.
Now we consider the effect of time delay on the closed-loop. Suppose ahlamtefined by
T an(t) = z12(t) — 2yi(t) + sinyi(t)

5'612(75) = ul(t) — yl(t), :L’H(O) = O, 12 = 0
yi(t) =z (t —<)

whereg is the time delay.
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We define a mapping : M — M; by
P (75} (t) _ (75} (t)
x11(t) z11(t —5)

I (ua(t), 211t — ) — (ua(t), 211(1) " [loe

then we have

d—1I|| = sup
| I [ (ua (£) 11 (£)) T || o 720 [l (u1(t), 11 (£)) T [|oo
_ _ T
_ sup 100, z11(t — <) wllT(t)) [l oo
(1 (£),11 (£)) T || o 0 [ (u1 (), z11(£)) " [loo
< sup 411 [loos

[ (8,211 () [0 (1 (8); 211 (8)) T [0

by the mean value theorem.

To estimatg|i11]| -0, rewrite the plant: as

21 = Dxy + Jysinxy + Jouq, xl(O) =0 (8.48)

-2 1 1 0
€Tl = o ’ D= ) Jl = ) J2 =
X192 -1 0 0 1

It can be verified thatD is Hurwitz, and the two eigenvalues arel. Hence, there exists a
constand* such that

where

HeDtH < b*ef%t
Further, we rewrite8.48) as the integral equation
t
x1(t) = / eD(t_T)(Jl sinz1(7) + Jouy (7)) dr (8.49)
0
So,

t
J1lloo < / 1Py sin 1 + Jous oodr
0

t
< / b= 20| (sin w1, ur) 7 [loodr
0

< 26" | (u1, 211)" oo (8.50)
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since|sin x| < |x11|. Therefore, from the plar¥, we obtain

211100 < [1%1 |00
< IDI[z1]loo + [|J1 sin 211 + Joui [|co
< (26" D)l + 1)l (u1, 211) oo

=o(u1,211)" ||

where
o=2"||D|+1
is a positive constant.
Hence
@ —1I]| <o¢

By the definition of directed gap, we obtain that

-

o(%,%1) < og
On the other hand, we know that if
52,3 < 1
y~1) > 7
(RSNl

then the closed-loofX;, Z] is stable. Hence, we obtain that if

<1
o[yl

then the closed-loop>, =] is stable, that is, if the time delay is less than some computable
quantity?, the controller designed for the nominal plant is able to stabilize the closed-loop with

the presence of time delay.

So far, we have studied robust backstepping for state feedback and output feed back control. In

the next chapter, we will consider the robustness of high-gain observer designs.

®The norm||TLu, /x|| can estimated by following the proof of Theorem 8.5.



Chapter 9

Robust High-gain Observer Designs

When the high-gain observer is applied to output feedback, it is required that the high-gain factor
e is small enough. This results in the concern that the robustness to loop disturbances and plant
perturbations for this control design may be sensitive Bnd may degrade avecomes small.

Indeed it is believed that the high-gain observer design is sensitive to loop disturbances and
plant perturbations. But it is surprising that the simulation resuli§7hghow that the high-gain
observer design exhibits almost the same level of degradation as other designs in the presence
of disturbances. To date, there are no results about the robustness of high-gain designs.

In this chapter, we consider the standard feedback configuratiBrGinre 6.1, and employ an
amended high-gain observer design to design a controller, and prove the controller is robust to
disturbances and small plant perturbations, and not sensitiweptovidedthe initial error is

zero. For these results, the plant is restricted to have a matched, globally Lipschitz nonlinearity
depending on the output only, hence the results in this chapter only represent a preliminary
investigation into the robustness of high-gain observer designs.

9.1 Problem Formulation

To investigate the robustness of high-gain designs to loop disturbances and plant perturbations,
we consider a nonlinear nominal plant in normal form

E()): du=a441), 1<i<n-—1 (9.1a)
B =u1+o(y), x(0)=2y, 1<i<n (9.1b)
Y1 =1 (9.1c)

where, for simplicity, we assume: R — R is globally Lipschitz continuous, ang(0) = 0.

109
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We first rewrite the system as

S(aY): i1 = Az + Blp(y) 4 w1),  21(0) = af (9.2a)
y1 = Cxy (9.2b)
where
0 0 0 I11 37(1)1
00 1 0 _ . 0
. 12
A= . , B=|"1,21= = .12
1 0 (')
000 -~ 00 L Tin Tin
and
C - (17 07 10)

We consider the standard feedback configuratiofiBurE 6.1. We first design an output
feedback controlleE : ys — us, Which is robust to loop disturbances, then we prove this
controller has a non-zero gap metric margin to any plant perturbations.

We will consider the signal spaces
U=Y=L®R")

then the output-feedback form plaxitz{) mapsiss, € L°(R*) into L*°(R™).

9.2 Control Design

We first amend the standard high-gain observe48y45, 3] so that it can be used for our design
purpose. Here, we define a high-gain observer as

xiz = Aly — H(y2 - @2) + BkzZo, fg(O) = .fjg (9.3a)
g2 = Cy (9.3b)
where
B
b
H=| ¢ (9.4)
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and
k= (ki, -, kn)
is chosen such that + Bk is Hurwitz.
Then we define a controller as
Ene(®9) : ug = o(—y2) + ko (9.5a)
Iy = Ay + H(ya — §2) + Bkia, i2(0) (9.5b)
g2 = Cl9 (9.5¢)

9.3 Robustness Analysis

First we prove a lemma about the estimate of the observer error.

Lemma 9.1. Letx; be the state of the plant i®(2), andZ, be observer state ir9(3), and let

T =x1+ 2o

be the perturbed observer error. Then there exist positive condiamtd 3 such that

1Z]l0e < =7 11Z°11 + €81l (o, y0) " lloo

6n—l

Proof. The closed-loopX(x?), Zp () (29)] can be written as

T = Az + B(cp(yl) — 90(—y2) — ko + U())

iy = Alg + H(yo — (11 + £21)) + Bkio

Write

jle—’_:%?) ji:ﬂfli+i‘2i,i:1,2,"',n

then, from above two equations, we obtain
&= A% — H¥1 + Hyo + B(o(y1) — o(—y2) + uo)

Let

(9.6)
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and we write®.6) as

e = D&+ e(Eyo + Blop(y1) — ¢(—v2) + uo)) 9.7)
where
D=A—-EC
and
b1
s | 2
Bn

It can be verified that the matri® is Hurwitz ( see Chapte?).

By a time transformation = er, (9.7) can be written as

K De-+ ey + Blotun) - o) +w)) ©8)

Solving 0.8), we obtain

£r) =P e [P (Byo(s) + B(o(n() — o~ 12(5)) +u0(s) ) ds (99

0

where

Since D is Hurwitz, all the real parts of the eigenvaluesiofare negative. We take a positive
constanj: such that- is greater than all the real parts of the eigenvalug3,dhen there exists
a positive constarit such that

7| < be™hT
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On the other hand, by Lipschitz condition there exists a positive conktanth that

lo(y1) — e(—y2)| < Lly1 + y2| = L|yo|

Sincee is a small constant, without loss of generality, we assumectkatl. Therefore, from

(9.9), we obtain

le() < 1€ NPT +6/0 1”1 (1Eyoll + (le(y1) = e(=y2)ll) + luoll) ds

IN

€2 ]1be™"" + 6/0 be T (B + L)llyolloo + luolloo)ds

b be
— [12°]] + E((HEH + L) [lyollso + lluolloo)

en

1200 + €81 (o, o) lloc

—'en—l

where
bv/2
8= ‘M[ max{|| E|| + L,1}
Therefore
b .
I€lloc < =i 1Z°]| + €8]l (0, y0) " [l
Again frome < 1, and
‘%iZEniigi? 7::1,2,"',71

we obtain||z|| < ||£]], further

1Zlloo < 1l€lloc < =7 12°11 + €l (w0, 0) " lloo

6nfl
and the proof is complete. O

Now we state and prove the main result of this chapter.

Theorem 9.2. Let the plant(z9) and controller=Z . (49) be defined byg.1) and ©.5). Then

1. For anye < 1, there exists a continuous functiop : R3. — [0, +o0) such that for all

(uo, yo) T €L>®(RT)x L>(R™)
[t y0) ™| < ve ([ Cuos w0) ™| . » ol 129]]oo) (9.10)

that is, the closed-loof®(2), Zp (. (23)] is gf-stable.
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2. If 2§ = 29 = 0, then for any < 1, there exists a positive constditwhich is independent

of ¢, such that for all(ug, )T € L (R*) x L= (R*)

190" o < Tl (o, )| (9.11)

o0

that is, the closed-loof(0), =(0)] is stable.

Proof. Let () be the solution of the equation
(A+ Bk)'Q+ Q(A+ Bk) = —
and consider the Lyapunov function
V(zn, -, 21n) = 2] Qu (9.12)
then along the trajectories of the closed-loop, we have

V =il Quq + 21 Qin
— (Az1 + B(o(y1) +w)) ' Qur + 27 Q (A1 + B(p(y1) + 1))
= <A;c1 + B(p(y1) +uo — u2))TQx1 +27Q <Aw1 + B(p(y1) +uo — UQ))
::<Aw1+Zﬂw@n)+uo—kig—@Qﬂnn)TQxl
+m{Q<Am;+B@%m)+uofki27@0ﬂmn)
=21 (A+ Bk)"Q + Q(A+ Bk))a1 + 2B Q1 (p(y1) + p(—y2) — kZ + uo)
= =221 1 + 2BT Q1 (0(y1) — o(—y2) — ki + uo)

= 2|21 + 2B Qz1 (¢(y1) — p(—y2) — ki + up)

Let
Q = {dij}nxn
and
@ = max {|q;l}
then

BTQz1 < g1 ||
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On the other hand, from the Lipschitz condition and Len$hiawe obtain

o(y1) — p(—y2) — kT + uo

<L{[golloo + [IElIZ]lco + luollo
b

6nfl

<1V (0, 30) e + 1] ( 1% + 65!\(UO7y0)T||oo>

*

o* - .
<= 1200+ 571 (w0, y0) e
€

where
| = max{L, 1}
b* = [[k[|b
5" =12+ k|8

ande is assumed to be smaller thanHence

*

- bt .
257 Qa1 (pln) ~ (o) — K& +10) < 201 12°0 + 7o ) )

Therefore

V = 2|21 + 2BTQux1 (0(11) — o(—y2) — ki + uo)

b - "
< a1l = llal® + 2q1 <€n_1 12°] + 8 II(uO,yo)THoo> 1]

By Young's Inequality, we obtain that

) b . 2
V<l + el + 61 o) )

Define a compact set as follows

*

b ~ *
foull < an (g 180 + 6" o) ) |

R:{xleR”

thenV decreases monotonically outsiBe Hence

*

Vr(0) < max { V), sup {Vellanl = (2 + 570wl )
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On the other hand,
MQ)z1]* < V(1) < MQ) =1 ]1?

and
V(0) < MQ) a8
Therefore
A = b*
1 oc < max {\/ St /3@ (2 +ﬂ*<uo,yO>Too)}
Write

9(p,q;r) = max {\/ iggir RYRN(®) (;ilq + ﬁ*p) }

then the above inequality can be rewritten as
T ~
1 ]loo < g (Il (20, 50)" lloos 12°]], [[21])
Hence

ly1llco = [I711 00

< [l [loo

< g (II(u0, 50) " llso, 112°11, 1251])

Next we estimate:;. First

Ul = uUg — U
= ug — ¢(—y2) — ki
=ug + (Y1) — o(=y2) — k(w1 + T2) — ¢(y1) + k1

=uo + ¢(y1) — o(—y2) — kT — p(y1) + kxy
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Note thaty is Lipschitz, andp(0) is zero, hence

[urlloe < fluolloo + [l (y1) = ©(=42)lloo + Kl Z]loo + (Y1) lloo + IE[llz1 oo

< luolloo + Lllyr + y2lloo + 1kl Z[loo + Lllyrlloo + lIF[llz1]loo

< llwoloo + llyolloo + %] ( 1]+ emuuo,yo)Tuoo)

Enfl

+Lg ([l (u0,30)" oo, 12°1 12311) + lIEllg (1o, %0)" oo, 12°], 1271))

< 12/, 30) 1 + 1] ( 1% + 65!\(UO7y0)Tlloo>

6nfl

+ (L + [1KlDg (110, y0) lloos 12°1], ll221)

Write

bp.a.7) = VB4 8] a4 9) + (L + [ElDg ()

then we obtain

Juilloo < R (1 (10, 50) [loos 120, 122]))
where we again have used 1.

Therefore, write

NI

Ye(p,a,7) = (9(p.q,7)* + h(p,q,7)?)

then we have built up the following inequality

N|=

1 Cur, y1) oo = (lun 3 + lluall3)
1
- 2 N 2\ 2
< (g(l!(Uo,yo)THoo,Hwollallw?\l) + B ([[ (w0, y0) lloos 112°1], ll21) )
= e (I (0, 90) " loos 12°]1; l12311)
that is, the closed-loop is gf-stable.

If 20 = 0 andz) = 0, thenz® = 0. From the definitions of functiongandh

9(p,0,0) = 1 5"\/MQ)p
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hence
h(,0,0) = (12 + K8 + (L + [IH)g(p,0,0)
— (W + KB+ (L + [kl)as6p
= (V3 ks + 2+ KD A@) »
and

Ye(p,0,0) = (g(p,0,0)? + h(p,0,0)?)?

_ ((mﬁ* ;\(Q)p>2+ <<z\/§+ 1E]16 + (L + Hk”)Q1ﬂ*m> p>2)

1
2

N
(@5 AQ) + (zﬂ I8+ (L + HM!)%&*\/MQ)) ) p

Let
2\ 2
_ <(q?(ﬁ*)2X(Q) n (me Kl13 + (L + IIkII)mﬁ*\//_\(Q)) )

then, it follows that'®.11) holds, and” is independent of. O

A robust stability result can be given as follows.

Theorem 9.3. Let the plan®:(z?) and controller= (29) be defined byd,1) and ©.5). Then

there existd” > 0 such that if a plant:; satisfies

(9.13)

Mag all <T ) (9.14)

Proof. By Theoren.2, we have shown that there exigts> 0 such that

[Tagynll <T

Then, if
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it holds that
- 1
0(P,P) < ——
1Ty /]l

Hence, by Theorei6i.g€in Chapte(6, the closed-loop>;, =(0)] is stable, and9,14) holds. [
Sincel is independent of < 1, the allowed plant margin is not sensitive d@ase — 0.

However, it is very important to observe that these results depends heavily on the assumption
that there is no initial observer error.

The bounds obtained i®(10) are sensitive to smadl and so one would expect that any robust
stability result for non-zero initial conditions will indicate a sensitivityeto 0.
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Conclusions and Future Work

We summarize the results obtained in this thesis and give some possible areas for future work.

Partll Through the comparison of performances Ki¢K andKhalil designs, we have estab-
lished the following results.

e For output feedback system, the performanc&KKK design is sensitive to the initial
condition of the observer. The performance of Ki&K design is not uniformly bounded
in the initial error between the initial condition of the state and the initial condition of the
observer. When the initial error gets large, the performance gets large. Whereas, for the
Khalil design, for any initial error, by choosing small high-gain factor, we can design a
globally bounded controller, achieving uniformly bounded performance. Therefore, if the
initial error is large or in the case that we have poor information for the initial condition
of the state, th&halil design has better performance thankiK design.

e For parametric output feedback system, the performance diiktiedesign is indepen-
dent of the a-priori estimate bound of the uncertain parameter. When the a-priori estimate
becomes conservative the performance remains uniformly bounded. Whilst, Kdwalie
design, the performance is dependent on the saturation levels for the controller and the
adaptive law, that is dependent on the a-priori estimate bound of the uncertain parameter,
and the performance becomes large as the a-priori estimate becomes conservative. Hence,
if we have poor information for the unknown parameter and the a-priori estimate bound
is conservative, thEKK design has better performance thanklmalil design.

The primary contribution of this part is to provide rigorous statements and proofs of the intu-
itively reasonable trade-offs in performance between the differing classes of designs. The results
have been expressed in qualitative terms only, the purpose of the thesis is to illustrate the asymp-
totic differences between the designs. It should also be noted that the results are asymptotic in
nature, that is they require some parameter (either an initial condition or an uncertainty level)
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to be large in order to make the required comparison. Of course, in practice these parame-
ters cannot be arbitrarily large without causing the control to run into physical limits. A more
guantitative approach is challenging, as achieving tight bounds on non-singular performance is
difficult. This is an interesting avenue for future research.

Partlll Within the framework of nonlinear gap metric, we have established the following re-
sults.

e Following the backstepping design approach, we have built up a design procedure to de-
sign a controller for plant in strict-feedback form. This controller is robust to input and
measurement disturbances and plant perturbation. The controller achieves gain-function
stability for the plant with input and measurement disturbances. If the initial states are
zero, the controller achieves stability for the plant with input and measurement distur-
bances, and achieves stability for any perturbed plant with input and measurement distur-
bances if the gap metric between the plants and the strict-feedback plant is less than some
constant.

e We have established a robust backstepping design procedure for a nominal plant in out-
put feedback form. This output-feedback controller is robust to input and measurement
disturbances and plant perturbations within the framework of nonlinear gap metric.

If the nominal plant nonlinearities are locally Lipschitz continuous, the controller achieves
local gain-function stability for the plant with input and measurement disturbances; fur-
ther, if the initial states are zero, the controller achieves local stability for the plant with
input and measurement disturbances, and achieves stability for any perturbed plant with
input and measurement disturbances if the gap metric between the plant and the output-
feedback plant is less than some constant.

If the nominal plant nonlinearities are globally Lipschitz continuous, the controller achieves
global gain-function stability for the plant with input and measurement disturbances; fur-
ther, if the initial states are zero, the controller achieves global stability for the plant with
input and measurement disturbances, and achieves stability for any perturbed plant with
input and measurement disturbances if the gap metric between the plant and the output-
feedback plant is less than some constant.

e We have developed a robust high-gain observer design procedure for the nominal plant
in output feedback normal form. The controller achieves gain-function stability for the
plant with input and measurement disturbances. If the initial states are zero, the controller
achieves stability for the plant with input and measurement disturbances, achieves sta-
bility for any perturbed plant with input and measurement disturbances if the gap metric
between the plants and the strict-feedback plant is less than some constant. The allowed
plant perturbation margin is bounded independently of the high-gain factor.

The contributions of this part is to show that by proper amendments of designs, we achieve
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the robustness of backstepping and high-gain designs. For the amended high-gain designs, the
robust stability margin for plant perturbations is independent of the high-gain factor.

This thesis therefore represents the start of an approach to apply recent operator based techniques
to address long-stability robustness questions in constructive nonlinear control. The study of
performance of control designs for nonlinear systems is largely an open field in control theory,
especially for output feedback designs. There are still many problems which need to be studied.
Next we list some of the possible topics for future work.

Topics related to Palt

e For high dimensional output feedback systems, to show that observer backstepping design
has better performance in the situation whigns small to that whe is large.

e To compare the performance of adaptive observer backstepping design with high-gain
observer design for a system with uncertain parameters and nonlinearities dependent on
rather than only dependent on the outputWhen the bound for the uncertain parameters
becomes large it is anticipated that the adaptive observer backstepping design is superior
to the high-gain observer design.

e To study the performance of other output feedback designs and compare them. For ex-
ample, Khalil B7] used simulation to compare the performance of a variety of different
output feedback nonlinear adaptive controllers, we may compare those techniques analyt-
ically.

Topics related to Palft:

e To construct semi-global results under the locally Lipschitz assumption on the nonlinear-
ities of the systems, possibly by designing nonlinear controllers.

e To calculate gap metric distances for a variety of plant perturbations other than time delay,
to widen applications, see, e.(34]/35].

e To study how to choose the gains in the controllers to optimize the robustness margins.

e To compare th&KKK andKhalil designs in the framework of gap metric, e.g., compare
the two designs by comparing their robustness margins.

e For the plant in normal form, which the nonlinearity depends on all the states other than
the output, design a high-gain observer controller in the framework of gap metric.

e To investigate the sensitivity of the robustness margin in high-gain observer designs to the
high-gain factor, in the presence of initial observer errors.



Bibliography

[1] M. Arcak and P. Kokotovi, Redesign of backstepping for robustness against unmodelled
dynamics International Journal of Robust and Nonlinear Conirb2001), no. 7, 633—
643.

[2] M. Arcak, M. Seron, J. Braslavasky, and P. KokofguRobustification of backstepping
against input unmodeled dynamid&EE Transaction on Automatic Contréb (2000),
no. 7, 1358-1363.

[3] A. Atassi and H. Khalil A separation principle for the stabilization of a class of nonlinear
systemslEEE Transactions on Automatic Conted (1999), no. 9, 1672-1687.

, Separation results for the stabilization of nonlinear systems using different high-
gain observer designsystems & Control Letter39 (2000), 183—-191.

[4]

[5] G. Bastin and G. Campiomndirect adaptive control of linearly parameterized nonlinear
systemsProceedings of 3rd IFAC Symposium on Adaptive Systems in Control, and Signal
Processing (Glasgow, UK), 1989.

[6] S. Battilotti, A unifying framework for the semiglobal stabilization of nonlinear uncertain
systems via measurement feedbadEEE Transactions on Automatic Contd6 (2001),
no. 1, 3-16.

[7] F. Beleznay and M. Frencljverparameterised adaptive controllers can reduce nonsingu-
lar costs Systems & Control Letter48 (2003), no. 1, 12-25.

[8] W. Bian and M. FrenchCoprime factorization and gap metric for nonlinear systems
Proceedings of 42nd IEEE Conference on Decision and Control (Maui, Hawaii, USA),
December 2003, pp. 4694—-4699.

, Graph topologies, gap metrics and robust stability for nonlinear syst&i#sv
Journal of Control and Optimization (Submitted).

[9]

[10] C. Byrnes and A. IsidoriNew results and examples in nonlinear feedback stabilization
Systems & Control Letter$2 (1989), 437—442.

123



BIBLIOGRAPHY 124

[11] G. Campion and G. Bastilndirect adaptive state-feedback control of linearly parameter-
ized nonlinear systemmternational Journal of Adaptive Control and signal Proceséing
(1990), 345-358.

[12] J. Craig,Adaptive control of mechanical manipulatpReading, Mass: Addison-Wesley,
1988.

[13] J. Doyle, B. Francis, and A. Tannenbaufagedback control theoryMacmillan Publishing
Co., 1990.

[14] A. El-Sakkary, The gap metric: Robustness of stabilization of feedback syst&BE
Transaction on Automatic Contr8D (1985), no. 3, 240-247.

[15] F. Esfandiari and H. KhalilQutput feedback stabilization of fully linearizable systems
International Journal of Contr&l6 (1992), no. 5, 1007-1037.

[16] K. Ezal, Z. Pan, and P. KokotayiLocally optimal and robust backstepping desihEE
Transaction on Automatic Contrdb (2000), no. 2, 260-271.

[17] R. FreemanGlobal internal stabilizability does not imply global external stabilizability
for small sensor disturbancedEEE Transactions on Automatic Conted) (1995), no. 12,
2119-2122.

[18] , Integrator backstepping for bounded control and control ratEEE Transactions

on Automatic Contro#3(1998), no. 2, 258-262.

[19] R. Freeman and P. KokotdyiBackstepping design of robust controller for a class of non-
linear systemdaProceedings of IFAC Nonlinear Control Systems Design Symposium (Bor-
deaux, France), IFAC, June 1992, pp. 307-312.

[20] , Design of ‘soft’ robust nonlinear control lawsAutomatica29 (1993), no. 6,

1425-1437.

[21] R. Freeman and P. Kokot@/i Global robustness of nonlinear systems to state measure-
ment disturbancedroceedings of 32nd IEEE Conference on Decision and Control (San
Antonio, Texas), vol. 2, December 1993, pp. 1507-1512.

[22] R. Freeman and P. KokotavyiBackstepping design with nonsmooth nonlinear;tiwo-
ceedings of IFAC Nonlinear Control Systems Design Symposium (Tahoe City, California),
IFAC, June 1995, pp. 483-488.

[23] , Robust nonlinear control design: State-space agydpunov techniqueSystems

& Control: Foundation & Applications, Birkéwser, 1996.

[24] R. Freeman, M. Kristi, and P. Kokotowi, Robustness of adaptive nonlinear control to
bounded uncertaintie®\utomatioca34 (1998), no. 10, 1227-1230.

[25] M. French,Adaptive control of functionally uncertainty systeif.D. thesis, University
of Southampton, 1998.



BIBLIOGRAPHY 125

[26] , An analytical comparison between the nonsingular quadratic performance of
robust and adaptive backstepping desigiiEE Transactions on Automatic Contrdf

(2002), no. 4, 670—675.

[27] M. French, Cs. Szepeax, and E. RogerdJncertainty, performance, and model depen-
dency in approximate adaptive nonlinear contidEE Transactions on Automatic Con-
trol 45(2000), no. 2, 353-358.

[28] ____, LQ performance bounds for adaptive output feedback controllers for functionally
uncertain system#\utomatica38(2002), no. 4, 683—-693.

[29] , Performance of nonlinear approximate adaptive controll&ey, 2003.

[30] J. Gauthier, H. Hamouri, and |. Kupk&bserver for nonlinear systemBroceedings of
the 30th IEEE Conference on Decision and Control (Brighton, England), IEEE, December
1991, pp. 1483-1489.

[31] J. Gauthier and I. Kupkéseparation principle for bilinear systems with dissipative drift
IEEE Transactions on Automatic Cont®7 (1992), no. 12, 1970-1974.

[32] , Observerty and observer for nonlinear systei®AM Journal on Control and

Optimization32(1994), no. 4, 975-994.

[33] T. Georgiou,On the computation of gap metriSystems & Control Letterl (1988),
no. 4, 253-257.

[34] T. Georgiou and M. Smith\letric uncertainty and nonlinear feedback stabilizatieeed-
back Control, Nonlinear systems, and Complexity (New York) (B. Francis and A. Tannen-
baum, eds.), Lecture Note in Control and Information Science, no. 202, Springer-Verlag,
1995, pp. 88-98.

[35] , Robustness analysis of nonlinear feedback systems: An input-output approach

IEEE Transactions on Automatic Conte (1997), no. 9, 1200-1221.

[36] A. Isidori, Nonlinear control system@nd ed., Springer-Verlag, New York, 1989.

[37] H. Ito and R. Freemarfitate-dependent scaling design for a unified approach to robust
backsteppingAutomatica37 (2001), no. 6, 843—-855.

[38] Z. Jiang and L. Pralyiterative designs of adaptive controllers for systems with nonlinear
integrators Proceedings of 30th IEEE Conference on Decision and Control (Brighton,
UK), 1991, pp. 2482-2487.

[39] I. Kanellakopoulos, P. Kokoto&j and A. Marino,Indirect adaptive output-feedback con-
trol of a class of nonlinear systernRroceedings of the 29th IEEE Conference on Decision
and Control (Honolulu, Hawaii, USA), December 1990, pp. 2714-2719.

[40] , An extended direct scheme for robust adaptive nonlinear comttgbmatica27

(1991), no. 2, 247-255.




BIBLIOGRAPHY 126

[41] 1. Kanellakopoulos, P. Kokotogj and A. MorseFoundation of adaptive control-adaptive
feedback linearization of nonlinear syster8pring-Verlag, Berlin, 1991.

[42] , Systematic design of adaptive controllers for feedback linearizable sy$tBais

Transaction on Automatic Contr8b(1991), no. 11, 1241-1253.

[43] , Adaptive output-feedback control of systems with output nonlineari€=E

Transaction on Automatic Contr8l7 (1992), no. 11, 1266-1282.

[44] T. Kato,Perturbation theory for linear operatoy$pringer-Verlag, New York, 1966.

[45] H. Khalil, Adaptive output feedback control of nonlinear systems represented by input-
output modelslEEE Transaction on Automatic Contrél (1996), no. 2, 177-188.

[46] , Nonlinear system®nd ed., Eaglewood Cliffs, HJ Prentice-Hall, 1996.

[47] , Comparison of different techniques for nonlinear output feedback adaptive con-
trol, Proceedings of the 38th Conference on Decision & Control, Phoenix, Arizona, USA,

December 1999.

[48] H. Khalil and F. EsfandiariSemiglobal stabilization of a class of nonlinear systems using
output feedbacKEEE Transaction on Automatic Contr®8 (1993), no. 9, 1412-1415.

[49] H. Khalil and A. SaberiAdaptive stabilization of a class of nonlinear systems using high-
gain feedbacklEEE Transaction on Automatic Contrd2 (1987), no. 11, 1031-1035.

[50] P. Kokotovi, Foundation of adaptive controSpringer-Verlag, Berlin, 1991.

[51] P. KokotovE and H. Sussmani, positive real condition for global stabilization of nonlin-
ear systemsSystems & Control Letter$3(1989), no. 2, 125-133.

[52] A. Krener and A. IsidoriLinearization by output and non-linear observe&ystems &
Control Letters3 (1983), no. 1, 47-52.

[53] , Linearization by output injection and non-linear obserye®ystems & Control

Letters3 (1983), no. 1, 47-52.

[54] M. Kristi€, I. Kanellakopoulos, and P. KokotdyiAdaptive nonlinear control without over-
parametrization Systems & Control Letter$9 (1992), 177-185.

[55] , Nonlinear and adaptive control desighst ed., Wiley, New York, 1995.

[56] M. Krsti¢, Adaptive nonlinear controlPh.D. thesis, University of California, Santa Bar-
bara, 1994.

[57] C. Lee,Robust repetitive control and application taGD player, Ph.D. thesis, University
of Cambridge (Trinity Hall), 1998.

[58] R. Marino,High-gain feedback in nonlinear control systenmernational Journal of Con-
trol 42 (1985), no. 6, 1369-1385.



BIBLIOGRAPHY 127

[59] R. Marino and P. TomefGlobal adaptive observer and output-feedback stabilization for a
class of nonlinear systemks The Book:Foundation of Adaptive ControKokotovic ed.,
Springer-Verlag, Berlin, 1991, pp. 455-493.

[60] , Global adaptive output-feedback control of nonlinear systems, part 1: Linear

parameterizationlEEE Transactions on Automatic Cont@8 (1993), 17-32.

[61] , Robust stabilization of feedback linearizable time-varying uncertain nonlinear

systemsAutomatica29 (1993), no. 1, 181-189.

[62] F. McCaughan and G. GoodwiAdaptive computed torque control for rigid link manipu-
lators, Systems & Control Letters (1988), 9-16.

[63] R. Murray, Future directions in control, dynamics, and systems: Overview, grand chal-
lenges, and new courselSuropean Journal of Control: Fundamental Issues in Coftrol
(2003), no. 2-3, 144-158, Special Issue.

[64] R. Ortega and M. Spond\daptive motion control of rigid robots: A tutorighutomatica
25(1989), no. 6, 877-888.

[65] L. Praly and Z. JiangStabilization by output-feedback for systems W&lS inverse dy-
namics Systems & Control Letterd1 (1993), no. 1, 19-33.

[66] Z. Qu, Robust control of nonlinear uncertain systems under generalized matching condi-
tions Automatica?29 (1993), 985—-998.

[67] H. Rodriguez, A. Astolfi, and R. OrtegAdaptive partial state feedback stabilization of a
class of electromechanical systems via immersion and invarj@roeeedings of Amer-
ican Control Conference, 2003 (Denver), vol. 4, American Control Society, June 2003,
pp. 3293 — 3298.

[68] C. Rohrs, L. Valavani, M. Athans, and G. SteRgbustness of continuous-time adaptive
control algorithms in the presence of unmodelled dynamiEEE Transaction on Auto-
matic Control30(1985), no. 9, 881-889.

[69] A. Saberi, P. Kokotow, and H. Sussmanglobal stabilization of partial linear composite
systemsSIAM Journal of Control and Optimizatia28 (1990), no. 6, 1491-1503.

[70] A. Saberi and P. Sannut@bserver design for loop transfer recovery and for uncertain
dynamical system$EEE Transaction on Automatic Contr@b (1990), no. 8, 878-897.

[71] A. Sanei and M. FrenchiA non-singular performance comparison between two robust
adaptive control design$roceedings of 40th IEEE Conference on Decision and Control
(USA), IEEE, 2001, pp. 1249-1254.

[72] , Towards a performance theory of robust adaptive contraiernational Journal

of Adaptive Control and Signal Processing (To appear 2004).



BIBLIOGRAPHY 128

[73] W. Schmitendorf and B. BarmistNull controllability of linear systems with constrained
controls SIAM Journal of Control and Optimizatiat8 (1980), 327-345.

[74] J. Slotine and K. HedriclRobust input-output feedback linearizatjomternational Journal
of Control57(1993), 1133-1139.

[75] J. Slotine and W. LiOn the adaptive-control of robot manipulatptaternational Journal
of Robotic Research (1987), no. 3, 49-59.

[76] , Adaptive manipulator control: A case stydeEE Transaction on Automatic

Control33(1988), no. 11, 995-1003.

[77] E. SontagAn algebraic approach to bounded controllability of linear systeinterna-
tional Journal of ContraB9(1984), no. 1, 181-188.

[78] H. Sussmann, E. Sontag, and Y. YaAggeneral result on the stabilization of linear system
using bounded control$EEE Transaction on Automatic Contr@® (1994), no. 12, 2411-
1425.

[79] D. Taylor, P. Kokotovt, R. Marino, and |. Kanellakopoulogdaptive regulation of non-
linear systems with unmodelled dynamitSEE Transaction on Automatic Contr84
(1989), no. 4, 405-412.

[80] A. Teeland L. PralyOn output-feedback stabilization for systems WaBinverse dynam-
ics and uncertaintiedProceedings of the 32nd IEEE Conference on Decision and Control
(San Antonio, TX), December 1993, pp. 1942-1947.

[81] , Global stabilizability and observability imply semi-global stabilizability by out-

put feedbackSystems and & Control Lett@2 (1994), no. 5, 313-325.

[82] , Tools for semiglobal stabilization by partial state and output-feedpb&tAM

Journal on Control And Optimizatiod3 (1995), no. 5, 1443-1448.

[83] J. Tsinias,SufficientLyapunov-like condition for stabilizatiorMathematics of Control,
Signal and Systens(1989), 343-357.

[84] M. Vidyasagar,The graph metric for unstable plants and robustness estimate for feedback
stability, IEEE Transaction on Automatic ContraC-29 (1984), no. 5, 403—-418.

[85] , Control system synthesis: A factorization approddid, MIT Press, Cambridge,

1985.

[86] G. Vinnicombe Uncertainty and feedback:, loop-shaping and-gap metri¢ Imperial
College Press, London, 2001.

[87] C. Xie, Comparative performance of adaptive observer backstepping and high gain ob-
server control designsUKACC Control 2002 (Sheffield), United Kingdom Automatic
Control Council, September 2002, pp. 59-63.



BIBLIOGRAPHY 129

[88] C. Xie and M. FrenchGap metric robustness of a backstepping control dedtynceed-
ings of the 42nd IEEE Conference on Decision and Control (Hawaii, USA), vol. 5, De-
cember 2003, pp. 5180-5184.

[89] , A performance comparison between backstepping and high-gain observer con-
trol designs Proceedings of European Control Conference 2003 (Cambridge, UK), IEE,

September 2003, CD Room.

[90] , A performance comparison between two design techniques for nonlinear output

feedback contrglinternational Journal of Contr@l7 (2004), no. 3, 264-276.

[91] G.Zames and A. El-Sakkarynstable systems and feedback: The gap md®rizceedings
of Allerton Conference (Allerton), October 1980, pp. 380-385.



