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Abstract 
 
We develop a new model-based extraction process 

guided by biomechanical analysis for walking people, and 
analyse its data for recognition capability. Hierarchies of 
shape and motion yield relatively modest computational 
demands, while anatomical data is used to generate shape 
models consistent with normal human body proportions. 
Mean gait data is used to create prototype gait motion 
models, which are adapted to fit individual subjects. 

Our approach is evaluated on a large gait database, 
comprising 4824 sequences from 115 subjects, 
demonstrating gait extraction and description capability 
in laboratory and real-world capture conditions. 
Recognition capability is illustrated by an 84% CCR in 
laboratory conditions, which is reduced for real-world 
(outdoor) data. Preliminary results from a statistical 
analysis of the extracted gait parameters, suggest that 
recognition capability is primarily gained from cadence 
and from static shape parameters, although gait is the cue 
by which these are derived. 
 
1. Introduction 
 

Gait may be defined as the individual pattern of 
movement produced as a person walks. When all gait 
parameters are considered, this pattern is sufficiently 
unique for each individual to be employed as a biometric 
[1, 2]. Gait analysis is usable from a distance and does not 
require the subject to be aware of or cooperate with its 
use, making it particularly valuable in surveillance, or 
other applications where non-contact operation is required 
[3]. 

Most existing approaches to gait analysis are data-
driven, typically using a person’s silhouette or features 
derived from it as the basis for recognition [4, 5, 6, 7, 8, 9, 
10]. This methodology has many advantages, chiefly of 
speed and simplicity, but has the disadvantage that 
silhouette dynamics are only indirectly linked to gait 
dynamics. It is difficult to infer the importance of different 
gait components from silhouette dynamics, and it is 
unclear how a silhouette-based feature set could be 
normalised for noise, variations in clothing and other 
dependencies. 

Model-based approaches incorporate knowledge of the 
shape and dynamics of human gait into the extraction 
process [11, 12, 13, 14]. Using a model ensures that only 
image data corresponding to allowable human shape and 
motion is extracted, reducing the effects of noise. This 
also means that gait dynamics are extracted directly by 
determining joint positions, rather than inferring dynamics 
from other measures. An indirect benefit is that a 
parametric gait model enables us to measure the relative 
importance of different components of gait in the 
recognition process. 

However, the use of a parametric model introduces its 
own problems. Success in recognition is dependent on the 
gait signature being sufficiently complex to incorporate 
individual variation across the subject population, so that 
a given subject can be distinguished from all the other 
subjects under test. As gait is dependent on a large 
number of parameters (such as joint angles and body 
segment sizes), this requirement leads to complex models 
with many free parameters. Finding the best fit model for 
the subject thereby necessitates searching a high-
dimensional parameter space, with correspondingly high 
computational requirements. 

Early approaches have dealt with this problem by 
severely limiting model complexity, improving speed at 
the cost of extraction accuracy. Later solutions have often 
applied numerical optimisation and search strategies, to 
strike a balance between speed, reliability and accuracy. 
Finding the correct balance is, however, difficult. To 
reduce the computational requirements of a model-based 
approach, we employ a model hierarchy composed of 
shape and motion components. We assume that a single 
subject is present in the scene, moving at an 
approximately constant speed fronto-parallel to the 
camera, against a cluttered background. 

Motion-compensated temporal accumulation is used to 
determine bulk motion, applying anatomical constraints in 
a hierarchical fashion to extract static body segment 
parameters. The gait period is estimated by analysis of 
edge strength about the leg region, allowing us to apply 
knowledge of normal joint motion during gait to the 
subject. Heuristic search strategies are then employed to 
adapt this motion estimate to fit the subject’s unique gait 
pattern. Finally, we employ a nearest-neighbour classifier 
combined with statistical analysis to enable recognition. 



2. Gait Signature Extraction Fig. 1b demonstrates how the edges of an object at 
each frame will accumulate to a single area at the correct 
accumulation velocity, producing an average global view 
of the object. 

 
2.1. Bulk Motion and Shape Estimation 

For subjects walking fronto-parallel to a static camera, 
motion is dominated by velocity in the horizontal plane. 
This motivates a hierarchical decimation of motion, 
determining initially horizontal motion and, subsequently, 
articulated motion components. 

Each moving object in the scene will appear as a peak 
in a plot of maximal accumulation intensity against 
velocity. If the subject is the most significant moving 
object in the scene (in terms of edge strength and 
visibility), their velocity can be inferred by selecting the 
highest peak in this plot. However, for uncontrolled 
capture conditions this assumption may not hold true. 
Consequently, this measure is used as a filtering step, to 
remove velocities from consideration that do not appear 
significant or consistent. Currently a threshold is set at the 
mean of the peak accumulation intensities, typically 
removing around 75% of candidate velocities. 

Image data is pre-processed (Fig. 1a) using a Gaussian 
averaging filter for noise suppression, followed by Sobel 
edge detection and background subtraction (the 
background is computed as the temporal median of 
neighbouring frames). This removes all static objects, 
leaving only edges belonging to moving objects. 

To determine the bulk motion of the subject in the 
horizontal plane, we employ a motion-compensated 
temporal accumulation algorithm [15]. This is effectively 
the same global temporal accumulation step as in the 
velocity Hough transform [16], but without shape 
specificity: 

The remaining accumulations are evaluated using a 
combination of region-based and boundary-based 
template matching, finding the accumulation best 
matching a coarse person-shaped template. This template 
is constructed from mean anatomical data [17] scaled to 
the subject’s apparent height (Fig. 2b). ( ) ∑

−

=








−






 −+=

1

0

,
2

,
N

t
ttv dyjtNviEjiA     (1) 

 
Where Av is the accumulation for velocity v (in pixels per 
frame), Et is the edge strength image at frame t, i and j are 
coordinate indices, N is the number of frames in the gait 
sequence and dyt is the y-displacement of the subject from 
their centre of oscillation at frame t. This final quantity is 
initially unknown and set to zero. However, after 
estimating articulated motion (Sect. 2.2), this information 
can be used to obtain an improved temporal accumulation. 

 
(a) Bounding 

region 

 
(b) Coarse shape 

estimate 

 
(c) Final shape 

estimate 

Noting that Eqn. 1 simply shifts and accumulates each 
frame, we can improve computational efficiency by first 
run-length encoding the input data. This representation is 
shift-invariant and, as runs of zero magnitude edge 
strength can simply be discarded, the order of the 
algorithm is reduced to O(V⋅E⋅N); where V is the number 
of possible velocities, E is the mean number of edge 
points in each frame and N is the number of frames in the 
gait sequence. 

Figure 2: Shape extraction hierarchy 
 
 By this process we derive an initial estimate of the 
subject’s starting position, velocity and size, sufficient for 
estimation of their gait period (Sect. 2.2). This 
information may in turn be used to predict motion in the 
vertical plane using Eqn. 6, which permits a re-estimation 
of the subject’s temporal accumulation using Eqn. 1. 

 

 
(a) Section of pre-processed 

image data 

 
(b) Global temporal 

accumulation 

To this accumulation we can apply a more accurate 
model of the subject’s bulk shape (Fig. 2c), using an 
ellipse for the torso and for the head. Four line segments 
are used to model each leg and a rectangle for each foot; 
parameters describing leg segment lengths and widths are 
initially set to fixed proportions of the subject’s height. 
The parameters describing the head and torso are 
determined separately by template matching within the 
locality of the initial segmentation, constrained by mean 
anatomical proportions: 

BIyxS TTrryxT 2),,,( +=          (2) Figure 1: Motion estimation by temporal 
accumulation 



Where TS is the score for a template with position (x,y) 
and radii (rx,ry), TI is the sum accumulation intensity 
within the template region and TB is the sum accumulation 
intensity on the template boundary. Note that TI is an 
expansion term favouring larger ellipses, and TB is 
effectively a stopping criterion. The score weighting was 
determined empirically and should not be considered 
optimal, though it performs sufficiently well here. 

Gait frequency is determined by finding the frequency 
and phase that minimises the error function given by Eqn. 
4. This minimisation can be performed very quickly for 
the typical ranges of frequency and phase expected for a 
walking person. 
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Where Xs is the energy function to be minimised, N is the 
number of frames, Rt is the normalised signal magnitude 
at frame t, As is the sinusoid amplitude (a fixed ratio of the 
signal mean magnitude), wi and φj are the proposed gait 
frequency and phase. Note that the dominant signal 
frequency is twice that of gait frequency, and a small 
constant phase shift is required to align the two sinusoids. 

Although all shape dynamics are lost in the temporal 
accumulation process, it is still possible to estimate the 
amplitude of hip rotation, which may be used to aid 
articulated motion estimation. 
 
2.2. Articulated Motion Estimation 

The motion of the leg during normal gait is periodic, 
and may be approximately modelled by a single sinusoid 
[11]. In general, motion periodicity is determined by 
measuring some quantity related to shape over time and 
analysing this signal for periodicity. Cutler et al. [18] 
present a general method for periodicity detection by 
measuring silhouette self-similarity over time, using 
autocorrelation-based analysis to extract the gait period. 
However, this method has relatively high computational 
demands, particularly for long gait sequences. Other 
common methods involve analysing periodicity in 
silhouette width or height [4, 5], which result in far lower 
computational requirements. We employ a similar 
strategy, measuring instead sum edge strength within the 
outer region of the subject’s legs over time (Fig. 3). This 
region is computed as a fixed ratio of the subject’s height, 
assuming mean stride length and leg proportions. 

We use data collected from clinical gait studies [2, 19] 
to build prototypical models for hip, knee, ankle and 
pelvis rotation. Fig. 4 shows these mean rotation models 
for a single gait cycle, from right heel-strike to right heel-
strike. 
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(a) Hip rotation 
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(b) Knee rotation 
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(c) Ankle rotation 
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(d) Pelvic list  

 

  

Figure 4: Mean joint rotation patterns 
 

Movement of the pelvis includes both axial rotation 
and list (resulting in horizontal and vertical oscillation 
respectively in the sagittal plane), but pelvic axial rotation 
is simple enough to be modelled by a single sinusoid, with 
a minimal degree of error: 

Figure 3: Gait period estimation using within-region 
edge strength measurements 

( )hpp wtAt φθ += cos)(          (5)  
The measured signal is normalised to remove major 

variations due to noise and occlusions [15]: Where θp is pelvic axial rotation, Ap is the amplitude of 
rotation (approximately 5° for normal gait), w is the gait 
frequency and φh is the starting gait phase. Although the 
magnitude of pelvic rotation is small, accounting for this 
source of variation in hip joint position can significantly 
reduce errors in the estimation of hip joint rotation. 
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Where R is the normalised signal, M is the measured 
signal and p(x) denotes the best 2nd-order polynomial fit to 
signal x, computed by least-squares regression. Using our estimates of the subject’s gait frequency and 

starting phase these models are scaled to fit the subject, 



using TCB spline interpolation [20]. This yields an initial 
estimate of the subject’s limb motion, providing a good 
basis for adaptation (Sect. 2.3). 

The vertical oscillation of the subject’s upper body is 
also modelled by a single sinusoid, with parameters 
proportional to the subject’s height and gait motion: 

( )82sin πφ ++= hyt wtAdy         (6) 

Where dyt is the y-displacement of the centre of the torso 
at frame t (as used in Eqn. 1), Ay is the amplitude of 
oscillation, w is the gait frequency and φh is the starting 
gait phase. 
 
2.3. Gait Motion Model Adaptation 

The use of mean gait models allows us to extract 
approximate joint positions for the subject, but this is not 
sufficient for recognition purposes. The estimation 
process assumes average gait motion, implying no 
individuality. To capture individual variation, adaptation 
of our mean leg motion models (Fig. 4) is required. 

However, before we can match our leg model to image 
data, it is necessary to improve our estimate of the shape 
of the subject’s leg. Our initial estimates of leg width at 
the hip, knee and ankle may not be appropriate for certain 
types of clothing (baggy trousers, shorts or skirts for 
example). An improved estimate is obtained by computing 
a line Hough transform for each frame within the upper 
and lower leg regions (above and below knee level). 
Within each Hough space we find the pair of 
accumulation peaks satisfying constraints on the expected 
rotation of the leg and the distance between the two lines 
(leg width), yielding an estimate of leg shape for that 
frame. Final estimates of leg width are computed as the 
mean of the best parameters from each frame, weighted by 
accumulation intensity: 
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Where wm is the mean width of the leg (at the hip, knee or 
ankle) over N frames, and wt and pt are the estimated leg 
width and the peak accumulation intensity respectively at 
frame t. This process yields estimates of width at the hip 
and ankle, and two at the knee (from upper leg and lower 
leg estimation), allowing for discontinuity in leg width at 
the knee (caused by a skirt or shorts). 

For the purpose of adaptation, the rotation models are 
sampled at 15 points over a single gait cycle. This choice 
is motivated by a study [21] indicating that the majority of 
gait information is contained below 5Hz, implying a 
minimum sampling rate of 10Hz. For a typical gait cycle 
duration of 1 second, 15 samples per cycle is equivalent to 
a sampling frequency of 15Hz; this leaves us some room 
for subjects with long gait cycles. 

Adaptation of the joint rotation models is performed 
via a simple iterative gradient descent procedure with 
smoothness constraints. The hip and knee models are 

adapted jointly for increased accuracy and robustness; 
ankle rotation is adapted in a subsequent stage. The left 
and right legs are assumed to move identically at a 
constant phase difference of π radians, so the same 
rotation model can be applied to both legs. This additional 
averaging reduces difficulties caused by self-occlusion of 
the subject’s legs during gait, contributing to a more 
robust extraction. 

Rotation models are adapted by adding or subtracting a 
Gaussian function to each model sample. The use of a 
Gaussian adaptation function enforces the smoothness of 
motion constraint; any change in sample magnitude 
proportionally affects neighbouring samples: 
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Figure 5: Joint 
rotation model 
adaptation by 

Gaussian addition 

 
Eqn. 8 describes the model update function applied to 

each model time instance: 
][][][' nGnn ⋅+= δθθ ,   ,   (8) Nn <≤0

}1,0,1{ −∈δ      
Where θ[n] and θ’[n] are the original and updated joint 
rotation models respectively (hip, knee or ankle), n is a 
time index, N is the number of frames and G[n] is a 
Gaussian function of fixed (small) amplitude and width, 
centred about the current sample and δ determines the sign 
of the function. The choice of δ at each sample instance is 
determined by template matching the leg shape model 
(Fig. 2c) against edge data over the whole gait sequence.
 The hip and knee joint rotations are adapted jointly, 
yielding the evaluation function: 
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Where S denotes the score for the set (δh, δk), Mt is the 
shape model at frame t given by the rotation models (θ’h, 
θ’k) and Et is the edge intensity image at frame t. The 
function match denotes the template matching operation 
summing the edge strength coinciding with the leg shape 
model over all N frames in the gait sequence. 
 This adaptation process is repeated until no sample 
instances change over the whole model, or until a 
maximum number of iterations are reached (though in 
practice this process typically converges within 10-15 
iterations). Ankle rotation model adaptation follows the 
same process as the hip and knee, without the need to 
optimise two quantities simultaneously. 



3. Results Prior to measuring recognition performance, analysis 
of variance (ANOVA) was applied to the feature vectors 
extracted for each sequence, aiming to identify which 
features best distinguish the subjects under test. The 
ANOVA f-statistic is an approximate measure of 
discriminatory capability; a high number indicates low 
intra-subject variance and high inter-subject variance. 

 
The performance of the gait extraction process was 
evaluated on the Southampton HiD database [22]. Each 
subject was filmed from a fronto-parallel viewpoint, in 
controlled laboratory conditions and in uncontrolled 
outdoor conditions. The database is encoded in Digital 
Video (DV) format at a resolution of 720x576 pixels, 
recorded at a rate of 25 frames per second with 
approximately 90 frames per gait sequence. 

 
Table 1: ANOVA analysis, indoor dataset 

 
Rank Feature F-statistic 

1 Lower knee width 249.54 
2 Ankle width 207.76 
3 Gait frequency 168.12 
4 Upper knee width 86.28 
5 Head x-displacement 77.93 

 

  

 
Table 2: ANOVA analysis, outdoor dataset 

 
Rank Feature F-statistic 

1 Lower knee width 72.26 
2 Gait frequency 58.50 
3 Ankle width 56.45 
4 Upper knee width 48.79 
5 Head x-displacement 34.92 

Figure 6: Example model extraction (indoor data) 
 

  

 
This analysis suggests that the majority of the system’s 

discriminatory capability is derived from gait frequency 
(cadence) and from some static shape parameters (head 
displacement refers to the displacement of the subject’s 
head centre from their torso centre). Of course, these 
shape parameters will be highly dependent on clothing, 
which limits the utility of performing recognition solely 
on the basis of these parameters. However, these results 
may in part explain why approaches using primarily static 
parameters [7] or cadence [4] can attain good recognition 
capability with relatively few parameters. Figure 7: Example model extraction (outdoor data) 

 
There is a significant reduction in discriminatory 

capability in features extracted from the outdoor dataset 
compared to those from the indoor dataset, resulting from 
lower extraction accuracy on this more difficult dataset. 
Despite the reduction, there is still a strong case for 
recognition potential using this data. 

Recognition performance is evaluated on a large 
database of 115 subjects, totalling 2163 indoor and 2661 
outdoor gait sequences. A 2.4GHz Pentium 4-based PC 
was used for all testing, requiring approximately 15 hours 
in pre-processing and 15 hours in gait extraction for the 
whole database, equivalent to an overall processing rate of 
around 4 frames per second. This extraction process is 
fully automated, producing a feature vector for each gait 
sequence of 63 parameters. 45 of these parameters are the 
joint rotation model samples for the hip, knee and ankle. 
The remainder are static parameters describing the 
subject’s speed, gait frequency and body proportions. The 
subject’s speed and body segment parameters are divided 
by the apparent height of the subject to make them size-
invariant (the measured size of the subject will vary 
according to their distance from the camera). 

The results of this statistical analysis were used to aid 
the recognition process by weighting each parameter in 
the feature vector by its f-statistic, thereby allowing 
parameters with better discriminatory capability greater 
influence. Cross-validation using the ‘leave-one-out’ rule 
is performed for both datasets, using a nearest neighbour 
classifier with a Euclidean distance metric. Fig. 8 shows 
the Cumulative Match Characteristic (CMC) curves for 
the indoor and outdoor datasets derived by this process. 
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Figure 8: Cumulative Match Characteristic 
 
Note that the Correct Classification Rate (CCR) is 
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 We have presented a new fully automated model-based 
method for gait extraction, based on the hierarchical 
application of mean shape and motion information and 
local adaptation. This yields fast and accurate operation 
even in relatively noisy data, and has proved capable of 
handling a large database of indoor and outdoor data, 
generating a parameterised model of an unknown subject 
suitable for recognition purposes. 
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