A Distance Based Semantic Search Algorithm for

Peer-to-Peer Open Hypermedia Systems
Jing Zhou Vijay Dialani David De Roure Wendy Hall

Department of Electronics and Computer Science

University of Southampton, Southampton SO17 1BJ, United Kingdom

Email: jz00r, vkd00r, dder, wh@ecs.soton.ac.uk
Abstract- We consider the problem of content management in dynamically created collaborative environments. We describe the problem domain with the aid of a collaborative application in Open Hypermedia Systems, which allows individual users to share their link databases, otherwise known as linkbases. The RDF specification is utilised to express and categorise resources stored in a linkbase. This paper describes a semantic search mechanism to discover semantically related resources across such distributed linkbases. Our approach differs from the traditional crawler based search mechanism since it relies on the clustering of semantically related entities to expedite the search for resources in a randomly created network and uses distance-vector based heuristics to guide the search. Our experimental results indicate that the algorithm yields high search effectiveness in collaborative environments where changes in content published by each participant are rapid and random.

Keywords: semantic search, content collaboration, peer-to-peer, application

1. Introduction

The Open Hypermedia [18] model is principally characterised by having hypermedia link information stored separately from the documents that it describes. The links are stored in linkbases. One advantage is that links can be managed and maintained separately from the documents, and that different sets of links can be applied to a set of documents as appropriate.

The development of the first Open Hypermedia System (“Microcosm” [9]) predates the Web. Subsequently, the Distributed Link Service (DLS) [4, 8] implemented the Microcosm philosophy on the Web. This was extended so that link resolution was also distributed around the Web [7], and the service paradigm now extends to recent developments such as ontology services [5].

However, the centralised DLS installation limited users to a service provider that was physically accessible and the service provider was burdened with all link service tasks requested by DLS users. A certain degree of distribution of link service components would help alleviate a single point of task load and provide more opportunities to link services. The peer-to-peer computing [12] fits well with this scenario, which enables the user to be either a link provider or a link consumer, or both.

The Semantic Web [2] augments current Web technologies by associating machine understandable annotations (a.k.a. metadata) with contents. Metadata provides an abstract representation of information and is primarily produced to facilitate inference techniques to co-relate information from different providers. This is also applicable to the resource description in Open Hypermedia Systems, where the prominent content of each linkbase can be expressed by metadata.

Semantic Web technologies are generic in their application. However, in this paper, we restrict ourselves to their application in collaborative environments, which facilitate resource sharing between dynamic collections of participants. As a participant can act both as a resource provider and a resource consumer, a peer network is constituted by collaborating entities. Resources are owned by individual participants and are subject to asynchronous updates, with a requirement to propagate updates to the current resource consumers. Peers collaborate to locate semantically equivalent or related entities.

Current search techniques used in Semantic Web technologies focus on annotating static information and fail to take into account the dynamic and asynchronous variation in contents. It should be noted that, though some may consider service based architectures such as DAML-S [1], which use Semantic Web technologies, to be a form of dynamic content system, we differ from [17] and consider it to be an application of the Semantic Web to active entities rather than dynamic entities. According to us, the Semantic Web is considered to be dynamic if it is created spontaneously by a set of collaborating nodes, where each node can dynamically update its published contents.

Efficiency of any search algorithm in peer networks critically depends on peer topology and query routing. Two approaches: centralised and Distributed Hash Techniques (DHTs) and their hybrids are extensively employed to organise peer networks. The centralised model was made popular by Napster [13]. A centralised search uses specialised nodes to maintain an index of resources available within the collaborative environment. The resource of interest is located by querying the index nodes to identify nodes that provide the queried resource. A centralised system is vulnerable to attacks and poses difficulties in updating the indices.

DHTs have been widely adopted to improve resilience of peer-to-peer systems. Examples include CAN [14], Chord [16] and Pastry [15]. Typical DHTs resolve a keyword to a location where the contents are located or from where the contents can be routed to. The inherent self-organisation is attributed to the distribution of keys in a uniform space where node and object identifiers share the same key space. Adopting DHTs requires unique hash techniques that could transform the search criterion into a unique key set.

An important aspect that differentiates the semantic overlay from DHTs is the necessity to maintain relationships between resources of participants. In a DHT, immediate neighbours do not have to share any relationship and are primarily responsible for monitoring the connectivity with neighbouring peers. While in a collaborative environment, the arrival of a peer constantly modifies the relationship with its neighbours as more potentially discoverable resources are added to the network. The departure of a peer invalidates its relationship with neighbouring peers. Hence, the scope of an update is not limited to the peer storing the discovery information of the resources, but to all the peers that are semantically connected to the arriving or departing peer.

In summary, we are critical of DHTs-like approaches in our application due to the following reasons:

· DHTs assume a highly structured system in terms of both the network topology and the placement of objects, which may not meet the requirements of ad-hoc applications, such as a dynamically shaped collaborative network.
· DHTs heavily rely on the uniqueness of “hashed keys”, but our aim is to devise a search mechanism that allows the inspection of the peers not only by resource types but also the occurrences of these types.
· DHTs support a search on a single hash expression. However, a typical semantic search may consist of a random combination of entities and the relationships between them.
· A potential resource distribution in our application scenario, for example a Zipf-like distribution, will very likely lead to the formation of “hot spots” if DHTs are employed and this problem could not be addressed especially when a joint query is performed.
2. Scenario

We conceive an Open Hypermedia System called the Distributed Dynamic Link Service (DDLS) based on a peer-to-peer architecture, which is inherently based on the philosophy of the DLS. To the best of our knowledge, most implementations of the DLS maintain linkbases on the link server side. By decentralising both linkbases and link service components amongst peers, the DDLS enables link resolution and linkbase communication for multiple online users who want to share their link resources. Linkbases are maintained locally and data mobility is provided with minimal constraints – a feature unique to the DDLS amongst the Open Hypermedia System implementations.

Linkbases constitute the resources of a DDLS, as its primary objective is to serve links. We employ RDF [11] to encode information about linkbases in sets of triples that associate metadata with linkbases. Properties associated with linkbases in the DDLS may be described in an RDF schema [3]. A typical linkbase in the DDLS is expressed in Fig.1.

<?xml version="1.0" encoding="UTF-8" ?>

<rdf:RDF xmlns:rdf=http://www.w3.org/1999/02/22-

 rdf-syntax-ns#

 xmlns:lb="http://www.semantics.com/rdf/linkbase-ns#">

 <rdf:Description about="http://www.semantics.com/

 linkbase/academic/linkbase.xml">

 <rdf:type resource="http:// www.semantics.com

 /rdf/linkbase-ns#Linkbase" />

 <lb:topic>academic</lb:topic>

 </rdf:Description>

</rdf:RDF>

Fig.1 A Linkbase Expressed by RDF Syntax

We observe that each resource (a linkbase) can be represented by a topic that conveys its prominent content. Consequently, the topics of linkbases associated with a peer constitute a “topic vector”. Peers may instigate a link service query to retrieve matching linkbases.

3. Our Contribution

We describe a search algorithm that allows semantic search over a set of semantically related entities. As described by the DAML search mechanism [6], a semantic search should facilitate the lookup for resources expressed as a combination of entities and relationships connecting them, i.e. subject and predicate based search. However, DAML imposes no restriction on the type of entities that can be used for describing the resource or the type of relationships that connect them. A typical search may involve a search based on subject or predicate or a combination. DAML adopts a crawler based approach that creates a connected graph to facilitate the search for related entities. However, the DDLS does not permit the creation of any such centralised search mechanism . The following subsections describe an algorithm that creates a peer topology based on the semantic contents hosted by individual peers.

3.1 Notations

	G (Peer network topology)
	G (Vt,Et)
	(Set of nodes, set of edges)

{Note: both are time

dependent functions.}

	Pi (Vt (Peer ‘i’ in graph G)
	Id peer,
LP,

LT
	(Peer: identifier,

list of neighbours,

list of topics)

	LTi (List of topics published by individual peers)
	Idtopic
	(Topic: identifier)

	LPi (List of semantically related neighbouring peers)
	Idpeer[], LTcommon[], (dist,

(direction
	(List of peers, with

common semantic

information

LTcommon at distance (dist

and (direction of the edge)

Consider a graph G, which consists of a dynamic list of peers, each peer is uniquely identified by an identifier to route messages to individual peer. Each peer Pi publishes a list of topics LTi, the list of topics can be asynchronously updated by individual peers. Each peer maintains a list of neighbouring nodes that hold semantically equivalent or related topics to facilitate entity-based clustering. Initially, when a new peer Pnew joins the network G, it contacts a set of randomly selected peers represented by set Prandom. Pnew exchanges the list of topics LTnew with each of the randomly selected peers (Prandom). We assume that the environment provides each peer with a capability to identify the semantic relationships between entities. Hence, each peer creates a graph of information availed from individual peers in set Prandom.
 Variables: LTi := 0, LPi := 0, when Pnew joins graph G,

· Online := true

· Alow Queries := false

· Randomly select a set of peers Prandom from the identifier space, or use multicast to randomly select a set of peers
3.2 Process the Individual Responses (Presponse) from Each Peer in Prandom
· For each received LTresponse from the randomly chosen peers

· Calculate (dist := number of topics in LTresponse (LTnew
· Add to LPnew the list of peers, distance and the intersection set with (direction := true

· If received Presponse exists in LPnew, select another set of peers

· If LTresponse (LTnew = {}, store the information as a uni-directional set where LPnew contains the list of peers at (dist := null and the intersection set with (direction := false

The above algorithm leads to the creation of graphs representative of partial information available at individual peers. This procedure is carried out in parallel on each of the peers in set Prandom. In combination, the algorithm leads to the creation of an overlay with clustered information. The randomly connected graph consists of peers that are able to determine the semantic distance to other peers via (dist. However, not all the peers may have an overlap in the semantic description of the resources that they publish individually. In cases in which there exists no relationship between semantic information of the neighbouring peers, information is stored as unidirectional information with distance (dist := null.

A semantic search expression is evaluated against the information held on individual peers. The query initiator formulates the query and calculates the distance between the query expression and the cached information LTi. The query expression calculates the nearest distance (dist. In case it finds a perfect match, the query evaluator routes the query to the list of Idpeer [] for the particular entry. The query is then successively evaluated by each of the recipient peers.

3.3 Search Algorithm

The approach used for organising the peers, as discussed in section 3.2, leads to the creation of clusters of information, whereby each peer stores partial information about peers holding semantically related entities. The proximity of entities is measured by a relative distance represented by (dist. The distance between peers is measured as the amount of overlap between their topics. We use this distance information to propagate the search queries amongst peers. Any of the participating peers can initiate a semantic search. The search is evaluated against the initiating peer’s cached information to determine the distance between the query expression and the cached information about the neighbouring peers. In certain cases where there may be no overlap between the query and the cached information, the query is propagated to all the neighbours of the recipient peers.

A typical topic query consists of an array of topics, which may be connected by logical operators. It should be noted that, the semantic relationships can be defined in various ways. For example, we define that term tp is “parent-of” term tc if tp is semantically a super class of tc. Semantically equivalent terms convey similar meaning in terms of semantics though being syntactically unequal. We assume the existence of such a mechanism, which can either be a centralised repository or a reasoning-based approach.

3.3.1 Query processing at peer Pi Let LTquery represent the list of topics in the query. Let n represent the number of topics in LTquery.

· For each (dist in LPi ≥ n,

· If LTquery (LPi -> LT = LTquery, propagate the query

· If LTquery (LPi -> LT = {}, forward the query to all the neighbours in LPi

This heuristic propagates the query to the peers with similar information. However, it excludes the fact that there may be no overlap between the query and the information available at a peer, whereby it uses the neighbour broadcast.

4. Experiments

Our experimental evaluation is divided into three parts. The first experiment demonstrates the convergence of a query in a controlled environment, where the topic list is assumed to be static. The semantic relationships between topics are therefore maintained throughout the experiments. The aim of this experiment is to demonstrate the effectiveness of search in a static environment. Our test environment consists of a restricted number of peers. At bootstrap, each peer is allowed to randomly select a random number of distinct topics. Each of the peers then simultaneously selects a group of neighbours. As each peer builds its overlay, it maintains the information about the semantically related entities, as mentioned in Section 3.
Fig.2
 represents the average performance of the algorithm in an environment consisting of 100 peers for 50 consecutive runs, with static content throughout the simulation. Each peer could cache the published topics of 30% of the total peers and choose a randomly selected list of topics from a global list of 300 entities. For ease of simulation, we impose an upper bound on the maximum topics that each peer could publish. To accurately measure the recall (i.e. percentage of the matches that can be found), we use a probabilistic distribution to ensure a specific percentage of peers host semantically related topics. Our aim is to determine the number of hops required to achieve the maximum recall. In our experiments we varied the distribution ranging from 10% up to 30%, respectively. The clustering ability of the algorithm should ideally increase the effectiveness of the search as the percentage of peers publishing semantically related entities increases. As the peers are randomly organized, query routing may depend on the cache rate (i.e. percentage of the cached peers to all peers in the system) of the instigating peer, we overcome this limitation by randomly choosing a peer within the network to instigate a random query and measure the average performance over a number of executions.

[image: image1.wmf]0

10

20

30

40

50

60

70

80

90

100

1

2

3

Hops

Recall (%)

10%

20%

30%

Fig.2 Algorithm Performances with Static Peers

The search algorithm performs very well in the controlled environment. At least 98.24% of peers with query topics are located within 3 hops from the query peer under varying percentages of related entities. With 30% peers having related topics, the recall level reaches 99.86%. The probability of a peer to locate other peers with query topics tends to be higher when more peers have related topics, which potentially leads to a densely clustered overlay.

The clustering of peers yields worse case search performance in case of formation of information islands, where groups of peers are semantically unrelated to each other. The neighbour broadcast is employed to propagate a directed query between disjointed clusters. The performance penalties, due to the broadcast, are minimised by localising it to the boundaries of clusters of information.

In the next experiment, we evaluate the algorithm for the performance in dynamically evolving peers, where each peer is allowed to randomly modify the topics it publishes. In accordance with the algorithm, each of the neighbouring peers is informed of changes in the list of published topics. We carried out the experiment with 100 peers by varying the percentage of peers that dynamically update their published topics. The experimental parameters were retained. Fig.3 demonstrates the performance of the algorithm, where a selected percentage of peers update their published topics.
As expected, the performance of search deteriorated as compared to the static environment. With 20% of all peers updating their published topics dynamically, the recall level reaches 69.23% within 3 hops. The recall decreases to 51.45% with 10% of peers updating topics. Individual peers are responsible for informing their neighbours of a change in published topics. The notification of update may reach peers of interest at any time. If a query is instigated to locate the peers that happen to update their topics before the cached information has been refreshed, the search may result in missing peers due to stale information maintained about the published topics.

[image: image2.wmf]0

10

20

30

40

50

60

70

80

90

100

1

2

3

Hops

Recall (%)

10%

20%

30%

Fig.3 Performances with Dynamically Evolving Peers

It was observed that individual simulations failed to discover the entities in certain cases in which the updated information was unavailable. One of the reasons is that peers with query topics may have not been incorporated into the semantic overlay due to the reorganization of the overlay. Without any guarantee of the synchronization of all updates of dynamically evolving peers, the search algorithm performance heavily depends on timely notifications.

From the simulation results we found that the search algorithm reaches its highest recall within 3 hops from the query peers in a network of 100 collaborating peers. In our third and final experiment, we evaluate the performance of the algorithm for a set of peers with varying degree of the cache rate and examine its effect on the hops within which the potentially highest recall could be achieved.

We performed the experiment with 100 peers in a controlled environment and 30% of peers published related topics. We retained the condition on upper bounds for published topics. Simulations varied the cache rate from 5%, 15% to 30%. It is shown in Fig.4 that with the cache rate of 5%, the search algorithm obtains its highest recall within 6 hops. When the cache rate rises up to 15%, 93.87% of peers with required query topics can be located within 3 hops while the highest recall of 96.46% is achieved within 4 hops.

The experiment also disclosed it to us that the cache rate not only affects the hops needed but also restricts the highest recall that could be achieved. When the cache rate was varied between 5% and 30%, the number of hops needed for the highest recall to be achieved falls from 6 down to 3. In the meanwhile, the potential highest recall rises from 67.69% up to 99.78% with the same range of cache rate variation.

[image: image3.wmf]0

10

20

30

40

50

60

70

80

90

100

1

2

3

4

5

6

Hops

Recall (%)

5%

15%

30%

Fig.4 Hop Counts with Varying Degree of Cache Rates
5. Conclusions

This paper presented a semantic search algorithm for the collaborative Open Hypermedia System that creates a semantic overlay of related entities and uses clustering to optimise the search. Our algorithm performs very well in controlled environments with static content. The number of hops required to achieve the same percentage of recall varies in direct proportion to the cache rate between the topology. The search algorithm also performs satisfactorily when peers update their topics randomly and has proven suitable for locating information in an environment where peers change their contents randomly. However, clustering of related entities at times leads to the formation of information islands and the way to reorganise the topology in terms of published contents forms a part of future study.

References

[1] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. L. Martin, S. A. McIlraith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara and H. Zeng, “DAML-S: Semantic Markup for Web Services”, Proceedings of the International Semantic Web Working Symposium (SWWS), 2001.

[2] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web”, Scientific American, 2001.
[3] D. Brickley and R. V. Guha (eds.), “RDF Vocabulary
Description Language 1.0: RDF Schema”, W3C Working Draft, http://www.w3.org/TR/rdf-schema/, 2003.

[4] L. A. Carr, D. C. De Roure, W. Hall and G. J. Hill, “The Distributed Link Service: A Tool for Publishers, Authors and Readers”, Proceedings of the Fourth International World Wide Web Conference: The Web Revolution, Boston, Massachusetts, USA, pp.647-656, 1995.

[5] L. A. Carr, W. Hall, S. Bechhofer and C. A. Goble, “Conceptual Linking: Ontology-based Open Hypermedia”, Proceedings of the Tenth International World Wide Web Conference, Hong Kong, pp.334-342, May 2001.

[6] M. Dean and K. Barber, “DAML Crawler”, http://www.daml.org/crawler/, 2002.

[7] D. De Roure, L. A. Carr, W. Hall and G. J. Hill, “A Distributed Hypermedia Link Service”, Proceedings of the Third International Workshop on Services in Distributed and Networked Environments (SDNE96), pp. 156-161, 1996.

[8] D. De Roure, N. Walker and L. Carr, “Investigating Link Service Infrastructures”, Proceedings of ACM Hypertext 2000, pp. 67-76, 2000.

[9] A. Fountain, W. Hall, I. Heath, and H. C. Davis, “Microcosm: An Open Model for Hypermedia with Dynamic Linking”, In A. Rizk and N. Streitz and J. Andre Eds. Proceedings Hypertext: Concepts, Systems and Applications, Proceedings of ECHT'90, Paris, pp. 298-311, November, 1990.

[11] O. Lassila and R. R. Swick, “Resource Description Framework (RDF) Model and Syntax Specification”, W3C Recommendation, http://www.w3.org/TR/REC-rdf-syntax, 1999.

[12] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins and Z. Xu, “Peer-to-Peer Computing”, HP Labs Technical Report, HPL-2002-57, 2002.

[13] Napster, http://www.napster.com.
[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Schenker, “A scalable content-addressable network”, Proceedings of the 2001 conference on applications, technologies, architectures, and protocols for computer communications, San Diego, California, USA, pp. 161-172, 2001.

[15] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems”, Proceedings of the 18th IFIP/ACM International Conference on Distributed Systems Platforms (Middleware 2001), Heidelberg, Germany, 2001.

[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H. Balakrishnan, “Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications”, Proceedings of the 2001 ACM SIGCOMM Conference, San Diego, California, USA, pp.149-160, 2001.

[17] K. Sycara, J. Lu, M. Klusch, and S. Widoff, “Dynamic Service Matchmaking among Agents in Open Information Environments”, In A. Ouksel and A. Sheth Eds. Journal ACM SIGMOD Record, Special Issue on Semantic Interoperability in Global Information Systems, 1999.

[18] U. K. Wiil, “Open Hypermedia: Systems, Interoperability and Standards”, Journal of Digital information, Vol.1, No.2, 1997.

_1116415886.xls
Chart2

		1		1		1

		2		2		2

		3		3		3

		4		4

		5

		6

5%

15%

30%

Hops

Recall (%)

3.9687107467

14.8971301731

29.9249625

10.2795553767

45.5457705

77.4815953

19.48644276

93.8656334615

99.7775299333

34.41673948

96.4659484667

52.3388756

67.6882919667

Sheet1

		common peer 30% connected peer 5%

		time/hops		1		2		3		4		5		6		7		8

		1		0.030303031		0.060606062		0.121212125		0.18181819		0.24242425		0.36363637		0.36363637		0.36363637		batch1/r1

		2		0.030303031		0.09090909		0.21212122		0.33333334		0.4848485		0.5757576		0.5757576		0.5757576		/r2

		3		0.028571429		0.114285715		0.114285715		0.22857143		0.45714286		0.54285717		0.54285717		0.54285717		/r3

		4		0.03125		0.0625		0.15625		0.28125		0.46875		0.625		0.625		0.625		/r4

		5		0.0625		0.1875		0.25		0.4375		0.5625		0.6875		0.6875		0.6875		/r5

		6		0.060606062		0.09090909		0.15151516		0.33333334		0.6060606		0.8484849		0.8484849		0.8484849		/r6

		7		0.09090909		0.21212122		0.24242425		0.36363637		0.6363636		0.8484849		0.8484849		0.8484849		/r7

		8		0.0625		0.1875		0.21875		0.40625		0.53125		0.71875		0.71875		0.71875		/r8

		9		0.03125		0.09375		0.25		0.4375		0.5625		0.6875		0.6875		0.6875		/r9

		10		0.06451613		0.16129032		0.22580644		0.3548387		0.41935483		0.58064514		0.58064514		0.58064514		/r10

		11		0.03125		0.125		0.1875		0.25		0.59375		0.75		0.75		0.75		/r11

		12		0		0.06666667		0.26666668		0.6333333		0.8666667		0.93333334		0.93333334		0.93333334		/r12

		13		0		0.06666667		0.20000002		0.33333337		0.66666675		0.83333343		0.83333343		0.83333343		/r13

		14		0.032258064		0.09677419		0.29032257		0.61290324		0.8387097		0.93548393		0.93548393		0.93548393		/r14

		15		0.09375		0.125		0.1875		0.25		0.3125		0.59375		0.59375		0.59375		/r15

		16		0.033333335		0.10000001		0.23333335		0.40000004		0.70000005		0.90000004		0.90000004		0.90000004		batch2/r1

		17		0.032258064		0.19354838		0.2580645		0.4516129		0.7096774		0.83870965		0.83870965		0.83870965		/r2

		18		0		0.032258064		0.12903225		0.22580644		0.41935483		0.61290324		0.61290324		0.61290324		/r3

		19		0.060606062		0.09090909		0.3030303		0.3939394		0.54545456		0.75757575		0.75757575		0.75757575		/r4

		20		0.032258064		0.032258064		0.12903225		0.22580644		0.29032257		0.41935483		0.41935483		0.41935483		/r5

		21		0		0.06451613		0.12903225		0.32258064		0.6774193		0.74193543		0.74193543		0.74193543		/r6

		22		0		0.09677419		0.29032257		0.48387095		0.6774193		0.74193543		0.74193543		0.74193543		/r7

		23		0.032258064		0.032258064		0.032258064		0.032258064		0.06451613		0.12903225		0.12903225		0.12903225		/r8

		24		0.0625		0.125		0.21875		0.375		0.5		0.78125		0.78125		0.78125		/r9

		25		0.0625		0.125		0.21875		0.34375		0.53125		0.75		0.75		0.75		/r10

		26		0.03125		0.125		0.21875		0.40625		0.6875		0.8125		0.8125		0.8125		/r11

		27		0.032258064		0.032258064		0.032258064		0.19354838		0.22580644		0.516129		0.516129		0.516129		/r12

		28		0.0625		0.0625		0.21875		0.34375		0.40625		0.5		0.5		0.5		/r13

		29		0.06666667		0.13333334		0.16666667		0.36666667		0.53333336		0.70000005		0.70000005		0.70000005		/r14

		30		0.032258064		0.09677419		0.19354838		0.32258064		0.48387095		0.58064514		0.58064514		0.58064514		/r15

				0.0396871075		0.1027955538		0.1948644276		0.3441673948		0.523388756		0.6768829197		0.6768829197		0.6768829197

				3.9687107467		10.2795553767		19.48644276		34.41673948		52.3388756		67.6882919667		67.6882919667		67.6882919667

		common peer 30% connected peer 15%

		time/hops		1		2		3		4		5		6		7		8

		1		0.121212125		0.75757575		1		1		1		1		1		1		batch1/r1

		2		0.13333334		0.3		1		1		1		1		1		1		/r2

		3		0.25		0.375		0.875		1		1		1		1		1		/r3

		4		0.08571429		0.4857143		1		1		1		1		1		1		/r4

		5		0.16129032		0.48387095		1		1		1		1		1		1		/r5

		6		0.22580644		0.61290324		1		1		1		1		1		1		/r6

		7		0.121212125		0.54545456		0.969697		1		1		1		1		1		/r7

		8		0.16129032		0.54838705		0.96774185		0.9999999		0.9999999		0.9999999		0.9999999		0.9999999		/r8

		9		0.16129032		0.58064514		0.9354838		0.9354838		0.9354838		0.9354838		0.9354838		0.9354838		/r9

		10		0.15151516		0.5151515		1		1		1		1		1		1		/r10

		11		0.16129032		0.3548387		0.9354838		0.9354838		0.9354838		0.9354838		0.9354838		0.9354838		/batch4/r2

		12		0.125		0.34375		1		1		1		1		1		1		/batch1/r12

		13		0.15625		0.4375		1		1		1		1		1		1		/r13

		14		0.15625		0.40625		0.9375		0.9375		0.9375		0.9375		0.9375		0.9375		/r14

		15		0.09090909		0.42424244		0.93939394		1		1		1		1		1		/r15

		16		0.15625		0.46875		1		1		1		1		1		1		batch2/r13

		17		0.15625		0.40625		1		1		1		1		1		1		/r14

		18		0.121212125		0.36363637		1		1		1		1		1		1		/r15

		19		0.09677419		0.48387095		0.9354838		0.99999994		0.99999994		0.99999994		0.99999994		0.99999994		/batch4/r3

		20		0.18181819		0.3939394		1		1		1		1		1		1		batch3/r2

		21		0.25		0.53125		0.90625		1		1		1		1		1		/r3

		22		0.121212125		0.4848485		0.969697		1		1		1		1		1		/r4

		23		0.11764706		0.38235295		1		1		1		1		1		1		/r5

		24		0.033333335		0.4		0.9		1		1		1		1		1		/r6

		25		0.19354838		0.4516129		0.9032258		0.9354838		0.9354838		0.9354838		0.9354838		0.9354838		/r7

		26		0.15625		0.34375		0.9375		1		1		1		1		1		/batch4/r4

		27		0.09375		0.40625		0.5625		0.5625		0.5625		0.5625		0.5625		0.5625		/batch3/r9

		28		0.18181819		0.3939394		0.939394		1		1		1		1		1		/r10

		29		0.1		0.36666667		0.6333333		0.6333333		0.6333333		0.6333333		0.6333333		0.6333333		/r11

		30		0.15625		0.65625		1		1		1		1		1		1		/batch4/r1

				0.1489713017		0.455457705		0.9386563346		0.9646594847		0.9646594847		0.9646594847		0.9646594847		0.9646594847

				14.8971301731		45.5457705		93.8656334615		96.4659484667		96.4659484667		96.4659484667		96.4659484667		96.4659484667

		common peer 30% connected peer 30%

		time/hops		1		2		3		4		5		6		7		8

		1		0.20689656		0.7241379		1		1		1		1		1		1

		2		0.3		0.6666667		1		1		1		1		1		1

		3		0.2413793		0.9310345		1		1		1		1		1		1

		4		0.2413793		0.79310346		1		1		1		1		1		1

		5		0.23333333		0.8		1		1		1		1		1		1

		6		0.36666667		0.76666665		1		1		1		1		1		1

		7		0.3448276		0.8965517		1		1		1		1		1		1

		8		0.31034482		0.7241379		0.9655172		0.9655172		0.9655172		0.9655172		0.9655172		0.9655172

		9		0.23333333		0.6		1		1		1		1		1		1

		10		0.3		0.8333334		1		1		1		1		1		1

		11		0.26666668		0.70000005		1		1		1		1		1		1		batch4/s-30/r11

		12		0.22580644		0.7096774		1		1		1		1		1		1		/s-30/r12

		13		0.3548387		0.6774193		0.99999994		0.99999994		0.99999994		0.99999994		0.99999994		0.99999994		/s-30/r13

		14		0.4516129		0.6774193		0.99999994		0.99999994		0.99999994		0.99999994		0.99999994		0.99999994		/s-30/r14

		15		0.33333334		0.7878788		1		1		1		1		1		1		/s-30/r15

		16		0.22580644		0.7419355		1		1		1		1		1		1		/s-30/r16

		17		0.29032257		0.61290324		1		1		1		1		1		1		/s-30/r17

		18		0.2580645		0.7419355		1		1		1		1		1		1		/s-30/r18

		19		0.4375		0.75		1		1		1		1		1		1		/s-30/r19

		20		0.38709676		0.9677419		1		1		1		1		1		1		/s-30/r20

		21		0.33333334		0.76666665		1		1		1		1		1		1		/s-30/r11

		22		0.25		1		1		1		1		1		1		1		/s-30/r12

		23		0.2580645		0.7419355		1		1		1		1		1		1		/s-30/r13

		24		0.38709676		0.6451613		1		1		1		1		1		1		/s-30/r14

		25		0.2580645		0.8064516		1		1		1		1		1		1		/s-30/r15

		26		0.2580645		0.7741935		1		1		1		1		1		1		/s-30/r16

		27		0.23333333		0.7		1		1		1		1		1		1		/s-30/r17

		28		0.29032257		0.7741935		0.9677419		0.9677419		0.9677419		0.9677419		0.9677419		0.9677419		/s-30/r18

		29		0.33333334		1		1		1		1		1		1		1		/s-30/r19

		30		0.36666667		0.93333334		1		1		1		1		1		1		/s-30/r20

				0.299249625		0.774815953		0.9977752993		0.9977752993		0.9977752993		0.9977752993		0.9977752993		0.9977752993

				29.9249625		77.4815953		99.7775299333		99.7775299333		99.7775299333		99.7775299333		99.7775299333		99.7775299333

Sheet1

		0		0		0

		0		0		0

		0		0		0

		0		0

		0

		0

5%

15%

30%

Hops

Recall (%)

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		

Sheet3

		

_1116415961.xls
Chart1

		1		1		1

		2		2		2

		3		3		3

10%

20%

30%

Hops

Recall (%)

20.7142859143

15.0641026923

14.7539684333

40.1612907742

50.5769234615

44.0306127143

51.4516130323

69.2307692308

66.0714285714

Sheet1

		changing peer 30% connected peer 30%

		time/hops		1		2		3		4				should be

		1		0.33333334		0.6666667		1						3

		2		0.33333334		0.8333334		1						6

		3		0		1		1						2

		4		0		0		0						1

		5		0		0		0						7

		6		0		0		0						6

		7		0.6666667		1		1						3

		8		0.14285715		0.42857146		1						7

		9		0		0		0						3

		10		0.5		0.5		1						2

		11		0.25		0.5		0.75						4

		12		0.5		0.5		1						2

		13		0		0		1						1

		14		0		0		0						2

		15		0		0		0						1

		16		0		0		1						2		batch1/d-30/r1

		17		0		0		0						0		/d-30/r2

		18		0		1		1						1		/d-30/r3

		19		0		1		1						1		/d-30/r4

		20		0		0.75		1						4		/d-30/r5

		21		0.2		0.4		1						5		/d-30/r6

		22		0		0.5		1						2		/d-30/r7

		23		1		1		1						1		/d-30/r8

		24		0		0		0						2		/d-30/r10

		25		0		0.75		0.75						4		batch2/d-30/r1

		26		0		0		0						4		/d-30/r2

		27		0		0		0						4		/d-30/r3

		28		0		0		0						0		/d-30/r4

		29		0		1		1						2		/d-30/r5

		30		0		0.5		1						2		/d-30/r6

		31		0		0		0						0		/d-30/r7

		32		0.25		0.75		1						4		/d-30/r10

		35		0		0		0						0		batch3/d-30/r1

		36		0		0.5		1						2		/d-30/r2

		37		0		0		0						2		/d-30/r3

		38		0		1		1						1		/d-30/r4

		39		0		0		0						1		/d-30/r5

				0.1475396843		0.4403061271		0.6607142857

				14.7539684333		44.0306127143		66.0714285714

		changing peer 20% connected peer 30%

		time/hops		1		2		3		4				should be

		1		0.33333334		0.6666667		1						3

		2		0.5		0.5		1						2

		3		0		1		1						1

		4		0.33333334		1		1						3

		5		0.25		0.75		1						4

		6		0		0		0						3

		7		0.5		0.5		1						2

		8		0		0		0						0

		9		0.33333334		1		1						3

		10		0		1		1						2

		11		0.33333334		0.6666667		1						3		batch1/d-20/d-r1-20

		12		0		1		1						1		batch1/d-20/d-r2-20

		13		0		0		1						1		batch1/d-20/d-r3-20

		14		0		0		0						2		batch1/d-20/d-r4-20

		15		0		0		0						0		batch1/d-20/d-r5-20

		16		0		0		0						5		batch1/d-20/d-r6-20

		17		0		0		0						0		batch1/d-20/d-r7-20

		18		0		0		0						4		batch2/d-20/r2

		19		0		0		0						0		/d-20/r9

		20		0		0.5		1						2		batch3/d-20/r1

		21		1		1		1						1		/d-20/r2

		22		0		1		1						1		/d-20/r3

		23		0		0		0						5		/d-20/r4

		24		0		0		0						1		/d-20/r5

		25		0		0.8		1						5		batch4/d-20/r6

		26		0		0.5		1						2		/d-20/r7

		27		0		0		0						1		/d-20/r8

		28		0		0		0						1		/d-20/r9

		29		0.33333334		0.6666667		1						3		batch5/d-20/r8

		30		0		0.6		1						5		/d-20/r9

				0.1506410269		0.5057692346		0.6923076923

				15.0641026923		50.5769234615		69.2307692308

		changing peer 10% connected peer 30%

		time/hops		1		2		3		4				should be

		1		0		0.5		1						2

		2		0.33333334		0.6666667		1						3

		3		0		0		0						5

		4		0		1		1						1

		5		0		0		0						2

		6		0		0		0						4

		7		0		0		0						1

		8		0		0		0						1

		9		0		0		0						1

		10		0		0		0						2

		11		0		0		0						1

		12		0		0		0						1

		13		0		0.33333334		0.33333334						3

		14		0		0.2		0.2						6

		15		0		1		1						2

		16		0.5		0.8333334		1						6

		17		0		1		1						1

		18		0.16666667		1		1						6

		19		1		1		1						2

		20		0		0		0.6666667						3

		21		0		0.5		0.75						4

		22		0		0		0						2

		23		0		0		0				0.4465517255		2

		24		0		0		0						3

		25		0		0		0						2

		26		0		0		0						3

		27		0		0		0						0		batch3/d-10/r1

		28		0.33333334		1		1						3		/d-10/r2

		29		0.75		0.75		1						4		/d-10/r3

		30		0.33333334		0.6666667		1						6		/d-10/r4

				0.2071428591		0.4016129077		0.5145161303

				20.7142859143		40.1612907742		51.4516130323

Sheet1

		0		0		0

		0		0		0

		0		0		0

10%

20%

30%

Hops

Recall (%)

0

0

0

0

0

0

0

0

0

Sheet2

		

Sheet3

		

_1116415752.xls
Chart1

		1		1		1

		2		2		2

		3		3		3

10%

20%

30%

Hops

Recall (%)

26.352680904

26.8934732857

30.98341318

73.60909098

71.8764639388

75.5282089

99.8181814

98.2408945918

99.86651724

staticList

		

staticList

		0.277816091		0.205676694		0.267272728

		0.773563221		0.602506275		0.731818194

		0.99655172		0.822894741		0.9

30%

20%

10%

Hops

Rate of successful hits

Sheet1

		common peer 30% connected peer 30%

		time/hops		1		2		3

		1		0.20689656		0.7241379		1

		2		0.3		0.6666667		1

		3		0.2413793		0.9310345		1

		4		0.2413793		0.79310346		1

		5		0.23333333		0.8		1

		6		0.36666667		0.76666665		1

		7		0.3448276		0.8965517		1

		8		0.31034482		0.7241379		0.9655172

		9		0.23333333		0.6		1

		10		0.3		0.8333334		1

		11		0.26666668		0.70000005		1				batch4/s-30/r11

		12		0.22580644		0.7096774		1				/s-30/r12

		13		0.3548387		0.6774193		0.99999994				/s-30/r13

		14		0.4516129		0.6774193		0.99999994				/s-30/r14

		15		0.33333334		0.7878788		1				/s-30/r15

		16		0.22580644		0.7419355		1				/s-30/r16

		17		0.29032257		0.61290324		1				/s-30/r17

		18		0.2580645		0.7419355		1				/s-30/r18

		19		0.4375		0.75		1				/s-30/r19

		20		0.38709676		0.9677419		1				/s-30/r20

		21		0.33333334		0.76666665		1				/s-30/r11

		22		0.25		1		1				/s-30/r12

		23		0.2580645		0.7419355		1				/s-30/r13

		24		0.38709676		0.6451613		1				/s-30/r14

		25		0.2580645		0.8064516		1				/s-30/r15

		26		0.2580645		0.7741935		1				/s-30/r16

		27		0.23333333		0.7		1				/s-30/r17

		28		0.29032257		0.7741935		0.9677419				/s-30/r18

		29		0.33333334		1		1				/s-30/r19

		30		0.36666667		0.93333334		1				/s-30/r20

		31		0.19354838		0.6451613		1				batch2/s-30/r11

		32		0.38235295		0.7058824		1				/s-30/r12

		33		0.3		0.8		1				/s-30/r13

		34		0.38709676		0.6774193		0.99999994				/s-30/r14

		35		0.33333334		0.33333334		1				/s-30/r15

		36		0.29032257		0.6774193		0.99999994				/s-30/r16

		37		0.29032257		0.80645156		0.99999994				/s-30/r17

		38		0.375		0.59375		1				/s-30/r18

		39		0.34375		0.71875		1				/s-30/r19

		40		0.22580644		0.6774193		0.99999994				/s-30/r20

		41		0.28125		0.71875		1				batch3/s-30/r11

		42		0.41379312		0.8965517		1				/s-30/r12

		43		0.36666667		0.8		1				/s-30/r13

		44		0.32258064		0.6774193		0.99999994				/s-30/r14

		45		0.3125		0.78125		1				/s-30/r15

		46		0.3		0.76666665		1				/s-30/r16

		47		0.38709676		0.87096775		1				/s-30/r17

		48		0.29032257		0.80645156		0.99999994				/s-30/r18

		49		0.36363637		0.72727275		1				/s-30/r19

		50		0.3548387		0.83870965		1				/s-30/r20

				0.3098341318		0.755282089		0.9986651724

				30.98341318		75.5282089		99.86651724

		common peer 20% connected peer 30%

		time/hops		1		2		3

		1		0.2		0.45		1

		2		0.21052632		0.68421054		1

		3		0.21052632		0.57894737		0.57894737

		5		0.2857143		0.7619048		1

		6		0.1		0.65000004		0.65000004

		7		0		0.85		1

		8		0.3		0.75		1

		9		0.3		0.65		1

		10		0.45		0.65		1

		11		0.3		0.75		1				batch2/s-20/r1

		12		0.2857143		0.8571429		1				/s-20/r2

		13		0.1904762		0.8095238		1				/s-20/r3

		14		0.4090909		0.77272725		1				/s-20/r4

		15		0.23809524		0.47619048		1				/s-20/r5

		16		0.3809524		0.71428573		1				/s-20/r6

		17		0.25		0.65		1				/s-20/r7

		18		0.47619048		0.7619048		1				/s-20/r8

		19		0.1904762		0.7619048		1				/s-20/r9

		20		0.3809524		0.71428573		1				/s-20/r10

		21		0.23809524		0.61904764		1				/s-20/r11

		22		0.22727273		1		1				/s-20/r12

		23		0.2857143		0.8095238		1				batch4/s-20/r3

		24		0.2631579		0.94736844		1				batch5/s-20/r1

		25		0.2857143		0.71428573		1				/s-20/r2

		26		0.3181818		0.6818182		1				/s-20/r4

		27		0.47826087		0.9130435		1				/s-20/r5

		28		0.05		0.55		1				/s-20/r6

		29		0.3		0.6		1				/s-20/r7

		30		0.33333334		0.5714286		1				/s-20/r8

		31		0.36363637		0.72727275		0.9545455				batch3/s-20/r1

		32		0.3181818		0.6363636		0.95454544				/s-20/r2

		33		0.2857143		0.8571429		1				batch4/s-20/r1

		34		0.39130434		0.6521739		1				/s-20/r2

		35		0.14285715		0.42857146		1				/s-20/r19

		36		0.33333334		0.7619048		1				/s-20/r4

		37		0.3809524		0.71428573		1				/s-20/r5

		38		0.04761905		0.71428573		1				/s-20/r6

		39		0.22727273		0.90909094		1				/s-20/r7

		40		0.33333334		0.5714286		1				/s-20/r8

		41		0.33333334		0.8571429		1				/s-20/r9

		42		0.3181818		0.6818182		1				/s-20/r20

		43		0.0952381		0.5714286		1				/s-20/r11

		44		0.2857143		0.8095238		1				/s-20/r12

		45		0.36363637		0.77272725		1				/s-20/r13

		46		0.4		0.95000005		1				/s-20/r14

		47		0.14285715		0.7619048		1				/s-20/r15

		48		0.04761905		0.8095238		1				/s-20/r16

		49		0.1904762		0.61904764		1				/s-20/r17

		50		0.23809524		0.71428573		1				/s-20/r18

				0.2689347329		0.7187646394		0.9824089459

				26.8934732857		71.8764639388		98.2408945918

		common peer 10% connected peer 30%

		time/hops		1		2		3		4

		1		0.3		0.6		1

		2		0.4		0.6		1

		3		0.4		1		1

		4		0.27272728		0.8181819		1

		5		0.5		0.9		1

		6		0		0.8		1

		7		0.3		0.90000004		1

		8		0.2		0.9		1

		9		0.18181819		0.72727275		1				batch5/s-10/r1

		10		0.3		0.8		1

		11		0.3		0.90000004		1				batch1/s-10/r1

		12		0.36363637		0.72727275		1				batch1/s-10/r2

		13		0.18181819		0.54545456		1				batch1/s-10/r3

		14		0.36363637		0.6363636		1				batch1/s-10/r4

		15		0.27272728		0.8181819		1				batch1/s-10/r5

		16		0.16666667		0.6666667		1				batch1/s-10/r6

		17		0.5833333		0.9166666		0.99999994				batch1/s-10/r7

		18		0.16666667		0.5833333		1				batch1/s-10/r8

		19		0.36363637		0.72727275		1				batch1/s-10/r9

		20		0.25		0.75		1				batch1/s-10/r10

		21		0.36363637		0.72727275		1				batch2/s-10/r1

		22		0.25		0.5		1				batch2/s-10/r2

		23		0.25		0.8333333		1				batch2/s-10/r3

		24		0.27272728		0.6363636		1				batch2/s-10/r4

		25		0.27272728		0.6363636		1				batch2/s-10/r5

		26		0.25		0.6666666		1				batch2/s-10/r6

		27		0.36363637		0.72727275		1				batch2/s-10/r7

		28		0.41666666		0.9166666		0.99999994				batch2/s-10/r8

		29		0.16666667		1		1				batch2/s-10/r9

		30		0.18181819		0.6363636		1				batch2/s-10/r10

		31		0.3846154		0.53846157		1				batch3/s-10/r1

		32		0.36363637		0.8181819		1				batch3/s-10/r2

		33		0.083333336		0.75		1				batch3/s-10/r3

		34		0.41666666		0.9166666		0.99999994				batch3/s-10/r4

		35		0.36363637		0.54545456		1				batch3/s-10/r5

		36		0.15384616		0.4615385		1				batch3/s-10/r6

		37		0.16666667		0.5833333		1				batch3/s-10/r7

		38		0.18181819		0.6363636		1				batch3/s-10/r8

		39		0.41666666		0.9166666		0.99999994				batch3/s-10/r9

		40		0.16666667		0.75		1				batch5/s-10/r2

		41		0.4		0.70000005		1				batch4/s-10/r1

		42		0.27272728		0.8181819		1				batch4/s-10/r2

		43		0.09090909		0.45454547		1				batch4/s-10/r3

		44		0.18181819		1		1				batch4/s-10/r4

		45		0.083333336		0.8333333		1				batch4/s-10/r5

		46		0		0.6363636		1				batch4/s-10/r6

		47		0.09090909		0.72727275		1				batch4/s-10/r7

		48		0.27272728		0.72727275		0.90909094		1		batch4/s-10/r8

		49		0.18181819		0.72727275		1				batch4/s-10/r9

		50		0.25		0.6666666		1				batch4/s-10/r10

				0.263526809		0.7360909098		0.998181814

				26.352680904		73.60909098		99.8181814

Sheet1

		0		0		0

		0		0		0

		0		0		0

10%

20%

30%

Hops

Recall (%)

0

0

0

0

0

0

0

0

0

Sheet2

		

Sheet3

		

