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We introduce the Resource Aware Programming framework, which allows users to monitor the
resources used by their programs and to programmatically express policies for the management
of such resources. The framework is based on a notion of hierarchical groups, which act as
resource containers for the computations they sponsor. Asynchronous notifications for resource
exhaustion and for computation termination can be handled by arbitrary user code, which is also
executed under the control of this hierarchical group structure. Resources are manipulated by the
programmer using resource descriptors, whose operations are specified by a resource algebra. In
this paper, we overview the Resource Aware Programming framework and describe its semantics
in the form of a language-independent abstract machine able to model both shared and distributed
memory environments. Finally, we discuss a prototype implementation of the Resource Aware
Programming framework in Java.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs
and Features—Control structures

General Terms: Languages, Design
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1. INTRODUCTION

Dynamic code loading has popularised the idea of Internet servers able to recon-
figure themselves and to extend their capabilities by uploading code dynamically
— examples of such systems can be found in the mobile agent literature. The
full power of this paradigm shift can be achieved if untrusted code can be run in
a safe manner [Hartel and Moreau 2001], and in particular if malicious code can
be prevented from using too many resources. This raises the problem of resource
management, both for the provider and the consumer of resources.

Another important trend is illustrated by multi-agent systems [Roure et al. 2001]
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and services-based architectures [Booth et al. 2003] (in particular in the Grid con-
text [Foster et al. 2002]): here, complex applications are the result of dynamic
composition, opportunistic reuse, and on-the-fly creation of multiple distributed
computations. Resource management is not only crucial, as illustrated by propos-
als for computational economies, but has now become a distributed problem.

Over the last few years, the authors of this paper have designed a framework
providing a programming interface for managing resources [Moreau and Queinnec
1997a; 1997b; 1998; 2002a]. Its initial design generalises Kornfeld and Hewitt’s
group hierarchy [Kornfeld and Hewitt 1981], in which groups organised along a
hierarchical structure sponsor computations. The framework introduces a new ab-
stract notion of measurable resource: in this context, groups are seen as containers
for such resources, which are consumed by their sponsored computations. Asyn-
chronous notifications are introduced to mark the exhaustion of the resources con-
tained in a group, and the termination of the computations sponsored by a group.
In order to provide flexibility, it is desirable that notification handlers be defined
by the programmer; therefore, these handlers can trigger arbitrary computations,
whose resource usage must also be managed: the framework specifies how such noti-
fications can be handled in an integrated manner. Additionally, explicit primitives
are provided by the framework to pause computations, i.e. to remove resources
from their sponsoring group, or to resume computations, i.e. to transfer resources
back to their sponsoring group. Our previous work focused on the design of a lan-
guage and its formalisation [Moreau and Queinnec 1997a; 1997b]: we regarded this
language as a “domain specific language”, with a functional core extended with
primitives for resource management. We implemented a shared memory version of
the framework, by modifying a POSIX thread library [Moreau and Queinnec 1998].

While our model of resource management had always been intended to support
distribution and multiple resources of different types, these two aspects were rather
poorly supported in our earlier work. Advances in mobile agent systems, and “In-
ternet Programming” languages have shown that distribution has to be represented
explicitly in the formalism: a shared memory model of resource management can-
not and should not be extended transparently to the distributed setting; instead,
specific primitives handling distribution have to be introduced. In addition, our
motivation is to handle resources that have multiple forms, e.g. processor, mem-
ory, and this requires introducing the means to refer to resources of a specific type
[Moreau and Queinnec 2002a]. Besides these extensions, we also wanted to make
this model of programming available in Java.

Extending the framework to multiple resources and to the distributed setting,
and supporting the programming language Java resulted in a radically different
perception of the framework, which is the contribution of this paper. As far as
resources are concerned, a set of precise operations needs to be defined in order
to support the framework, which resulted in a notion of resource algebra. The
framework is no longer seen as a domain specific language, but as a library that
can be integrated with any programming language. Such a generic nature was
also reflected in the semantics, which became programming language agnostic: we
modelled the framework as a message-passing system, which can accommodate both
shared and distributed memories.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.



Resource Aware Programming · 3

The rest of the paper is organised as follows. First, we clarify what we mean
by resource and how the framework allows the programmer to refer to resources
(Section 2). Then, we informally introduce the primitives of our Resource Aware
Programming framework (Section 3). Given these primitives, we illustrate their
usage with some examples that show how providers and consumers can program
policies on the usage of resources (Section 4). We then model the framework by an
asynchronous message-passing system (Section 5), and we sketch its implementation
in Java (Section 6). Finally, we compare our system with related work and conclude
the paper.

2. A NOTION OF RESOURCE

The purpose of this section is to introduce some terminology related to resources
and associated concepts. Throughout this paper, we use the notion of resource
in the broadest sense. We obviously include hardware resources (or their software
abstractions) managed by the operating system, such as CPU time, disk space,
memory, files, threads or sockets. In our Resource Aware Programming system,
our goal is to be able to set limits on resource consumption (i.e. their usage) by
applications. Examples of such limits include the maximum number of files to be
opened by an application, the maximum size of data to be stored on disk, or the
maximum number of threads to be created. Additionally, we also want to be able
to refer to “rates”, which are units of resources that can be consumed over a period
of time: examples of these include the write rate of a program which should be
limited to 50KB/s, or the maximum number of messages allowed to be sent over
the network during a period of time. All these resources are referred to as rate,
quantity or space resources in the Aroma VM [Groth and Suri 2002].

While physical resources are core resources that are required for applications to
execute, the operating system, the environment or the application context may set
further constraints, which we also regard as resources. For instance, we consider
the permissions attached to files or the rights to perform an action awarded by an
authorisation policy, such as a role certificate in role-based access control [Yao et al.
2001], as resources required by a computation to proceed. Similarly to physical re-
sources, their availability changes over time, and we want application programmers
to be able to reason over and manipulate them in a uniform manner.

Therefore, we define a resource as a hardware or software entity that is required
by a computation to proceed and upon which the user wishes to impose a resource
management policy. As computations proceed, they consume the resources that
they were awarded. When all resources have been consumed by a computation,
we expect an exhaustion notification to be raised. In addition, one of the system’s
requirements is that we must be able to grant resources to computations in a dy-
namic manner; as resources cannot be created, resources have to be transferred
across computations.

In this paper, we will present two views of resources. From a programmer’s
viewpoint, it is necessary to refer to quantities of resources, for instance, to indicate
the amount of resources to allocate or to transfer to a computation. For this
purpose, we introduce the notion of resource descriptor , which is a programmatic
entity available to the programmer to refer to resources. On the other hand, the
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implementation of the Resource Aware Programming system, in collaboration with
its hosting environment, e.g. operation system or virtual machine, has to refer
to concrete resource values: such resource values must remain under the system’s
control, and they must not be forge-able by the user. Therefore, we introduce
resource values as a system-only accessible measure of resources.

Under precise circumstances, which we will elaborate on when describing the se-
mantics of the framework, the system may give an indication of currently existing
resource values: it has therefore to convert resource values into resource descrip-
tors, so that they become examinable by the programmer. Symmetrically, the
programmer may specify an amount of resources through a descriptor, which will
be converted into concrete resource values, provided that they can be taken from
a given supply of resources. Such a principle guarantees that resources cannot be
created ex-nihilo.

While resource values are necessarily absolute and they extensively enumerate
the amount of resources available, descriptors do not have to be absolute. For
instance, relative descriptors should allow programmers to specify that “half ” of
their resources should be reserved for a specific task, or that “all” their permissions
must be transferred to another entity. To this end, a conversion function will
convert relative descriptors into concrete resource values according to the amount
of resources currently available.

Finally, the idea of resource transfer described above requires us to introduce
two abstract functions. First, when transferred to a computation, the new resource
values should be “merged” with the existing resource values. Second, as resource
values cannot be created ex-nihilo, they must be “subtracted” from an existing
set of resource values. Therefore, we will respectively refer to these operations as
addition and subtraction of resources. These are naturally specified by an algebra
of resource operations, which we will characterise in the rest of the paper, and for
which we will discuss a possible concrete implementation.

3. INTUITIVE MODEL

In this section, we overview the essence of our Resource Aware Programming model
— RAP for short — as described in previous publications [Moreau and Queinnec
1997a; 1997b; 1998; 2002a]. The RAP model is independent of the primitives for
parallelism or distribution. In the sequel, we shall assume a multi-threaded model
of execution, and we will use the term thread to denote an execution thread created
by some primitive for parallelism.

Our goal is to be able to allocate resources to computations, and to monitor and
control their use as evaluations proceed. Thus, two events have a special importance
in the lifetime of a computation, and they may trigger customisable actions. First,
the termination of a computation marks the end of its life, and we would expect
unconsumed resources to be transferred to a more suitable computation. Second,
the exhaustion of the resources allocated to a computation triggers a notification
that can be used to decide whether more resources need to be supplied to the
computation.

Against this background, in order to be notified of the termination or resource
exhaustion of a computation, we introduce an entity that represents a computation:
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a group is an object that can be used to refer to a computation. Specifically, a group
is associated with a computation composed of several threads proceeding in par-
allel; in turn, these threads can initiate subcomputations by creating subgroups.
As a result, our computation model is hierarchical. Following Kornfeld and He-
witt’s terminology, a group is said to sponsor [Kornfeld and Hewitt 1981; Osborne
1990; Halstead 1990] the computation it is associated with. Symmetrically, every
computation has a sponsoring group, and so does every thread.

At creation time, a group must be provided with an initial set of resources. More
specifically, under the sponsorship of a group G1, a computation can invoke a prim-
itive newGroup, with arguments f, ~R, he, ht (which we explain below). This creates

a new first-class group G2 that is allocated an initial set of resources ~R and whose
parent is G1. Furthermore, this initiates a computation under the sponsorship of
G2 by executing the user code f (f would be a function in a functional language or a
Runnable object in Java.). As the framework keeps track of resource consumption,

the resources ~R allocated to G2 are deducted from the resources of G1. Figure 1
displays the behaviour of the primitive newGroup. Before execution, we see a con-
figuration where a group G1 is sponsoring two threads T1 and T2 and a subgroup
G3 itself sponsoring a thread T3. After evaluating the primitive newGroup, the new
subgroup G2 is sponsoring the application of f , with ~R resources transferred from
G1 to G2. The two remaining arguments of the primitive newGroup, he, ht, are
notification handlers, which we shall discuss later.

G2 : ~R

T1

T3

G1 : ~R1

T1

T3T2 : f()

G3 : ~R3

G3 : ~R3

T2 : newGroup

with f, ~R, he, ht

G1 :
~R1−

~R−Kg

Fig. 1. Group Creation

In a framework for managing resources, every action should be accounted for,
and therefore should be costed. Figure 1 shows that the resources of G1 become
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~R1− ~R−Kg after transition: the value − ~R is the amount of resources transferred to
the new group G2, whereas −Kg represents the cost of the group creation operation.
In order to ensure that resources do not get created ex-nihilo, this transition assumes
that enough resources are available in G1, i.e. ~R1 > ~R + Kg.

The RAP model enforces the following principle: any computation consumes
resources from its sponsoring group. Therefore, not only is a group perceived as a
way of naming computations, but also it must be regarded as a tank of resources
for the computation. Such a principle is illustrated by Figure 2, which displays a
thread T evolving to state T ′ by performing an action, whose cost ~R1 is charged to
the sponsoring group G1.

T

G1 : ~R ~R − ~R1

G1 :

T ′

Fig. 2. Resource Consumption when T evolves to T ′ using ~R1 Resources

Once a group is created, two moments have a special importance in its lifetime.
A group is said to be terminated if it has no subgroup and it does not sponsor any
thread, i.e. no more activity is sponsored by the group. Likewise, a group is said
to be exhausted if is has no resource left, i.e. the threads it sponsors can no longer
progress by lack of resources. In RAP, group termination and resource exhaustion
are asynchronously notified by applying the user specified handler functions ht and
he, respectively. (Subscript t denotes termination, whereas subscript e denotes ex-
haustion.) In Figure 3, when the only thread T4 of group G3 is terminating, the
function ht is asynchronously called, with G3 as argument, to notify its termina-
tion, and the resource surplus of G3 is transferred back to G1, minus the cost of
notification Kn. Note that the execution of the handler ht is sponsored by G1, i.e.
the parent of G3; indeed, it would not make any sense to have it sponsored by G3,
since it has just terminated its lifetime. The termination handler is also given an
indication of the amount of resources that were available when G3’s termination
occurred in the form of a descriptor ~D3 denoting the amount of resources ~R3 that
remained in G3 at termination time.

In Figure 4, a computation T2 sponsored by G2 requires an amount ~D of resources
that is not available in G2; the function he is asynchronously called, with argument
G2, to notify its resource exhaustion, also under the sponsorship of G1, for similar
reasons as the termination handler. Furthermore, the remaining resources of G2

are transferred to G1, minus the cost of notification Kn, to ensure that no resource
is leaked by the system. Similarly, the exhaustion handler is provided with the
resource descriptor ~D2 denoting the amount of resources that existed at the time
of G2’s exhaustion, and the requested amount of resources that resulted in the
exhaustion.
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G2 : ~R2 G3 : ~R3

T1

T2 T3
T4

G1 : ~R1

G2 : ~R2 G3 : 0

T1

T2 T3

Terminated

G1 :

T5 : ht(G3, ~D3)

~R1 + ~R3 − Kn

Fig. 3. Termination of group G3 when thread T4 finishes its execution

G1 : ~R1

G2 : ~R2 G3 : ~R3

T1

T2 T3
T4

G2 : 0 G3 : ~R3

T1

T2 T3
T4

T5 : he(G2, ~D2)

G1 :
~R1+ ~R2−Kn

Exhausted

Fig. 4. Exhaustion of group G2 when T2 requests ~D resources ( ~D > ~R2)

Figure 5 displays the state transition diagram for groups. At creation time, a
group is in the running state; this means that the threads it sponsors can pro-
ceed as long as they do not require more resources than available. Asynchronous
notifications are represented by dotted lines. Once a computation requires more
resources than available in its sponsoring group, the state of its group changes to
exhausted, and at the same time an asynchronous notification he is run. When
all the subgroups and all the threads sponsored by a group terminate, its state
becomes terminated, and the asynchronous notifier ht is called. Let us observe that
the terminated state is a dead end in the state diagram; this guarantees the stability
of the termination property: once a computation terminates, it is not allowed to
restart (as the resource that it did not consume may have been reallocated).

In addition, resources may be transferred between groups, independently of the
group hierarchy, under the control of the user’s program. Thus, we define two
primitives that operate on groups: pause and awaken. The primitive pause forces a
running group and its subgroups into the exhausted state; all the resources that were
available in this hierarchy are transferred to the group that sponsored the pause

action. The primitive awaken transfers some resources to a target group g, after
deducting them from the group sponsoring the awaken action. If the target group g
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exhaustion

~R ≥ 0 ~R = 0

~R = 0

exhausted

running

notification ht

pause

awaken

pause

awaken

awaken

pause

termination

terminated

notification he

Fig. 5. State transitions

is in the exhausted state, its state is changed to running. On the other hand, if the
group is in the terminated state, the awaken operation is void, and does not result
in any transfer of resources1 to the target group. Figure 6 displays the behaviour
of awaken, assuming that ~R1 > ~R + Ka and G2 is not terminated.

~R1−
~R−Ka

T1: awaken with G2, ~R

T2 T3

T1 : void

G1 :

G1 : ~R1

T2 T3

G2 : ~R2

G2 : ~R2 + ~R

Fig. 6. Awakening a group

Let us observe the asymmetric behaviour of pause and awaken: the former op-
erates recursively on a group hierarchy, while the latter acts on a group and not
its descendants. We however might like to awaken a hierarchy recursively, for in-
stance, in order to resume a paused parallel search. In particular, we might wish to

1Technically, resources are transferred, but once the group is observed to be terminated, resources
are transferred back to the group sponsoring the awaken primitive. It is the responsibility of
the initiator of the awaken primitive to ensure that it does not terminate before resources are
transferred back, otherwise they may be lost.
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resume the search with the resource distribution that existed when the hierarchy
was paused. Unfortunately, such information is no longer available because groups
are memory-less . By this, we mean that a group does not remember the amount of
resources it contained before being paused. It is therefore the programmer’s respon-
sibility to leave some information at pausing-time about the way a hierarchy could
be awakened. Thus, we designed pause such that, not only it transfers resources,
but also it posts a notification for each group in the hierarchy. Figure 7 displays the
precise behaviour of pause: executing pause with arguments G1 and hp forces into
the exhausted state each group G′ in the hierarchy rooted by G1; moreover, for each
G′, an activation of hp with G′ as argument is created under the sponsorship of the
parent of G′ (except for the root G1 to avoid intruding its parent). Notifications
are prevented from running since all groups in the hierarchy have been dried out.
Once the group G1 is awakened, any notification sponsored by the group will be
activated and may decide to awaken the group it is applied to, and step by step,
resources may be redistributed among the hierarchy.

T7 : hp(G2, ~D2)

G1 : ~R1

G2 : 0 G3 : 0

T1

T2 T3
T4

G0 : ~R0

G1 : 0

T6 : hp(G3, ~D3)

T : pause with G1, hp

G :
~R + ~R1 + ~R2

+~R3 − Kp

G2 : ~R2 G3 : ~R3

T1

T2 T3
T4

G0 : ~R0
G : ~R

T : void

Fig. 7. Pausing group G1

A group is a stateful object in the sense that it is a resource container, whose
contents is affected by computations as they proceed and consume resources. Once
exhausted, groups become state-less and memory-less: by this, we mean that their
state no longer changes (until they become running again), and they do not even
remember the resources they contained at the time of pausing. It is no doubt
useful to know what amount of resources a group owned, but we did not feel the
group itself was the best data-structure to make this information available through.
Typically, this information is used to decide if and how many resources need to be
supplied to the group again. Such a decision making takes place outside the group,
and in particular, in a distributed setting, in all likelihood, at another location. It
is therefore more flexible to make this information available to a handler that the
user can program in order to store the information in the most suitable location,
for the current application.
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So far, we have discussed the RAP model in multi-threaded shared-memory envi-
ronments. In order to extend the model to the distributed setting, we now introduce
a notion of “location”, i.e. a hosting environment where groups and their associated
computations are situated. First, we revisit the newGroup primitive to understand
its effect in terms of locations: newGroup creates a new group at the location where
it is executed, i.e. at the same location as its sponsoring group. As far as the
other primitives are concerned, they are all independent of groups’ locations, and
therefore can operate on both local and remote groups.

In order to control the location at which groups and associated computations
should be created, we introduce a new primitive newRemoteGroup that requests
a location in addition to the arguments required by newGroup. Its effect is the
creation of a group at the remote location, as depicted by Figure 8.

Before transition, at location h1, newRemoteGroup is called with arguments h2, f,
~R, he, ht with a sponsoring group G1 containing ~R1 resources. After transition,
a new group G2 has been created at the remote location h2, with resources ~R,
which have been deducted from G1 as well as the administrative cost of remote
group creation Km. Let us note that after transition, the execution thread at h1

has terminated. In essence, this primitive is similar to a weak form of migration
[Fuggetta et al. 1998].

~R1−
~R−Km

h1

h1 h2

f()

G2 : ~R

G1 : ~R1

newRemoteGroup

with h2, f, ~R, he, ht

G1 :

h2

Fig. 8. Remote group creation at location h2

Following the creation of group G2, the parent of G2 is defined as G1. In this
situation, a difficulty is to ensure that the handlers for exhaustion and termination
of G2 be executed under the sponsorship of G1, which is located at h1. In Figure
8, we represent G2 as a dashed ellipse, because this group was created by the
newRemoteGroup primitive. For such a group, which we refer to as a remote group,
the handlers for termination and exhaustion are executed at the location of the
remote group’s parent, as illustrated by Figure 9 (a) and (b), similarly to Figures
3 and 4.
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~R1+ ~R2−Kn

h2

h2h1

G2 : ~R2G1 : ~R1

Termination

G2 : 0

ht(G2, ~D2)

G1 :

h1

~R1+ ~R2−Kn

h2

h2h1

G2 : ~R2G1 : ~R1

Exhaustion

G2 : 0

he(G2, ~D2)
T

T

G1 :

h1

Fig. 9. Remote group: (a) Termination — (b) Exhaustion

In Figure 9 (a), when a remote group G2 detects the termination of the compu-
tation it sponsors, its resources are transferred back to its parent G1, minus the
amount Kn necessary for the notification. Then, the notification is run under the
sponsorship of G1 at G1’s location. Likewise, in Figure 9 (b), exhaustion of G2

triggers an exhaustion notification at location h1, under the sponsorship of G1.
In addition, we need a communication mechanism to allow distributed compu-

tations to exchange messages. Figure 10 displays the semantics of synchronous
communications using primitives send and receive. No group is created here, in-
stead, both sponsoring groups are charged with the cost of communication Kc.

This section concludes our intuitive presentation of the Resource Aware Pro-
gramming model. In the next Section, we will illustrate how the model can be used
to program some applications.

4. EXAMPLES

As our framework is programming language independent, we will present examples
in an agnostic discursive way. We examine two examples of resource aware pro-
gramming: in the first one, resources are used by the program to coordinate the
exploration of a complex search, whereas the second example demonstrates a policy
of resource usage.

4.1 Return on investments

Let us consider a problem with a large space to explore. This may be the quest
for a cheap round-the-world trip, some natural numbers with unusual properties,
or some statistical analysis of genome sequences. A single best solution for such
problems might not exist; however, assuming that we are able to compare solutions,
our aim is to retain the most interesting ones. Several strategies to find a solution
might exist, although the best ones are unknown. Here, we propose a scheme that
dynamically favours the strategies that produce improving solutions.

A leader group starts the exploration and spawns several groups with various
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Communication

h1

h2h1

G1 : ~R1 − Kc

T1 : void

G2 : ~R2 − Kc

T2 : v

G1 : ~R1

T1 : send(c, v)

G2 : ~R2

T2 : receive(c)

h2

Fig. 10. Synchronous communications

strategies (see Figure 11). These groups are being referred to as workers when
they try to find solutions, or as managers when they coordinate sub-managers or
sub-workers testing alternate strategies, dividing or refining the initial problem,
etc. All groups send the solutions they independently find (paired with their own
identity) to a comparator set up by their manager.

G
,s

manager

leader

worker

G
,s

Fig. 11. Return on investments

The comparator compares the received solutions and notifies its associated man-
ager of the results of the comparison: if a group sends a solution that is better than
the solutions sent by its siblings (or competitors), then its relative priority with
respect to its manager is increased, and transitively so the priorities of its man-
agers with respect to their respective managers. Comparators eventually provide
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a reward to workers finding good solutions, whereas workers providing non best
solutions will gradually receive less resources to continue their search.

As far as implementation is concerned, groups (whether workers or managers) are
created with some minimal resources so that they are forced to request resources
from their parent group (their manager) in order to proceed. The manager gives
some new resources according to the performance of the group among all the groups
it manages. If a group does not produce enough solutions or its solutions are not
good enough, then its future resource requests will be delayed and therefore its
share of resource will decrease. For this to happen, a manager must keep up to
date information about the groups it manages: for instance, it may maintain the
total amount of given resources, the best solution found so far, the number of best
found solutions, etc. Hence, managers may rank, at any time, the performance of
their managed sub-groups.

When a group notifies its manager that its resources are exhausted, this manager
will check whether the group is among the most promising (or profitable) ones in
which case, it will give some resources to pursue its work or it will delay its request
until the group becomes promising again (this may occur if its competitors become
less profitable).

This scheme analyses the return on investments and favours those workers and
their management that are successful. The solution benefits from the use of RAP
because it offers a framework to control the parallel execution of the multiple search
activities, which are prioritised according to their ability to find good solutions.
With RAP, we have successfully separated the different concerns in this application,
namely the search function, the measure of result quality, and the result-driven
scheduling of the search activities. As a result, domain specific code searching
for solutions does not need to be modified with RAP primitives to run in this
framework.

4.2 Dynamic authorisation

In their current form, authorisation policies in JDK are static, i.e. they are constant
during the lifetime of a running program. Encoding authorisation as resource allows
more dynamic patterns.

Let us consider that some private keys are held in several files within some di-
rectory, and that we want to define a policy according to which a program may be
allowed to use at most one such key. Static policies may be used to restrict the
access to that directory or to those files but cannot prevent the use of more than
one such key.

Alternatively, one may create a new type of resource, which we call a key-resource,
corresponding to the use of one key. A new group GK can then be defined with one
and only one such resource. Any new computation that must obey this policy will
have to be created as a subgroup of GK . Whenever a new subgroup is created, it is
initially not given such a key-resource: as a result, any attempt to use such key will
result in an exhaustion notification. When a notification handler for a key-resource
exhaustion is executed in GK , one may decide to transfer one key-resource to the
group, which may consume it: the only key resource having been consumed, no
further request for accessing keys can be satisfied.

In this example, once the resource for the use of at most one key is consumed,
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it becomes non available for future use. Alternatively, one may create a non-
consumable resource acting as a token that confers some rights to the computation
that has access to it. This would limit some rights to at most one group at any time.
That token may pass from group to group cooperatively via the awaken primitive
or preemptively via the pause operation.

5. SEMANTICS

The previous sections have introduced the notion of resource and associated basic
operations. In this section, we present a resource algebra describing two fundamen-
tal operations on resource values and descriptors. We then formulate the semantics
of the Resource Aware Programming framework as a message-passing abstract ma-
chine. The combination of the resource algebra and the abstract machine results
in a precise and operational definition of RAP, which we have used to build our
reference implementation.

5.1 Resource Algebra

The RAP model was designed so that users’ programs never manipulate resource
values, but only refer to resources through the use of descriptors. Thus, the conver-
sion between descriptors and resources must be handled by the system, in order to
guarantee that resources cannot be forged by users. In addition, we introduce a con-
version function that converts resource values back into descriptors, with resource
values elements of P(R) and descriptors as elements of the set P(D):

toDesc() : P(R) → P(D).

Precise definitions of the sets R and D will be introduced later in the paper. We
now discuss the resource values and resource descriptors.

5.1.1 Resource Values. In our prototype implementation, we support a range
of resources, for which we now present a more formal characterisation. There are
three broad categories of resource values, which can be expressed in terms of (i)
a numeric value and a type, (ii) a set of values over a discrete domain, (iii) or an
infinite resource.

A numerical resource value can be used for instance to count the maximum num-
ber of files or the maximum number of sockets that can be opened; an enumerated
resource value can be used to list all the Java permissions a computation is allowed
to use; finally, the infinite resource value is used for the root of the group hierarchy.
We represent such resources symbolically as follows:

〈NumV n, t〉 (Numerical resource value)
〈EnumV s, t〉 (Enumerated resource value)
〈AllV〉 (Infinite resource set)
t (Resource type)
n (Integer)
s (Set)

As illustrated by the intuitive description of Section 3, we need to be able to
merge resource values. Therefore, we define an algebra of resource values with an
addition operation. Our algebra distinguishes different kinds of numeric resource
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values. There are resource values that are additive: for instance, the number of files
allowed to be opened. On the other hand, there are also resource values that denote
a maximal limit, such as the maximum number of hops a computation is allowed
to travel from a given node. Such differences are encapsulated in the operator +t

describing how to add two numeric resources of a given type t:

〈NumV n1, t1〉 ⊕ 〈NumV n2, t2〉 = 〈NumV n1 +t n2, t1〉 if t1 = t2
〈EnumV s1, t1〉 ⊕ 〈EnumV s2, t2〉 = 〈EnumV s1 ∪ s2, t1〉 if t1 = t2

〈AllV〉 ⊕ 〈Resource V alue〉 = 〈AllV〉
n1 +t n2 = n1 + n2 if Additive(t)
n1 +t n2 = max(n1, n2) if MaxLimit(t)

We can see that the Infinite resource set is an absorbent. Such a resource value is
used for the root of the group hierarchy. We do not expect any of the groups created
by the user to contain the infinite resource value; such a property is enforced by
the subtraction operator, which we discuss in the following section.

5.1.2 Resource Descriptors. Programmers do not have direct access to resource
values, but instead they can use resource descriptors to denote resource values.
Resource descriptors can be absolute: they then denote the corresponding amount
of resource values. They can be relative (or symbolic): their meaning is specified
according to an algebra, which we describe below. In the table below, the first two
descriptors are absolute, whereas the next two are relative.

〈NumD n, t〉 (Numerical resource descriptor)
〈EnumD s, t〉 (Enumerated resource descriptor)
〈PercentD p〉 (Percentage resource descriptor)
〈AllD〉 (All Resources Descriptor set)
t (Resource type)
n (Integer)
p (Percentage 0 ≤ p ≤ 1)
s (Set)

The operation 	 is opposite to ⊕: it specifies how to split an amount of resource
values in two parts according to a resource descriptor. The operator 	 has the
following signature:

	 : 〈Resource V alue〉 × 〈Resource Descriptor〉

→ 〈Resource V alue〉 × 〈Resource V alue〉 | ⊥

Given a value and a descriptor, 	 either produces two resource values or fails to split
the resource value in two parts. The second part represents the amount subtracted
from the initial value, while the first part represents what remains of the initial
value after subtraction.
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〈NumV n1, t1〉 	 〈NumD n2, t2〉 = (〈NumV n1 −t1 n2, t1〉, 〈NumV n2, t1〉)
if t1 = t2 and n1 ≥ n2

〈NumV n1, t1〉 	 〈NumD n2, t2〉 = ⊥ if t1 6= t2 or n1 < n2

〈NumV n1, t1〉 	 〈PercentD p〉 = (〈NumV n1 −t1 n1 ∗ p, t1〉, 〈NumV n1 ∗ p, t1〉)
〈NumV n1, t1〉 	 〈EnumD s, t〉 = ⊥
〈NumV n1, t1〉 	 〈AllD〉 = (〈NumV 0, t1〉, 〈NumV n2, t1〉)

〈EnumV s1, t1〉 	 〈NumD n, t〉 = ⊥
〈EnumV s1, t1〉 	 〈EnumD s2, t2〉 = (〈EnumV s1, t1〉, 〈EnumV s2, t2〉)

if t1 = t2 and s1 ⊇ s2

〈EnumV s1, t1〉 	 〈EnumD s2, t2〉 = ⊥ if s1 6⊇ s2 or t1 6= t2
〈EnumV s, t〉 	 〈PercentD p〉 = ⊥
〈EnumV s, t〉 	 〈AllD〉 = (〈EnumV s1〉, 〈EnumV s1〉)

〈AllV〉 	 〈NumD n, t〉 = (〈AllV〉, 〈NumV n, t〉)
〈AllV〉 	 〈EnumD s〉 = (〈AllV〉, 〈EnumV s〉)
〈AllV〉 	 〈PercentD p〉 = ⊥
〈AllV〉 	 〈AllD〉 = ⊥

n1 −t n2 = n1 − n2 if Additive(t)
n1 −t n2 = n1 if MaxLimit(t)

The above algebra has defined the operations ⊕ and 	 on resource entities (values
or descriptors). In the rest of the paper, we refer to multiple resources managed by
a group. Therefore, we extend this notation to vectors of resources. Additionally,
we introduce the following abbreviations:

~R 	1
~D = ~R1

~R 	2
~D = ~R2

}

if ~R 	 ~D = ( ~R1, ~R2)

No resource is intended to be created or lost by the operations ⊕ and 	, which
therefore must satisfy the following relation.

If ~R 	 ~D results in (~R1, ~R2), then ~R1 ⊕ ~R2 = ~R.

We should note that the 	 operation is successful for a set of infinite resource
values, only if the resource descriptor is absolute. This constraint guarantees that
no user group will ever be given infinite resources, even though the root of the
group hierarchy is allocated infinite resource values.

5.2 Operational Semantics

In this section, we formalise our model of resource programming using an abstract
machine that is programming-language independent so as to be as generic as pos-
sible. The abstract machine comprises a notion of group and makes interactions
between groups explicit through the use of communication channels. As a result,
our model is suitable for both shared and distributed memory systems.

5.2.1 State Space. The abstract machine state space is displayed in Figure 12.
In this abstract machine, we model only the computations that pertain to resource
management, and we do not model any other form of computation. Groups are a
key component of the abstract machine; they are containers for resources values ,
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which the programmer refers to by using resource descriptors . Messages are ex-
changed between groups, and are defined by an inductive type, whose constructors
are: exhaustion, termination, thread, group, sendAwaken, sendPause, awaken, pause,
pausedand awakenFailure. We do not make any assumption of the order of message
delivery in communication channels, and therefore we represent such channels as
bags of messages between pairs of groups. Each group is associated with some
information, referred to as group configuration: its status, its set of resources, its
threads, its subgroups, its parent group, a queue of incoming messages waiting to be
processed, and its two handlers for termination and exhaustion. A complete system
configuration is defined by all the groups and their associated group configuration
and communication channels.

We note here a peculiarity of the set of messages: we distinguish user messages
in Mu from system messages in Ms. The former are messages that result from
a library call by the programmer, and therefore refer to resources by descriptors,
whereas the latter are messages where the resource descriptors have been replaced
by resource values. In order to convert user messages into system messages, we
use a conversion function, which we note M{ ~D/~R}, which substitutes a resource
descriptor for a resource value in a user message; it is defined as the identity function
for all messages in Ms and as follows for messages of MD:

{ ~D/~R} :: MD → MR

group( ~D, f, ht, he) { ~D/~R} = group( ~R, f, ht, he)

sendAwaken(G, ~D) { ~D/~R} = sendAwaken(G, ~R)

For convenience, we shall use the extension of the conversion function to sequences
of messages.

5.2.2 Initial State. The abstract machine is characterised by an initial state
and a set of transitions. In the initial state cinit, defined in Figure 12, we find
empty communication channels and a single group G⊥. The root group G⊥ is
a system-defined group that is the root of the hierarchy, with resources ~R⊥ and
handlers ht⊥, he⊥. In Section 6, we will see how the system group G⊥ is defined in
a concrete implementation. In group G⊥, there is a message requesting the creation
of a new group, with user code finit, resources ~Rinit (computed from ~Dinit) and
notification handlers htinit, heinit, all specified by the user.

5.2.3 Thread Execution. Our aim is to present a language-independent seman-
tics of our hierarchical model of resource programming. This model is however
meant to be integrated into a programming language that contains constructs,
primitives, or library function able to request resources managed by our model.
Against this background, we identify here a set of primitives, but we do not pro-
vide their exact syntax, nor their operational definition. Instead, we express their
effect on RAP, by the descriptors of the resources they are meant to request, the
sequence of user messages they generate, and their administrative cost. Their defi-
nitions appear in Figure 13.

We explain how Figure 13 is structured by discussing the primitive awaken,
which expects two arguments: a target group and some resource descriptors. The
resources requested by this primitive are exactly those passed to the primitive
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G (Groups)
R (Resource Values)
D (Resource Descriptors)
F = V oid → V oid (User Function)
T (Threads)
S = {running, exhausted, terminated} (Group States)

Ht = G × P(D) → V oid (Termination Handlers)
He = G × P(D) × P(D) → V oid (Exhaustion Handlers)
Hp = G × P(D) → V oid (Pause Handlers)
Ms = exhaustion : G × P(D) × P(R) → M (User Independent Messages)

| termination : G × P(R) → M
| thread : F → M
| sendPause : G ×Hp → M
| awaken : G × P(R) → M
| pause : G × G × G ×Hp → M
| paused : G × P(R) ×Hp → M
| awakenFailure : G × G × P(R) → M

MR = group : P(R) ×F ×Ht ×He → M (Instantiated Messages)
| sendAwaken : G × P(R) → M

MD = group : P(D) ×F ×Ht ×He → Mn (Uninstantiated Messages)
| sendAwaken : G × P(D) → Mn

Mu = Ms ∪MD (User Messages)
M = Ms ∪MR (System Messages)
K = G × G → Bag(M) (Channels)
GC = S × P(R) × P(T ) × P(G) × G

× Queue(M)×Ht ×He (Group Configurations)
C = (G → GC) ×K (Configurations)

Characteristic variables:

G ∈ G, R ∈ R, D ∈ D, ~R ∈ P(R), ~D ∈ P(D), f ∈ F ,

M ∈ Mu, M ∈ M, M∗ ∈ Queue(M), s ∈ S, ht ∈ Ht, he ∈ He, 〈Γ, k〉 ∈ C

The initial state is defined in terms of finit, ~Dinit, htinit, heinit, provided by the
user, with G⊥ the system predefined root group, with resources and handlers
~R⊥, ht⊥, he⊥, and no parent.

~Rinit = ~R⊥ 	1
~Dinit

Minit = group(~Rinit, finit, htinit, heinit)

Γinit(G⊥) = 〈running, ~R⊥, ∅, ∅,⊥, [Minit], ht⊥, he⊥〉

Γinit(G) = ⊥, for any G 6= G⊥

kinit = G1, G2 → ∅, ∀G1, G2 ∈ G

cinit = 〈Γinit, kinit〉

Fig. 12. State Space
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Operation Descriptor User Messages Administrative Cost

awaken(G, ~D) ~D [sendAwaken(G, ~D)] ~Dawaken

pause(G,hp) [sendPause(G, hp)] ~Dpause

newGroup(~D, f, ht, he) ~D [group( ~D, f, ht, he)] ~DnewGroup

new runnable(f).start() {thread : 1} [thread(f)] ~Dthread

malloc(n) {memory : n} [] ~Dmalloc

fileOpen(name) {file : 1} [] ~DfileOpen

thread.stop() {thread : −1} [] ~Dthreadstop

free(n) {memory : −n} [] ~Dfree

fileClose(file) {file : −1} [] ~DfileClose

Fig. 13. Operations

in the form of descriptor ~D. The primitive generates a user message sequence
[sendAwaken(G, ~D)], which will be handled by a transition rule described in this
section. Finally, each specific implementation of the system must define the cost
of executing such a primitive: ~Dawaken. We note that the messages sendAwaken

and group in Figure 13 are uninstantiated messages, since they refer to a resource
descriptor ~D awaiting to be substituted for a concrete resource value. Other prim-
itives in the figure entail the consumption of resources, such as thread creation,
memory allocation, and file opening, which respectively require thread, memory
and file resources to be available to proceed. The figure also contains their sym-
metric primitives, which release resources. For instance, closing a file makes one
unit of the file resource available again, which we represent by a negative number.

We rely on this definition of primitives to identify the effect of thread execution
on the system resources in a language-independent manner, which we capture with
the relationship ⇒:

T1 ⇒ T2 requesting ~D generating M∗

1 with administrative cost ~Da

It states that a thread with “state” T1 evolves to a new “state” T2, by executing
some constructs, whose cumulative effect is to request a set of resources ~D, gener-
ate a sequence of user messages M ∗

1 with a given administrative cost ~Da. When

resources are released, following the convention of Figure 13, resources in ~D are
negative. By convention, a thread that executes a thread.stop() instruction will
result into a final state, which we note void, which marks the end of its lifetime.

5.2.4 Configuration Transformers. We use some pseudo-statements such as send ,
receive or table updates, which give an imperative look to the specification. Such a
notation helps the reader understand how the specification could be implemented.
Formally, such pseudo-statements have a precise meaning: they act as configuration
transformers and are defined as follows.

- Let Γ be the function mapping groups to group configurations in a configuration
〈Γ, k〉. Then, the expression Γ(g) := V denotes the configuration 〈Γ′, k〉, where
Γ(g1) = Γ′(g1) if g1 6= g, and Γ′(g) = V .

- Let k be the set of message channels of a configuration 〈Γ, k〉. Then, the ex-
pression send(G1, G2, m) denotes the configuration 〈Γ, k′〉, with k′(G1, G2) =
k(G1, G2) ] {M}, and k′(Gi, Gj) = k(Gi, Gj), ∀(Gi, Gj) 6= (G1, G2), where the
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operator ] denotes the union operator on bags.

- Let k be the set of message channels of a configuration 〈Γ, k〉. Then, the ex-
pression receive(G1, G2, m) denotes the configuration 〈Γ, k′〉, with k′(G1, G2) =
k(G1, G2) \ {M}, and k′(Gi, Gj) = k(Gi, Gj), ∀(Gi, Gj) 6= (G1, G2), where the
operator \ denotes the difference operator on bags.

5.2.5 Transition Rules. The rules which we are now going to define adopt the
following syntax:

rule name(v1, v2, . . .) :

condition1(v1, v2, . . .) ∧ condition2(v1, v2, . . .) ∧ . . .

→ {

pseudo statement1;

pseudo statementn;

}

A rule is identified by its name, and is parameterised by a number of variables.
Some conditions can appear to the left-hand side of the arrow: these are guards
that must be satisfied in order for the transition to be fireable. The right-hand side
of the arrow denotes the configuration that is reached after transition: its value
results from applying the configuration transformer obtained by composing all the
pseudo-statements to the configuration that satisfied the guard. From a concur-
rency viewpoint, we assume that the execution of a transition, i.e. verification of
guards and pseudo-statements execution, is performed atomically.

Figures 14, 15, 16, and 17 contain the transition rules of our abstract machine,
which we discuss in the rest of the section, by making explicit references to some
of the rule features. Appendix A presents an example of a RAP program and
its evaluation step-by-step using the machine transition rules. First, we consider
Figure 14 concerned with a group’s life cycle.

(Note 1). In rule consumption, we consider a thread able to evolve from state

T to T ′, requesting resources specified by a descriptor ~D, generating a set of user
messages M∗

1 , with an administrative cost ~Da. If the current resources are greater

than the described resources ~D, the administrative cost ~Da, and the cost of noti-
fication ~Dn, then transition consumption is fireable. Such a condition, expressed
as

~R 	 ~D = (~R1, ~RD) ∧ ~R1 	 ~Da = (~R2, ~Ra) ∧ ~R2 	 ~Dn 6= ⊥,

means that we can subtract ~D, ~Da and ~Dn from ~R. After transition, the sponsor-
ing group will see its resources decremented by the request resources ~RD and the
administrative cost; the thread will evolve to its state T ′, with the insurance that
enough resources remain to emit a notification of cost ~Dn; in other words, we have
set aside some resources to be sure that we can raise a notification in the future.
All the messages M∗ generated by the execution of the thread are concatenated
to the group’s message list. Additionally, references to the descriptors ~D in the

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.



Resource Aware Programming · 21

consumption(G,G∗,Gp, T, T ′, T ∗, M∗,M∗
1 , ~R, ~Da, ~Dn, ~D, ht, he) :

Γ(G) = 〈running, ~R, {T} ∪ T ∗,G∗,Gp, M∗, ht, he〉

∧ T ⇒ T ′ requesting ~D generating M∗
1 with admin cost ~Da

(Note 1)∧ ~R 	 ~D = (~R1 , ~RD) ∧ ~R1 	 ~Da = (~R2, ~Ra) ∧ ~R2 	 ~Dn 6= ⊥

→ {

if T ′ = void

then Γ(G) := 〈running, ~R2, {T ′} ∪ T ∗,G∗, Gp,M∗ : M∗
1 {

~D/~RD}, ht, he〉;

else Γ(G) := 〈running, ~R2, T ∗,G∗, Gp,M∗ : M∗
1 {

~D/~RD}, ht, he〉;

}

exhaustion(G,G∗,Gp, T, T ′, T ∗,M∗,M∗
1 , ~R, ~RD , ~Da, ~D, ht, he) :

Γ(G) = 〈running, ~R, {T} ∪ T ∗,G∗,Gp, M∗, ht, he〉

∧ T ⇒ T ′ requesting ~D generating M∗
1 with admin cost ~Da

(Note 2)∧ ~R 	1
~D 	1

~Da 	 ~Dn = ⊥

→ {

Γ(G) := 〈exhausted,~0, {T} ∪ T ∗,G∗, Gp,M∗, ht, he〉;

send(G, Gp, exhaustion(G, ~R 	1
~Dn, ~D));

}

termination(G, Gp, ~R, ~Rt, ht, he) :

(Note 3)Γ(G) = 〈running, ~R, ∅, ∅,Gp, ∅, ht, he〉

→ {

Γ(G) := 〈terminated,~0, ∅, ∅, Gp, ∅, ht, he〉;

send(G, Gp, termination(G, ~R 	1
~Dn));

}

message(G,G∗,G1,Gp, T ∗,M∗,M, ~R, s, ht, he) :

(Note 4)Γ(G) = 〈s, ~R, T ∗, G∗,Gp, M∗, ht, he〉 ∧ 〈M〉 ∈ k(G1, G)

→ {

receive(G1,G,M);

Γ(G) := 〈s, ~R, T ∗,G∗, Gp, [M∗ : M ], ht, he〉;

}

Fig. 14. Group Life Cycle
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set of messages M∗
1 are replaced by the exact resources ~RD they denote, using the

conversion function to system messages M ∗
1 { ~D/~RD}. We see here that such a con-

version of descriptors into resource values is under control of the system, which has
checked that enough resources existed with the guard of rule makeGroup, before
allowing the transition to be fired.

(Note 2). The pre-conditions of rule exhaustion are similar to those of rule con-
sumption, except that the amount of requested resources (plus the administrative
cost) is smaller than the amount of resources available in the sponsoring group G.
Such an event triggers the exhaustion of G, marked by the change of its status to
exhausted and the resetting of its resources; any other data of G remains unchanged.
Additionally, we send an exhaustion message to the parent of G, which contains a
reference to G (the exhausted group), the resources it had left, and a descriptor
indicating the amount of resources that we failed to grant. The latter descriptor
can be useful to the handler to determine the amount of resources that should be
transferred back to the group. When the thread being executed reaches its final
state void, it is removed from the group list of threads.

(Note 3). Termination of a group is defined as the simultaneous absence of
threads in the group, of messages in the queue of messages, and of subgroups.
A termination message is sent to the parent of G, which contains a reference to the
terminated group G and its remaining resources. Such a termination property can
be observed locally, i.e. at a given location, and therefore is also tractable for a
distributed environment.

(Note 4). Rule message is concerned with the asynchronous handling of messages
in transit between two groups. Any message in a communication channel from
group G1 to group G is added at the end of G’s queue of messages. While order of
messages is not necessarily preserved by communication channels between groups,
messages are handled in a strictly ordered manner by groups.

We now examine the transitions of Figure 15.

(Note 5). User’s programs can request new groups to be created by providing
a resource descriptor, a user function and notification handlers. The resource de-
scriptor, specified by the group creation primitive in Figure 13, is converted into
an actual resource value (cf. Note 1). A new group G1 is created, with the current
group G defined as its parent. A thread message is also sent, referring to the user
code to be executed. We require the amount of resources allocated to a new group
to be greater than ~Dn, the cost of notification, so as to ensure that enough resource
exist to be able to support the cost of raising a notification.

(Note 6). The processing of a message requesting the creation of a thread results
in a new thread appearing in the group, which begins the execution of the user
function. The creation of a thread is conditional to the group having the necessary
resources to create one thread, as specified by Figure 13, which imposes that one
thread-resource is available for consumption,

(Note 7). A termination message issued by rule termination executed by group
Gt results in the creation of a new thread that activates the termination handler of
group Gt. The termination handler expects the terminated group Gt and resource
descriptors denoting the amount of resources that remained in Gt when termination
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makeGroup(G,G∗,Gp, G1, T ∗, M∗, ~R, ~R1, f, ht, he, h′
t, h

′
e) :

(Note 5)Γ(G) = 〈running, ~R, T ∗,G∗,Gp, [group(~R1, f, h′
t, h

′
e) : M∗], ht, he〉

∧ Γ(G1) = ⊥ ∧ ~R1 	 ~Dn 6= ⊥

→ {

Γ(G) := 〈running, ~R, T ∗, {G1} ∪ G∗, Gp,M∗, ht, he〉;

Γ(G1) := 〈running, ~R1, ∅, ∅, G, [thread(f)], h′
t, h

′
e〉;

}

makeThread(G,G∗, Gp, T ∗,M∗, ~R, f, ht, he) :

(Note 6)Γ(G) = 〈running, ~R, T ∗,G∗,Gp, [thread(f) : M∗], ht, he〉

→ {

Γ(G) := 〈running, ~R, {f()} ∪ T ∗,G∗,Gp, M∗, ht, he〉;

}

notifyTermination(G, G∗,Gp, Gt, T
∗,M∗, ~R, ~Rt, s, ht, he) :

(Note 7)Γ(G) = 〈s, ~R, T ∗, {Gt} ∪ G∗,Gp, [termination(Gt, ~Rt) : M∗], ht, he〉

→ {

Γ(G) := 〈running, ~R ⊕ ~Rt, T
∗,G∗,Gp, [M∗ : Mn], ht, he〉;

where Mn = thread(Γ(Gt).ht(Gt, toDesc(~Rt)))

}

notifyExhaustion(G, G∗,Gp,Ge, T ∗,M∗, ~R, ~Re, ~De, s, ht, he) :

(Note 8)Γ(G) = 〈s, ~R, T ∗, G∗,Gp, [exhaustion(Ge, ~Re, ~De) : M∗], ht, he〉

∧ s 6= terminated

→ {

Γ(G) := 〈running, ~R ⊕ ~Re, T ∗, G∗,Gp, [M∗ : Mn], ht, he〉;

where Mn = thread(Γ(Ge).he(Ge, ~De, toDesc(~Re)))

}

Fig. 15. Message Processing (1)
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was observed; such resource descriptors are obtained by converting the resource
values ~Rt.

(Note 8). Handling an exhaustion message is similar to handling a termination
message. Instead, the exhaustion handler is called; it requires a description of the
remaining resources and a description of the resource requested.

In the following, we comment on Figures 16 and 17.

(Note 9). The operation awaken of Figure 13 requests a message awaken to be

sent to a group G1 with an amount of resources ~R1. Such a message is simply
added to the appropriate communication channels.

(Note 10). Rule awaken handles an incoming awaken message by adding the

specified amount of resources ~R1 to the resources of the receiving group, provided
it is not terminated; as the group is given the running status after transition, the
awaken message is able to awaken exhausted groups. If the receiving group is
terminated, we avoid losing the received resources, by sending them back to the
emitter using an awakenFailure message.

(Note 11). Rule awakenFailure handles awakenFailure messages marking the fail-
ure to awaken a group. The resources are simply returned to the receiving group
if it has not terminated. If it has terminated, then both the group that initiated
the awaken message and the target group for the message have terminated: the
resources are therefore “recycled” by the system.

(Note 12). The operation pause of Figure 13 requests a message pause to be sent
to a group G1. Rule sendPause of Figure 17 handles this request by sending such
a message to the relevant communication channel. A pause message is composed
of four arguments: the group that initiates the pause action, the current group to
be paused, the targetted group to be paused and a pause handler. Initially, the
current group and targetted group are identical: the former changes as the pause

message is forwarded in the hierarchy of groups rooted at the targetted group.

(Note 13). Rule pause is triggered by the arrival of a pause message. The receiv-
ing group changes to a status exhausted and all its resources are sent to the emitter
of the pause message using an awaken message. If the group G is not the group
initially targetted by the pause message (but is one of its direct or indirect child),
a paused notification message is sent to its parent. Additionally, for each of its
children, a pause message is sent, with the same targetted group Gt. No action is
performed if the receiving group has already terminated. In a first approximation,
Figure 7 defined the cost of pausing as Kp; rule pause refines this cost by taking
into account that pausing a hierarchy is an operation that is propertional to the
number of groups contained in the hierarchy; therefore, an administrative cost ~Rp

is charged for each group encountered by rule pause.

(Note 14). Rule notifyPause handles a paused message and creates a thread exe-
cuting the pause handler. It is implicit that the current group G is not terminated
because the queue of messages for G is not empty at the beginning of the transition.

5.2.6 Discussion. The rules presented in this section do not make any assump-
tion about the memory model: all communications between groups take place over
communication channels, and therefore can be hosted in shared and distributed
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sendAwaken(G,G∗,Gp, G1, T ∗, M∗, ~R, ~R1, ht, he) :

(Note 9)Γ(G) = 〈running, ~R, T ∗,G∗,Gp, [sendAwaken(G1, ~R1) : M∗], ht, he〉

→ {

Γ(G) := 〈running, ~R, T ∗, G∗,Gp, M∗, ht, he〉;

send(G, G1, awaken(G, ~R1));

}

awaken(G,G∗,Gp, G1, T ∗, M∗, ~R, ~R1, s, ht, he) :

(Note 10)Γ(G) = 〈s, ~R, T ∗, G∗,Gp, [awaken(G1, ~R1) : M∗], ht, he〉

→ {

if (s 6= terminated) then

Γ(G) := 〈running, ~R ⊕ ~R1, T ∗, G∗,Gp, M∗, ht, he〉;

else

send(awakenFailure(G, G1, ~R1));

}

awakenFailure(G,G∗,Gp,G1, T ∗,M∗, ~R, ~R1, s, ht, he) :

(Note 11)Γ(G) = 〈s, ~R, T ∗, G∗,Gp, [awakenFailure(G1, ~R1) : M∗], ht, he〉

→ {

if (s 6= terminated) then

Γ(G) := 〈running, ~R ⊕ ~R1, T ∗, G∗,Gp, M∗, ht, he〉;

else

//return resource ~R1 to resource sink

}

Fig. 16. Message Processing (2): Group Awakening
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sendPause(G,G∗,Gp,G1, T ∗,M∗, ~R, ht, he, hp) :

(Note 12)Γ(G) = 〈running, ~R, T ∗,G∗,Gp, [sendPause(G1, hp) : M∗], ht, he〉

→ {

Γ(G) := 〈running, ~R, T ∗, G∗,Gp, M∗, ht, he〉;

send(G, G1, pause(G,G1,G1, hp));

}

pause(G,G∗,Gp,G1,Gt, T
∗,M∗, ~R, ~Rp, s, ht, he, hp) :

(Note 13)Γ(G) = 〈s, ~R, T ∗, G∗,Gp, [pause(G1, G,Gt, hp) : M∗], ht, he〉

→ {

if (s 6= terminated) then

Γ(G) := 〈exhausted,~0, T ∗,G∗,Gp,M∗, ht, he〉;

if (~R 	 ~Rp 6= ⊥) then send(G, G1, awaken(G, G1, ~R 	 ~Rp));

if (G 6= Gt) then send(G,Gp, paused(G, ~R, hp));

for all g ∈ G∗ send(G, g, pause(G1, g,Gt, hp));

}

notifyPause(G, G∗,Gp,Gt, T
∗,M∗, ~R, ~Rt, s, ht, he) :

(Note 14)Γ(G) = 〈s, ~R, T ∗, G∗,Gp, [paused(Gt, ~Rt, hp) : M∗], ht, he〉

→ {

Γ(G) := 〈s, ~R, T ∗,G∗, Gp, [M∗ : thread(hp(Gt, toDesc(~Rt)))], ht, he〉;

}

Fig. 17. Message Processing (3): Group Pausing
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memories. The newRemoteGroup primitive, like newGroup, creates a group mes-
sage, which has to be sent to a remote host, using the existing communication
channel mechanism.

In this section, we have seeked to present a simple semantics highlighting the key
principles of resource transfers. In particular, when the awaken primitive is called
on a terminated group, an awakenFailure message transfers resources back to the
group that sponsored the invocation of awaken. Likewise, a pause primitive results
into resources being transferred back to the group that sponsored its execution. In
both cases, resources could be leaked if the group initiating the operation terminates
before the resources are returned. It is therefore the programmer’s responsibility
to ensure these groups do not terminate prematurely. In order to achieve this in
a reliable manner, it may be desirable to extend the existing semantics with ac-
knowledgment messages marking a successful awaken or pause operation. However,
we did not introduce such messages to avoid cluttering the semantics with non
resource-specific messages. Additionally, handlers for such messages would have
to interface with the language the system is embedded in, with a view to unblock
the corresponding primitives: such interfacing is difficult to express in a language
independent manner.

Our RAP model also supports time in two different ways. First, time can be
defined as a deadline by which a computation must have completed its execution,
otherwise its group becomes suspended. This model of time assumes that all lo-
cations involved in a computation are synchronised, say using a protocol such as
NTP (www.ntp.org); deadlines will be shared by all locations, up to the quality
of synchronisation between the different clocks involved. Alternatively, RAP can
also support a notion of “tick” [Haynes and Friedman 1987], which is an abstract
notion of cost associated with each instruction of a programming language; it is
independent of the hardware the machine is operating on, and really represents a
semantic “unit of computing”.

6. RAP MODEL IMPLEMENTATION

In this section, we discuss a prototype implementation of our Resource Aware
Programming model in Java. The prototype implementation is a proof of concept
aiming to demonstrate the feasibility of a RAP implementation; in particular, it
does not require a modified JVM, but we discuss in the latter part of this section,
how our implementation could benefit from monitoring primitives as in the Aroma
VM [Groth and Suri 2002] or JVM extensions [JSR-121 2003].

Our implementation supports both a shared memory and a distributed mem-
ory. While a single API has been defined, we have provided implementations of
communication channels that operate in both memory models; the distributed im-
plementation of communication channels relies of Java RMI [Sun MicroSystems
1996].

6.1 Overview

Figure 18 presents the key elements of our implementation of Resource Aware Pro-
gramming in Java. The RAP package introduces new notions of group (RAPGroup)
and thread (RAPThread). Each RAPGroup contains explicit references of the
RAPThreads it sponsors, to all of its subgroups, to its parent group, and to the
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set of resources it contains. For each group, we find a synchronous communication
channel and a thread, which we call communication thread , processing messages
coming over the communication channel. While the semantics of Section 5 does
not require communication channels to be synchronous, we found this was a use-
ful property in our implementation as the communication thread (combined with
the communication channel) was then able to execute its code in a group critical
section. The communication thread processes incoming messages according to the
semantics of Figures 15, 16 and 17.

Resource aware primitives trigger the invocation of the Java security manager
— in this case, a RAP-aware security manager. In addition to the Java stack in-
spection, the RAP manager ensures that the group sponsoring the execution of the
current primitive owns a sufficient amount of resources. The explicit representation
of resources can be obtained by accessing the current thread, then its sponsor-
ing group, and finally its associated resources. Should resources be insufficient,
a message is sent to the group’s communication channel, indicating that resource
exhaustion has been observed; in a same atomic operation (due to the synchronous
nature of the communication channel), the current thread then suspends itself, by a
call to wait() on the group object, and all the threads in the group are suspended
by explicitly calling suspend() on each of them. When some resources are trans-
ferred to a group (e.g. with an awaken message), all threads waiting for the group
monitor and all suspended threads in the group are resumed.

6.2 Key Classes and Interfaces

The RAP package [Moreau and Queinnec 2002b] presents a set of public interfaces
and a very small set of public classes, which we summarise in this section. We
provide interfaces for communication channels, communication channel factories,
exhaustion and termination handlers, messages and resource descriptors. We have
minimised the number of classes visible by the programmer using the RAP package;
only four important classes are required.

Group. This class contains static factory methods for threads, local and remote
groups, and communication channel factories. Additionally, it contains instance
methods pause and awaken following the semantics of Section 5.

AccessManager. An implementation of the resource-aware security manager de-
scribed in the previous section.

Descriptors. This class contains several factory methods for the descriptors we
discussed in Section 5.1.2.

Server. A class able to startup and register a RAP-aware platform where groups
can be migrated to.

6.3 Extensions to the Semantics

In our implementation, we have considered some variants of the semantics. From
an implementation viewpoint, it may be inefficient to create a thread in the parent
group, every time an exhaustion or termination exhaustion has to be run. As
an alternative, one can create a “listener thread”, sponsored by the parent group,
listening on a specified communication channel. Instead of specifying handlers when
creating groups, we can now specify communication channels to which notifications
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Fig. 18. Implementation

much be sent. The listener thread will then perform a suitable action on exhaustion
and termination messages. Such a listener thread and notification channels were
used in our implementation of remote groups to ensure that the notification handler
was executed on the same host as the parent group.

The semantics of Section 5 forces all threads of a group to be suspended when a
resource exhaustion is observed. A common usage pattern of groups is to program
them to monitor the usage of resources: a group is created with an initial amount
of u units of the resources to be monitored, with an exhaustion handler that counts
the number of times it has been invoked and awakens the exhausted group with u
more units of resources. Suspending all threads when resources are exhausted and
resuming them all when more resources are provided is very inefficient. Instead,
one prefers an asynchronous notification to be propagated, with only the thread
that caused the notification to be suspended.

6.4 Support for JVM Extensions

Our current implementation uses a customised Java security manager to intercept
calls to resource-oriented primitives. The key advantage of this approach is its com-
patibility with the JDK1.4, which therefore guarantees that it can run on existing
JVMs. The disadvantage is that not all resource oriented primitives result in a
call to the security manager. Furthermore, it should not be regarded as an efficient
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implementation of RAP since it relies on the onerous stack inspection mechanism.
For instance, some Java API calls such as closing files do no invoke the security

manager, and therefore are not “trapped” by our implementation. It essentially
means that we are able to control the total maximum number of files an application
can open, but not the maximum number of files opened at any one time. Offering a
new API with methods such as close, but invoking RAP when called, would allow
us to support the latter facility. However, this is not a satisfactory solution, since
RAP is meant to be able to control any code it sponsors, without the code being
rewritten for this purpose. Another solution would be to provide a new runtime
library that would be RAP aware.

The usage of some resources is currently not trapped by RAP, such as rates
(number of bytes stored per second, or number of packets sent per second). In
order to integrate these, we need some support at the level of the JVM, for instance
as provided by the Aroma VM [Groth and Suri 2002]. As long as the extended
API provides a callback mechanism, and it allows us to set the level at which
notifications should be triggered, our implementation can be extended to support
such basic monitoring extensions; we would also require the API to identify the
thread that triggered the notification, so that using the implementation of Figure
18, we can find the group the exhaustion was observed in.

Another resource whose usage is difficult to monitor is memory. The JSR 121
[JSR-121 2003] offers a beginning of solution to this end, since it introduces explicit
notion of memory space in the form of “isolate”. Still, monitoring usage of memory
in the presence of a garbage collector is not a trivial matter: while allocation
can be seen as resource consumption, its counterpart, memory reclaiming, will
have to return resources to a group, but without straightforward answer to the
problem of which group it will have to be returned to. Indeed, the group that
allocated a recycled object may no longer exist. On the other hand, returning
recycled memory space to the system would penalise programs that keep a bounded
reachable memory, and rely on garbage collection to recycle garbage data. In fact,
these options describe policies for managing memory, which our framework could
implement if a virtual machine makes available the sensors necessary to observe
memory allocation and deallocation.

7. RELATED WORK

A number of existing systems support resources accounting. Telescript [White 1996]
featured “clicks” that are a unit of charge deducted from an agent’s account. JRes
and JKernel [Czajkowski and von Eicken 1998] support accounting of memory, CPU
and network usage. Nomads [Suri et al. 2000], through a modified JVM, supports
strong migration of agents and resource accounting; in particular, a limit file is able
to specify both quantity limits (such as disk space or memory) but also rate limits
(such as disk usage rate and transfer rate). Java Seal2 [Villazón and Binder 2001] is
an extension of Java Seal [Bryce and Vitek 2001] which provides portable resource
accounting. A notion of process is introduced in KaffeOS [Godmar Back 2000], a
modified JVM, which allows resource control in a fine manner.

All these systems are complementary to the Resource Aware Programming frame-
work: indeed, they implement the accounting of resource usage and they raise a
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notification when a resource quota is reached, while RAP provides the mechanism
to transfer (i.e. add or remove) resource dynamically between distributed com-
putations. RAP also provides a programming model to support the execution of
asynchronous notifications, under the control of the same resource management
system. Notifications are therefore becoming a key programming technique that
can be made available to the programmer. Additionally, our model also supports
resources they do not necessarily have a physical reality, but can be defined in an
application-specific setting.

Java Seal [Bryce and Vitek 2001] is able to migrate nested seals. In our proposed
model, we have not considered migration of groups. The primitive newRemoteGroup

is able to create a group remotely. This primitive in essence offers a weak form of
migration (where threads of control are not migrated, but only data is). Thus, if a
newly created remote group itself called a remote group, a series of nested groups
would be created, none of them directly sponsoring a computation, but acting as a
parent for its nested group. There is here an opportunity for short cutting pointers
[Moreau 2001a], and a tree rerooting techique [Moreau 2001b] could be used in
addition to flatten the group hierarchy.

Aspect Oriented Programming (AOP) [Kiczales et al. 1997] is not directly related
to RAP although AOP may be used to insert RAP-related instructions within a
program. AOP may be viewed as a kind of macro-processor able to transform
the abstract syntax tree of a program into another instrumented program. The
transformations are usually expressed as syntactic rules. Many interesting features
may be woven in a program with these rules, including traces, replacement and bug
fixing.

RAP on the other hand only deals with resource consumption. However, one
should distinguish the RAP user and the RAP designer. The RAP user programs
within a framework that takes care automatically of resources and does not need
to be aware of them. Sometimes the code is suspended and resumed according to
its resource greediness. The RAP user programs implicitly with resources and only
needs to cope with resource exhaustion.

The RAP designer builds the framework, sets resources up and manages them
explicitly. The specific RAP instructions that consume or release resources should
be set on every followed path, this is where AOP may be used to insert consistently
these instructions. For instance, the method to close a file discussed above, could
be extended by AOP to invoke the necessary RAP related operation.

The Grid is a large scale computer system that is capable of coordinating re-
sources that are not subject to centralised control, whilst using standard, open,
general-purpose protocols and interfaces, and delivering non-trivial qualities of ser-
vice [Foster 2002]. As part of the endeavour to define the Grid, a service-oriented
approach has been adopted, by which computational and storage units, networks,
programs and databases are all represented by services [Foster et al. 2002]. In this
context, WS-Agreement [Czajkowski et al. 2004], a standards proposal from the
Global Grid Forum, introduces the notion of agreement negotiation, which captures
the idea of dynamically adjusting policies that affect a service behaviour, without
necessarily exposing the details required to enact or enforce the policies. An agree-
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ment captures a mutual understanding of (future) service provider behaviour. The
scope of WS-agreement negotiation includes the resources we discussed here in the
context of RAP, and in particular include access policies, resource consumption,
or performance goals (i.e. provisioning of services). Agreements in WS-Agreement
must be defined as policy elements of the Web Services policy framework WS-Policy
[Box et al. 2003]. WS-policy is a language allowing a set of assertions to be associ-
ated to a subject; a policy assertion conveys a requirement, preference, or capability.
Examples of security assertions for Web Services are defined in WS-SecurityPolicy
[Della-Libera et al. 2002] and include requirements for security tokens, integrity,
confidentiality, visibility, header information and message age. An alternate spec-
ification language for Web Services is the Web Service Level Agreement language
(WSLA) [Ludwig et al. 2003] which is capable of defining assertions regarding
agreed guarantees that a service provider has to meet, regarding resources such as
response time and throughput. The language can also specify measures to be taken
when a service fails to meet the asserted guarantees, such as notification of the
customer.

Policy languages have been the focus of much attention lately: a number of
authors have proposed services and tools for the specification, management, conflict
resolution, and enforcement of policies within an organisational policy domain. As
an illustration, the KAoS [Johnson et al. 2003] and Ponder [Damianou et al. 2001]
policy languages distinguish between authorisations , i.e constraints that permit or
forbid some actions, and obligations , i.e. constraints that require some action to
be performed. Related to this work, KAoS policies were used to specify rates and
resolution of image streaming [Suri et al. 2003]. A future area of research is to
understand how a policy language for resources could be enforced by an interpreter
extended with RAP capabilities for managing resources. In particular, soundness
and completeness of policy-based resource specifications with respect to RAP-based
resource management are interesting properties to investigate: soundness would
prove that resource-related behaviour enforceable at runtime is specifiable by a
policy, whereas completeness would establish that all properties specifiable by such
a policy language are enforceable by the RAP-based runtime.

8. CONCLUSION

In this paper, we have presented a language independent model of programming
for the monitoring and management of resources. It relies on a resource algebra
composed of two operations on resources, addition and subtraction, and a message-
passing operational semantics that supports a shared memory and a distributed
memory view of the model.

This framework is able to create “resource aware sandboxes” which allow un-
trusted code to be loaded dynamically and executed, while the monitoring and
management of resources can be programmed in a uniform manner. The frame-
work allows the policies to change over time, hence supporting better customisation
of the sandbox to the prevailing execution circumstances.

As far as future work is concerned, a number of issues remain to be investigated.
Our prototype implementation relies on the Java Security Manager to intercept
resource-related calls; we have discussed the limitations of this approach both in

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.



Resource Aware Programming · 33

terms of efficiency and the kind of calls that could be intercepted. Our frame-
work would benefit fully of the monitoring and notification mechanisms of some
extended virtual machines, such as Aroma VM [Groth and Suri 2002], to better
control resources of the system. Ultimately, end-users do not want to program
their resource management policies, but they want to specify them, in an abstract
resource-management policy language. Work is required in order to define and en-
force such a policy language, using RAP primitives. A more fundamental study
of the expressiveness of the policy language and the enforcer is required in order
to ensure that the policies enforced by the enforcer are the one specified by the
language.
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A. EXECUTION TRACE

In this section, we illustrate the abstract machine by showing the transitions it
would perform on a sample program. The program is written in Java and makes
uses of our implementation of RAP. Excerpt of the source code appears in Figure
19.

public class Example {

static Runnable r = new Runnable () {

public void run () {

try {

new Socket("www.ecs.soton.ac.uk", 80);

} catch (Exception e) {

// handler

}

}};

public static void main (String [] arg) {

AccessManager am = new AccessManager(true);

System.setSecurityManager(am);

ResourceDescriptors rv =

Descriptors.newResourceDescriptors(new ResourceDescriptor [] {});

Group.initialGroup(r,Group.newSharedMemoryChannelFactory(),rv);

// wait

}

}

Fig. 19. An Example

In the class Example, a “runnable” object is defined to open a socket to port 80 of
an http server. In the main method, after setting a RAP-aware security manager, a
group is created to run the runnable object with an initially empty set of resources.
The group that we create is provided with an exhaustion handler (not shown in
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the code), which always grants the resources requested. Formally, the handler is
written as follows, it awakes the exhausted group with the resources that were
available (Da) and the requested resources (Dr):

h = λGDaDr.awaken(G, Da + Dr)

Referring to definition of the initial configuration in Figure 12, the Java code of
Figure 19 is specifying the following values for the initial message Minit:

~Rinit = []

finit = runnable object r

heinit = λGDaDr.awaken(G, Da + Dr)

htinit : not discussed in this example

In order to simplify the presentation, we assume administrative costs are zero,
and that the root group G⊥ contains an infinite set of resources 〈AllV〉. Figure 20
shows the transitions of the RAP abstract machine for the example of Figure 19.
We start the execution with the initial configuration. The initial message Minit can
be processed by rule makeGroup, which results in a new group G being created, with
one thread consisting of the invocation of the runnable object r. Its execution sets
up an exception handler (rule consumption) to finally arrive at the socket creation
primitive.

Experience with running this code shows that the JVM requires several resources
to open a socket, including a file resource and multiple permissions. Therefore, we
symbolically represent by ~D the resources requested by this operation. Since these
resources are not available in G, an exhaustion is observed. An exhaustion message
is propagated to group G⊥, which can start a thread to execute G’s exhaustion
handler (rule notifyExhaustion). The handler directly invokes the awaken opera-

tion. Since G⊥ has an infinite set of resources, the descriptor ~D can be substituted
for values ~V inside an sendAwaken message. Its processing by rule sendAwaken
results into an awaken message being sent to G. When received, the group can be
awakened, its status is set to running, and execution can continue.
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cinit = {{G⊥ → gc⊥0 }, kinit}

with gc⊥0 = 〈running, ~R⊥, ∅, ∅,⊥, [Minit], ht⊥, he⊥〉

→makeGroup {{G⊥ → gc⊥1 ,G → gc1}, kinit}

with gc1 = 〈running, [], {r}, ∅, G⊥, [], htinit, heinit〉

and gc⊥1 = 〈running, ~R⊥, ∅, {G},⊥, [], ht⊥, he⊥〉

→consumption {{G⊥ → gc⊥1 ,G → gc2}, kinit}

with gc2 = 〈running, [], {newSocket(...)}, ∅, G⊥, [], htinit, heinit〉

→exhaustion {{G⊥ → gc⊥1 ,G → gc3}, kinit[(G, G⊥, exhaustion(G, [], ~D))]}

with gc3 = 〈exhausted, [], {newSocket(...)}, ∅, G⊥, [], htinit, heinit〉

→message {{G⊥ → gc⊥2 ,G → gc3}, kinit}

with gc⊥2 = 〈running, ~R⊥, ∅, {G},⊥, [exhaustion(G, [], ~D)], ht⊥, he⊥〉

→notifyExhaustion {{G⊥ → gc⊥3 ,G → gc3}, kinit}

with gc⊥3 = 〈running, ~R⊥, {heinit(G, ~D, [])}, {G},⊥, [], ht⊥, he⊥〉

→consumption {{G⊥ → gc⊥4 ,G → gc3}, kinit}

with gc⊥4 = 〈running, ~R⊥, {void}, {G},⊥, [sendAwaken(G, ~R)], ht⊥, he⊥〉

→sendAwaken {{G⊥ → gc⊥5 ,G → gc3}, kinit[(G⊥, G, awaken(G, ~R))]}

with gc⊥5 = 〈running, ~R⊥, {void}, {G},⊥, [], ht⊥, he⊥〉

→message {{G⊥ → gc⊥5 ,G → gc4}, kinit}

with gc4 = 〈exhausted, [], {newSocket(...)}, ∅, G⊥, [awaken(G, ~R)], htinit, heinit〉

→awaken {{G⊥ → gc⊥5 ,G → gc5}, kinit}

with gc5 = 〈running, ~R, {newSocket(...)}, ∅, G⊥, [], htinit, heinit〉

Fig. 20. Transitions of the RAP Abstract Machine
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