HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

Open Systems Design Using Agent Interactions

by

Simon Miles

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Computer Science

University of Warwick, Department of Computer Science

September 2002

Contents

List of Figures viii
List of Tables xi
Acknowledgments xiv
Declarations b 4%
Abstract xvi
Chapter 1 Introduction 1
1.1 Open Systems o . o e e e 2
1.2 Justification and Opportunism 3
1.3 Agent-Based Systems.o 4
1.4 Generality and Consistency e 5
1.5 AIms o e e e e e 5
1.6 Case Study e 6
1.6.1 Requirements e 6

1.6.2 Variations Lo 7

1.6.3 Concerns to be Addressed 7

1.7 Summary e e e e e e e e 8
Chapter 2 Background on Agent-Oriented Software Engineering 9
2.1 Software Engineering 10
2.1.1 Problems of Software Engineering 10

2.1.2 Desirable Characteristics, 10

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.1.3 Engineering Principles oL oo oL 11

2.1.4 Re-use, Generality and Consistency 13
Agent-Oriented Software Engineering 16
2.2.1 Agent-based Applications for Open Systems 16
2.2.2 Agentsand Objects 17
2.2.3 Formal and Informal Methods 17
Application Structure oL 18
2.3.1 Domain Elements. oo oL 18
2.3.2 Shehory: Software Architectures 18
2.3.3 Gasser: MAS Infrastructure Needs 20
2.3.4 Sycara et al.: Infrastructure Layers 21
2.3.5 Logan: Classifying Agent Systems 22
The Coordination Problem 23
2.4.1 Agent Communication Languages 24
Centralised Coordination, 26
2.5.1 Broker Agent Selection. L. 27
2.5.2 Semi-Centralised Coordination 28
Distributed Coordination 29
2.6.1 Finite State Machines, 29
2.6.2 Commitment Machines 30
2.6.3 Dynamic Selection 30
2.6.4 GPGP: Modularising Coordination Mechanisms 31
2.6.5 Barber et al.: Activities Decomposition 32
Organised Coordination 33
2.7.1 The Social Level L 33
2.7.2 Dignum et al: Coordination Models 34
2.7.3 Shehory: Organisational Coordination Models 35
2.7.4 Adelsberger and Conen: Encouraging Coordination 35
2.7.5 Flow Control 35
AOSE Methodologies 36
2.8.1 Gaia: Role-Based Design 36
2.8.2 Tropos: Requirements Engineering in Design 37

ii

2.8.3 Bussmann: Domain-Based Decision Points 37

2.8.4 Kendall et al.: Manufacturing Workflows 38
2.8.5 Yu and Schmid: Workflows with Roles 38
2.8.6 SODA: Society-Based Design 39
2.8.7 Zambonelli et al.: Organisational Rules 39

2.9 Summary e e e 40
Chapter 3 Agent Interactions as a Modelling Concept 42
3.1 Methodology Capabilities 42
3.1.1 Producing Justified Designs, 43
3.1.2 Design of Opportunistic Applications 44

3.2 Methodologies Evaluation 45
3.2.1 Identification 45

3.22 Connection e 47
3.2.3 Flexibility e 49
3.2.4 Interoperation 50
3.2.5 Comparison Conclusions L. 51

3.3 Analysis e 51
3.3.1 Identification 52
3.3.2 Connection e e 52
3.3.3 Flexibility 52
3.3.4 Interoperation 53

3.4 The Agent Interaction Analysis Methodology 53
3.4.1 Agent Interactions o 53
3.4.2 Design Decisions o e 54
3.4.3 Implementable Agents 54
3.4.4 Agent Interaction Analysis 55

3.5 Summary e e e e e e 55
Chapter 4 Requirements Analysis and Goal Decomposition 57
4.1 Imtroduction. e 57
4.2 Methodology Overview 58
4.3 Requirements Analysis 58

iii

4.3.1 Goal and Preference Examples, 59

4.3.2 Scenario analysiso 60
4.3.3 Entity Analyses 61
434 Goal Analysis e 64

4.4 Goal Decomposition 67
4.4.1 Integration Methods 68
442 Exampleso 70

4.5 Agent Interaction Modelling L. 71
4.6 SUMIMATY . .« v v v ottt b e e e e e e e e e e e e e 74
Chapter 5 Preferences Analysis 76
5.1 Introduction L 76
5.2 Designing Application Infrastructures 77
5.3 Modularisation L e 78
5.3.1 Imnfrastructure Parts, 79
5.3.2 Decomposing an Application Infrastructure 79

5.4 Basis of Model Selection L 81
5.4.1 Interdependencieso e 82

5.5 Infrastructure Part Models Language (IPML) 84
55.1 Useof IPMLt 86

5.6 Preferences Analysis L 87
5.6.1 Choosing Between Models 91
5.6.2 Application and Agent Infrastructure Parts 92
5.6.3 Application Infrastructure Part Decisions 93

5.7 Summary L L e e e e e e 93
Chapter 6 Coordination Design Decisions Using Assurance Analysis 96
6.1 Centralised, Distributed and Organised Coordination 97
6.2 Opportunism, Justification and Coordination 97
6.3 Defining Coordination Mechanisms 99
6.3.1 Definitions of Coordination Mechanisms 100
6.3.2 Describing Coordination Mechanisms in IPML 101

6.4 Assurance Analysiso e 102

iv

6.4.1 Assurance and the Single Agent Perspective 108

6.4.2 The Process of Coordination 109
6.4.3 Belief Acquisition Lo 111
6.4.4 Generalised, Single Agent Preferences 111
6.4.5 The Generalised Assurance Mechanism 112
6.4.6 Applyingthe GAM 113
6.4.7 Coordination Mechanism Decisions 117
6.4.8 Re-using Analysis Information 120

6.5 SUmMmMAary e e e e e e e e e 121
Chapter 7 Collation and Evaluation 123
7.1 Introduction L 123
7.2 Completing Interaction Role Design 124
7.2.1 Goal Adoption and Capability Discovery 124
7.2.2 Local Actors e 126
7.2.3 Support Required for Chosen Mechanisms 126

7.3 Collation e 128
7.3.1 Organisations 128
7.3.2 Global Application Properties 129
7.3.3 Flexibility Bias and Redundancy 129
734 CaseStudy 130
7.3.5 Agent Types e 134

74 Evaluation L 135
7.4.1 Case Study Evaluation: Justification 136
7.4.2 Case Study Evaluation: Opportunism 140

7.5 Re-use, Generality and Consistency 141
7.5.1 Re-Use. e 141
7.5.2 Software Engineering Principles 142
7.5.3 Tteration 143
7.5.4 Maintenance and Extension oL 143
7.5.5 Implementation L e 144

76 SUMMATY o oL e e e e e e e e e e e 145

Chapter 8 Conclusions 146

81 Introduction. 146
8.2 Main Contributions. e 148
8.2.1 Agent Interaction Analysis 148
8.2.2 Agent Interactions as Analysis Abstractions 148
8.2.3 Flexibility Bias in Designing Multi-Agent Systems 148
8.2.4 Assurance Analysis Lo 149
8.2.5 Infrastructure Part Modelling 149

8.3 Most Suitable Applications 149
8.3.1 Well-Suited Case Study 150

8.4 Relation to Other Methodologies 150
8.4.1 Organisational Roles 151
8.4.2 Workflows and Decision Points 151
8.4.3 Societles e e e 151
84.4 Organisational Rules, 151

8.5 Problems and Further Work 152
8.5.1 Reducing Analysis Volume 152
8.5.2 Implementation Paths 153
8.5.3 Formal Verification L 153

8.6 Concluding Remarks 153
Appendix A Case Study Results 155
A1l Definitions oL e 155
A2 Requirements 156
A21 Variations 157

A.3 Requirements Analysis e 158
A.3.1 Scenario analysis 158
A3.2 Entity Analyses. 161
A33 Goal Analysis L 163

A4 Goal Decomposition 168
A5 Preference Analysis 170
A.5.1 Parts of the Application oL 173
A.5.2 Parts of Agent Interactiono 176

vi

A.5.3 Partsof Cooperation 179

Ab54 Partsof Action L 188
A.5.5 Parts of Coordination, 190
A56 OtherParts 197
A.5.7 Application Infrastructure Part Decisions 197

A6 Assurance Analysiso 197
A.6.1 Agent Infrastructure Part Decisions 205
A.6.2 Support Required for Chosen Mechanisms 210

A7 Collation o e 211
A71 Agent Types e 215

A8 Results. o e 217
Bibliography 218

vii

List of Figures

2.1 Event trace for choosing a map location prediction to speed view 16

2.2 Interaction protocol describing agents A and B interacting to find a mutually

acceptable proposal oL 29
3.1 Roles: Problem with Identification 46
3.2 Domain Decision: Problem with Connection 48
3.3 Societies: Problem with Flexibility 50
3.4 Requirements Analysis: Problem with Interoperation 51
4.1 The transformations involved in agent interaction analysis 58
4.2 Event trace for modifying the weathermap 60
4.3 Event trace for choosing a map location prediction to speed view 61
4.4 Event trace for changing the access rights of another user 61
4.5 Entity analysis for accessrights o o 0oL, 63
4.6 Entity analysis for predicters o o oL 63
4.7 Contributed goal analysis 65
4.8 Accuracy Viewed goal analysis 66
4.9 Redistributed goal analysis L. 66
4.10 Decompostion of the Contributed goal 71
4.11 Decomposition for Speed Viewed goal 73
4.12 The structure of an example interaction 74
5.1 Modelling Processes in the Analysis and Design Phases 7

viii

5.2 Infrastructure modularisation showing the support required for goal trigger-
ing via the GUI and for agent interactions
5.3 The influences on infrastructure part model selection
5.4 The interdependencies between infrastructure part models
5.5 The procedural structure of preference analysis
5.6 Infrastructure modularisation annotated with application infrastructure part

model decisions. e

6.1 Generalised Assurance Mechanism
6.2 Assurance analysis of Contributed goal
6.3 Assurance analysis of Speed Viewed goal.
6.4 Assurance analysis of Accuracy Viewed goal.

6.5 Assurance Analysis for Set Accessgoal. oo

A.1 Event trace for starting the application
A.2 Event trace for modifying the weather map
A.3 Event trace for choosing a map location prediction to speed view
A.4 Event trace for viewing a prediction but operation exceeds 10 seconds

A.5 Event trace for changing the access rights of another user
A.6 Event trace for stopping the application
A.7 Entity analysis for a collaborative weather mapping package
A.8 Entity analysis for weather map
A.9 Entity analysis for access rights Lo
A.10 Entity analysis for predicters Lo
A.11 Contributed goal analysis
A.12 Speed Viewed goal analysis oo
A.13 Accuracy Viewed goal analysis oo
A.14 Set Access goal analysis o
A.15 Redistributed goal analysis
A.16 Decompostion of the Contributed goal
A.17 Decomposition for Speed Viewed goal
A .18 Decomposition for Accuracy Viewed goal

A.19 Decomposition for Set Accessgoal,

ix

A .20 Decomposition for Redistributed goal 170

A .21 Infrastructure modularisation showing the support required for goal trigger-

ing via the GUI and for agent interactions 172
A.22 Assurance analysis for application-wide preferences. 201
A .23 Assurance analysis of Contributed goal 201
A .24 Assurance analysis of Speed Viewed goal. 202
A .25 Assurance analysis of Accuracy Viewed goal. 202
A .26 Assurance Analysis for Set Accessgoal. L. 203
A.27 Assurance Analysis for Redistributed goal. oo, 203
A .28 Assurance Analysis for Prediction goal. 0. 205

A .29 Infrastructure modularisation annotated with application infrastructure part

model decisions. 217

3.1

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2
7.3
7.4

List of Tables

Open system design problems addressed by each approach

Data dictionary after scenario analysis
Data dictionary after entity analysis
Data dictionary after goal analysis

Data dictionary after goal decomposition

An TP model for the adoption of goals of a specific type.
An TP model for the adoption of goals of a specific type.
An TP model for mapping capablities required to agents possessing them.

An TP model for the adoption of goals of a specific type.

Infrastructure part models chosen for application infrastructure parts.

An TP model for a coordination mechanism.
An TP model for a coordination mechanism.
An TP model for a coordination mechanism.
An TP model for a coordination mechanism.
An TP model for a coordination mechanism.
An TP model for a coordination mechanism.

Explanatory notes for the assurance analysis diagrams.

Infrastructure part choices for case study originator interaction roles
Capabilities of local actor interaction roles
Agents produced by collation with cardinality (speed variation)

Agents produced by collation (speed variation)

xi

7.5 Agents produced by collationo 137

A.1 Data dictionary after scenario analysis 160
A.2 Data dictionary after entity analysis 163
A.3 Data dictionary after goal analysis, 167
A.4 Data dictionary after goal decomposition 171
A.5 An IP model for the adoption of goals of a specific type. 174
A.6 An IP model for the adoption of goals of a specific type. 175
A.7 An IP model for the adoption of goals of a specific type. 176
A.8 An IP model for the storage of goals. 177
A.9 An IP model for the representation of goals. 177
A.10 An IP model for the processing of actions., 178
A.11 An TP model for mapping capablities required to agents possessing them. . . 179
A.12 An IP model for the adoption of goals of a specific type. 180
A.13 An IP model for a coordination mechanism. 181
A.14 An IP model for a coordination mechanism. 182
A.15 An IP model for a coordination mechanism. 183
A.16 An IP model for a coordination mechanism. 184
A.17 An IP model for a coordination mechanism. 185
A.18 An IP model for a coordination mechanism. 185
A.19 An IP model for the adoption of goals. 186
A.20 An IP model for the adoption of goals of a specific type. 186
A.21 An TP model for the adoption of goals of a specific type. 187
A.22 An IP model for the representation of plans. 188
A.23 An IP model for the manipulation of plans. 189
A.24 An TP model for the form of representation for agent actions. 189
A.25 An TP model for interoperation between applications. 190
A.26 An IP model for interoperation between applications. 191
A.27 An IP model for communication. L 0oL 192
A.28 An IP model for an agent communication language. 193
A.29 An IP model for an agent communication language. 194
A.30 An IP model for an agent communication language. 194
A.31 An IP model for observation. 195

xii

A.32 An IP model for observation. 195

A.33 An IP model for deduction. o oo 196
A.34 An IP model for the storage of beliefs in an agent. 196
A .35 Infrastructure part models chosen for application infrastructure parts. 198
A .36 Explanatory notes for the assurance analysis diagrams. 204
A .37 Agents produced by collation with cardinality (speed variation) 214
A .38 Agents produced by collation (speed variation) 216

xiii

Acknowledgments

I would like to start off by thanking Mike Joy, who has been an accessible and kind supervisor
as well as organised and knowledgable. Next, I would like to thank Mike Luck, who has
given up plenty of reading time to pour over many drafts of this thesis and has been ready
to help out whenever I've needed it. Nathan Griffiths should also be thanked for being a
friendly face to start my PhD life, and always good for a chat. I would also like to thank
the Department of Computer Science in general for providing the opportunity, including
funding, to conduct this work.

T’ve also enjoyed the encouragement and support of many friends at Warwick over
the four years, as well as my parents and sister. I’'m grateful to all these people for providing
the necessary balance for a happy PhD.

Finally, T would like to thank Jenny Bunker who has been all of the above and
more. Not only has she has put her philosophical mind to dissecting my thesis drafts but
has provided plenty of sparkle to my life.

xiv

Declarations

I declare that all the work presented here is my own and has not been submitted for a
degree at another university. As part of my PhD research, I have had two papers accepted

for publication in conference proceedings including portions of this work [76, 77].

XV

Abstract

As software requirements grow increasingly complex, the need to connect to and
re-use existing, tested software, grows with it. Open systems, such as the Internet, aid
this process by connecting together software services provided by a range of organisations,
and the distributed nature of the system allows the services to be regularly updated and
improved. Applications can be deployed within the open systems that opportunistically at-
tempt to make use of the best functionality available at any one time. Agent-based systems
have been proposed as an ideal way to implement such applications, due to their flexibility
and distributed control. However, a balance must be kept between acting opportunistically
and ensuring that each application operates to the standards demanded by the application
requirements. Determining whether an application will perform to its requirements necessi-
tates justifying the design decisions made in creating it. Our goal is to provide application
developers with the means to create justified designs for opportunistic applications. The
main contribution of this thesis is a software engineering methodology, agent interaction
analysis, based on a set of independently valuable techniques we have developed. The first
of these is a novel approach to modelling applications as being instantiated by a set of
agent interactions, allowing such applications to be described with minimal restrictions on
their implemented structure. Second, we provide a technique, based on design patterns, for
comparing mechanisms for instantiating parts of multi-agent system. Finally, we provide an

approach to more detailed analysis and comparison of coordination mechanisms,

xvi

Chapter 1

Introduction

As software grows more and more complex, application developers aim to re-use as much
of the existing software as possible. Fundamentally, this thesis is concerned with how this
re-use can be achieved in a reliable way.

A set of software services and applications managed by a defined set of users, e.g.
the software on a personal computer or on an organisation’s network, can be called a soft-
ware environment. Connecting software environments together provides the potential for
applications to re-use the most up-to-date functionality in any of those environments at any
time, and for that functionality to be continually extended by adding more environments
and adding new services to the existing environments. Such a connected system is said to
be dynamic, as the environments’ content may change at any time, and open, as environ-
ments may be added while an application is running on the system. A popular example of
a dynamic open system is the Internet.

An application developer wishing to make use of the changing functionality of an
open system must add software processes to the system that utilise the available services so
that the application as a whole comes into existence. For example, an application that makes
travel arrangements for a holiday on request may be realised by a process that sequentially
uses flight booking, hotel booking, currency changing etc. services on the Internet. To
achieve more complex applications, developers may need to deploy their own services into
the open system, e.g. a service to search for tourist attraction websites could be added to

the former application. For most effective re-use, the addition of other services, such as new

hotels, to the system should cause the application to decide whether the new services are
better than currently used services and utilise them if so.

This chapter introduces the specific problem we are looking at and the broad ap-
proach taken to solve it. In Section 1.1 we examine the demands on applications that wish
to run within an open system. We examine the most significant problems in developing
open system applications, i.e. meeting the application requirements while also making use
of future open system services, in Section 1.2. Section 1.3 examines how an approach based
on autonomous, decision making entities, agents, is ideal for meeting these demands. Sec-
tion 1.4 examines how a solution to the development of one open system application could
be generalised over many applications. We define the specific aims of this thesis in Section
1.5. In Section 1.6 we introduce the case study application used as an illustrative example
throughout this thesis. We summarise the problem and describe the structure of this thesis

in Section 1.7.

1.1 Open Systems

Open systems are made up of an unlimited and varying number of connected sub-systems
[52]. Sub-systems will change, be added and be removed during execution of an application.
Open systems allow different (human) organisations or parts of a single organisation to share
computational services and resources. Each subsystem can still be maintained separately to
ensure the security and integrity of its stored data.

Due to the dynamic nature of the elements of an open system, the behaviour of the
system as a whole will be unpredictable. In order to perform consistently, an application

within an open system must take account of the following.

e The application should be robust so that those changes in the open system forseeable

by the application designer do not break the application.

e The application itself should compensate for failures in the system by not failing, or

gracefully failing (exhibiting graceful degradation).

e The application should be easy to maintain, so that it can be modified to cope with
radical changes in the system (where this would be possible). By radical changes

we mean changes that the application could not have initially been designed to take

account of.

e The application should be easy to extend, so that it can be modified to take advantage

of useful radical changes.

1.2 Justification and Opportunism

As illustrated in the introduction, the development of applications for open systems is
equivalent to asking the question: what should the designer add to the open system in
order to realise the application?

An application yet to be developed is described in terms of requirements, which are
the desired and expected abilities of the application presented to the application designer as
a written document, through repeated interviews with the potential users and/or through
any other means of requirements capture. In order to ensure an application meets the
application requirements, and to satisfy users that this is the case, the application design
should be clearly justified by the application requirements. The problem becomes more
challenging in an open system as the future form of the system will not be known at design
time. The clear connection between a design and its requirements is made even more
important for applications running in constantly changing environments by the difficulty
with producing and executing meaningful empirical tests in those environments [53, 109].
Therefore, justification of an application design, by reference to the requirements, is of
primary importance in our solution.

To allow an application to re-use the best of existing functionality in the open
system, and to allow it to take advantage of improved functionality as it appears, it should
be opportunistic. Opportunistic applications are flexible enough to decide what functionality
to use from that known to be available at any time.

There is an obvious conflict between justification and opportunism in that the former
requires constraints while the latter requires flexibility. The primary problem that this thesis
considers is how best to resolve the conflict and so solve the problem of what to add to an

open system to create a justified, opportunistic application.

1.3 Agent-Based Systems

In order to cope with the unpredictability of open systems described above, we propose de-
signing open system applications in terms of autonomous, flexible, decision making software
entities, or agents. All the beneficial characteristics that an agent-based approach supplies
are required by applications for dynamic open systems [11, 24]. In [58], Jennings states
that agents are clearly a suitable approach for decomposable complex systems, including
open systems, as agent decompositions are a natural way of analysing complex systems, and
agent-oriented abstractions provide suitable models of complex systems.

Following on from Wooldridge and Jennings’ definition [60], we consider agents
to be flexible, social and autonomous entities. There is significant robustness offered by
entities that can perform actions based on the current context of the system, rather than
solely on the demands of other entities, i.e. are autonomous rather than passive objects.
Aside from this benefit, the characteristics of flexibility, social behaviour and autonomy are
particularly useful in allowing an application to be opportunistic. We consider each of these
characteristics in turn below.

First, flexibility is an important characteristic in unpredictable environments as it
potentially allows agents to take advantage of a wide range of situations. Such behaviour
requires agents to pro-actively seek to achieve goals, i.e. desired states of the environment,
while reacting to changes in their environment. It allows the agents, therefore, to be oppor-
tunistic in taking account of the current system state.

Second, social behaviour is a very important in being opportunistic. The entities
within the environment that might most usefully be taken advantage of are those that are
also flexible and social, i.e. other agents. The cooperation of several opportunistic agents
allows all stages of an activity to be opportunistic. To get the most from social interaction,
agents will coordinate their activities, ensuring they mutually fulfill their goals as best as
possible, judged by whatever criteria the agents employ.

Finally, autonomy is a necessary characteristic for opportunism, as the agents may
have to react immediately to take advantage of the current situation without deferring deci-
sions to another entity. Pro-actively attempting to seek goals also implies some independent,

continuous activity.

1.4 Generality and Consistency

Creating a justified, opportunistic design (by which we mean a justified design of an op-
portunistic application) for a single application may be useful for users of that application.
However, it would be preferable to create a more general approach that could be used to
develop justified, opportunistic designs for many applications. The problem of creating a
general design approach is within the domain of software engineering. Such encoded tech-
niques for development are called methodologies.

Aside from generality, methodologies also provide consistency. The effort to consider
possible problems, opportunities and effects of a design should be placed on the methodology
rather than the designer. A standard method of description has the additional benefit that
a designer will be more able to interpret the reasoning used in creating the designs of other
applications, because the reasoning will be presented in the same form.

We therefore believe that the most useful way of solving the problem of creating
justified, opportunistic designs is to produce a methodology for doing so. The principles
of software engineering that ensure generality and consistency must be observed in our
methodology in order to resolve the above issues. These principles are examined further in

Chapter 2.

1.5 Aims

When developing an application that will opportunistically re-use the resources in an open
system, and especially when using appropriate but largely unproven technology such as
multi-agent systems, it is very important that the developers can justify that their design
will meet the application requirements over the course of the application lifetime. In this
thesis, we aim to provide a means for designing such appliations which forces designers to
justify their design decisions throughout the process. The specific aims of the thesis are as

follows.
e We will create a widely applicable methodology for designing open system applications.
e Use of this methodology will be illustrated with a case study.

e Techniques will be demonstrated for comparing the known mechanisms that could

instantiate each part of an agent-based system.

e We will show how to check justification of design.

e We will show how to check flexibility for opportunism in design.

1.6 Case Study

In this section, we present the requirements of an example application in order to illustrate
important aspects of creating justified designs. When mentioning the user any time in the

application requirements below, we refer to any person using the application.

1.6.1 Requirements

We require a collaborative weather mapping application. Using the application, a global
weather map giving the current state is accessed and edited by various collaborating organ-
isations. Contributors can add data they have gathered locally to the map in authorised
locations. For example, one contributor organisation may be authorised to add data to a
small local area, while another can add to any location within a country. Authorisation is
enforced to prevent accidental changes. Contributors and other (paying) organisations can
access the weather data and be provided with predictions of weather at specified locations
in the future.

For speed and robustness in a system where organisations’ software services may
become accessible at any time, and later stop being so, the weather data is distributed
among the contributors. As different organisations require access to different local areas,
the data should be distributed to try to ensure each organisation has as rapid access as
possible to the data they need. This distribution should be updated regularly to reflect the
current demands.

Several services offer predictions based on the data, and the number of predicters
available at any one time may vary, partly due to the load they each have on them. The
predicter services vary in speed and in accuracy. They must have access to the weather data
to make the prediction, either by moving onto the system on which relevant data is stored
or by repeated requests to the relevant sources.

Prediction requests specify location, time (in the future) and whether speed or
accuracy should be the priority in producing results. A prediction command, from a user,

that prioritises speed of completion is called a speed view and one prioritising accuracy of

prediction is called an accuracy view. On a speed or accuracy view, the application should
always report back to the user within 10 seconds either with the prediction or with a ‘time
out’ warning. All currently known predicters offer a time out service whereby the prediction
is halted and a warning returned after a specified interval.

As any software service may become inaccessible to the rest of the system at any
time, the functionality of the application should be available locally on the computer system
of each contributor organisation, and preferably the same software will be loaded at each

node for ease of deployment.

1.6.2 Variations

To illustrate the effects of different application priorities, we give two variations on the
application requirements. The preferences below are ones which could have been given by

the people drafting the requirements in addition to the text above.

Speed Variation After the priorities of the particular operations of the application, e.g.
accuracy in the predictions produced from an accuracy view command, speed should
be the most important factor in considering how the application is designed and im-

plemented.

Interoperability Variation After the priorities of the particular operations of the appli-
cation, the ability of the application to interoperate with and take advantage of many
services in the open system should be the most important factor in considering how

the application is designed and implemented.

1.6.3 Concerns to be Addressed

With regards to the problems expressed earlier in this chapter, we can see how these re-
quirements would not be best fulfilled by an application that was not opportunistic and
justified. Without the application acting opportunistically, the best services available in
the open system at any one time would not be used. This would most obviously include
the fastest, most accurate predicters, but could also miss the use of more complex services
such as those handling the entire process of contribution of weather data. Such a service

may provide better functionality than others of the same type by being faster, transmitting

information more securely, storing the new data where it would be more often used locally
etc.

If the design was not justified, i.e. not all design decisions were explicitly matched
to the reason for them in the requirements, then the user could not know it was fulfilling
the commands given to it as quickly, accurately etc. as it could. Also, without justification,
it cannot be stated that the application is acting as opportunistically as it could. Finally,
without justification for the design decisions made, the parts of the design developed within

this application could not be re-used for others.

1.7 Summary

We would like applications deployed in an open system to be able to re-use as much of the
functionality available in that system as possible in fulfilling their requirements. In order to
achieve this, our main goal is to create a methodology for developing justified designs for
opportunistic applications. Alongside this we aim to ensure that the designs produced by
our methodology are themselves re-usable wherever appropriate.

Chapter 2 provides a background on agents in software engineering and in appli-
cations for dynamic open systems. We present the main theory behind our approach in
Chapter 3. Our methodology, agent interaction analysis, is described in Chapters 4, 5 and
6 on analysis, design and agent coordination issues respectively. Chapters 7 discusses the
implications of and conclusions drawn from our work. Throughout the thesis, we illustrate

our approach with the case study given above.

Chapter 2

Background on Agent-Oriented

Software Engineering

In this chapter, we review the current state of the art in software development using agents
as a primary design abstraction (agent-oriented software engineering). The aim is to reach
a point of understanding from which we can judge the adequacy of existing techniques in
the consistent development of justified opportunistic designs. We must first understand the
demands of software engineering in general (Section 2.1) to judge the worth of methodolo-
gies, and why agent-oriented software engineering have been suggested as an improvement
on standard approaches for certain classes of application (Section 2.2). We then look at
the necessary concerns in developing agent-based systems, including how the application
functionality is divided between that which an agent may choose to use and that which
supports agents in all their activities (Section 2.3). In judging whether an approach is going
to to produce opportunistic designs, we must understand how one part of an open system
can make use of functionality elsewhere in the system. This is called ‘coordination’ and it
is introduced in Section 2.4 with different approaches examined in Sections 2.5 (centralised
coordination), 2.6 (distributed coordination) and 2.7 (organised coordination). Finally, we
describe the existing agent-oriented software engineering techniques themselves in Section

2.8 for evaluation in the next chapter. We conclude our review in Section 2.9.

2.1 Software Engineering

Software engineering methodologies are used to produce designs in a consistent, generalised
and justified way. In this section we examine general qualities proposed as requirements
for good software engineering methodology (though these qualities are not entirely uncon-
troversial in software engineering literature). This will provide us with a background for
judging whether existing agent-oriented methodologies are adequate for meeting the aims
discussed in Chapter 1.

The approaches described assume that there is a clear distinction between the re-
quirements and domain set out for an application and the design produced to produce the
application within the domain. Alternative methods of development could generate imple-

mentation based on the interaction between users and a system, for instance.

2.1.1 Problems of Software Engineering

The problems with the development of good software have been recognised and have informed

the creation of recent methodologies. They include the following [22].

How can we predict the amount of time and effort required in developing a product

(an implemented design)?

How can we ensure that the developed system is correct with regards to the original

requirements?

How can we lower the cost of maintaining and updating the developed system?

How can we avoid wasting time on developing something several times over?

2.1.2 Desirable Characteristics

The problems above can be tackled by improving either the tools or the processes of de-
velopment. In the latter case, several characteristics have been found to be desirable in a

development methodology, including the following [93]:

Understandability The methodology should produce designs that are explicitly defined

and easily interpreted.

10

Visibility The methodology should produce clear results within the course of the design

process to show its progress.

Supportability Use of the methodology can be eased by automation of parts of the process,
and the structure of the methodology should allow this.

Acceptability The methodology should seen as useful to software engineers. This is often
achieved in new methodologies by re-using concepts familiar from already established

methodologies.

Reliability Errors in the design produced while using the methodology should be detected

and removed without affecting the final product.
Robustness The methodology should be resilient to unexpected problems.

Maintainability The methodology should be suitably flexible to cope with changes in

requirements or improvements in method.

Rapidity The methodology should quickly deliver a complete product.

While these characteristics are all required to an extent to make a process useful, it is not

always possible to optimise them all as some characteristics may negatively affect each other.

2.1.3 Engineering Principles

Recognising the need for these characteristics, certain principles have been identified which

the methodologies should abide by. Several are identified in [44] and described below.

Rigorous A methodology is rigorous if it has certain qualities such as being systematic,
repeatable, justified by the requirements etc. The aim of being rigorous is to cover all
areas of relevance to the problem. A stricter form of rigour is formality, which, in this

context, implies mathematical proofs of validity.

It is noted [44] that it may be best to apply more rigour in some parts of the process
than others, e.g. in balancing reliability with rapidity (see the characteristics listed
above). It would be useful for the methodology to highlight areas which may require

more detailed analysis to ensure rigour of the design as a whole.

11

Separation of Concerns It is often possible to divide problems in various ways which
allow developers to focus on smaller, less complex goals. There are various ways of
separating concerns such as separation by time, by desired product qualities, by views
of the system under development etc. In all cases, only the significant relevant factors
are given attention. Sometimes it may be necessary to make some design decisions

before a separation can occur.

Modularity One specific way of dividing the system (separating concerns) is by the struc-
tures implementing different functionality, i.e. dividing it into modules. This allows the
designer to first focus on the individual modules and then the interaction of those mod-
ules. Ideally, modules should display high cohesion (component elements are strongly
related in functionality) and low coupling (modules are reasonably independent of each

other).

Abstraction Abstraction is the principle of ignoring the details of a problem until the
higher level decisions have been made. It applies both to the product under develop-

ment and the methodology by which it is developed.

Anticipation of Change A system should be easy to extend or alter in part without
causing problems in the rest of the system. The possibility of extension or re-use
should be recognised in the design of the original system and should be promoted by
the methodology. The software should easily remain consistent with the design under

minor changes (which may not be intentional).

Generality It is often useful to look at a more general case than the problem at hand. This
may be useful because the general problem is simpler, because it encompasses more
cases (making it more anticipatory of change) or because it could be useful in solving

future problems including those unrelated to the system currently under development.

Incrementality It is useful to get feedback during the process of development. This allows
designers to get a better understanding of the requirements and anticipate changes.
The difficulty is that a system cannot be tested nor a design verified until a certain
proportion of it exists. The idea of incrementality is to make successively closer ap-

proximations of the system so that it can be repeatedly analysed.

12

One particular use of these principles is the division of the methodology into phases. The
division can encompass all the principles above and help to ensure that the overall process
fulfils a lot of the characteristics mentioned earlier. In Fusion, for example, [22] there is an
analysis phase, for deriving detailed and tightly structured information from the require-
ments; and a design phase in which design decisions are made based on the analysis phase
results.

Differences of opinion exist in software engineering research, but we assume that
methodologies that incorporate the above principles to a greater extent are likely to be
more productive than those that do not. The benefits such methodologies bring about
include the control of errors, verification of the requirements, understanding of the problem,
reduction of changes required to the design after implementation begins, easier separation
of work load in time or between people, standard notations for communication between
developers and easier maintenance [22].

The above problems, characteristics and principles are a useful guide to assessing
the effectiveness of a methodology. They can highlight the areas in which a method will not
work particularly well. In the rest of this section we discuss some of the techniques used to
achieve these desirable characteristics in object-oriented development, which is an obvious

starting point for achieving the same in an agent-oriented approach.

2.1.4 Re-use, Generality and Consistency

We wish to aim for re-use of other products, such as design parts and services in an open sys-
tem. It is therefore worth looking at standard contemporary software engineering approaches
to re-use, generality and consistency, including design patterns, software architectures and
requirements engineering.

Design patterns are a method of abstracting away from the structures in a design so
that the structures can be used in comparable contexts in other designs [39]. They are an
important development in the re-use of design parts. For example, the practice of using one
object (a Factory) to create other objects of a give type (Products) and thereby hiding the
creation process from the client requiring the Products, is encoded in the Factory design
pattern [40].

Design patterns are described using a schema called a pattern language. There are

several different pattern languages in use. One important part of a pattern’s description is

13

information on when it should be applied. This information should be expressed in such a
way so as to allow comparison between possible patterns. In [89], Rising gives an overview of
several pattern languages. Examples of the criteria concerned with pattern selection, used

in different languages, are given below.

Consequences The consequences of a pattern are the trade-offs and results of using that

pattern.

Applicability /Context The applicability of a pattern is the situation or situations in

which the pattern would be useful

Forces/Constraints The constraints on a pattern are the considerations, possibly contra-
dictory, affecting choice of a pattern. The pattern may optimise some forces while

ignoring others, or have priorities regarding different constraints.

Preconditions The preconditions of a pattern are those design decisions that should be

considered and/or made before this one.

Using a pattern language to describe possible models for parts of a design aids selection.
By applying the same criteria for all models we have a sound basis for comparison. Models
relating to a particular choice can be expressed in a standard form to provide useful com-
parison. For example, deciding between using the Factory pattern mentioned above and a
different object creation pattern which involves the user more in the creation process (e.g.
the Builder pattern), is eased by being able to compare their applicability using entries in
a single pattern language schema.

Describing agent-based systems as patterns is an idea put forward by Kendall in [63].
Object-oriented role models, consisting of object roles, are extended to collections of agents
comprising agent roles. Such collections found to be useful in particular applications can
be added to a pattern library for re-use. Re-use of patterns is much more productive, and
likely to produce better outcomes, than deriving every low-level part of the design from first
principles from the requirements. Another application of design patterns to agent-based
systems is given by Hayden et al. [51] where system-wide coordination mechanisms are
described by design patterns. Aridor also proposes using design patterns for agent-based

systems [3], though in this case the design patterns are in exactly the same form as for

14

object-oriented designs, so there is little account of agent-specific concerns in the pattern
language used.

Extending the design pattern idea, software architectures are abstract design struc-
tures defining the whole of an application at a high level, and their benefit and use, can also
be explained using pattern language, though they may be developed through analysing the-
ories rather than purely from experience of implementation. Software architecture research
examines how architectures can be assessed and compared. At a more detailed level of de-
sign, a standard language is also useful. A graphical notation is commonly used for making
the design specifications produced by methodologies useful for communication and generally
understandable. The most prolific graphical design specification language in object-oriented
design is the Unified Modelling Language (UML) [4].

One part of the development process not strongly supported in UML is the initial
capture, analysis and transformation of application requirements. This broad stage is called
requirements engineering. In [96], Lamsweerde and Willemet develop a technique for de-
riving goals from scenarios (and vice versa). Scenarios are descriptions of users interacting
with objects in the application domain and are useful for capturing required functionality.
Scenarios can be represented in the form of event trace diagrams, which are “well-known,
very simple and widely used” [96]. An example event trace diagram is given in Figure 2.1. It
shows the interactions between user and application (messages containing the information
that needs to be passed between them) in our case study application. The scenario is one
where the user wishes to view a weather prediction of a particular location and time. It is
only one possible interaction scenario between the user and application and so there is no
restriction that this scenario must take place or the events must occur in the order shown,
only that it is possible. Requirements engineering has also been applied to agent-oriented
software engineering by Yu [105], who proposes that the modelled dependencies between
goals be used as the starting point for a development process.

In order to understand how all these software engineering techniques apply to agent-
oriented development, we examine the essential characteristics of agent-oriented software

engineering in the next section.

15

User Application
Get Prediction
?Location

Location
?Time

Time

Prediction

Figure 2.1: Event trace for choosing a map location prediction to speed view

2.2 Agent-Oriented Software Engineering

The agent paradigm has been used in research on all aspects of constructing applications
requiring distributed autonomous activity. Recently, it has been applied to software engi-
neering as a design abstraction [54, 100]. The approach is promoted as introducing intuitive
methods for the creation of applications implemented as multi-agent systems, but it is also
a useful software analysis technique in its own right (i.e. regardless of whether the imple-
mentation is perceived as agent-based). Agent-oriented software engineering (AOSE) is
particularly aimed at complex, dynamic systems, such as open systems, where the capa-
bilities of multi-agent systems are most beneficial [58]. This section justifies the need for
an agent-oriented methodology. We describe particular existing AOSE methodologies in

Section 2.8 after all the underlying concepts have been explained.

2.2.1 Agent-based Applications for Open Systems

As discussed in Chapter 1, multi-agent systems are a highly appropriate technology for
applications that will run in dynamic open systems as they can, if well designed, be oppor-
tunistic, i.e. take advantage of the best functionality available at the current time. However,
designing a multi-agent system that opportunistically provides functionality for a particular
application is still a considerable problem.

Without structured methodologies, the task of constructing agent-based systems can
be more difficult, more liable to fail and the eventual implementation can be less justifiable,
with respect to the requirements, and less easy to maintain [29]. Therefore a structured

methodology is required for developing applications for dynamic open systems.

16

2.2.2 Agents and Objects

Methodologies based on other technologies are not suitable for developing agent-based sys-
tems without modification [61]. In particular, agents may appear to be merely complex
objects, in which case object-oriented techniques could be applied. However, the strongest
beneficial property of the agent-oriented approach is the agent metaphor [98], which means
that anyone can view the entities making up a system (design) in a comparable way as they
view actors in the physical world. Objects do not fit this view without extension of the

concept.

2.2.3 Formal and Informal Methods

Some work on agent-oriented methodologies has concentrated on formalising the analysis
process and creating formal methods (e.g. [38, 70, 72]). In our approach, and in the review

below, we concentrate on informal, structured processes for several reasons.

1. In object-oriented development, informal, structured processes are more common (and
so, more acceptable to developers), e.g. Fusion [22]. It has been argued, e.g. by
Wooldridge and Ciancarini in [101], that for wide adoption of agent technology infor-

mal development methods are needed.

2. Object-oriented notation based on the informal methods, such as UML, is more appro-
priate for communication of concepts to customers, and this is no less true for agents
[28]. Communication is essential for ensuring customers receive what they expected

and for the design process to be visible and understandable.

3. It is not possible to give a complete formal definition of behaviour in an open system,

as sub-systems will be wholly or partially unknown at design-time.

Formal specification is very useful in representing and verifying applications, but formal-
ising a solution to our problem is beyond the scope of this thesis. Information on formal

methodologies is given in the review in [101].

17

2.3 Application Structure

Before we review the existing AOSE methodologies we have to provide the basic concepts
upon which they are built. This section examines the systems in which agents operate while

subsequent sections look at the behaviour of the agents themselves.

2.3.1 Domain Elements

A methodology may be wide or narrow in the scope of domains it attempts to be useful for.
As discussed in Section 2.1.3, generality is a principle to be aimed for, and processes such as
Fusion [22] try to be widely applicable. However, most important domains will have tech-
niques tailored to designing suitable applications on top of the generic ones. For example,
in a manufacturing domain, manufacturing machines may have a standard representation
for ease of development and communication of designs.

In defining an initial design structure, the designer may decide to mimic the organ-
isation of the application’s domain. However, Zambonelli et al. [107] argue that this is not

always appropriate for several reasons.

e The real-world organisation itself may be badly structured.
e The existence of the application may alter the way the real-world organisation works.

e The efficiency and other issues which cause a preference of one organisation over

another may be different for the real-world organisation and the application.

Because of this, several alternative ways of structuring applications have been developed,

and are discussed over the next few sections.

2.3.2 Shehory: Software Architectures

Software architectures are abstract structures defining (at a very high level) the whole of
an application. This approach has been applied to agent-based systems by Shehory [91],
where three multi-agent system designs are examined to establish important attributes for
comparison. The following attributes are identified in [91] by Shehory, and used to compare

agent-based system architectures.

18

Agent Internal Architecture is the structure of the agents within the system, i.e. how

each individual agent operates internally.

Organisation is the structural form of how agents relate to and exercise control over each

other. We will examine this further in Section 2.7.

System Openness is the ability of the infrastructure to operate in dynamic open environ-

ments.

Infrastructure Services are the functionality provided by the system for identifying agents,

locating agents, providing security etc.

System Robustness is the ability of the system as a whole to address failures by parts of

the system.

Code Reusability is a the ability for parts of the system to to be replicated and extended

within other systems with minimum modification.

Being able to explicitly specify how an architecture should instantiate the above properties
(and others) in a design process gives designers more scope for making justified design
decisions.

The role of the infrastructure in a multi-agent system is to permit the collaborative
activity of the agents to take place regardless of how the agents change over time [66]. It
will be useful in the rest of this chapter to have a working definition of the infrastructure
of agent-based systems (corresponding to the Infrastructure Services, Organisation and the
Agent Internal Architecture above) separate from the other software architecture aspects

which describe the use or user-perceived properties of that infrastructure.

Multi-Agent System Infrastructure A multi-agent system (MAS) infrastructure is the
combined implemented elements which comprise and support agents in a multi-agent

application.

As discussed earlier in this chapter (Section 2.1.3) it is, for many reasons, important to
separate concerns when developing an application, i.e. divide the task along meaningful
lines. For instance, this makes design decisions easier, allows development to be distributed
over a group of designers and aids correction in the design process by reducing the de-

pendencies between parts of the application. Agent-based infrastructures can be divided

19

into separate parts, often represented as layers. Work on the modularisation of agent-based

infrastructures is discussed below.

2.3.3 Gasser: MAS Infrastructure Needs

Gasser [41] makes a thorough analysis of the elements, services, capabilities and attributes
that are essential or desirable for multi-agent system (MAS) infrastructures. Thirty-seven

“MAS infrastructure needs” are identified and divided into five categories.

System Elements Developers need tools for creating multi-agent systems. These include
components such as methodologies, development environments, infrastructure frame-
works (for example, RETSINA [94] or SoFAR [78]) and agent communication lan-
guages. Agent communication languages are structures that contain content which

one agent wishes to pass to another and are discussed further in section 2.4.1.

Active Services Gasser argues that there is much need for independent on-line services
used by multi-agent systems on demand, such as services for certification of systems

for security, inter-system resource discovery etc.

Capabilities For continued reliability, management services are needed for assessing the

running of systems, experimenting on it and reporting on its activities.

Attributes of Elements/Services/Capabilities Useful attributes of multi-agent sys-
tems are factors such as robustness, scalability, usability and visibility, as discussed in

Section 2.1.3.

Other Community support, including open source projects and user groups, is also identi-

fied as desirable.

The areas of community support and active services are of significance to particular multi-
agent system infrastructures and develop from (after) the designs of those infrastructures.
The other three categories (system elements, capabilities and attributes) need to be con-
sidered during the design of each infrastructure or application and therefore are necessary
considerations for a methodology. The system elements and capabilities are implemented
for execution in known operating environments of computer systems. They can often be
described as layers built on top of the operating environments. This is discussed in the next

section.

20

2.3.4 Sycara et al.: Infrastructure Layers

Extending the modularisation of infrastructure system elements and capabilities discussed
above, Sycara et al. [94] use their experience with the implemented RETSINA infrastructure
to identify nine infrastructure layers that they consider necessary in a fully functioning
application. The layers are applicable on the level of the whole application as well as for
individual agents, e.g. management services are required to analyse the performance of the
application as a whole and to discover the behaviour of individual agents. The full set of

layers, from furthest from the operating environment to nearest, are as follows.

Interoperation Agents and multi-agent systems must be able to interact and correctly

interpret messages sent between each other.

Capability to Agent Mapping There must be implemented methods to match those
agents requiring services (abilities to achieve goals or perform tasks) to those pro-

viding them.

Name to Location Mapping Facilities must exist to discover the presence of agents in

the system (regardless of the services they provide).

Security Services should exist to allow safe, reliable access between multi-agent systems in

an open system and to prevent misuse of resources.

Performance Services Monitoring of system performance allows for reaction by the sys-

tem to improve subsequent performance.

Management Services Services should be implemented to analyse the performance of the

application as a whole and to discover the behaviour of individual agents

Agent Communication Language Infrastructure A structured language in which agents
can communicate is required, along with the implementation of mechanisms to con-

struct messages in that language.

Communication Modules Communication modules provide functionality, independent
of particular agent communication languages, to allow communication of messages

between agents.

Operating Environment The infrastructure is based upon an underlying set of functions

for interacting with the computer system.

21

All of these layers should be addressed in the methodology. The lowest layer, operating

environment, is, however, likely to be constrained by the application domain.

2.3.5 Logan: Classifying Agent Systems

Once modularised, the designer may be able to instantiate the parts of the infrastructure by
several means. For example, there are different agent communication languages to choose
between and different ranges of management services which could be supplied. In [68], Logan
develops a classification of agent systems. The example applications of the classification are
system designs where the agents are already identified, such as agents controlling robots or
agents retrieving and notifying users about email, rather than those applications where the
agents are to be identified from the requirements. The classification is proposed as an aid to

choosing tools for implementing the designs. The factors are grouped into four categories.

1. Properties of the environment (domain) that the system acts within.
2. Properties and types of actions that the agents can perform.

3. The form of goals that agents may possess and how they appear in the system (are

generated).

4. Properties of the beliefs (knowledge) that agents may possess.

Each of these is subdivided into several different factors which have qualitative or quantita-
tive values for each different system (or the proposed model for each system). For example,

the environment properties identified are classified by the following factors.

Observable An environment is observable if it is possible in principle for the complete

system state to be determinable by the agents at any time.

Dynamic An environment is dynamic if the environment is not fully controlled by one

agent.

Deterministic An environment is deterministic if the future state can, in principle, be

predicted from its current state.

Discrete An environment is discrete if the information agents receive and the changes they

make are distinct and clearly defined.

22

Multi-Agent An environment is multi-agent if there is more than one agent in the system.

Our problem domain, for instance, is an open, dynamic multi-agent software system. There-
fore it would be classified as dynamic, discrete (because it is a software system) and multi-
agent but only partially observable and non-deterministic (because the system is open and
dynamic). Regardless of the completeness of the classification, the idea of most signifi-
cance in this approach is to be able to select between comparable models for infrastructure

modularised in the ways described above.

2.4 The Coordination Problem

While the decompositions of multi-agent system infrastructure described above are essen-
tial for structuring and separating concerns within a design, they do not allow designers
to describe how agents will interoperate at run time. In order for an application to be
opportunistic it must interact with those services it wishes to take advantage of. Agents
are, by definition, social and so are specifically designed to interact. For agent interactions
to best meet the needs of the users, i.e. meet the application requirements, the agents need
some control over how the interactions take place. This is the problem of coordination
and the infrastructure parts concerned with agents’ control over interactions are called co-
ordination mechanisms. In order to discuss coordination mechanisms further, we give an
informal definition. The definition is deliberately broad, to allow a range of approaches to

be included.

Coordination Mechanism A coordination mechanism is part of a multi-agent system
infrastructure which enables agents to cooperate in achieving the application require-
ments. A coordination mechanism assumes that a suitable means of communication

between agents exists.

If a designer wishes to compare two or more coordination mechanisms, it will be easier if
they are expressed in the same form. To generalise over multiple mechanisms, the designer
needs more abstract forms of description than the description used to define an individual
mechanism. Research has been done in the area of comparison of coordination mechanisms
and this is described later, but we first examine the underlying communication between

agents that allows coordination to take place.

23

2.4.1 Agent Communication Languages

Underlying all deliberate coordination between agents is some form of communication. Typi-
cally, agent communication is in the form of asynchronous messages sent over some transport
mechanism. In order for one agent to be able to interpret the communications from others,
the agents utilise a mutually interpretable agent communication language [67, 92]. Petrie
[87] has argued that these languages are one of the fundamental defining features of agent

based systems. We define an agent communication language as follows.

Agent Communication Language An agent communication language (ACL) is a struc-
tured, pre-specified language used to encode messages between agents. Agent com-
munication languages are often divided into an outer language for communicating the
pragmatics of messages such as the intended receiver, and an inner, content language

for communicating semantic information.

Agent communication may be specific to the application being developed. For example,
in an application controlling the manufacturing of toys, the language may be composed of
simple messages such as Move ToyOntoConveyorBelt (X) or StickArmsOntoDoll (Y). In such
languages, the intended effect of the message, and possibly the recipient too, are implicit
in the particular message itself. In agent-based research, more general languages have been
proposed. General agent communication languages allow far more expressiveness and scope
for extension than domain-specific ones. Furthermore, they can be reasoned about without
reference to the domain, making them important for the analysis of communication [30].
The most prominent of the general agent communication languages are KQML [36] and
FIPA-ACL [81], the former due to its wide use in agent research projects and the latter
because it is an explicit attempt at a standard agent communication language for general
use. These are ‘outer’ languages, as mentioned in the definition above, as they are used for
explicitly stating the intended effect and message recipient and not the information content

of the message.

KQML

KQML (Knowledge Query and Manipulation Language) is an extensible LISP-based lan-
guage [36, 37, 75]. In KQML messages are defined by one of the pre-defined performatives

that define the message effect and several other elements (parameters) including the content

24

of the message. For example, a simple message representing a query about the location of

an airport could encoded as follows (taken from [36]).

(ask-one :content (geoloc lax (?long ?lat))

:ontology geo-model3)

This message is asking for one reply to a query (the performative ‘ask-one’) with the
query expressed in a particular content language asking for two pieces of information. The
‘ontology’ element specifies the set of semantics which an agent needs to be able to interpret
in order to use the message, in this case the ontology is called ‘geo-model3’ and will include
an interpretation of ‘geoloc lax (?long 7lat)’. Other KQML performatives define messages as
requesting information in a variety of forms (‘evaluate’, ‘ask-one’, ‘ask-all’ etc.), responding
(‘reply’, ‘sorry’), knowledge exchange (‘tell’, ‘untell’ etc.) and performatives allowing agents

to communicate with an infrastructure associated with KQML.

FIPA-ACL

FIPA-ACL (the latest specifications are available from [81]) is intended to improve on KQML
and provide a standard message structure so that multi-agent systems created by different
groups can easily connect and communicate with each other. This simplifies the interoper-
ation in open system infrastructures. FIPA-ACL gives a definite list of possible parameters

(elements) making up a message such as the example above.

performative The type of the message, suggesting the intention of the message, e.g. ask-

one in the example above.
sender The agent sending the message.
receiver The agents that the sender intends to be recipients of the message.
reply-to The agent that replies should be sent to.
content The informational content of the message.
language The content language used for the informational content.
encoding The particular encoding of the content language used.

ontology The ontology specifying the interpretation of the content.

25

protocol The interaction protocol that the message is being sent as a part of. For instance,
if agents are exchanging contracts which bind them to performing given tasks then

the protocol element may be ‘contract-net’.

conversation-id An identifying code that allows agents to keep track of the messages in a

conversation between two (or more) agents on a single topic.

reply-with An identifying code that the receiver is instructed to use in replying so that

the sender can identify its topic.
in-reply-to An identifying code sent in response to the value of a previous reply-with field.
reply-by A specification of the time by which the sender must receive a reply.

There is no requirement that all of these elements must be used in every FIPA-ACL message.
There are a large number of FIPA-ACL performatives specified [81], though a particular
application would only use some subset of them. The syntax is very similar to KQML. For

example, the message below (taken from [81]).

(accept-proposal :sender (agent-identifier :name i)
rreceiver (set (agent-identifier :name j))
:in-reply-to bid089
:content ((action (agent-identifier :name j))
(stream-content moviel234 19)
(B (agent-identifier :name j)
(ready customer78)))
:language FIPA-SL)
FTPA-ACL has been incorporated into some programming frameworks for develop-
ment of agent systems, e.g. JADE [9]. A review of more specific details relating to agent
communication and agent communication languages, beyond the scope of our study, can be

found in [30].

2.5 Centralised Coordination

Coordination between agents can be achieved by the use of many types of coordination

mechanism, and we will examine these over the following few sections. One way in which

26

agents in a multi-agent system can coordinate is through using a central broker agent.
Brokers enable coordination by performing functions such as matching up the most suitable
service providers to those agents requiring services. Such centralised broker agents define
the scope of an application or a set of applications by limiting the set of agents to those
registered with the broker agent [99]. A broker agent is likely to merge functionality for
agents to discover each other (name-to-location mapping) with coordination functions.
Centralising coordination has benefits in reducing the amount of work individual
agents have to do in order to cooperate, but reduces the ease with which an application can
be modified at run time (for maintenance and extension) and may restrict agents’ choice
in coordinating in different ways for different activities, e.g. an agent may most suitably
use different coordination approaches for secure, sensitive transactions and more trivial

operations.

2.5.1 Broker Agent Selection

In order to choose between coordination mechanisms to use, the designer needs some criteria
for comparison. In [65], Klusch and Sycara compare several existing broker agents. Broker
agents are coordination mechanisms that involve one or more agents (brokers) holding in-
formation on services provided by other agents (providers) within the application. Agents
can then identify providers of services they need by asking the broker agents. The set of
requester agents and the set of provider agents may overlap. Broker agents provide an
implementation of the capability-to-agent mapping infrastructure layer discussed in Section
2.3.4 but also provide services additional to this function.

Broker agents are used in various forms and Klusch and Sycara distinguish them
on the basis of the services they provide, such as how data on agents are stored or in what
ways agents can interact with the broker. They name three distinct types of brokering
mechanism, given below. These terms are, however, used interchangeably in the literature

(along with others such as facilitator [74], arbitrator etc.)

Mediator A mediator agent integrates the services and data advertised to it by agents.
When an agent requests a service, the mediator can produce a packaged solution
composed of the services provided by several others. A mediator acts as an arbitrator
between requesters and providers of services possibly including translation if they use

different communication languages.

27

Broker A broker agent takes requests and passes them directly on to others providing
the relevant services, results again returning via the broker agent. This preserves the
anonymity of the agents and is more simple and realistic for highly dynamic systems

than a mediator agent.

Matchmaker A matchmaker agent is another simple solution in which requesting agents
are given contact information of the providers. As with other types of broker, the
matchmaker maintains a database of the services agents can perform but uses this
solely to identify a suitable provider for each requester. Requesters and providers
then communicate without any further intervention by the matchmaker which allows

for greater flexibility.

To ease the choice between the broker types, compact descriptions are provided by Klusch

and Sycara. They describe each mechanism in terms of four aspects

1. The pattern of interaction that describes how the mechanism is used.
2. The signatures (structures) of the messages that the broker accepts and returns.

3. The data structures holding the information required by the mechanism, which they

call states.

4. The transitions that occur when the broker receives each of the acceptable messages,

e.g. adding a service description to the database.

This decomposition of properties allows for easy comparison of the brokers, but it is not
made clear how the broker aspects are to be reconciled with an application’s requirements.
In developing a justified application, this is information that the designer will need. We

discuss this further in Chapter 5.

2.5.2 Semi-Centralised Coordination

It is also possible to provide coordination through a hybrid of centralised brokering and dis-
tribution of control [12]. In such a system, the system is divided into several communicating
sub-systems each with centralised control. This has some of the benefits of the centralised
approach in having known locations at which to access information but with the fault tol-

erance of the distributed approach, though it also shares the costs of both approaches by

28

rejected
A: REJECT

B: COUNTER-PROPOSE
accepted
B; ACCEPT

B: REJECT

rejected

Figure 2.2: Interaction protocol describing agents A and B interacting to find a mutually
acceptable proposal

maintaining several potentially large, inter-communicating stores of coordination informa-

tion.

2.6 Distributed Coordination

An alternative to broker agents is to provide each agent with their own coordination mecha-

nism which they use to decide what to communicate directly to others in order to cooperate.

2.6.1 Finite State Machines

One way of viewing coordination is as the result of interaction protocols. These protocols
define the communications that are passed between agents as they cooperate in a particular
way. For example, an interaction protocol may be initiated by one agent delegating a task
to another agent by communicating an order for the task to be completed. The protocol
then requires the agent charged with the task to acknowledge its receipt of the order and
later to communicate its successful completion of the task. Interaction protocols are often
described using finite state machines which show how the agents involved in the interaction
change from one state to another as communications are passed between them. Figure 2.2
shows a finite state machine describing an interaction protocol loosely based on an example
from [6]. It shows how agents A and B can change the state of the interaction by sending
communications proposing and counter-proposing solutions to a goal and then accepting or
rejecting them. Agent A starts the process and provides the final proposal but B may reject
the cooperation. The state labelled ‘start’ marks the beginning of the protocol’s use and
the states marked ‘rejected’ or ‘accepted’ conclude the protocol’s use.

In the simple delegation example given earlier, the delegating agent transforms from

having not delegated the task to waiting for an acknowledgement (after it sends the del-

29

egation message) and then to waiting for the notification of success (after if receives the
acknowledgement message from the other agent). An equivalent description is given by
adapted UML sequence diagrams in the Agent UML (AUML) protocol diagrams proposed
by Odell et al. [7, 79, 80].

2.6.2 Commitment Machines

Yolum and Singh [103] enhance the idea of interaction protocols to provide them with more
flexibility and bring them closer to being fully functional coordination mechanisms, where
agents have more control over how and what messages are passed. They do this by modelling
interaction protocols as commitment machines. A commitment machine is described by a
set of states that the agents can be in, as with interaction protocol finite state machines.
However, each of the states is defined only by the commitments which each agent has bound
itself to. A commitment is a pledge to undertake a specified course of action [59]. Associated
with the set of states are actions that could take the agents from one state to another. In
the simple delegation example, the action of the agent acknowledging the delegated task
would take the interaction to a state in which the delegated agent has the commitment to
the delegated task. The interaction ends when one of the states marked as ‘final’ is reached.
Commitment machines are more flexible than interaction protocols because they do not
demand that particular actions are taken to move from one state to another, or at what
state the interaction begins. For example, if an agent knows that another possesses a goal
that it cannot complete itself, then it could send an acknowledgement committing itself to
take on the goal without first receiving a command from the delegating agent. Commitment
machines can generalise the representation of a range of coordination mechanisms based on

commitment exchange.

2.6.3 Dynamic Selection

A possible alternative to using a single coordination mechanism per agent is to allow agents
to decide between mechanisms at run time. This dynamic selection of coordination mecha-
nisms is suggested by Excelente-Toledo et al. [33, 34] as a way of ensuring that coordination
between agents adapts to the current system state. The agents in the system they propose
choose between commitment-based coordination mechanisms when they need to cooperate

and decide upon whether or when to drop commitments. Coordination mechanisms are

30

described declaratively by a tuple of two measures (¢, p), where ¢ is the number of time
steps required to set up the mechanism and p is the probability of eventual success in the
coordination. Along with values for the degree of commitment which agents have (prob-
ability of not dropping a commitment) and the penalties for dropping commitments, the
agents can decide on bids for taking on cooperative, and non-cooperative, tasks. The highest
bids are chosen by the agent managing the completion of each task. By the absence of any
other measures, it is implied that the requirements of the multi-agent system as a whole are

completely met by the successful completion of the tasks in as short a time as possible.

2.6.4 GPGP: Modularising Coordination Mechanisms

Particular forms of coordination mechanism can be used for domains defined as worth-
oriented. In these domains, there is similarly a single monetary-style metric (utility) which
can be used to compare suitable tactics at run-time, but the agents actively cooperate
in order to maximise the overall system utility. The Partial Global Planning (PGP) [32]
algorithm is one example of multi-agent systems based on this cooperative model, in which
agents possess partial views of plans to achieve their goals, due to the limited perspective
they have on the system. The agents can then communicate between themselves in order to
find better solutions to their goals with more complete information. This was later extended
by Decker and Lesser [27] into Generalised Partial Global Planning where the PGP algorithm
is divided up into several coordination mechanism parts that can be used or not used as
the agent considers most appropriate at the time, as well as extended and added to. The

coordination mechanism parts allowed agents to do the following.

1. Update other agents on the ways in which tasks could be best completed, from each

agent’s local perspective.
2. Communicate results of completed tasks.

3. Handle redundancy of effort of the system of agents by informing others of commit-

ments made to perform tasks.

4. Where one task must be completed before another task can be completed, an agent

can commit to, and communicate the commitment to, the ‘enabling’ task.

31

5. Where one task helps in completing another task or improves the worth of its solution,

an agent can commit to, and communicate the commitment to, the ‘facilitating’ task.

2.6.5 Barber et al.: Activities Decomposition

Barber et al. [5] also propose shifting the decision of which coordination mechanism to use
to the agents, though they allow their decision making procedure to be used by the designer
as well. This allows agents to use whichever mechanism is most suitable for the current
situation. The mechanisms the agents can choose between are encoded as plans, known by
the agents. They suggest dividing problem solving into the five activities given below, and

analysing which mechanism would be best for each.

Agent Organisation Construction specifies how the agents should interact with one

another.

Plan Generation works in the organisation decided by the agent organisation construc-
tion, selecting the actions or subgoals that the agents must execute to accomplish their

goal.

Task Allocation deals with the assignment of actions or goals to specific agents for exe-

cution or further planning.

Plan Integration joins the sub-plans and schedules from the previous two steps to coor-

dinate agent actions.

Plan Execution deals with monitoring the execution of each agent’s schedules to insure

that actions are performed as expected from the plan integration.

Each agent involved in an interaction communicates with others during this activities. The

most suitable coordination mechanism is chosen by examining the following factors.

1. The structural requirements of the mechanism, e.g. decision making abilities for the

agents using the coordination mechanism.
2. The resource cost of using the strategy.
3. The quality of solution that the mechanism produces.

4. Application domain requirements.

32

Barber et al. assess several coordination mechanisms (self-modification, voting, negotiation
and arbitration) for cost in terms of time to execute and number of communications used,
but do not specify what criteria these factors should be compared against to decide on
a suitable coordination mechanism, or what defines the gquality of a solution in a given

application.

2.7 Organised Coordination

Distributed coordination allows for great flexibility but relies on agents having a large
amount of knowledge about each other in order for the MAS application as a whole to
achieve the best results it can. To limit distributed coordination without centralising it,
agents can be organised so that activities over which they coordinate are restricted with-
out necessarily restricting the coordination activity, including the agents with which agents
could be involved in cooperation.

A useful way to model the intended restrictions on and expected interactions of an
agent is in terms of the roles that it plays [102]. A role is an abstraction from any one agent,
defining a subset of behaviours. It is based on the positions that people may take in a human
organisation, e.g. manager, road sweeper etc. A role may have associated responsibilities, in
which case ensuring every role in an application is being played by at least one agent at any
time should thereby ensure the application will achieve its requirements (to some quality).
Various ways of representing roles and groups of agents through extending UML have been
proposed by Parunak and Odell [86]. Broadly, roles are used as specification of behaviour
at a more abstract level than that of agents. This level, called the social level is discussed

below.

2.7.1 The Social Level

The opportunism of an application depends on it being made up of a set of loosely-coupled
agents. This emphasis on collective ability has led some researchers to state that an analysis
of the collective form of the agents is essential [85]. The group of agents comprising an
application is often called a society or organisation. In [57|, Jennings terms this level of
analysis the social level, and it is argued that by specifying the behaviour expected from

this level, the unpredictability of the application due to run-time agent flexibility can be

33

reduced.

Organisations provide a powerful means of communication between designers and
users. A MAS application structure can be described as being comparable to a human
organisation. This allows users to see a succinct presentation of how the application is to
work. Additionally, the use of roles to describe responsibilities and rights of users and agents

is compatible with common security models such as role-based access control [90].

2.7.2 Dignum et al: Coordination Models

A different view of coordination is taken by Dignum et al. In [31], they take the coordination
model to be the primary component of analysis. A coordination model is an application-
wide coordination mechanism limiting agent interactions to those applicable to the model
definition. For instance, agents in a market coordination model can interact by bidding
for services. Dignum et al. outline a methodology that proposes deriving the coordination
model directly from the application domain. For example, if the agents within the applica-
tion will be in competition for resources (such as in an auction) then they use the ‘market’
coordination model where coordination is limited to using matchmakers to match potential
suppliers and providers. Alternatively, in a domain where some parts have authority over
others, the ‘hierarchy’ coordination model is used with different structural needs. This ap-
proach is similar to beginning analysis by deciding on an organisational structure, only with
more detail on the coordination mechanisms used. The coordination in the models is mostly
provided by other agents. The models identified and the agents providing coordination in

each are given below.

Market In the market coordination model, matchmaker agents match suppliers to providers,
reputation services keep track of the reliability of trading agents for security and bank-

ing facilities deal with valuation of goods and currency issues.

Network Networks are used to provide shared context to a group of agents aiming to
achieve a mutually possessed goal. Contracts are exchanged between agents, and
norms (rules restricting agent actions) are enforced. Matchmakers are used as in the
market, along with gatekeepers to vet agents wishing to join the network, notaries
keep track of contracts between agents, and monitoring agents are trusted witnesses

for the contract that check that contracts are obeyed.

34

Hierarchies Coordination models in which some agents ‘manage’ the system as a whole,
and the suppliers of services are pre-determined are called hierarchies. The managing
agents are called controllers while agents that communicate between the system and

other systems are called interface agents.

2.7.3 Shehory: Organisational Coordination Models

The classification above is mainly based on the purpose of each coordination model (com-
petition, shared goals or organised distribution of work). This reflects the aim of choosing
models to suit the domain. Shehory [91] uses a classification of coordination models (organ-
isational structures) based on the relations between agents. Again, a hierarchy is identified
as a potential model with fairly centralised control. Shehory adds flat organisations where
each agent interacts freely with all other agents, subsumption models in which some agents
are components of other agents and modular organisations where the multi-agent system is
composed of several loosely coupled, smaller multi-agent systems. The difference between
these models is mostly a matter of degree to which agents are constrained in their actions

by other agents.

2.7.4 Adelsberger and Conen: Encouraging Coordination

The use of economic evaluations for goals is used by Adelsberger and Conen [1]. A dynami-
cally changing coordination mechanism sets the (simulated) monetary value of resources at
run time so as to encourage coordination between self-interested agents. The mechanism
implements this by bundling disparate resources together which are then bid for and allo-
cated to agents. However they point out that the applicability of negotiation on economic
measures is restricted to a subset of applications where “...it is reasonable to relate individual
objectives to valuations.”, i.e. where the goals of the application can be assigned comparable

numeric values that signify their relative worth with regards to the requirements.

2.7.5 Flow Control

Another way in which to model coordination is by the path of interactions between agents
and the decisions which affect those paths. Such a path is called a workflow. Agents in the

workflow are points at which decisions are made. Such a model describes the alternatives

35

open to an agent in terms of the choices of which agent(s) will be communicated with next
in order to achieve a task. The domain, therefore, must be pre-defined and so a closed

system in the general case.

2.8 AOSE Methodologies

Once we have understood the infrastructure and coordination mechanisms required to in-
stantiate agent-based applications, as described in the sections above, we are in a better
position to judge the effectiveness of existing agent-oriented methodologies. This section de-
scribes several such methodologies. For brevity, the methodologies are divided into groups
below, corresponding to each subsection, where members of each group share a common
broad approach. For each group, we describe the approach of one prominent methodology
and then provide details on the similarities and differences with other closely-related meth-
ods. We examine the advantages and disadvantages of each in relation to our particular

problem (justified design of opportunistic applications in open systems) in the next chapter.

2.8.1 Gaia: Role-Based Design

The Gaia methodology [102] uses organisational roles as the primary modeling concept.
The early form of Gaia, as given in [102], is intended only for closed systems (we discuss
improvements to Gaia below). In Gaia, the system is analysed as an organisation from the
outset and roles are directly recognised from the requirements during the analysis phase.

Roles in Gaia are defined by four attributes:

Responsibilities specify what the agent fulfilling the role must attempt to bring about

and prevent happening in certain conditions;
Permissions specify the system resources an agent can and cannot use;
Activities specify the actions an agent can perform without involving other agents;

Protocols specify what an agent can achieve collaborating with other agents.

Gaia is a full methodology with analysis and design stages consisting of several models
derived from the requirements. In the analysis phase, roles are derived and the relation-

ships between those roles are modeled in the Interactions Model. The design phase then

36

derives implementable structures such as agent types (aggregations of several roles), services
(encoded sub-agent functionality which agents can execute) and acquaintances (necessary

communication links between agent types).

2.8.2 Tropos: Requirements Engineering in Design

Tropos [16, 20, 45] is an agent-oriented methodology based on requirements engineering
techniques (specifically i* [104]). At the start of the Tropos methodological process, the
requirements are examined and the roles of the (human) organisations providing services to
or requiring services from the application. These roles are distinguished from those in Gaia
in that they do not suggest the structure of the application, but only the structure of the
domain. The goals of each role with respect to the application are then identified. This
model of roles with goals is transformed, by a series of steps including decomposing goals
into sub-goals, into a set of agents with plans on how to enact the roles.

A comparable approach is EXPAND [15] in which a model is identified that includes
the agents external to the application and their expectations on the system behaviour. Ex-
pectations are properties which the users (modelled as agents) believe should be manifested
in the application, e.g. that responses should be received when commands are given. A
multi-agent system is then implemented in which the agents follow rules (norms) that re-
strict their behaviour. The system is analysed to see whether the emergent behaviour
matches the agent expectations This model is then iteratively transformed towards a form

better matching the expectations, by alteration of the norms based on repeated analysis.

2.8.3 Bussmann: Domain-Based Decision Points

Some methodologies emphasise the decision-making capabilities of agents. Due to their
flexible, reactive nature, agents can make timely decisions based on the current state of the
system. Agents can be used, therefore, as points in an application’s workflow where decisions
are made. For application domains in which the workflows are obvious, decision points may
be a useful modelling concept. In [18], Bussman et al. suggest that analysis of production
control systems begins with identification of decisions to be made, e.g. which conveyor belt
a work piece should be shunted onto given the current load on each. These decisions are

specified in schemas then the dependencies between decision points are identified. Agent

37

roles are derived from the decision points in the way which best separates resources (sensors

and effectors) and responsibilities and reduces dependencies.

2.8.4 Kendall et al.: Manufacturing Workflows

Similarly, in [64], Kendall et al. derive agent models for enterprise integration using workflow
models. These express the decisions which need to be made in the application, and the
actions which then transform input to output at that decision point. Use case diagrams are
used to identify the different contexts within which the decisions are made. By decomposing
the decisions into influencing factors (contexts), plans can be derived for agents at the
decision points to execute when a decision needs to be made.

Use Case Maps (UCMs) is another approach in which agents are ‘plugged in’ to a
design in the form of a workflow [17]. UCMs allow workflows to be recursively designed
so that the features of an application, and interactions between agents, can be analysed on
various levels separately. Depke et al. [28] model the flow in a system in terms of trans-
formation rules taking the system from one state to another. Each state is described by
the relations between agents and other objects. The transformation rules are then used to
develop a design in which the rules are implemented. An alternative to workflow is to de-
scribe the system in terms of flow of data. This approach, taken for example by Prometheus
[84] places similar demands on the designer: modelling of a flow through business processes,
agents at points where decisions need to be made and explicit specification of the relations

between agents.

2.8.5 Yu and Schmid: Workflows with Roles

The design framework described by Yu and Schmid in [106] represents a workflow as a
collection of agents which control separate activities and interact whenever their are inter-
dependencies between the activities. The activities are treated as agent roles which decision
making agents will fulfill.

Decision points and workflow models are primarily aimed at closed systems because,
while data may flow between decision points and unspecified sources, functionality is either

specified within the application or not specified at all.

38

2.8.6 SODA: Society-Based Design

A group of interacting agents or agent roles performing an activity represents a more flexible
concept than a role in a design. This is due to the fact that agent groups can be loosely
coupled providing weak interdependencies and a natural way of distributing the agents. By
distributing agent groups, activities can be spread over more than one subsystem so open
systems can be exploited. SODA [82, 83| takes this approach, analysing the system in terms
of societies of agents. Tasks identified from the requirements are mapped to individual
agents as role responsibilities, or to groups of agents. Tasks to be performed by groups are
called social tasks and the roles assigned to agents within the group are called social roles.
Groups are modelled as societies of agents each with their own coordination model to best
accomplish the social task. SODA also analyses the environment to the same degree as the
agent societies, developing infrastructure classes that provide access to system resources,
possibly distributed over an open system.

While agent societies solve some of the problems with developing organisations for
open systems, they require a mapping from roles/societies to agents at design-time so the
agents involved must be known in advance, even if they are in a connected subsystem. This
type of domain is classified as static open systems in the classification given by Shehory [91].
An application for a dynamic open system allows for exploitation of agents that are only
connected or created during run-time.

Dignum et al. [31], similarly, allow designers to decide on a coordination model for
a society based on the events that will be received by the society’s environment and the

society’s overall purpose.

2.8.7 Zambonelli et al.: Organisational Rules

Another way of using a collection of agents as a more primitive concept than individuals is
by specifying rules which must hold between them. This approach allows the designer to
leave fully specifying agent roles (and interaction protocols) until after a set of organisational
rules have been identified [108]. The system is then tailored to obeying these rules which
makes the design open to changes to the organisation while still obeying the organisational
rules, so the design may have less arbitrary restrictions than if the roles were derived directly

from the requirements.

39

The design approach described by Zambonelli et al. [108] is primarily concerned
with limiting agents’ actions, i.e. organisational rules limit potential role activities. An
alternative approach, given by Ciancarini et al. in [21], advocates using rules to control the
access to central data stores, which has a comparable end result but with potentially better
scaling.

Zambonelli et al. identify three organisational concepts and use them to extend

Gaia.

Organisational Rules assert system requirements in terms of the relation between other
analysis concepts such as roles, protocols and agents. For example, it could be ex-
pressed that only one agent at a time is allowed to use a particular resource, i.e.
adopt the role related to accessing that resource. In [108], Zambonelli et al. specify

organisational rules in temporal logic.

Organisational Structures specify the way in which roles in the organisation will be
related in general terms, e.g. “a multi-level hierarchy based on a work partitioning
control regime at the highest level and on a global coordination control regime at the

[lower] level.” [108].

Organisational Patterns catalogue generally useful organisational structures for re-use

in the same way as object-oriented design patterns [40].

In the extension of the Gaia methodology, a preliminary set of roles and protocols are first
identified from the requirements. Organisational rules are then identified that restrict these
roles and protocols. The rules are used to identify organisational structure, provide further
design detail to the preliminary roles and bring the design towards implementation.

As open systems contain agents that may not be completely constrained by rules,
it may also be useful to take an approach to modelling organisations where the autonomy
of agents over the rules are taken into account [69]. Automating the process of extracting

rules from descriptions of the intended organisation has also been suggested [97].

2.9 Summary

In order to solve the problem of creating justified designs consistently and with wide applica-

bility, a software engineering methodology can be used. A methodology should follow certain

40

principles to solve the common problems that occur in and after development. Re-use of de-
signs in object-oriented software engineering is facilitated by design patterns. Agents are a
promising technology for open system applications and agent-oriented software engineering
has useful characteristics distinct from object-oriented development. A structured, informal
methodology would be most suitable for solving our problem.

We argue that existing agent-oriented methodologies do not allow designers to create
justified, opportunistic designs. This is either because they fail to consistently provide a
connection from design decisions that need to be made to the requirements, or because they
deny the designer the means to express interoperation with services that do not exist in the
open system at design time. This argument is presented in full in the next chapter.

In this chapter, we have examined various aspects of multi-agent systems in order to
understand what a methodology must provide. The infrastructure underlying a multi-agent
system can be modularised in various ways, though structuring it to match the structure of
the domain is not always justified by the requirements. To aid design, infrastructure parts
can then be classified into models which can be chosen between (rather than developing part
of the infrastructure from scratch).

For MAS applications to be opportunistic, the agents must be able to coordinate
their activities. This can be done using centralised brokers, commitments, structured inter-
actions within organisations etc.

In this chapter we have introduced several existing methodologies. In the next
chapter we analyse them to discover in what ways they succeed and fail in producing justified

designs for opportunistic applications, and use this analysis to inform our solution.

41

Chapter 3

Agent Interactions as a Modelling

Concept

In this chapter, we discuss what obstacles there are to designers consistently producing
justified designs for open system applications, compare the approaches described in the
previous chapter and introduce our own methodology based on agent interactions.

We would like to be able to judge whether, in general, a methodology aids a designer
in creating justified, opportunistic designs. To do this, we have to consider the capabilities
provided to a designer by a methodology. Section 3.1 examines the way in which we can judge
the capabilities of a methodology to produce justified designs and opportunistic applications.
In Section 3.2, we use the specification of these methodology capabilities to evaluate how well
the existing approaches discussed in the previous chapter resolve the problem of producing
justified, opportunistic applications. The results are analysed in Section 3.3, and a new
approach is derived in Section 3.4. The chapter is summarised and the structure of the

remainder of the thesis outlined in Section 3.5.

3.1 Methodology Capabilities

If the designer is able to create consistently justified designs using a methodology, we say
that the methodology has the methodology capability of producing justified designs. Simi-

larly, if the designer can consistently create opportunistic applications, then we say that the

42

methodology has the methodology capability of producing designs of opportunistic applica-
tions.

In practice, determining whether a methodology has a methodology capability of
producing justified designs or of producing designs of opportunsitic applications, is made
difficult because of the broadness of the topics. Therefore it is useful to break down the
methodology capabilities into sub-capabilities which are easier to check for. In the sections
below, we consider useful ways to decompose the methodology capabilities of producing

justified and opportunstic designs.

3.1.1 Producing Justified Designs

Following the idea of traceability, i.e. being able to trace back from any design decision to
the requirements of the application [80], we take an inductive approach to decompose the
methodology capability of producing justified design. We argue that, for a justified design
to be produced, the methodology must meet two criteria. First, the methodology must
consistently allow the designer to map from the requirements to the concepts and structures
used to make design decisions in the methodology (requirements analysis). Second, after
requirements analysis any necessary step in the methodology must be justified by the struc-
tures already identified by the design process (or by the requirements directly). If both of
these criteria are met then, by induction, the design as a whole will be justified. Method-
ologies that meet these two criteria have the corresponding methodology sub-capabilities of

identification and connection with the requirements, which are described further below.

Identification Analysis of requirements in a structured methodology involves placing in-
formation from the requirements into a standard structured form. For example, in
object-oriented design, requirements are described as objects with various proper-
ties and relations between them, while Gaia uses roles and SODA uses societies (see
Chapter 2 on these methodologies). With design approaches that use components
with relatively complex behaviour, identification of those components in the require-
ments may be difficult. For a methodology to produce justified designs, their analysis

structures should be reliably identifiable from their requirements.

Connection Design decisions should ultimately be based on requirements. For a method-

ology to produce justified designs, the design decisions made using it should be clearly

43

connected to information in the requirements.

3.1.2 Design of Opportunistic Applications

Similarly, we divide the capabilities of producing opportunistic applications into two criteria.
First, an agent able to take opportunities must be flexible enough in its behaviour that it
can decide to do so. This will depend in part on its method of cooperating with other
agents, but also requires that the design has not unnecessarily limited the set of actions
it can perform. The second concern is with regards to the interoperation between agents.
A methodology for open systems must be able to express interaction between those agents
added to the system by the designer and those whose design is outside the control of the
designer. Methodologies that meet the two criteria have the sub-capabilities of flexibility

and interoperation, which are summarised below.

Flexibility In order for an application to take full advantage of services in an open system
it must be constrained as little as possible in use of services. Opportunsim within
an application, therefore, depends on a design not placing unnecessary, i.e. unjus-
tified, constraints on the agents comprising the application. For a methodology to
produce opportunsitic designs, the way in which the designs are created should not

add unjustified constraints to the applications.

Interoperation Opportunism requires that agents in an application have the ability to
access resources, such as other agents, outside of their local domain. In order for design
decisions to be made based on agent interoperation, the methodology must allow the
representation of interaction between agents under design with those already existing,

or existing in the future.

Other criteria can be used to judge whether one methodology is better or worse than an-
other, such as the separation of concerns during the design process and the intuitivity of
the concepts used to construct designs. These properties are described in Chapter 2 and
are generally fulfilled adequately by the existing AOSE methodologies. We do not investi-
gate whether existing methodologies fulfil these criteria here as our scope of comparison is

concentrated on how well methodologies produce justified, opportunistic designs.

44

Methodology Identification | Connection | Flexibility | Interoperation
Gaia No No No Yes
Tropos Yes Yes Yes No
Role Modelling Yes No No Yes
Domain Decisions Yes No Yes No
Workflows Yes No No Yes
SODA Yes Yes No Yes
Organisation Rules No Yes No Yes

Table 3.1: Open system design problems addressed by each approach

3.2 Methodologies Evaluation

Making comparisons of effectiveness between methodologies is made difficult because de-
signers using most methodologies can legitimately arrive at different designs for the same
application requirements. An informal, structured methodology only guides a designer in
analysing the problem and making design decisions. Therefore, comparing the effective-
ness of methodologies for creating justified, opportunistic designs must involve examining
whether they have capabilities, such as those described above.

In the sections below, we examine the methodologies discussed in Chapter 2 and
answer whether they possess these methodology capabilities. The results for the sub-
capabilities of seven representative methodologies are summarised in Table 3.1. Clearly
where a methodology does not possess a capability this may not be a shortcoming on its
own terms if the capability is not relevant to the methodology’s target domain, e.g. there
is no need for opportunism in closed systems. The importance of the evaluation is in de-
termining how the methodologies succeed or fail in solving the problem we are concerned

with.

3.2.1 Identification

The main criteria we can justifiably adopt for deciding whether entities are consistently
identifiable from requirements are whether they have been judged as such from the past
experience of the software engineering community. Goals, as identified in Yu and Schmid’s
workflow-based methodology [106] and SODA [83] are recognised as commonly derivable
from requirements [26]. Entities within the application domain, e.g. manufacturing equip-
ment as used to illustrate Bussmann’s methodology [18], are clearly identifiable as they

already exist. Tropos [16] also identify goals and domain elements (the user roles, rather

45

Write Contribution Read Contribution
Write Access Rights Read Access Rights

Write Contribution Write Access Rights
Read Contribution Read Access Rights

Figure 3.1: Roles: Problem with Identification

than the agent roles), using standard requirements engineering.

Directly identifying all the agent roles of an application from the requirements has
been recognised as a difficulty and not always possible [18, 83]. Roles do not describe
required functionality in the system and therefore there is no reason to believe they will be
obviously present in application requirements in general.

In the design of agent-based applications for production control systems examined
by Bussman et al. in [18] and it is concluded that it is “necessary to extend [agent-oriented]
methodologies by a preceding analysis step that derives roles from the production control
problem”. Role modelling is used in specifying object-oriented systems, and Kendall [63]
adapts this approach for AOSE, but the role modelling is based on previously identified en-
tities such as goals. For methodologies in which roles are identified from the requirements,
either with detailed properties as in Gaia [102] or in a preliminary state as in Zambonelli
et al.’s extension of Gaia [107], there is a danger that the roles may not be readily identi-
fiable and that any division into roles will be arbitrary in part, and so not justified by the
requirements. Efforts have begun to address this particular shortcoming in Gaia [62].

To illustrate the above points, Figure 3.1 shows two possible ways of dividing up the
functionality of the case study into two roles. In the upper organisation, there are two roles.
The first is a role for an agent able to write the contributions made to the weather map and

also for editing the access rights of users to the map. The second role is the equivalent for

46

reading weather data and access rights. In the lower organisation, there are also two roles
but in this case the functionality is split between a role dealing with access rights and a
role dealing with weather map contributions. Either of these organisations could have been
derived from the requirements using the Gaia methodology but the decision would not be
informed and could affect how well the application as a whole met the requirements. For
example, the upper organisation is more secure in case of accidents because the ‘writing’
role can be tailored to require stringent integrity checks, while the ‘reading’ role would
not need these checks and so could perform read operations quickly. On the other hand,
the lower organisation can be more secure in terms of administration because the reading
and modifying of access rights can have more security checks than reading and writing
contributions. It depends on the functional and non-functional requirements to determine
which of these organisations best fits the requirements, and so these should be identified

from the requirements before agent roles.

3.2.2 Connection

If identification can take place successfully, the division of functionality produced by design
decisions must be connected to the requirements in order for the design to be justified.
Designs whose structure is based on the structure of the domain may not be justified by
that mapping for several reasons described in [107]. First, the domain may itself not be
well structured. Second, the creation of the application may change the way the organisa-
tion works. Third, the reasons behind the structure of the domain may not apply to the
requirements of the application. These limitations apply both to designs based on mechan-
ical domain structure (such as Bussmann’s [18] and Yu and Schmid’s [106]) and role-based
designs where roles are derived from human jobs.

In the case where roles are not derived from the domain structure there must be
some other means of attaching the division of functionality in the design to the requirements.
Zambonelli et al. [107, 108] achieve this for Gaia by first extracting the simple organisational
rules that apply to preliminary roles and deriving a role-based design from them. Tropos
[16] uses repeated transformations, such as decomposing a goal into two parts to move from
each successive model to a more detailed one.

Justification of a design with many parts is liable to be complex and produce a large

amount of reasoning. SODA [83] balances the complexity of justification with an ease of

47

[gy B
o

Figure 3.2: Domain Decision: Problem with Connection

specification by making design decisions for whole societies (groups) of agents based on the
goals the group will attempt to achieve. For example, a market-based coordination model
may apply to a society of agents if solutions to the goals it attempts to achieve are likely to
be most easily found in a marketplace environment.

We illustrate the points above using Figure 3.2. In this diagram we show a software
architecture based on the structure of a manufacturing domain, for example. Each box
represents an agent performing a process and then making a decision as to where control
will be passed next and maps on to parts of a production line in which those processes and
routing can actually take place. However, the structure of the domain may be determined
by constraints that do not apply to the software, such as the availability of machines with
particular functions, space, necessity for continuous running when one machine was replaced
by another etc. The part marked B in the diagram involves a convoluted process in which
a decision must be taken which affects the process performed. This decision is the same as
that which determines whether C or D are executed next. It would be more efficient in the
software organisation to make the decision at A, and then split into two processes, B1 and
B2, instead of B alone, where B1 leads on to C and B2 leads on to D. If this is done, the
division of functionality will be connected to the requirements in a way that following the

division in the domain would not be.

48

3.2.3 Flexibility

The assumption in agent-oriented software engineering that the components making up an
application are autonomous, flexible and social (or even a subset of these) places demands on
a design and implementation to provide for these capabilities (as compared to, for example,
object-oriented systems where there are fewer assumed requirements for the comprising
objects). By using agents in the design process, application developers must be aware that
constraints are being placed on the system simply by the existence of the agents. AOSE
methodologies should guide the designer in justifying the existence and functionality of
agents while utilising their flexibility.

One way to achieve this is to reduce the structural requirements to those that are
truly necessary right from the start. Bussmann [18] achieves this by minimising the structure
to the necessary decisions that need to be made and not attaching any other demands
on the decision points apart from their interdependencies. Tropos [16] similarly restricts
the identified functionality to simple goals with no additional constraints other than being
attached to the user possessing each goal.

Roles generally have associated responsibilities (or obligations) and other restrictions
[63, 102, 106, 107]. These need to be justified by the requirements to show that they are
necessary, though the justification also depends on the preceding division of functionality
into roles being justified. Unjustified (as well as justified) restrictions on agents due to the
roles they play could reduce the amount of opportunism that they can engage in. Similarly,
associating restrictions with membership of a group of agents at design time, as in SODA
[83], could unjustifiably reduce the opportunistic actions the agents could perform when the
open system changes.

We illustrate the points above using Figure 3.3. A group of agents is allocated
to achieving a particular goal, and a particular coordination mechanism to aid them in
cooperating towards that goal. This tying of goals to methods of achieving them works
against the flexilibity that agents are normally assumed to have in achieving a goal. For
example, in some circumstances it may better achieve the requirements to use a coordination
mechanism based on judging the reliability of other agents by their past record rather than
negotiating with them to find a good solution. The process of negotiation may take a

substantial amount of time and this is not applicable when speed is a requirements.

49

Society for: Make Prediction
Coordination: Negotiation
Restriction: Must have paid

Figure 3.3: Societies: Problem with Flexibility

3.2.4 Interoperation

Most of the methodologies allow interoperation between known and unknown agents to be
expressed. Bussmann’s methodology [18], targetted at closed manufacturing domains, does
not have this methodology capability as it requires the source and target decision points
to be expressed in dependencies within each workflow. Tropos [16] is also aimed at closed
systems as the roles of external users and service providers are identified at the start and
used as a basis for design.

As agent roles are expressed at a more abstract level than agents, there is no reason
why any agent, regardless of the time or location at which it is deployed in the open system,
should not take on a role if it has the capabilities to do so. Similarly, there is no reason why
agents from anywhere in an open system could not be part of SODA societies [83] as long
as they obey the restrictions and can use the coordination model.

In Figure 3.4 we illustrate the points above. In the architecture shown, agent roles
A and B are limited by tying them to particular entities within the closed system (in this
case, two users). This is not opportunistic with regards to the application goals as it means
that functionality developed by others and available in the open system cannot be re-used

because it does not have that dependency.

50

%demands demands.

OO
©

Figure 3.4: Requirements Analysis: Problem with Interoperation

3.2.5 Comparison Conclusions

Existing methodologies do not guide the designer in producing justified, opportunistic de-
signs. Roles are a useful abstraction for agent-based system design but are not readily
identifiable, cannot justify their own division of application functionality and their associ-
ated responsibilties restrict, possibly unjustifiably, the opportunism of agents adopting the
roles. However, as an abstraction over particular agents they are useful in providing a place-
holder for unspecified agents in discussion, so that any agents within an open system may
play a pre-defined role at run-time.

Other conclusions can be drawn from our comparison, such as that goals are among
the entities usefully identifiable from requirements for agent-based systems. Also, to en-
sure flexibility, the application should be specified in terms of necessary, minimal entities
completely derived from the requirements (such as workflow decision points). The follow-
ing section provides a more thorough analysis to determine how our approach should be

informed by the successes and failures of existing methods.

3.3 Analysis

If the existing methodologies do not consistently allow for the design of justified, opportunis-

tic applications, as we claim above, we must create a new methodology to achieve our aim.

51

Taking each of the four methodology sub-capabilities discussed in turn, we briefly derive the

properties of an approach that satisfies them.

3.3.1 Identification

Identification of structures in requirements is the domain of requirements analysis, or, more
broadly, requirements engineering. Entities found to be consistently identifiable in require-
ments include objects, functional goals and non-functional goals. We intend the function of
objects to be largely replaced by agents in the eventual designs, so it may be more useful to
identify functional and non-functional goals. The former type of goal expresses a state of
the system desired within a given context. Non-functional goals are priorities and restric-
tions associated with achieving functional goals. In this thesis, we refer to functional goals
simply as goals and non-functional goals as preferences to match folk psychology [14, 13]

terminology often applied to agents.

3.3.2 Connection

In order for design decisions to be justified they must be matched by (traceable to) the
application requirements. If we take the approach described above and identify goals and
preferences from the requirements then further design decisions must be based on achieving
the goals and matching the preferences. In particular, the agents in our applications should

be designed to achieve the goals while matching the preferences.

3.3.3 Flexibility

Opportunism requires agents to be allowed to decide which others to cooperate with to
achieve desired functionality, and that this should be done without regard to whether those
others existed at design time or not. Also, any restriction on their choice should be justified
by the requirements. If the designer identifies goals and preferences in the requirements,
then the design should not constrain which agent achieves each goal at any one time, unless

the preferences demand such a restriction.

52

3.3.4 Interoperation

The description of interoperation between agents created by the designer and agents else-
where in the open system, possibly unknown at design time, requires that the designer is
able to describe interactions between a set of agents, at least one of which may not have
well-defined functionality. Roles are useful in abstracting over any particular agent and so

can be used to express interactions between unspecified agents.

3.4 The Agent Interaction Analysis Methodology

From the analysis above we can generate a more specific approach to solving our problem.

3.4.1 Agent Interactions

Identification of goals and preferences by requirements analysis seems a useful starting point.
For these goals and preferences to be manifested in an open system, and, therefore, for the
application to exist in the open system the application designer will add agents to achieve
the goals (and match the preferences). If these agents are opportunistic they will interact
with existing agents and resources in the open system so as to best achieve the goals. The
notion of whether a goal is achieved in a better or worse way depends on the preferences.
For example, in our case study the goal to return a weather prediction to a user would have
the preferences of, and so the goal achievement judged upon, the prediction’s accuracy.

We stated in the analysis above that interoperation between unspecified agents could
be modelled using the abstract notion of roles. However there are noticeable problems
with identifying roles, justifying division of functionality into roles and only placing the
restrictions of roles on agents where justified. The latter two problems (corresponding to
the methodology capabilities of connection and flexibility) are due to the responsibilities and
other restrictions associated with roles. Therefore, we can remove this problem by modelling
interoperations using roles that have no associated properties aside from their part in those
interoperations. These minimal roles are called, in our approach, interaction roles.

The other problem mentioned above is that of identification of roles from the re-
quirements. However, we now say that interaction roles are defined by nothing more than
their part in agent interactions and that those interactions take place in the open system

application at precisely those times when agents wish to achieve goals. Therefore we can

53

identify interaction roles by specifying that for each goal (or instance of a goal as the goal
may occur more than once), there is an interaction in the open system and in each interaction
there are interaction roles played by agents. We are, therefore, modelling the application in

terms of agent interactions in an open system.

3.4.2 Design Decisions

A question that may be asked is: how many interaction roles are there in each interaction?
For example, in trying to get an accurate weather prediction an agent may ask a broker
where to find a suitable predicter agent (which, therefore, involves three agents) or directly
ask for a prediction from a known predicter (which involves two agents). Another reasonable
question is that, if all responsibilities and restrictions are removed from the roles, how is
the design in any way tailored to the application?

The reason these questions arise is that we have taken a useful concept for describing
interoperation (a role) and removed enough associated restrictions from it that it becomes
as minimised as unelaborated decision points or object classes (in workflow modelling and
object-oriented development respectively). This minimisation of meaning is useful for the
initial stages of identification and justified division of functionality. However once we have
modelled the application as a set of agent interactions between minimal roles in an open
system, we can then make design decisions that add restrictions to those roles as long as

each one is ultimately based on the requirements (the connection methodology property).

3.4.3 Implementable Agents

Of course, the outcome of the design process should not be a set of abstract roles but
implementable agents. The designer wishes to know what agents, and in what form, to
implement and add to the open system in order to realise the application. In terms of our
approach, they wish to add agents that will ensure achievement of the application goals
while matching the application preferences. There are also other demands common to many
applications, such as reducing the number of agents added to the system (as argued in
Section 3.2.3).

As these agents will be attempting to achieve application goals, this question amounts
to design decisions on which agents to implement that can fulfill the interaction roles pre-

viously modelled. We will return to this problem in Chapter 5.

54

3.4.4 Agent Interaction Analysis

To solve the problem of creating justified, opportunistic designs we have created a method-
ology based on the approach formulated above. It is called Agent Interaction Analysis, and

will be explained in full over the next three chapters.

3.5 Summary

Methodologies can be judged to produce justified designs if they consistently allow identifi-
cation of the analysis entities they use from the requirements and at each stage the design
decisions are guided by information derived solely from the requirements. Methodologies
can produce designs of opportunistic applications if they only restrict application behaviour
where justified by the requirements and allow modelling of interoperations in the open sys-
tem.

Existing AOSE methodologies do not consistently produce justified, opportunistic
designs. Identification should be based on concepts of user requirements (such as goals)
rather than concepts of internal software structure (such as roles). There must be some
means of attaching (justifying) the design structure, including division of functionality to
the requirements. Due to their complex operation the existence of agents places demands
on the system. The agents should not be further constrained from opportunism except
where the requirements demand it. Abstraction from particular agents allows open system
interoperation to be modelled.

We suggest an approach, agent interaction analysis, in which goals are identified in
the application requirements, and the application is modelled as a set of agent interactions
to achieve those goals in an open system. Each interaction is made up of a set of inter-
action roles that are tailored, through justified design decisions, to match the application
preferences. Agents are then implemented, when necessary, to be able to play those roles.

The next chapter will provide detail on the initial stages of agent interaction analysis
such as requirements analysis and modelling in terms of agent interactions. Chapters 5 and
6 examine how to derive designs from the interactions, the former concerned mostly with
infrastructure supporting agent interactions, the latter providing techniques for selection
of coordination mechanisms. Chapter 7 provides an evaluation of the methodology, with

reference to the case study (the whole of design of which is in Appendix A). Chapter 8

55

summaries the contributions and limitations of our work and discusses further work to be

attempted.

56

Chapter 4

Requirements Analysis and Goal

Decomposition

4.1 Introduction

The agent-oriented software engineering approach we are taking is based on the idea of
using interactions between agents as primary abstractions in analysis and design. This
chapter describes the analysis phase of our methodology. We start with an overview of the
methodology as a whole, and identify the analysis phase within it, in Section 4.2. Later
sections detail the steps taken in the analysis phase to extract requirements information
relevant for design and provide a worked example for our case study application, whose
requirements were given in Chapter 1. We start with identification of system goals in
requirements analysis (Section 4.3) and then decomposition of those goals into sub-goals
(Section 4.4). We illustrate each step with examples from the weather mapping case study,
introduced in Chapter 1. The complete set of results from analysing the case study is
included in Appendix A. In Section 4.5, we examine how interactions between agents are

modelled and a chapter summary is presented in Section 4.6.

o7

Requirements

'Kequiremk\

Analysis
Goadls Preferences

Goal
Decomposition|

Interactions

Preferences
Analysis,

Agents

Figure 4.1: The transformations involved in agent interaction analysis

4.2 Methodology Overview

In Figure 4.1, we show the modelling artefacts produced by the agent interaction analysis
methodology. This process is derived from the desire to achieve in a practical way the
methodology capabilities defined in the previous chapter. The arrows in the diagram show
the dependencies of the lower (later) analysis and design artefacts on the higher (earlier)
ones. The labels on the arrows show the methodology stages required to transform one set
of artefacts to another. As suggested in Chapter 3, requirements are analysed to identify
system goals, and preferences on those goals. The system goals are modelled by interactions
between unspecified agents, as are all subgoals derived in the goal decomposition stage.
Goal decomposition is the division of each system goal recursively into subgoals
that are more easily analysed and implemented. Also, decomposition of goals into subgoals
allows for more opportunism as agents can decide which others will cooperate over each
subgoal. In the preferences analysis stage, the preferences inform the design decisions that
create a design from the specified agent interactions. This chapter describes the requirements
analysis and goal decomposition stages of the methodology, while the preferences analysis

stage is specified in Chapter 5.

4.3 Requirements Analysis

As with every development methodology, an early stage of the design process is to derive
the information needed, in a useful form, from the user requirements. This stage is the

first of relevance to agent interaction analysis and the forms of information we want to be

58

produced are goals and preferences. Goals are descriptions of states of the system which
the application is intended to realise. The lifetime of instances of goals in the system may
be continuous over the system lifetime or dependent on context, e.g. appear at regular
intervals or when invoked by a user. Preferences may take different forms determining, for
instance, the measures of success for goals or restrictions on resources. Examples of goals
and preferences are given below in Section 4.3.1.

A range of requirements analysis techniques are available. Several are described in
[26], and one aimed at agent-based systems is described in [2]. It is interesting to note
that these techniques derive relations between agents that are both internal and external
to the system being designed and, because we are concerned primarily with interactions,
there is no explicit distinction between these different classes of agent in our analysis stage.
Requirements may take the form of a document or expectations from prospective users
adapted to a useful form [50], and will probably be a mix of those that evolve over time.

Each section below describes part of the requirements analysis process with worked

examples for the case study application.

4.3.1 Goal and Preference Examples

As an example of the products of an analysis, the following simplistic translations could be

made from our case study application requirements.

e “Contributors can add data they have gathered locally, to the map...” translates to a
goal to add data to the weather map. It also states a fact about the interface, i.e., that
the contributor causes an instance of the goal to be present. This is the context-based

appearance of goals.

3

e “..the functionality of the application should be available locally at each node,...”
places a restriction (a strict preference) on the system and describes a system goal
to keep the basic application functionality available locally to the user. This is the

continuous appearance of goals.

e Aside from context-based and continuous appearance of goals, another possibility is
reqular appearance, e.g., “The weather data is distributed among the contributors...
This distribution should be watched regularly to reflect the current demands.” requires

that regular redistribution should occur.

59

User Application
Add to Map
?0Observation

Observation

Confirm Success

Figure 4.2: Event trace for modifying the weather map

e “After the priorities of the particular operations of the application, speed should be the
most important factor in considering how the application is implemented” describes a
preference concerning the result of processes, and so is a measure of quality of all the

application goals.

Requirements come in a variety of forms and while goals are recognisable, as shown by
the examples above, parts of a requirements document may be described in other terms.
Requirements engineering is the process of deriving from requirements documents, goals

that are coherent and easy to implement [95].

4.3.2 Scenario analysis

Event traces can be analysed for the requirement scenarios (interactions between the user
and the local application) [23, 96]. We provide a set of analyses for our case study appli-
cation. Exchange of commands, queries for supporting information (indicated by question
marks) and information are shown as arrows from the sending entity (either the user or the
application) to the receiving entity (either the user or the application). The scenario starts
at the top of each diagram and a series of exchanges (events) occurs as time progresses to

the bottom of the diagram.

e Figure 4.2 shows how a user expects to modify the weather map. In the trace, the
user asks to modify the map, provides operation data and receives a confirmation of

the success (or failure) of the operation.

e Figure 4.3 shows a user obtaining a prediction regarding a location at a particular

future time.

60

User Application
Get Prediction
?Location

Location
?Time

Time

Prediction

Figure 4.3: Event trace for choosing a map location prediction to speed view

User Application
Change Access
?User
User
?Rights
Rights

Confirm Success

Figure 4.4: Event trace for changing the access rights of another user

e Figure 4.4 shows how an authorised user may change the access rights of other users.

The designer must decide which of these traces represents unique goals to be given to the
agents, which are out of the agents’ control and which are equivalent to other goals but
possibly with different parameters. In the cases above, the events suggest an obvious goal
to be achieved. An example of a scenario outside of the agents’ control is starting the local
part of the application, which is for the operating environment to achieve.

The goals identified from scenario analysis are named in a date dictionary shown in

Table 4.1.

4.3.3 Entity Analyses

The requirements of any application are likely to be expressed in terms of domain entities,
including physical entities and logical entities. In our case study, the physical entities in-

clude users and local computer resources, while the logical entities include access rights and

61

| Type | Name | Description |
Goal Contributed User contributed data to the weather map
Goal Speed Viewed User presented with view of map location predic-
tion of specified time as fast as possible
Goal Accuracy Viewed User presented with map location prediction of
specified time, as accurate as possible
Goal Set Access User has set access rights of another user

Table 4.1: Data dictionary after scenario analysis

predicters. As discussed in Chapter 2, the structure of the domain does not always match
the desirable structure of the application. We would like, instead, to investigate what goals
and preferences the existence of the entities imply. We have created the entity analysis
diagram to examine the implications of an entity being mentioned in the requirements, and
examples from our case study are given here.

The following entities from our case study application requirements are analysed
to determine the goals and preferences implicit in their requirements usage, adding to the
data dictionary as shown in Table 4.2. We analyse the application entities mentioned in the
requirements to determine the goals and preferences their presence implied. In the analysis
diagrams for the entities listed below, the application is shown as a solid circle, with the
entity in question shown as a dashed shape positioned inside or outside the application (to
show the relative position implied by the requirements). To determine the implications of
the entity’s existence, we examine its suggested interactions with other entities, including

the user, and the properties it is described to have.

o Figure 4.5 describes the ‘access rights’ logical entity. A set of access rights for a user
is an entity that filters the operations of the user on the weather map data. Access
rights are themselves editable. This implies a goal (named ’Set Access’) describing the

state of access rights having been edited.

e Figure 4.6 shows an analysis of the ‘predicter’ entity mentioned in the requirements.
The application answers requests for predictions, with either speed or accuracy pri-
oritised. The predicters process the prediction requests. A prediction can be located
within the local application (under the control of the designer) or elsewhere in the

open system.

The full set of entity analyses for the case study is given in Appendix A. After these

62

Adcess Rights

~_ - 4 \ ~_ -
%\ 7~ Access

AN &{/iew R
Access Rights __ _Acdess Righits

- Editable by one or more users
- Affects the use, viewing and editing of data for
one or more users

Goals
Set Access

Figure 4.5: Entity analysis for access rights

Access map data

Request

Prediction - ™~
— = \
SN /

.
Request N
Access =~~~

Prediction map data
Goals Preferences
Speed Viewed Rapid Data (speed view)
Accuracy Viewed Accurate Data (accuracy view)
Prediction Time Out

Figure 4.6: Entity analysis for predicters

63

| Type | Name | Description

Goal Contributed User contributed data to the weather map

Goal Speed Viewed User presented with view of map location predic-
tion of specified time as fast as possible

Goal Accuracy Viewed User presented with map location prediction of
specified time, as accurate as possible

Goal Set Access User has set access rights of another user

Goal Redistributed Map data redistributed for high access speed

Goal Prediction Prediction regarding map location at given time
has been made

Preference Open No limit on number of users

Preference Validate Edit Only authorised users can contribute to map lo-
cation data

Preference Validate View Ounly authorised users can view predictions on
map location data

Preference Time Out If prediction takes longer than 10 seconds then
stop and warn user

Table 4.2: Data dictionary after entity analysis

analyses the data dictionary is extended to that shown in Table 4.2.

4.3.4 Goal Analysis

Each system goal is analysed to determine the actions that trigger the addition of instances
of the goal to the application and the preferences associated with each. The analysis adds
preferences to the final data dictionary at the end of the requirements analysis stage, as
shown in Table 4.3. In the analysis diagrams for the goals analysed below, we specify the
trigger (as an interaction with other entities) and the end state of the goal divided into
those entities affected. When showing information being passed between entities, we use
the UML convention of an arrow tailed by an empty circle for the passing of parameters
required for goal achievement, e.g. Contribution in Figure 4.7, and an arrow tailed by a

filled circle for the passing of feedback on a goal’s achievement, e.g. the acknowledgement

and warning shown in Figure 4.7.

e Figure 4.7 shows an analysis of the Contributed goal, which, as stated earlier occurs
when a user wishes to contribute data to the weather map. The goal is triggered
(an instance of the goal created) by the user on submitting contributing data. The
resulting state should be either that the weather map is updated and the effect ac-

knowledged to the user or the user warned that the update cannot take place. The

preference is for as many contributions to take effect as possible (Edit Effect).

64

Contribution

Q - S TRIGGER
User — TRIGGER
Contribute Contribution '\~ /

GOAL STATE

g

Acknowledgement of
contribution taking (if does take effect)

effect ENTITY: USER
OR

g

Wamingastowhy (i goes not take effect)
contribution could

not take effect
Map
K . Cﬁntribution
. ® /" Contribution which took effect is
included in the map

ENTITY: MAPDATA

Preferences
Edit Effect

Figure 4.7: Contributed goal analysis

o Figure 4.8 shows an analysis of the Accuracy Viewed goal, triggered by the users when
they request weather predictions for a given location and future time. The result is
the prediction or a warning returned to the user, with a preference for accurate data
being returned (Accurate Data). There are also restrictions on which users can access

the predictions (Validate View) and on how long the process may take (Time Out).

e Figure 4.9 shows an analysis of the Redistributed goal describing a state in which
weather data is stored locally to the users that access it most. Instances of the goal
are triggered regularly by the application and the preference is for the users to have,

collectively, as fast access as possible to the data.

Goals are desired end states so refer to the consequences of actions rather than an
action itself, e..g ‘User contributed data’ rather than ‘User contributes data’. It may seem
strange many of the goals refer to the user triggering the goal, when the goal state does not
involve the user, e.g. User contributed data. There are two reasons for referring to external
entities not obviously within the goal state. First, it is useful for the goal description to refer
to all information that the designer knows has to be provided from external sources in order

for the goal to be achieved. The user must be known in order for the agents to examine the

65

Lottt /e
[[eii] 1 i
Rights
o g

TRIGGER
GOAL STATE
.@ - @
Prediction
ENTITY: USER
OR

Reason why cannot view
predicted state (no access rights or time out)
Preferences
Validate View
Accurate Data
Time Out

Figure 4.8: Accuracy Viewed goal analysis

Loca map data

TRIGGER
Redistribute

map data

GOAL STATE
excludes locally less-accessed data

ENTITY: LOCAL STORE
includes more locally well-accessed data

excludes locally well-accessed data

ENTITY: OTHER STORES
includes more locally |ess-accessed data

Preferences
Fast Access

Figure 4.9: Redistributed goal analysis

66

| Type | Name | Description |

Goal Contributed User contributed data to the weather map

Goal Speed Viewed User presented with view of map location predic-
tion of specified time (as fast as possible)

Goal Accuracy Viewed User presented with map location prediction of
specified time (as accurate as possible)

Goal Set Access User has set access rights of another user

Goal Redistributed Map data redistributed for high access speed

Goal Prediction Prediction regarding map location at given time
has been made

Preference Open No limit on number of users

Preference Validate Edit Only authorised users can contribute to map lo-
cation data

Preference Validate View Ounly authorised users can view predictions on
map location data

Preference Time Out If prediction takes longer than 10 seconds then
stop and warn user

Preference Validate Access Only authorised users can edit access rights

Preference Edit Effect As many contributions as possible take effect

Preference Rapid Data Predictions are presented as quickly as possible

Preference Accurate Data Predictions are as accurate as possible

Preference Fast Access Map data should be distributed to give as rapid
access by users as possible

Preference Opportunism The application should prioritise taking advan-
tage of the most suitable functionality available
in the system.

Table 4.3: Data dictionary after goal analysis

access rights of the user and decide whether the action is allowed to take effect. Second,
the user should be informed of the success or failure of the operation. Therefore the goal
‘User contributed data to the weather map’ is an abbreviation for ‘User is given feedback
on goal failure, or access rights of user allows contribution to be integrated into the weather
map, contribution is integrated into the weather map and user is given feedback on the goal

success’ (as shown fully in the goal analyses).

4.4 Goal Decomposition

In a dynamic system, agents working towards a goal which takes a substantial duration to
complete may have to change their activities dependent on changes in the system. Agents
changing activity based on context are said to be reacting to the environment. Goals may
also be best achieved by cooperation between agents. Both of these flexible behaviours

are fundamental to opportunistic behaviour and so should not be constrained by an agent-

67

oriented methodology. The behaviours require goals to be divisible so that agents can
distribute the workload between them and find suitable points in time to reconsider the
method of achieving the rest of a long duration goal. For example, the Accuracy Viewed
goal (which provides the user with a requested prediction) will involve checking the user’s
access rights, interacting with a known accurate predicter then returning results to the user.

The actual decomposition of goals will have to take place at run-time by agents
that can optimise the division in relation to the current state of the system. However,
in order for the agents to have decompositions to choose from, these must be developed
in advance. Also, in order to optimise system behaviour so that it corresponds to the
preferences given in the requirements, designers need to analyse how system goals may be
achieved. Therefore, the designers must develop possible decomposition of goals at the
analysis stage. By decomposing system goals, the designers can create a set of goals each
of which is decomposed into sub-goals. Alternatively, some goals will require only simple
agent activity (actions) to achieve or only be achievable by agents outside of the system
being designed.

The aim of the goal decomposition stage is to discover a suitable division of system
goals into sub-goals such that, when the sub-goals are achieved in a specified way, the system
goals are completed. The decomposition should reflect the useful divisions that an agent
could make on possessing a goal. The smallest, lowest level goals should be those for which
no further division would bring a useful separation of tasks or which can only be achieved
by agents other than those provided by the designer. For example, in the holiday booking
service suggested in Chapter 1, the goal to book a hotel room will be entirely dealt with by

services provided by hoteliers, so there is no reason for further decomposition.

4.4.1 Integration Methods

The purpose of decomposition is to provide an interpretation that is easier to solve (turn
into action) by viewing the goals as simpler parts. There must also be a stated method of
integrating the parts which is simple and does not affect interpretation of the parts. For
example, when an Accuracy Viewed goal is decomposed the access rights check must occur
before the prediction is displayed (in other cases subgoals could occur in parallel) but neither
of the subgoals depends on this particular integration method. Ability to divide goals can

come from the separate entities that the goal refers to or different contexts (system states)

68

in which the goal may be attempted.

Alternatives

A goal may be divided into alternative subgoals. Alternative solutions to a goal (decom-
positions of a goal) may depend on context: the state of system entities and information

passed with, or relevant to, the goal.

Considerations for Use The designers should consider how the entities whose existence
and state are specified by the goal must be affected by the data given and how the
state of the system, users and connected systems could pose problems or provide

opportunities for achieving the goal.

Integration Method This type of decomposition has the simplest integration of sub-goals
as when one of the sub-goals is completed the goal is completed without further effort.
The method of integration chooses one of the sub-goals based on the current system

state.

Concurrent Subgoals

A goal may be divided into concurrent or contributive sub-goals or actions. Goals or actions
may achieve part of the state described by the goal. A goal may only be achieved while
other actions are taking place or while a complementary goal exists in another agent or part

of the system.

Considerations for Use The designers should consider how the goal entities can be cre-
ated or achieve the desired state without the rest of the goal and how goal entities
should be divided and the eventual states of the parts. They should also consider what
activities require more than one agent or a constant feed of information to achieve all

or part of a goal.

Integration Method This type of decomposition has the most complex integration of
sub-goals in that it requires scheduling and communication between agents. The more

coordination is required, the more complex it becomes.

69

Sequential Subgoals

A goal may be divided into sub-goals or actions whose achievement then makes achieving
the goal easier. Goals or actions can be performed in a pre-defined sequence or steps can

be taken so that an obviously simpler sub-goal remains left to be achieved.

Considerations for Use The designers should consider the states which entities must
be in to be transformable, by an action, to the goal state and actions which make
available more information useful for determining which alternative to take. They
should consider actions that disentangle the effect of achieving one part of the goal,

e.g. one entity’s state, from another.

Integration Method The method of integration for this decomposing type involves achiev-
ing some goals before others. The more constraints apply, the more complex the

integration becomes.

4.4.2 Examples

Goal decomposition is the process of dividing goals into several subgoals each of which can
be coordinated over. As an example, the following goals from the case study are decomposed
to separate concerns in the application functionality and to enable implementation. In the
goal decomposition diagrams, a goal is given by a name in a box along with the information
(parameters) needed to achieve the goal. The subgoals and preferences of the goals are shown
at the end of lines below the goal. Preferences are marked with the word ‘Preference’. Where
a single horizontal line draws across the set of lines leading to subgoals, all of the subgoals
must be achieved for the goal to be achieved. Where a double horizontal line draws across
there is a choice between alternative sets of subgoals. For example, in the Contributed
decomposition in Figure 4.10, the goal may be completed either by checking that access
is denied for the user to contribute data and a warning is given to the user, or the map
is edited and the success of the goal is reported to the user. Where goals are drawn in
a heavy-edged box, there are no further decompositions given for that goal, e.g. Access

Denied, Map Edited etc. in Figure 4.10.

o Figure 4.10 shows a decomposition for the Contributed goal where either the access

is denied and a warning is given; or the contribution added to the map and the user

70

Contributed
[User, Contribution,
Location]

Access Denied Warning Map Ef1i teg Succt
[User, Location, editing]] |[User] [Contribution] |[User]
L ocation]

Edit Effect Validate Edit

Figure 4.10: Decompostion of the Contributed goal

informed. Influencing the choice are two preferences: that as many contributions take
effect as possible (Edit Effect) and that contributions only take effect when authorised
(Validate Edit).

e Figure 4.11 shows the analysis for the Speed Viewed goal. Access rights are checked as
with the Contributed decomposition but the Speed Viewed goal also states preferences

for rapidity and to be opportunistic in using open system resources.

After decomposition, we include the resulting subgoals into our set and regard them in the
same way as the goals originally derived from the requirements. The full list of goals and
preferences at the end of the analysis phase is given in Table 4.4.

A goal can be decomposed in one of the three ways, as we discuss in the following
sections. For each type, we describe the semantics of the decomposition, the factors a
designer should consider before selecting that decomposition and how the goal parts are

integrated to make the whole.

4.5 Agent Interaction Modelling

In Chapter 3, we noted that agent interactions must be mapped one-to-one from application
goals in order to be an identifiable modelling concept. As a secondary part of the analysis,

interactions also represent sub-goals derived from the goal decomposition phase. In this

71

Type | Name | Description

Goal Contributed User contributed data to the weather map

Goal Speed Viewed User presented with view of map location predic-
tion of specified time (as fast as possible)

Goal Accuracy Viewed User presented with map location prediction of
specified time (as accurate as possible)

Goal Set Access User has set access rights of another user

Goal Redistributed Map data redistributed for high access speed

Goal Access Denied It has been checked that the user is not authorised
to perform the specified action

Goal Warning User has been warned of action failure

Goal Map Edited Map location data has been changed to a new
value

Goal Success User has been informed of success of action

Goal Prediction Prediction regarding map location at given time
has been made

Goal Displayed Prediction | User views prediction

Goal Rights Edited Access rights for user have been changed

Goal Least Accessed The least accessed local map data has been iden-
tified

Goal Move Data Map data stored locally is moved to a remote store

Preference Open No limit on number of users

Preference Validate Edit Only authorised users can contribute to map lo-
cation data

Preference Validate View Only authorised users can view predictions on
map location data

Preference Time Out If prediction takes longer than 10 seconds then
stop and warn user

Preference Validate Access Only authorised users can edit access rights

Preference Edit Effect As many contributions as possible take effect

Preference Rapid Data Predictions are presented as quickly as possible

Preference Accurate Data Predictions are as accurate as possible

Preference Fast Access Map data should be distributed to give as rapid
access by users as possible

Preference Opportunism The application should prioritise taking advan-

tage of the most suitable functionality

Table 4.4: Data dictionary after goal decomposition

72

Speed Viewed
[User, Location, Time]

Access Denied \Warning| Prediction Displayed

[User, Location,viewing] [[User] [Location, Prediction
Time] [User,

Prediction]

Preference: Preference: Preferencer) [Preference:
Validate View) | Opportunism J{ Rapid Dat: Time Out

Figure 4.11: Decomposition for Speed Viewed goal

section we consider what abstract agent interactions actually represent in terms of the
application.

Interactions occur when an agent possesses a goal and, therefore, needs to achieve
it. An interaction represents the unification of all stages where at least one agent is acting
towards the achievement of the labelling goal. This cooperation between agents may be the
result of some unspecified amount of message passing which results in one or more agents
attempting to achieve a goal.

The cooperation as modelled is not between particular agents in the system but
abstract interaction roles. Interaction roles are the minimalistic roles which agents would
play whenever the interaction goal comes to exist in the system. They represent potentially
any agent in the open system, whether added by the application designer or otherwise,
though this may be restricted if justified by the requirements. A single agent may play
more than one role in the interaction. For example, an agent possessing the Contributed
goal and able to edit the data map may achieve the goal through its own actions. This would
still be termed an interaction in the context of our methodology, but would be a limiting
case.

Figure 4.12 illustrates the structure of an interaction with three roles for co-operating
agents to take in achieving the labelling goal. In contrast to organisational roles mentioned
in the last chapter, interaction roles have no responsibilities, or other restrictions, in the

application and, therefore, can potentially be adopted by an agent anywhere in the open

73

Labelling goa
" Interaction " Interaction
! Role Godl 2 ! Role
LA .C
i \
Rgle Place-holders

Figure 4.12: The structure of an example interaction

system.

Each interaction is labelled by a goal. There may be more complexity to an agent
interaction than message passing between objects, in that an agent interaction may involve
several communications being exchanged, communication of social context and even commu-
nication with third parties, but it has a similar eventual effect in that control is transferred
between system components in a limited and meaningful way. Before cooperation can take
place for a goal, one of the agents involved must possess that goal (be acting towards it),
therefore, one of the interaction roles involved is being the originator of the labelling goal.
For example, an agent representing the interface with the user may originally possess the
Contributed goal when the user asks to contribute data, and will then find other agents to
cooperate with in achieving this. The other agents in an interaction also have roles within
that interaction such as being delegated goals, acting in parallel, monitoring the appropriate
execution of the goal, and so on, with the exact roles depending on the goal. It is important
to note that, due to the fact that agents may refuse to co-operate, an interaction only illus-
trates the successful case where the originator has eventually found a co-operator. It could
also represent a chain of delegations where only the last agent in the chain knows how to

continue its decomposition or completion [71].

4.6 Summary

Agent interaction analysis consists of transforming requirements into agents through the
intermediaries of agent interactions consisting of interaction roles. We can analyse the
requirements provided in terms of scenarios of use, entities mentioned and goals to achieve.

From these we derive application goals and preferences. The goals may be decomposed to

74

provide more circumstances in which agents can exhibit opportunistic behaviour.

The goals are modelled (mentally, as there is no additional benefit from graphical
specification) as being achieved by interactions between agents playing minimalistic inter-
action roles. A single agent can play more than one role in an interaction and the agent
initiating an interaction is called the originator.

Once a designer has the goals and preferences and, implicitly, an interaction-based
model, design decisions must be made in order to tailor the application, including the

interaction roles, to the goals and preferences. This is considered in Chapter 5.

75

Chapter 5

Preferences Analysis

5.1 Introduction

Analysis of the requirements in the agent interaction analysis methodology expresses the
application in terms of interactions between agents playing interaction roles to achieve appli-
cation goals. The interaction roles are initially minimal to ensure no unjustified restrictions
are placed on the agents in the application, so that the design remains justified and op-
portunistic. However, to ensure that the design meets the application requirements, the
interaction roles must be tailored to the goals and preferences of the application. This will
then allow the designer to implement agents that can play the interaction roles (where they
do not already exist in the open system).

In this chapter, we describe the design phase of agent interaction analysis. As with
other modern methodologies, such as Fusion [22], the design phase includes the creation
of several models based on different aspects of the application under design. This often
consists mostly of graphical representations to help communicate and encode the application
structure. However, the potential complexity of multi-agent systems acting in dynamic open
environments also requires much supportive structure.

The aim of the analysis phase is to derive and refine a structured specification of
the necessary functionality from the requirements. The aim of the design phase is to bring
those models closer to implementation, highlighting the design decisions to be made and

the criteria influencing the decisions. The detailed analysis supporting the design decisions

76

Analysis Ph:
—ANEYSSTae. Create models determining what should be

Requirements Analysis contained in the implementation. In Agent
Goal Decomposition Interaction Analysis, thisisin terms of goals
mapped to interactions and preferences.

Design application by creating more detailed
models that realise the specification givenin
the analysis phase.

Design Phase

Preferences Analysis

Figure 5.1: Modelling Processes in the Analysis and Design Phases

in our methodology is called preferences analysis, as the application preferences are the
criteria on which design decisions are made. Without preferences analysis, a system design
based on the interactions derived in the analysis phase could fail to match the priorities
and restrictions in the requirements, i.e. the preferences, so the application design would
not be justified. The absence of a substantial design phase to the methodology would also
leave the designer with a potentially huge task in making design decisions without support
from the methodology. The design is complete if an implementation can be made that
unambiguously follows the design and meets the requirements. To achieve this, the designer
is guided into making design decisions, which are choices made from weighing the benefits of
various structures for realising the requirements. Figure 5.1 shows the modelling processes
in each of the two phases, described in this chapter and Chapter 4.

An overview of the aims of the design phase is provided in Section 5.2. Section
5.3 describes the essential use of modularisation in the design process and how it can be
usefully applied in Agent Interaction Analysis, with discussion of how a designer selects
between possible module designs in Section 5.4. In Section 5.6, we describe the content of
preferences analysis and how it aids design decisions. We illustrate the initial part of the
design phase as applied to our weather mapping case study. The process is summarised in

Section 5.7.

5.2 Designing Application Infrastructures

In order for the designs produced to be justified, an informal methodology must produce,

through analysis, information that guides the designer towards justified design decisions.

7

Agent interaction analysis was developed with the following design aims.

Supporting Possible Interactions Guide the designer in producing a design for an ap-
plication where it is possible for the agent interactions identified in the analysis phase
to occur. Permitting the occurrence of agent interactions is fundamental to agent

interaction analysis.

Separation of Concerns Provide a uniform, modular structure that supports the designer
in analysing the infrastructure parts that support interacting agents, comparing mod-

els which instantiate those parts and making design decisions.

Traceability Highlight the design decisions that best match the application preferences so

the designer can create a design conforming to the requirements.

Extensibility and Generality Ensure the process is flexible enough to accommodate
application-specific infrastructure parts (those that support agents performing activi-
ties specific to the application), and the incorporation of models yet to be developed.
In accordance with the software engineering principle of generality, we try to keep the

design phase as widely applicable as possible.

In the sections that follow, we will address these aims.

5.3 Modularisation

The design phase of a methodology is the part of the engineering process which involves
refining the models produced in the preceding analysis phase (see Chapter 4) to develop a
complete design.

In Chapter 2, we gave principles that have been discovered to aid the process of
software engineering. One of these principles is separation of concerns, which states that
it is often possible to divide problems in various ways which allow the designer to focus
on smaller, less complex targets. This can be applied to modelling in the design phase,
particularly by way of the more specific principle of modularity. Modularity is separation
of concerns by the structures implementing different functionality. This allows the designer

to first focus on the individual modules and then the interaction of those modules. Ideally,

78

modules should display high cohesion (component elements are strongly related) and low
coupling (modules are independent of each other to as high a degree as possible).

In Chapter 2, we reviewed several pieces of work into modularising multi-agent
system infrastructures. Each agent-based system will have underlying resources allowing
agents to perform actions necessary to achieve goals. An existing open system domain may
provide some or all of these resources. In the sections below we will analyse how to apply
the work described in Chapter 2 and examine how modularity is used in the design phase

of agent interaction analysis.

5.3.1 Infrastructure Parts

Each application will have modules of its infrastructure that are not relevant to most other
applications. For example, an application that analyses and transforms data from a database
will have to consider the mechanism by which the database is accessed, whereas an appli-
cation controlling a manufacturing process may not need to make a design decision on a
database access mechanism. The database access mechanism is an example of an application-

specific infrastructure part. We define an infrastructure part, in general, as follows.

Infrastructure Part A module of an infrastructure serving a stated purpose that can be

identified as being potentially instantiated by one of several models.

Infrastructure Part Model A structure or algorithm that achieves a stated purpose in

an agent-based system infrastructure.

For example, ‘agent communication language’ is an infrastructure part, and KQML and
FIPA-ACL are models that instantiate it (see Chapter 2 for more details on these commu-
nication languages). Infrastructure part models may be developed at the same time as an
application but they are more likely to be derived from previous work by others, such as
with many agent coordination mechanisms, or from development experience, such as with

many management services. Therefore, infrastructure part models can be re-used.

5.3.2 Decomposing an Application Infrastructure

The infrastructure needs to support the agents’ operations. In order to identify the compo-

nents of the infrastructure required for agents to interact over the system goals, the designer

79

User Command Application

[GUI triggeringj [Agmtinteractiong [GUIfeedbackj

[God soragej [Cooperationj Action

Goal Plan Plan Actions
representation representation) | manipulation form

Capability to agent n— ;
[mapping] [Coordmatlon] [Adopuon]

Application | (Communication (Observation) (Deduction (Assumption)

interoperatiof
Agent Belief
communication storage

language

Figure 5.2: Infrastructure modularisation showing the support required for goal triggering
via the GUI and for agent interactions

can examine various aspects of the application operation. In particular, the designer can
refer back to the analyses of goals made earlier to determine the functionality required for
goals to be triggered, examine the infrastructure required to allow the agents to interact
and also examine existing infrastructures (as discussed in Chapter 2).

To modularise the infrastructure, the designer can follow the steps below.
1. Identify how the external entities, e.g. the user, will interact with the application.

2. Identify any further stages to transform interactions with external entities into agent

interaction over goals.

3. For each distinct part identified as necessary for achieving the appropriate interactions
with external entities, recursively decompose the part into a set of more specific parts

required to achieve them.

4. Stop decomposing parts when it is considered that the infrastructure part models
available cover all aspects of that part (so further decomposition is irrelevant or mean-

ingless).

Figure 5.2 shows a decomposition of our case study application in which the user

issues commands, such as requesting a weather prediction, through a graphical user interface

80

(GUI). The functionality of the application is achieved by interacting agents that possess

goals.

The goals are caused to exist (triggered) by the user interacting with the GUI, and
the feedback from any goal achievement or failure is presented via the GUIL This is

shown in the diagram as a decomposition of the application.

The agent interactions are further modularised into the possession of a goal by an
agent (the originator agent for the interaction), cooperation in achieving the goal and

action arising from the cooperation.

Goals possessed by an agent must be represented in a pre-specified form, as must the

plans (plans are decompositions of action in this case).

Cooperation is shown to require infrastructure to enable agent capabilities to be iden-
tified, agents to be coordinated to best achieve the goal and adoption by agents of the

goal over which cooperation takes place (agreement to cooperate).

Coordination between applications may require infrastructure to translate between

them (as identified by Sycara et al. [94], described in Chapter 2).

On an individual agent level, coordination depends on the coordination mechanisms
used but certain common infrastructure parts can be identified. We will discuss these

fully in Chapter 6.

Communication requires a language in which to communicate and assumption may

require some way of storing those assumptions explicitly (as beliefs).

It is likely that, in many cases, a designer can re-use a modularisation created for another

application with modifications, and also use as guidelines the decompositions into layers,

characteristics etc. [41, 91, 94] described in Chapter 2.

5.4

Basis of Model Selection

For each of the infrastructure parts identified in modularisation, a model will be chosen.

In Chapter 2 we discussed Logan’s classification into comparable models of the multi-agent

system as whole. We utilise this idea for all infrastructure parts. There are several aspects

to making a decision on the model for an infrastructure part, as follows.

81

e The models will most easily be compared if they can be expressed in a uniform way.
However, there is no limit to the range of infrastructure parts or models for those

parts so the standard must be flexible.

e The choice of a model should be based on the application preferences. In order for the
methodology to guide the designer in making justified design decisions the model de-

scription should, therefore, aim to highlight the preferences that each model matches.

e A direct comparison between models may still be difficult in cases where the models
operate in widely differing ways. For example, the coordination mechanisms described
in Chapter 2 perform very different activities in order to achieve similar ends (effective
cooperation between agents). Therefore, comparison of models for an infrastructure
part may require a supporting analysis of the models to make them more easily com-

parable.

The influences on choice of model are shown in Figure 5.3. As is shown, the choice
of model for each part is influenced by the comparison of described models, with possible
supporting analysis, with respect to the preferences. For example, when choosing an agent
communication language, a preference for interoperation with existing agent-based systems
may suggest using KQML; while a preference for interoperation with future agent-based

systems could suggest using FIPA-ACL.

5.4.1 Interdependencies

The other consideration in choosing models is the existence of interdependencies between
models. A dependence could occur between models for different infrastructure parts, e.g.
using a broker agent which takes monetary-style bids in order to choose between potential
cooperators requires an agent communication language that can support bidding.
Dependencies can also occur between the same infrastructure part in different agents
in a single interaction, e.g. an agent whose coordination involves making commitments can
only cooperate with agents that will accept commitments. These interdependencies are
illustrated in Figure 5.4. The arrows show influence from the choice of model for each
instrastructure part on the choice for others, and also the influence of the preferences and

interactions defined on those choices.

82

Glfrastructure Parth

Description of Models

Qupporting Analysiy

|

Part 1

Choice of model
for Infrastructure

Prefer

ences

Figure 5.3: The influences on infrastructure part model selection

Part 1

Choice of model
for Infrastructure

t

Choice of model
for Infrastructure
Part 2

Choice of model
for Infrastructure
Part 3

.1

Prefe

rences

Interactions

Figure 5.4: The interdependencies between infrastructure part models

83

The methodology should both make the designer aware of interdependencies and
provide a process to resolve them. Awareness can be generated by a suitable method of
describing infrastructure part models. We will cover the process of resolving interdepencies

in Chapter 7.

5.5 Infrastructure Part Models Language (IPML)

The infrastructure part model language (IPML) is a schema format, standard over all the
infrastructure parts, used to decompose infrastructure part descriptions. The language
structure takes account of the influence that allowing interactions and satisfying preferences
should have on the design. This approach is directly influenced by design patterns [40] in
which object role models (derived from software developers’ experience) are expressed in
pattern languages, as discussed in Chapter 2. A pattern language is explicitly designed to
best allow the designer to judge how appropriate each model is for an application and to
compare models.

The IPML is a set of labelled properties which form a schema describing the model.
We can compare our use of a language to that of Klusch and Sycara in uniformly describing
broker agent types [65], as reviewed in Chapter 2. In that paper, they described each broker
agent model by a schema consisting of four properties: the pattern of interaction, signatures,
states and transitions of the model. While the language is clearly designed for comparison
and selection, it is not based on any particular methodology and so does not provide any
relation with the requirements of an application. Our methodology provides justification
of design decisions by relating them to the elements in the requirements document that
informed them.

The purpose of the infrastructure part models language (IPML) is as follows.

Infrastructure Part Model Language A set of properties for describing infrastructure
part models that could be incorporated into an agent-oriented design, used to make

comparison between models easier.

IPML’s structure helps the designer to assess the influences of interactions, preferences and
other models as shown in Figure 5.5. Given below are the properties that IPML demands be
defined for each model, along with the reasons why the property is deemed essential where

it is not obvious. An example use of IPML is given in the following section.

84

Part Name The name of the infrastructure part that the model instantiates, e.g. security

mechanism, agent communication language.
Model Name The name of the model, e.g. FIPA-ACL.
Description An informal description of the model to aid understanding by the designer.

Algorithms Definition of the processes making up the model. It is essential for implemen-
tation that the procedural aspects of the model are clearly given. It is also useful for
further decomposition and analysis of a model if its procedural steps are given. The al-
gorithms will assume the presence of agents in the system as well as other appropriate

resources (described in the Resource Use property below).

Priorities Many models will be based on prioritising one factor or another as expressed by
this property, to aid selection of models by their match with application preferences.
It is assumed that, when a model is implemented, the agents within the application
affected by the model will behave in a way that prioritises those factors described in

this IPML property.

Resource Use This IPML property is used to specify the system resources, e.g. services in
the open system or storage space, required by the model. It is effectively providing the
opposite information to the priorities of the model by stating its costs. The application

preferences may limit the resources available as a whole or to individual agents.

Support Required To determine the influence on other infrastructure parts, the designer
must specify the models for those infrastructure parts which are needed in order for this
model to be used. In an example given earlier, we stated that choosing a coordination
model based on bidding required, as a resource, an agent communication language that
had performatives for placing bids. Other forms of support include the data storage

and GUI requirements as these will be controlled by agents.

Scaling With a potentially large number of agent interactions occurring, it is important
to analyse how the use of a model for a few interactions scales up for use in many
interactions. For example, using a broker agent to organise coordination in part of an
application may be wasteful for a small number of interactions, as the broker service

may have high costs for setting up and maintaining brokering information. However,

85

if it were used for a large number of interactions, the costs may be outweighed by the

benefit of having a single store of coordination information for all the interactions.

Applicability This IPML property, also used in pattern languages, used to describe prefer-

able conditions that are not covered by the other properties.

Problems This property describes additional detrimental factors in using the model.

5.5.1 Use of IPML

Example uses of IPML are shown in Tables 5.1, 5.2, 5.3, 5.4. The informal division of the
model’s description allows the designer to compare the attributes of the model with the
preferences of the application. It is intended that IPML model definitions be provided by
the third-parties who have created those particular models. An application designer will
then simply choose between the known models.

The following high-level parts were identified as fundamental to the functioning

application. We refer to the graphical user interface below as the GUIL.

GUI Triggering When users interact with the interface, by clicking on buttons for exam-
ple, they issue commands to the agents making up the application. The mechanism
by which the interface and agents interact is an infrastructure part. Two models that
the designer could choose from for this infrastructure part are shown in Tables 5.1 and

5.2.

Capability to Agent Mapping This infrastructure part allows an agent requiring a par-
ticular capability (ability to achieve a goal) to discover an agent that possesses that
capability. Two models that the designer could choose from for this infrastructure

part are shown in Tables 5.3 and 5.4.

It is important to note that IPML models should not be created for each new application
design. The IPML descriptions are deliberately application-neutral so that they can be
provided by third-parties and re-used.

86

Part Name GUI Triggering

Model Name GUI Trigger Agent

Description A single agent accepts all goals triggered from the local GUI and
discovers other agents to cooperate with over each.

Algorithms For each goal triggered from the GUI, the agent takes the fol-

lowing steps: 1. Adopt the goal benevolently (see Benevolent
model for Adoption part). 2. As the originator for the goal,
coordinate with other agents to achieve it.

Priorities The model has the potential to be flexible through being agent-
based and allows for coordination to be tailored to the goal from
the time it is triggered.

Resource Use There must be a reference to the GUI trigger agent from the
GUI to allow goals to be communicated to the agent.

Support Required A benevolent goal adoption mechanism is required in the agent.

Scaling With a large number of goals passing from the GUI, the trigger
agents may become a bottle-neck.

Applicability Applicable where the goals from the GUI are to remain low

in frequency, similar in preferences but with complex activities
required to achieve each.

Problems The agent may not be able to be tailored to all goals triggered
from the GUI and may become a bottleneck with increased fre-
quency.

Table 5.1: An IP model for the adoption of goals of a specific type.

5.6 Preferences Analysis

Bringing together the points raised above there is a procedure in agent interaction analysis
for guiding the designer in making justified design decisions on infrastructure part models:
preferences analysis. Once models have been chosen for all necessary parts of the infrastruc-
ture then the application design will be complete. Figure 5.5 shows the procedural structure
of preferences analysis. Starting at the top of the diagram, each infrastructure part - e.g.
agent communication language, management services, agent coordination mechanisms etc.
- can be instantiated by one of several models. Each model is described in the uniform
infrastructure part model language, which we give details of below. Some, more complex,
infrastructure parts will also have a supporting analysis procedure in order to specify the
models in a more easily comparable form. Based on the description and analysis, the de-
signer can make a choice about which model to use for each infrastructure part. There are

three sets of criteria for judging models.

1. The models should allow the interaction of agents over the particular goals derived in

the analysis.

87

Part Name GUI Triggering

Model Name Designated Local Adopters

Description When goals are triggered, the local infrastructure is queried to
discover which agent is designated to deal with the goal. An
agent is chosen for each possible goal triggered.

Algorithms On triggering a goal, the GUI does the following. 1. Query
the local infrastructure to determine the agent designated to
address this goal; 2. Offer the goal to the agent; 3. The agent
must accept the goal and cooperate to achieve it.

Priorities The model prioritises division of goal execution between agents

Resource Use

Support Required

Scaling

Applicability

Problems

and a centralised, reliable point at which to query the agents
currently available.

Requires a local store that the GUI can query for references to
the designated agents.

Designated agents must be compelled to adopt the designated
goals on demand (see the Benevolence model for Adoption and
the Forced Cooperation model for Coordination).

The number of agents may increase as the number of triggered
goals does. The effort required to extend the application by
adding GUI triggered goals is therefore higher than with some
other models.

Most applicable where the frequency of triggered goals is high
and diverse, the local resources are large and the goals can be
communicated quickly so that the queries for local adopters do
not overwhelm the local infrastructure.

As the local infrastructure is not agent-based itself, extra effort
is required to maintain it and the triggering may be less flexible
in this regard.

Table 5.2: An IP model for the adoption of goals of a specific type.

88

Part Name Capability to Agent Mapping

Model Name None / Broadcast

Description No idenitification of agents by capability is made. Requests of
cooperation are either directed at known individuals or broad-
cast to all agents in the open system, as dictated by the coordi-
nation mechanisms.

Algorithms No algorithms are required.

Priorities This model prioritises lower use of information storage, less re-
liance on a particular representation of capabilities and less re-
liance on agents registering their capabilities.

Resource Use No resources used.

Support Required The model relies on the communication mechanisms to provide
discovery of an adequate range of agents so that the required
capabilities can be found from among them. The communication
mechanisms must allow broadcast of requests.

Scaling The communication required for broadcast increases as the num-
ber of agents in the system increases.
Applicability Applicable where the number of agents in the system is likely

to remain low, where storage space is low and where capability
registration is difficult.

Problems The amount of communication is high as agents are contacteed
regardless of capability.

Table 5.3: An IP model for mapping capablities required to agents possessing them.

Part Name Capability to Agent Mapping
Model Name Broker Agent
Description Agents pass on requests for goals to be achieved through a broker

agents in this model. Agents register their capabilities with the
broker agent. The broker agent is an identified model for the
coordination infrastructure part.

Algorithms See the IPML description of the Broker Agent model for the
Coordination infrastructure part.
Priorities The model prioritises extensibility through being agent-based,

centralisation of capability mapping and speed by use of a rela-
tively simple mechanism.

Resource Use The broker agent requires all the infrastructure needed in order
for agents to register capabilities and make requests.

Support Required Agents must use a boker agent as a coordination mechanism
using this approach.

Scaling The broker agent may become a bottleneck if the frequency and
size of capability requests becomes large.

Applicability Applicable where service requests are small or infrequent, the

number of capable agents is large and where it is easier for ex-
ternal agents to register their services with an agent than be
discovered.

Problems The broker agent adds complexity to the design and the require-
ment that it be used potentially reduces the design’s match to
the preferences by restricting the choice of coordination mecha-
nisms.

Table 5.4: An IP model for the adoption of goals of a specific type.

89

ﬁnfrastructure Part h ﬁnfrastructure Part h ﬁnfrastructure Part 3\

Description of Models Description of Models Description of Models

Qupporting Analysiy Qupporting Analysiy Qupporting Ana,lysiy

| |

Choice of model
for Infrastructure

Choice of model
for Infrastructure

Part 1 Part 3
T Choice of model T
for Infrastructure
Part 2
Preferences Interactions

Figure 5.5: The procedural structure of preference analysis

90

2. The models should match the preferences derived from the requirements.

3. The models should be compatible with one another, i.e. any interdependencies must

be taken into account.

For example, the set of interactions for an application may include one in which agents
have a goal to confirm the password of a user. In that case, the security model, one of the
infrastructure layers proposed by Sycara et al. [94] as discussed in Chapter 2, must allow
external authorised agents to check the passwords while preventing unauthorised agents

from discovering what they are.

5.6.1 Choosing Between Models

Preferences are the basis on which the designer chooses between two infrastructure part
models. For example, the requirements may state that when a user clicks on a button on
the user interface, the visible response is as fast as possible. By examining the significant
aspects of the competing models, the designer may choose the model that is probably fastest
in most cases. As preferences are derived from the requirements, there is traceability from
the requirements to the design. There are several further issues concerning how one model
is chosen over another.

While IPML deals with comparison in the general case, allowing the methodology
to be used and extended easily, it does not provide structure for the more specific detailed
analysis that may need to be done. Some infrastructure parts may be complex enough to
warrant a supporting analysis process to further examine the suitability of one model over
another. This is true in the case of agent coordination and we will examine the supporting
analysis process for coordination in Chapter 6.

Also, there may be preferences that the designer does not derive from the require-
ments but believes are desired anyway. We refer to these as implicit preferences. An example
for many applications is that the application should be as fast as possible, i.e. rapidity is a
preference for every goal. Implicit preferences are likely to be of lower priority than explic-
itly stated preferences though the designer may be able to discover the actual priorities of

the user through consultation.

91

5.6.2 Application and Agent Infrastructure Parts

One of the main aims of the design phase is to allow the agent interactions specified in
the analysis phase to occur in the application. How this is achieved depends on the type of
infrastructure part. We distinguish application infrastructure parts from agent infrastructure

parts.

Application Infrastructure Parts Some infrastructure parts, e.g. management services,
are implemented over the whole application and independent of individual agents.
They may affect how and whether some interactions occur. Selecting a model for
this type of infrastructure part means ensuring that it allows all application interac-
tions to take place and obeys the preferences of the particular interactions it affects.

Application infrastructure parts support more than one agent’s operation.

Agent Infrastructure Parts Others infrastructure parts, e.g. coordination mechanisms,
are specific to each agent. Selecting a model for an individual agent means analysing
the interaction roles of each interaction (as described in Chapter 3) and selecting
the infrastructure parts by the preferences of the interaction. The preferences of an
interaction are those associated with the goal over which the interaction takes place,
e.g. prioritising accuracy in retrieving weather predictions. The interaction roles will
eventually determine the form of agents within the application and so they should be

tailored to achieving the preferences of each interaction.

In the next chapter, we illustrate the extent of preferences analysis by examining a complex
but essential infrastructure part: agent coordination. This is an agent infrastructure part
as it is potentially different for each agent. Agent coordination is useful as an illustration
for several reasons. First, it is an infrastructure part present in all designs produced in
our methodology due to the use of agent interactions as a primary component of analysis
and design. Furthermore, agent coordination is clearly effected by all the models shown in
Figure 5.5 including allowing interactions to happen, obeying preferences and being effected
by other infrastructure part models. Finally, it is a complex infrastructure part which requires

a supporting analysis process.

92

5.6.3 Application Infrastructure Part Decisions

For most infrastructure parts, the designer can choose a model by comparing the priorities
of the models with the application preferences. For application infrastructure parts, it
should also be ensured that all identified goals can be interacted over and achieved. The
designer needs to check that the resources used by each model (from the IPML Resource Use
property) are available, that the other infrastructure parts required by the model (from the
IPML Support Required property) do not conflict with decisions made on those parts and
that the model will scale well enough for the application (according to the IPML Scaling
property). The full list of IPML descriptions used in our case study is given in Appendix
A.

After choosing a model for each of the application infrastructure parts not requiring
further analysis, the models shown in Table 5.5 have been chosen by the designer. Jus-
tifications are given relating the properties given in the IPML descriptions above to the
application requirements in Chapter 1, wherever a choice of models exists. Different models
may be chosen for the Speed Variation and the Interoperability Variation of the require-
ments (see Chapter 1). The variations are abbreviated to SV and IV, respectively, in Table
5.5 for reasons of space.

The application infrastructure parts are annotated on the modularisation diagram

shown in Figure 5.6.

5.7 Summary

In order to ensure an application has all the necessary supporting infrastructure to operate
the designer must make design decisions regarding how infrastructure parts are instanti-
ated. The instantiations are called infrastructure part models and the choice is justified by
comparison between them with respect to the application preferences.

A standard pattern language, IPML, provides structure for application-neutral (re-
usable), flexible, comparable descriptions of models. Decisions may also be supported by
further analysis to clarify the comparison. Infrastructure parts can either be application-

wide or specific to interaction roles, the latter being illustrated in the next chapter.

93

Part

Model

| Justification

GUI Triggering Designated The GUI triggered goals vary widely in
Local their preferences.
Adopters
GUI Feedback Local GUI
Access
Goal Storage Queue
Actions Local Access
Acting
Goal Representation Predicate
Logic
Plan Representation Tree
Plan Manipulation Tree Position
Actions Form Predicate
Logic
Application Interoperation SV: Uniform | Where interoperation is paramount, trans-
Standard, IV: | lators are necessary, but otherwise the ex-
Translators tra resource requirements means that a
uniform standard is more applicable to ap-
plications with tightly defined functional-
ity.
Communication Stubs
Observation Polling Agents are driven by the need for weather
map data rather than being driven by cur-
rent system state.
Deduction No Additional
Deduction
Agent Communication Lan- | FIPA-ACL Interoperation in the future is important
guage to the opportunism of the application and
using a subset of FIPA-ACL should not be
significantly slower than other models.
Belief Storage Predicate
Logic

Table 5.5: Infrastructure part models chosen for application infrastructure parts.

94

User Command Application

[GUI triggeri ng] [Agent interactiong (GUI feedback]
Local adopters Local GUI Access

i Local Access
i Action
[Goal sorage] [Cooperauonj Acting
Queue
Goal Plan Plan Actions
resentation representation) | manipulation | | form
Predicate Logic Tree TreePosition Predicate
Logic

Capability to agent — :
[mapping] [Coordmatlon] [Adoptlon]

Application (Communicatioa (Obsen/atio@ (Deductior) (As.]mptio@

interoperatior Stubs Polling No
SV: Uniform Standard Additional
IV: Trandlators, Agent Deductiol Belief
communication storage
language
92 Predicate
FIPA-ACL Logic

Figure 5.6: Infrastructure modularisation annotated with application infrastructure part
model decisions.

95

Chapter 6

Coordination Design Decisions

Using Assurance Analysis

In order for an application to be opportunistic, agents attempting to achieve application
goals must be able to cooperate with other agents and resources in the open system. Coop-
eration needs to be controlled in order to ensure the application preferences are met. The
mechanisms by which this cooperation is controlled are called coordination mechanisms.

By using interactions between unspecified agents for specifying the application struc-
ture, agent interaction analysis guides designers in creating application designs that are jus-
tified while allowing them to be opportunistic as well. However, this only permits a design
solution and effectively pushes the problem of how to balance restrictive justification with
the flexibility for opportunism to the level of interacting agents. More is required in order
for a designer to know how this balance will be achieved in principle and in designs.

After briefly describing how choices on coordination fit into the design phase in
Section 6.1, we introduce the theory of flexibility bias to allow agents to balance justified
restriction with opportunistic flexibility in Section 6.2. We then illustrate how to define
coordination mechanisms in TPML (Section 6.3) and how to decide between them with

supporting analysis (Section 6.4). A summary of coordination design is given in Section 6.5.

96

6.1 Centralised, Distributed and Organised Coordina-
tion

In Chapter 2 we discussed how coordination can be centralised, distributed and organised.
Organised coordination imposes a structure onto the use of distributed coordination mech-
anisms. Having distributed coordination does not require that the method by which agents
discover each other is also distributed (we consider the problem of discovery to be one al-
ready solved to some extent by broker agents and non agent-based middleware, and do not
consider it further here).

Following on from the work in Chapter 5, we consider coordination mechanisms to
be infrastructure part models described in IPML. This chapter contains several example
coordination mechanisms. An interesting piece of work for comparison is by Hayden et al.
in which system-wide (i.e. centralised) coordination mechanisms are described in their own
pattern language [51]. As this work is not presented in the context of a wider methodology,
their language cannot be said to be tailored to matching preferences (or non-functional
goals) and decisions on use are left entirely to the designer.

In the context of interactions, the originator of a goal is the one that initiates inter-
action (as described in Chapter 4) and so determines the (initial) coordination mechanism to
be used. Coordination mechanisms, such as those described in Chapter 2, vary widely and
are not readily comparable. To aid this, the coordination infrastructure part has supporting
analysis procedures. For ease of understanding, we separate the analysis of coordination
by agents over individual goals from the organisation of the multi-agent system as a whole.
The former supporting analysis process is called assurance analysis, while the latter is called
collation and we describe them in Sections 6.4 and Chapter 7 respectively. However, before
analysing coordination mechanisms and models, a designer must understand the aims which

dictate whether one coordination mechanism is better than another.

6.2 Opportunism, Justification and Coordination

Coordination mechanisms are as much part of the application as any other piece of function-
ality, and therefore have their own costs and benefits. A justified coordination mechanism

is one that will match the preferences of the goal it is coordinating over. The agent uses

97

the coordination mechanism to decide which agents to cooperate with and then carries out
the necessary process to coordinate and achieve the goal. The decision will be based on the
preferences of the goal, but the coordination mechanism itself must match the preferences.
For example, if a user of our case study application requests speed view (fast prediction on
the weather map) then they wish speed to be prioritised. For the process to be fast, both
the coordination and prediction should be as fast as possible.

Opportunism in the application depends on agents that are attempting to achieve
application goals being able to cooperate with others that exist and were created by other
developers or may exist in the future. An opportunistic coordination mechanism is one that
does not restrict the set of agents with which to communicate at design time.

We can view the balance between application restrictions for justification and flexi-
bility required for opportunism in terms of the bias of a methodology. An implementation
biased methodology is one which has a strong emphasis on quickly reaching something im-
plementable, achieving this by reducing the allowed designs at each stage of the methodology
[102]. In agent interaction analysis the information provided by the methodology guides the
design towards being justified and opportunistic. When we consider coordination, however,
these two properties are opposed to each other. If we consider the organisational forms
where justification or opportunism bias the methodology to the exclusion of the other, the

problems are evident.

Justification Bias To achieve the greatest justification in a design, there must be no
chance that an agent playing an interaction role will match the preferences less well
than if a single reliable agent designated by the desginer always played that interaction
role. As, in practice, the coordination between agents provided by the designer and
new, unknown agents will involve costly procedures and risks, opportunism cannot be
allowed to take place for any goal. Therefore, a justification biased design is effectively

a closed system.

Opportunism Bias To achieve greatest opportunism any agent should be able to play
any interaction role. In this case, however, no part of the application will be tailored

towards matching the preferences, and so the design cannot be justified.

While a designer may desire either of the above biases for a particular application,

we assume that, for any application intended to take advantage of an open system and

98

containing priorities among the requirements, the above forms are not appropriate. We
suggest an alternative bias, called flexibility bias that assumes opportunistic behaviour will
be positive on average but also that preferences should be matched on average.

It is based on the observation that, for quantitative priorities, such as speed, ac-
curacy, amount of interoperation, storage space used etc., the aim is for the application’s
expected match of those preferences to be as high as possible. Therefore, we wish that the
agents most likely to achieve goals with a better match of the preferences are those most
likely to take on the corresponding interaction roles. In terms of design, a flexibility biased

approach will ensure the following is true of a design.

e Goals are always achievable by the application (except where system failures make it

impossible);
e There are agents that are tailored to particular goals;

e The agents tailored to a goal are more likely interact over those goals than other

agents, but may not do so exclusively.

Ensuring that goals are always achievable where possible is realised by providing agents with
the capabilities to achieve goals and offer to do so where required. The tailoring of agents
to particular goals depends on the agents having some power to appropriately influence
coordination with others. Appropriate influence, in this sense, means actions which ensure
that the preferences are satisfied, and is caused by the coordination mechanisms the agents
use. Ensuring that agents tailored to a goal are most likely to be chosen to interact over that
goal, is a choice of the agent originally possessing the goal, and so is also a coordination issue.
Comparing, analysing and selecting coordination mechanisms is discussed in the following

sections.

6.3 Defining Coordination Mechanisms

Opportunism requires cooperation. Flexibility bias requires, amongst other things, cooper-
ation to be controlled in such a way that preferences are matched both in the process and
outcome of cooperation. Such control is achieved by coordination mechanisms. As they aid

the agents’ operation in achieving application goals, coordination mechanisms are infras-

99

tructure parts. As for any infrastructure part, the first step is to define available (known)

models in a suitable form for comparison. We explore alternatives below.

6.3.1 Definitions of Coordination Mechanisms

Dynamic systems pose a particular problem for agent coordination as there will be no
information at design time on some of the agents that will be coordinating during the
application’s execution. This means that the designer cannot tailor the design to take
advantage of the superior capabilities of some agents and protect the application from the
inferiority of others. The system must adapt at run-time.

In the literature review, we discussed work in which the designer selects the coordi-
nation mechanisms to be used by agents [31, 65, 91] and others in which the agent chooses
between mechanisms at run-time depending on context [1, 5, 32, 33]. Using IPML to allow
the designer to choose between mechanisms, we take the former approach. As, on first
glance, the latter model seems more flexible, it is necessary to justify our position.

While agents can be given the ability to dynamically select a coordination mech-
anism at run-time, it should be noted that this is, in itself, a coordination mechanism.
Such mechanisms are more complex and use computational resources more heavily than the
coordination mechanisms they choose between, due to the fact that they include those co-
ordination mechanisms as well as a further mechanism for selection. Their complexity adds
flexibility and reliability to the single agent possessing the mechanism at the expense of the
system as a whole. For this reason, we suggest this capability is more suited to agents which
are designed alone, rather than as part of a multi-agent organisation. Therefore, as we are
targetting the methodology at multi-agent system applications, while the dynamic selection
mechanism is a valid model, the choice should be left to the designer in our methodology.
Dynamic selection mechanisms are allowed rather than required.

Also, in the work described in the literature review, mechanisms were described
either solely by their eventual effects [1, 33] or as procedures for their operation [5, 32, 65].
Our approach should be able to express the coordination models of both, but in a common
form. An eventual effect form, i.e. a form in which a mechanism is described only by its end
state or effect, is often specified as a tuple of values each of which describes some aspect of the
mechanism’s effect, e.g. duration required to operate or quantified benefit from operation.

The procedural form is often specified as an algorithm for use or as changes in the state of

100

the coordinating agents. In our methodology, as part of the IPML, we specify mechanisms
in a procedural form. The mechanisms are defined in the form of algorithms for use. We
use a procedural rather than eventual effect description because agents are loosely coupled
so coordination requires inter-agent processes. An eventual effect definition of coordination
excludes all steps between start and completion and so excludes the interactions. Eventual
effect definitions are not suitable for the design phase as they do not give enough details for
implementation.

A possible useful supplementary technique for a designer wishing to create novel
coordination and communication mechanisms to fit an application is given by Guerin and
Pitt [49]. In this model, preferences (or equivalent non-functional application properties)
are used to design a formally specified interaction protocol, which can then be implemented
as an agent communication language suited to that particular type of interaction. In their
work, this is particularly applied to interactions in which one party needs to cope with the

deception or unreliability of another.

6.3.2 Describing Coordination Mechanisms in IPML

Coordination mechanisms, such as commitment machines and broker agents, mentioned
in Chapter 2, are infrastructure part models for the coordination infrastructure part. We
illustrate how IPML is used to describe coordination mechanisms by an example.

In Chapter 2, we looked at the work of Klusch and Sycara on classifying broker
agents [65]. This included their own schema describing broker agent models by four criteria:
pattern of interaction, signatures, states and transitions. We remarked that it was not made
clear how these were to be related to the application requirements. On the other hand, the
IPML properties directly associate the model (coordination mechanism) description with
their criteria for selection. The criteria are preferences and interactions from analysis of
the requirements and other infrastructure part models from the application design. IPML
example descriptions for six distinct mechanisms are given in Tables 6.1 to 6.6. To ease

explanation of their comparison these mechanisms are summarised below.

Commitments A fast, simple mechanism where a request is made for collaborators to
commit to a goal and the first one(s) to reply are chosen. See [56] for more on

commitments.

101

Trust A mechanism whereby agents offering to cooperate are assessed on the previous qual-
ity of solutions (best match of preferences) they have produced and the most trust-
worthy, i.e. the one that has the best match so far, chosen. See the IPML description
in Table 6.3 and also [19, 35, 46, 48, 73] for more on trust-based coordination.

Broker Agent An agent-based mechanism where a broker agent (facilitator) records reg-
istrations of agents offering to attempt a goal. The broker can then be asked to supply
cooperator references for the originator to coordinate with. See [65] for more on broker

agents.

Forced Cooperation Object-oriented style cooperation where an agent is known to always

accept requests for cooperation on command. See [22] for more on object collaboration.

Intention A mechanism whereby the originator does not cooperate but achieves the goal

itself. See [42] for more on intentions.

Negotiation A mechanism allowing a group of agents to send a series of exchanges until
they have agreed on assigning particular values to objects or tasks which enables the

goal to then be best achieved. See [8, 55] for more on negotiation.

6.4 Assurance Analysis

Coordination is potentially a complex process, and the many mechanisms suggested are very
varied. This can make it harder to select appropriate mechanisms to use in an application.
One cause of the complexity is that coordination mechanisms involve several parts or stages
each of which may or may not satisfy particular preferences.

For example, in an application using the matchmaker broker agent described in
Table 6.4, the requesting agents need to store only a reference to a matchmaker to discover
providers of services they will need, rather than holding references to providers themselves.
Therefore, it appears that the data stored in the system will be reduced as replication of
service provider references among agents is reduced. However, the data that a matchmaker
must hold on each service provided may have to be extensive in order to correctly match
the service to a request. As there may also be several providers for each service at any one

time, the storage requirements may be larger than alternative coordination mechanisms.

102

Part Name Coordination

Model Name Forced Cooperation

Description In this model, certain agents are required to cooperate over a
goal on demand and are known to the agent employing this
mechanism. The mechanism is approximately the same as mes-
sage passing in (concurrent) objects.

Algorithms To request cooperation from a forced agent, there is only one
step. 1. Demand cooperation over the goal

Priorities The model prioritises speed, reliability that the cooperators will

Resource Use

Support Required

Scaling

Applicability

Problems

be capable (through explicit design) and security in knowing the
cooperator is pre-determined to be trustworthy.

Local information regarding the forced cooperation in agents is
required by the agent employing this mechanism.

The model requires mandatory adoption of goals in some agents
providing the capability for this goal.

Scales easily as it requires no communication beyond the min-
imum demand for cooperation, but does require suitable func-
tionality to continue to be available within the application over
time.

This model is most applicable where security or reliability are
of much greater importance than opportunism and where it
is known that the forced functionality will always be available
within the application.

Forced cooperation allows no flexibility in choosing cooperators
so provides for no opportunism in exploiting the open system.

Table 6.1: An IP model for a coordination mechanism.

103

Part Name

Coordination

Model Name

Commitments

Description

Algorithms

Priorities

Resource Use
Support Required

Scaling

Applicability

Problems

Agents using this coordination mechanism send requests for goal
achievement and request offers, accepting the first offer that is
received in reply that is acceptable by their adoption mechanism.
An agent offering to achieve the goal and subsequently being
accepted is committing is committing themselves to the goal’s
achievement.

1. Send out requests to viable agents (see Capability to Agent
infrastructure part); 2. Wait for offers; 3. Pass all offers to the
adoption mechanism to consider; 4. Send acceptance of first
viable offer.

The model minimises processing and so is fast but still able to
take opportunity of all services in the system.

The model requires communication of requests and acceptances.
The agent communication language needs to be able to express
requests, offers and acceptances in a standard way.

As the mechanism does not require a large amount of resources
or any degree of centralisation, it should scale well in most cases.
The model is applicable where ensuring the speed of coordina-
tion is of greater importance than the quality or reliability of
solutions. It is also useful where the application needs to avoid
centralisation.

As the commitment offers are not assessed to determine their
suitability, the agent using the mechanism has no guarantee of
achieving the highest quality solution, where this is a concern.

Table 6.2: An IP model for a coordination mechanism.

104

Part Name

Coordination

Model Name

Trust

Description

Algorithms

Priorities

Resource Use

Support Required

Scaling

Applicability

Problems

The agent using this mechanism checks the quality of any solu-
tion provided by an agent and uses these assessments to decide
which offers to accept in the future. The checks can be either by
observation of the state achieved, if the goal attempts to achieve
a particular observable state, or by an independent production
of the same information, if the goal attempts to derive some
information.

1. Send requests to agents; 2. Wait for a suitable duration to
receive offers; 3. If no offers received, resend requests; 4. If some
(one or more) offers are received, assess them to determine which
comes from the most trustworthy agent; 5. Accept the offer from
the most trustworthy agent.

A trust-based mechanism prioritises quality of solution and re-
liability in obtaining a solution.

The agent using the mechanism will need to possess quantitative
assessments of the trustworthiness of other agents, which rise
and fall depending on observed quality of solution. The agent
will make observations or request extra information for each
goal.

As the agent using the trust mechanism algorithm must wait a
specified duration, it requires a scheduling mechanism capable
of this.

With a large number of possible collaborators for a goal, the
number of models possessed by the agent will also be large. The
observational checks will add to the time taken to process each
goal by the agent.

Where the quality of the goal is able to be checked in some way
and is of more importance than speed or the low use of resources.
A trust-based mechanism may add a significant amount of pro-
cessing to each goal the agent seeks cooperators for.

Table 6.3: An IP model for a coordination mechanism.

105

Part Name

Coordination

Model Name

Matchmaker Broker Agent

Description

Algorithms

Priorities

Resource Use

Support Required

Scaling

Applicability

Problems

A matchmaker agent is a brokering solution in which request-
ing agents are given contact information of the providers. The
matchmaker maintains a database of the services agents can
perform (goals they can achieve) but uses this solely to iden-
tify a suitable provider for each requester. Requesters and
providers then communicate without any further intervention
by the matchmaker, which allows for greater flexibility.

The algorithm for an agent registering a provided service with
the matchmaker requires only one step: 1. Communicate service
provision to matchmaker. An agent using a matchmaker to find
a service must also get a commitment from the provider as the
matchmaker agent does not do this. 1. Request communica-
tion channel to provider of service from matchmaker; 2. Receive
provider channel from matchmaker; 3. Communicate goal com-
mitment from provider; 4. Receive commitment to achieve goal.
The model allows agents to find service providers, gives flexibil-
ity in communication between provider and requester and has a
relatively simple implementation.

The mechanism requires a data store recording the services that
each agent provides.

The agent communication language used must support register-
ing and requesting services. Agents also need a reference to a
matchmaker or to be able to get one.

Little communication is needed for making a request and, by
transferring communication responsibility to the requester, the
matchmaker has no further work after matching requester with
provider. However, the recorded services and the search of the
data increases as the number of agents registering services in-
creases. If the adverts for services are to be large in size then
the database will quickly expand.

The mechanism is applicable where agents will and can easily
register services to brokers accessible by those others that will
need the services. The model allows an agent-based model for
the Capability to Agent Mapping part providing flexibility and
extensibility. It is also applicable where communication between
requester and provider must be flexible, complex or private.
The data store may become large with many agents or services.
Agent identities must be revealed in order to provide services, so
privacy and looseness of coupling are reduced. A requester must
ask both the matchmaker and the provider for a single goal.

Table 6.4: An IP model for a coordination mechanism.

106

Part Name Coordination

Model Name Intentions

Description When an agent needs to find a suitable other to cooperate with
over a goal, it may be that it would be best for the agent to
attempt the goal itself. This mechanism causes the agent to
always choose this option for a goal.

Algorithms On becoming originator for a goal, the agent adopts the goal
itself.

Priorities The mechanism prioritises speed in decision making and relia-

Resource Use
Support Required
Scaling

Applicability

Problems

bility in cooperation over flexibility and opportunism in using
external capabilities that may provide a higher quality service.
No resources are required in addition to those necessary to
achieve the goal.

The adoption mechanism must allow several goals to be adopted
benevolently as there are no other agents to take them on.

If the number of goals becomes large, the agent could become
overloaded as it must adopt them all itself.

The model is applicable where security, speed and reliability are
of so much importance that the goal should be achieved by the
same agent requiring assurance that it will be done.

The mechanism does not take opportunity of the potentially
higher quality services available in the system.

Table 6.5: An IP model for a coordination mechanism.

Part Name

Coordination

Model Name

Negotiation

Description

Algorithms

Priorities
Resource Use

Support Required

Scaling

Applicability

Problems

Broadly, we use negotiation to mean repeated communication
between agents over one or more values ending in an agreement
to action by the agents.

The value(s) negotiated over represents the quality of the goal
solution and its meaning will, therefore, depend on the prefer-
ences. For this reason, we cannot provide a generic negotitation
mechanism. In general terms, each communication will be a re-
quest for suggestions, a suggested allocation of values between
agents or an acceptance.

The model prioritises reaching a high quality solution through
communication.

Agents engaging in negotiation must have a means of judging
the next step of a negotiation given the current position.

The agent communication language must be sophisticated
enough to allow the expression of values being attached to do-
main concepts in order for those values to then be negotiated
over.

Negotiations need not involve many agents but can involve many
communications between agents. Therefore, negotiation may
not be suitable where this is a lot of communication occurring
in the system for too little benefit.

Negotiation is primarily applicable where there is something of
value to be exchanged or distributed.

Negotiation can involve much complexity to work well.

Table 6.6: An IP model for a coordination mechanism.

107

The storage difficulties may increase if the matchmaker agent is stored on a single node of
a network, whereas alternative coordination mechanisms may involve the service provision
information being spread amongst the agents all over the network. We can see that one
mechanism may be more suitable than another, depending on the priorities of an application.
Also, to discover its suitability, it may be useful to analyse different stages in a mechanism’s
use, e.g. division into service registration, service discovery etc. in the case of a broker agent.

Another cause of difficulty in selecting coordination mechanisms is that they are
often described in various different terms in the literature to reflect different priorities in
coordination. In an attempt to compare the mechanisms, and solve the problem of the
properties of each part of a mechanism being different, we introduce an supporting analysis
process for coordination. As mentioned in Chapter 5, supporting analysis can be provided
for complex infrastructure parts to aid model comparison. The supporting analysis process

for the coordination infrastructure part is called assurance analysis.

6.4.1 Assurance and the Single Agent Perspective

To provide the balance suggested by flexibility bias, we wish to allow the designer to tailor
interaction roles to application goals. Therefore, a designer will analyse coordination issues
from the perspective of individual agents (those taking on interaction roles). This is analysis
from the single agent perspective. Analysing how to coordinate agent actions from the single
agent perspective requires an assessment of what information the agent may have about the
coordination process. Consider an agent A that possesses a goal and cooperates with agents
B and C to achieve it (A is then the originator for the goal in this interaction as described
in Chapter 4). The ideal behaviour of B and C, from A’s perspective, is for them to work
towards and eventually achieve the goal while prioritising the preferences associated with
the goal. B or C may be used by different application and aim to match different preferences,
or may be unreliable and so never achieve the goal. Then again, an agent unknown to the
designer at design time may provide a better service and better match the preferences than
known agents. Other techniques exist that examine the utility of different coordination
between an already known set of agents [10].

We require a concept that expresses the priorities of an originator agent in coordi-
nating over a goal, in order to allow comparison of coordination mechanisms for a single

interaction role. Following the convention of describing the pieces of information possessed

108

by an agent as beliefs [43, 42], we describe this information as an assurance belief defined

as follows.

Assurance Belief The certainty of an agent that a goal it possesses will be achieved in

accordance with its priorities.

We refer to the agents’ ‘priorities’ in the definition above rather than application preferences
because the assessment is from the single agent perspective. As described in the section on
flexibility bias, the designer should be guided to tailor agents to the application so that agent
priorities match application preferences. The information that an assurance belief contains
is considered to be possessed by an agent, in the design process, but may be implicit in
its use of a coordination mechanism rather than explicitly represented at run time. An
originator’s priorities should be the preferences associated with the goal so that the designer
can ensure that an agent maximising its assurance belief that its goal will be achieved will
also be satisfying the application preferences. The certainty contained in an assurance belief
may not be stated as a numerical probability in design, as the actual probability will vary
between interactions over a goal. Instead it is an unknown value that can be raised or
lowered through the use of different coordination mechanisms.

Assurance is similar to the concept of trust, particular associated in agents research
with the work of Marsh [73]. Trust, in its broadest sense, is information possessed by one
agent regarding the reliability of other agents in providing services. As with assurance, trust
can be used to make coordination decisions, such as which other agent to cooperate with.
Assurance is more general because it represents several priorities rather than simple relia-
bility. It is more useful for justification because the priorities are derived from application

requirements, which is essential for a justified design.

6.4.2 The Process of Coordination

The aim of assurance analysis, as with all supporting analysis processes for complex infras-
tructure parts, is to make comparison between models easier. This analysis is not qualiti-
tatively different from other software engineering analysis processes and so, we have drawn
on the principles described in Chapter 2. In particular, comparison is aided by separation
of concerns and abstraction, i.e. dividing coordination into more manageable pieces and

abstracting from coordination mechanisms to find the processes common to all.

109

We achieve this by looking at the broad process of coordination, from a single agent

perspective, and dividing it into generally applicable steps.

1. In order for an agent to coordinate with another, it must know how to communicate
with, or at least observe, the other agent otherwise it cannot adjust its actions or those
of the other agent. Therefore, it must have access to data regarding how to contact
the agent. In addition, an agent may use other data regarding a potential cooperator
in order to control coordination, such as its reliability. We call this collective data on

an agent: an agent model (following the terminology of other research such as [47]).

2. To create an agent model, the modelling agent must acquire information on the mod-

elled agent or the information must be built in by the designer.

3. The information acquired will affect (be used to maintain the correctness of) the agent

models.

4. In order for there to be coordination, there must be action, otherwise there is nothing

being coordinated over.

5. In cooperating over a goal, the agent aims to act so as to bring about the goal’s
achievement through the actions of the coordinating agents. Therefore, an action
caused by a coordination mechanism will be based on predictions about the actions of
the other agents in the coordination. A mechanism could only derive these predictions

from the agent’s knowledge of the agents, the agent models.

6. The aim of cooperation is to achieve the goal being cooperated over. The way in which
the goal is achieved may also be important to the agent (i.e. the agent aims to match
its priorities). The actions produced by a coordination mechanism will, therefore, aim
to increase the probability of the goal being achieved by an appropriate method. We
call this probability assurance. As the assurance concerning a goal is based purely
on the agent’s beliefs, it can also be modelled as a belief (an assurance belief), even

though it may not be represented explicitly by an agent as such.

We use the modularised process of coordination above to enhance comparability of

coordination mechanisms in the way described below.

110

6.4.3 Belief Acquisition

Step 2 of the process of coordination stated that agents acquire information to construct
agent models. Belief acquisition is the primary method by which the agent acquires the
information it needs to use a coordination mechanism. We identify four qualitatively dif-
ferent methods of belief acquisition for autonomous, social agents. These represent the two

channels of input into an agent and then two internal operations of an agent.

Communication An agent may acquire information by other agents communicating that

information.

Observation An agent may have access to the state of the open system resources, the

application data and changes that occur to it.

Assumption Agents and coordination mechanisms may be built with assumptions on other

agents in the system and on the application environment.

Deduction Some mechanisms may be based on the transformation of beliefs acquired pre-

viously by other means into new beliefs.

6.4.4 Generalised, Single Agent Preferences

The application preferences as given in the requirements need to be translated into single
agent perspective priorities and preferably generalised from the particular application or
goal to allow re-use of the assurance analysis. The following are translations of the case

study preferences derived in Chapter 4. The new translations are shown in italics.
Edit Effect requires reliability of each (Contributed) goal being completed successfully.

Validate Edit requires access to access rights for the cooperating agents and also security

in the acquisition of the rights.

Validate View requires access to access rights for the cooperating agents and also security

in the acquisition of the rights.

Validate Access requires access to access rights for the cooperating agents and also secu-

rity in the acquisition of the rights.

Rapid Data requires speed in obtaining results.

111

Accurate Data requires high quality of results (accuracy of predictions).
Fast Access requires high quality of results (fast access through suitable distribution).
Opportunism requires high flexibility in the choices of agent cooperators.

Time Out requires nothing in terms of coordination as it is monitored by the agent pos-

sessing the goal.
Speed Variance requires speed in obtaining results.

Flexibility Variance requires high flexibility in the choices of agents.

The translated priorities identified (reliability, access to access rights, security, speed, quality
and flexibility) are all preferences but expressed in a form more suitable for comparison
with application-independent coordination mechanism models, as they are more application-
independent themselves. The final two preferences in the list are those application-wide

preferences derived from the variations on the case study requirements given in Chapter 1.

6.4.5 The Generalised Assurance Mechanism

Assurance analysis can be described as the analysis of coordination mechanisms to highlight
to what degree each fulfils application preferences. The analysis allows for a more accurate
comparison because the mechanisms’ use is examined in more detail than the informal IPML
description allows. When analysing a single interaction, we propose using the generalised
assurance mechanism (GAM) as a guideline for decomposing mechanisms into relevant parts
for detailed analysis.

The GAM is an abstract structure used to represent the process of coordination
from the viewpoint of a single agent. The structure of the GAM is shown in Figure 6.1.
It can be considered as a procedural representation of how an agent uses a coordination
mechanism to make decisions regarding coordination. In the GAM, we use the term belief
to refer to an element of information possessed by an agent. There are three types of
belief shown in the diagram. Agent models are collections of information that the agent
using the mechanism has about other agents. A model of an agent is used to make more
accurate predictions about that agent and may vary in complexity from simple recording of

communications from that agent to more detailed observations of and deductions from the

112

1

| ¥
f AGENT MODELS

PREDICTIONS
MODEL FROM
MAINTENANCE MODELS

ASSURANCE BELIEFS

¥

COMPARISON OF

OPTIONS
«— OPTIONS

BELIEFS

COORDINATED
ACTIVITY

BELIEF ACQUISITION

Figure 6.1: Generalised Assurance Mechanism

agent’s behaviour. Assurance beliefs, as described above, are predictions on the certainty
that a goal will be achieved in accordance with the agent’s priorities. Other beliefs are not
explicitly identified but could be information about available system resources or security
protocols, for example.

After acquiring beliefs, the GAM updates the agent models based on the new in-
formation. This process is called model maintenance. From these models, the agent using
the mechanism can assess the other agents coordinating over a goal and make assessments
on the likelihood that the goal will be achieved, described as assurance beliefs. The agent
using the mechanism can use the assurance beliefs to decide which agents to cooperate with,
how to continue the cooperation or in any other way act in order to maximise the assurance
belief certainty.

It can be seen that elements of the GAM as shown in Figure 6.1 match the steps
of the process of coordination in the following corresponding order: agent models, belief
acquisition, model maintenance, coordinated activity, predictions from models, assurance

beliefs. The arrows show the flow of information between parts of the process.

6.4.6 Applying the GAM

In this section, we give an example of applying the GAM to analysing the interaction role of

an interaction’s originator. This means analysing how well coordination mechanisms match

113

BELIEF Com| Tru| Bro| For| Int| Neg
ACQUISITION [g ¢ c c

o A | D
Acc| y y y yly y
BELIERS Sec|n(A) y [nA) y |y |na)
l Rel |nB)] vy [nB) y |y [nB)
MODEL Acc =
MAINTENANCE g Y z)n/ i nf/ ?\
MODELS] ﬂ
PREDICTIONS
FROM Acc| y y |y y| | njy

MODELs [S¢|n | y|nlylyln
SSURANCE | Rl | n

BELIEFS

COMPARISON [Acc
OF OPTIONS

Sec| n y| n ylyln
COORDINATED |[Ret|n | y | n |y |nD) n
ACTIVITY

Coordination Mechanisms Key Acq: Belief acquisition method
Com: Commitments

Tru: Trust _PreferencesKey

Bro: Broker Agent Acc: Access to access rights prioritised
For: Forced Cooperation Sec: Security prioritised

Int: Intentions Rel: Reliability prioritised

Neg: Negotiation

Figure 6.2: Assurance analysis of Contributed goal

the preferences of a goal from the perspective of the agent wishing to find cooperators to
help achieve that goal.

The GAM abstraction is used to decompose the process of coordination to give the
designer a more detailed assessment of the suitability of different coordination mechanisms.
Figure 6.2 shows how this analysis is modelled for the originator of interactions over the
case study’s Contributed goal (which aims to add a user contribution to the weather map).

On the left hand side of Figure 6.2, the GAM is shown in rearranged form to show
the main flow of activity from top to bottom. On the right hand side are tables giving
assessments of coordination mechanisms at each procedural stage of the GAM. The top
table compares coordination mechanisms at the ‘belief acquisition’ stage, the second table
describes the ‘model maintenance’ stage, the third concerns the ‘predictions from models’
stage and the lowest shows the analysis at the ‘coordinated activity’ stage. Each table
column is the assessment for a single coordination mechanism. The values in the table cells

answer a question of the form
“Does coordination mechanism X allow preference P to be matched in stage S?”

the answer being yes or no (‘y’ or ‘n’ in the tables).

114

The preference and coordination mechanism names are abbreviated to fit into the
table, with expansions shown under the table. The preferences included are those associated
with the Contributed goal (though they are translated in the manner described in the
previous section). The top row of the top table refers to the primary method of belief
acquisition used for each coordination mechanism (C for communication, O for observation,
A for assumption, D for deduction).

An analysis of informally described coordination mechanisms with regard to gen-
eralised preferences depends very much on the designer’s informed opinion. To justify un-
obvious judgements in the analysis, some table entries are annotated with references to a
table of explanations. For example, the broker agent mechanism (Bro) is judged not to
allow security (Sec) to be prioritised at the belief acquisition stage and the entry is ‘n (A)’.
Explanations, including A, are given in Table 6.7. We will also explain the entries in further
below.

There are useful patterns to notice in order to speed up assurance analysis. As the
emphasis is on mechanisms allowing preferences to be matched, explanations will generally
only be given when they are judged to not allow such matching, i.e. when the table entry
is ‘n’ for ‘no’. Also, if a coordination is judged unsuitable for matching a preference at an
early stage (higher table) then it will be unsuitable at all later stages, i.e. a ‘no’ entry in
one table implies a ‘no’ entry in the corresponding cell of all lower tables. This is because
each stage of the coordination process depends on earlier ones. For example, if an agent
model cannot be maintained in a way that matches a preference, then any attempt to make
predictions from that model will also imply the preference is not matched.

To clarify the entries in Figure 6.2, we provide the reasoning for each coordination
mechanism (column) in turn below. We refer to other assurance analyses shown in Figure
6.3 for the originator of the Speed Viewed goal, Figure 6.4 for the originator of the Accuracy
Viewed goal and Figure 6.5 for the originator of the Set Access goal. The explanatory notes

are given in Table 6.7.

Commitments

In the analysis, the designer has judged that there is nothing inherent in the commitments
mechanism that prevents access to access rights. If an agent commits to achieving the goal

in cooperation with the originator, then it is assumed that it, or an agent it delegates to, has

115

access to access rights else the commitment would not be made. Therefore all Acc entries
are ‘yes’.

However, the mechanism prioritises neither security nor reliability in an open system
through its use of communication to acquire commitment information. The possibility
passing goals to a third agent in an open system is inherently less secure than achieving it
itself (for example), as information could be submitted anywhere in the open system. Also,
reliability is reduced as open system agents can lie about or misjudge their commitments.

Therefore, Sec and Rel entries from belief acquisition onwards are ‘no’ for this mechanism.

Trust

The trust-based mechanism overcomes the reliability problems of commitments alone by
monitoring the performance of cooperators and only choosing the most reliable. Security is
also enhanced by monitoring whether information is passed on to untrustworthy (insecure)
third agents. Both forms of monitoring rely on building up models assessing how well agents

match the application preferences. All entries for this mechanism are ‘yes’ in this analysis.

Broker Agent

Using a broker agent is, in this case, similar to getting a commitment directly from a service
provider. Again, access to accesse rights is adequate but security and reliability could be

compromised. The entries are the same as for commitments.

Forced Cooperation

Using a forced cooperation mechanism, the designer provides and assigns a single agent to
always take on the goal when it appears in the system. The particular preferences analysed in
Figure 6.2 all require some amount of reliability in operation, for which a forced cooperation
mechanism is intrinsically suitable. As both the agent forced to cooperate and the access
rights to the weather map are provided by the designer, there is no problem in ensuring
access. The activity of the agent can also be made secure and reliable (even if not as high
quality in other ways to other agents in the open system). Therefore, all entries are ‘yes’

for this mechanism in this analysis.

116

Intentions

Using the intention mechanism, the originator agent performs the actions necessary to
achieve the goal itself. As with forced cooperation, this can be secure. However, there
is a problem at the stage where the agent builds up information on the user attempting
the goal as the agent playing this interaction role may not have access to the access rights
itself. Similarly, at the stage of acting on the goal, the agent may not have access to the
resources to achieve the goal itself. These ‘no’ entries can be seen in the model maintenance

and coordinated activity stages.

Negotiation

While negotiation could help improve some qualities of a solution, the security and reliability
problems of communication-based coordination exist for negotiated agreement as much as

for commitments, so the entries are the same.

Further Notes

To get a further feel for how this analysis can help evaluate mechanisms for comparison,
look at Figures 6.3, 6.4 and 6.5. It can be seen, for example, that trust-based mechanisms
are poor where speed is a priority as maintaining trust information in agent models may
take substantial time. Also, while being slower, negotiation prioritises quality of solution
more than simple commitments. The rest of the case study’s assurance analysis is provided

in Appendix A.

6.4.7 Coordination Mechanism Decisions

The choices for coordination mechanism are informed by the assurance analyses. In general,
the mechanism chosen for a goal is one of those most likely to allow the goal’s preferences to
be followed, i.e. the one with the most ‘y’s at the end of the analysis. For example, the case
study application designer may decide that a trust-based or forced cooperation mechanism
would be most suitable for agents originating cooperation on the Contributed goal based on

the analysis in Figure 6.2.

117

BELIEF Com| Tru| Bro| For| Int| Neg
ACQUISITION acglclo | c AlD|cC
Accly |y |y lylyly
Sec
BELIEFS nly niylyn
Fix | y y y nin y
Sd|y | y |y [ylyly
MODEL Acc
MAINTENANCE o ﬁ i ﬁ 5 '; z
AGENT 4? Fxly |y ly|lnlnly
MODELS| W spd| y n y y y n
PREDICTIONS
Acc n
FROM y ylyly y
MODELS Scin| y|ln|yly|n
ESSURANCE | Fix | y vyl y nlnly
BELIEFS sod| v n n y y "
COMPARISON [Acc
OF OPTIONS Sy Y ny
Sec| n yln ylyln
COORDINATED [FX |y | y | n|n|n|y
ACTIVITY [spdly [nly [y|y]|n
Coordination Mechanisms Key Acg; Belief acquisition method
Com: Commitments
Tru: Trust _PreferencesKey
Bro: Broker Agent Acc: Access to access rights prioritised (E)
For: Forced Cooperation Sec: Security prioritised (E)
Int: Intentions Flx: Flexibility in cooperation choice prioritised (J)
Neg: Negotiation Spd: Speed of application prioritised (J)

Figure 6.3: Assurance analysis of Speed Viewed goal.

BELIEF Com| Tru| Bro| For| Int| Neg
ACQUISITION Acgl C | O c A c
Accly | y Ly | yly |y
Sec| n y n y n
BELIEFS
Fix |y |y |y [nBnF)| vy
QiIly |y |y [nK)y]|y
MODEL Acc .
MAINTENANCE | g Bn’ z ‘n’ z ; z
B Ehnnn
MODELS Qui[nlL)y y [n(M)| n [n(N)] y
PREDICTIONS
Al
FROM cC|y y |y y|nipy
MODELS [/ n | ylnlylyl|n
SSURANCE | Fxly | yly | nln|y
BELIEFS Q| n v 0 lnlnly
COMPARISON [Acc N
OF OPTIONS S e Y
Sc|n | y|n|y|ly|n
COORDINATED [FIx |y | yln|ininly
ACTIVITY Qul | n y|l n n|nj|y
Coordination Mechanisms Key Acq: Belief acquisition method
Com: Commitments
Tru: Trust _PreferencesKey
Bro: Broker Agent Acc: Access to access rights prioritised (E)
For: Forced Cooperation Sec: Security prioritised (E)
Int: Intentions Fix: Flexibility in cooperation choice prioritised (J)
Neg: Negotiation Qul: Quality of results prioritised

Figure 6.4: Assurance analysis of Accuracy Viewed goal.

118

Code

Note

A Security in communication-based coordination is worse than for observation, assump-
tion or deduction as there is another stage (the communicating agent) that has to
pass through, beyond the security provided by the infrastructure.

B Communication-based mechanisms rely on accurate information in messages passed to
them, which leaves an agent using the mechanism unable to reliably achieve the goal.
Assumption is also unreliable in general, but not in the case of forced cooperation,
where the reliability is explicitly determined by design.

C The agent achieving the goal does not necessarily have access to the rights itself.

D The agent does not reliably have the necessary capability to act on the goal.

E See the Contributed goal diagram (Figure 6.2) for annotated analysis of this prefer-
ence.

F Assumption and deduction limit knowledge to products of that already known, so are
not as flexible.

G Building up trust models may take significant amounts of time.

H Negotiating may be significantly time consuming.

I Broker agents take on the choice of collaborators and so limit the flexibility of choice
in the originator.

J See the application preferences diagram (Figure A.22) for annotated analysis of this
preference.

K Assumption will not offer the highest quality options if the options in the open system
improve beyond those assumed.

L Commitments provide no quality information.

M Brokers provide no quality information.

N Intention only models the agent itself so it does not address quality in other agents.

(0) See the Accuracy Viewed goal diagram (Figure 6.4) for annotated analysis of this
preference.

Table 6.7: Explanatory notes for the assurance analysis diagrams.

119

BELIEF Com| Tru| Bro| For| Int| Neg
ACQUISITION [acql c |0 |c | A |D]|C
Acc| y y y y |y y
Sec| n n n
BELIEFS \L Y Y
MODEL Acc

MAINTENANCE
=
MODELS|
PREDICTIONS
FROM

MODELs [S€|n | ylnlylyln
SSURANCE ‘

BELIEFS

COMPARISON | Acc
OF OPTIONS

COORDINATED
ACTIVITY

Coordination Mechanisms Key Acq: Belief acquisition method
Com: Commitments

Tru: Trust PreferencesKey

Bro: Broker Agent Acc: Access to access rights prioritised (E)
For: Forced Cooperation Sec: Security prioritised (E)

Int: Intentions

Neg: Negotiation

Figure 6.5: Assurance Analysis for Set Access goal.

6.4.8 Re-using Analysis Information

The designer does not need to use assurance analysis to analyse every interaction role. The
aim of assurance analysis is to provide a more detailed procedural model to aid in making
a design decision on the coordination infrastructure part. It is only necessary where the
choice of coordination mechanism is not clear, though due to the complexity of information
surrounding coordination it may be necessary in most cases.

There are ways in which the designer can reduce the amount of analysis required. If
two goals have similar preferences then the coordination requirements are likely to be similar
and so the same coordination mechanisms will be best. If the goals in the application are
all similar or there are few preferences then a system-wide coordination model, as described
in Chapter 4, could be chosen based on the assurance analysis of one goal.

Furthermore, the same preferences may be associated with more than one goal.
There is no need to reanalyse coordination mechanisms with regard to this preference every
time it appears. For example, the analysis of mechanisms for the ‘Access to access rights’
preference as made for the Contributed goal originator in Figure 6.2 is the same as for the
Speed Viewed goal originator in Figure 6.3. The rows for the preference are copied between

analyses.

120

The most significant form of re-use, however, is between application designs. If goals

of two applications have similar preferences, one analysis can be re-used for the other.

6.5 Summary

In order for the design of an opportunistic application to be justified, the services used by
the application should be those that best match the application preferences. The mechanism
by which an agent chooses which of the available agents and non-autonomous services to
interact with and in what way is a coordination mechanism. Coordination mechanisms can
have their own costs in order to use them, so this factor must also be examined in selecting
which would be most suitable for each interaction role in a design.

A coordination mechanism is a type of infrastructure part model, as described in
the previous chapter. Therefore, they are described in a re-usable design pattern form in
order for designers using our methodology to select between them.

In terms of coordination, the restrictions that are placed on an agent to create a
justified design are conflicting with the flexibility required for opportunistic behaviour. In
agent interaction analysis we use the idea of flexibility bias to describe the restriction of
agent activities, including coordination, to as minimised a level as the requirements allow.

In practice, this means ensuring the following are true of a design.

e Goals are always achievable by the application (except where system failures make it

impossible);
e There are agents that are tailored to particular goals;

e The agents tailored to a goal are more likely interact over those goals than other

agents, but may not do so exclusively.

Coordination can be a complex process involving different stages with different pri-
orities and costs. Where IPML descriptions are inadequate for the choice of infrastructure
part models, supporting analysis processes can be supplied to the designer (by any party).
In this chapter, we have presented the assurance analysis process which provides a frame-
work for the detailed (and re-usable) analysis of coordination mechanisms when compared to

individual preferences. Assurance analysis is based on the observation that agents operating

121

within an open system wish to use coordination mechanisms to increase their assurance that
others will achieve goals in ways that the application requirements state.

For detailed analysis to take place we separate the concerns of the coordination
process (from the perspective of a single agent in an interaction). The process of coordination
is divided into four stages: acquisition of information (beliefs) on other agents, updating
of that information when appropriate, analysis of the information to make coordination
decisions and activity based on the analysis. The division allows different aspects of each
coordination mechanism to be drawn out to make comparison clearer.

The next chapter examines how the choice of mechanism for each interaction role
affects the design of the multi-agent system as a whole, and provides a way to evaluate the

effectiveness of our approach.

122

Chapter 7

Collation and Evaluation

7.1 Introduction

The previous two chapters have concentrated on guiding the designer in deciding the best
form of agent to play each role in the interactions over application goals. This included
choosing the mechanisms by which the agents comprising the application would best use to
coordinate with each other. However, this is not the completed model that the designer is
aiming for, i.e. a specification of the agents which should be added to the open system in
order to realise the application.

In this chapter we consider the final design both in terms of its construction and its
evaluation. The stage of the methodology concerned with taking the choices of model for
infrastructure parts and combining them into a final design in terms specific agents is called
collation. After completing the preferences analysis stage with a few important decisions in
Section 7.2, we describe and demonstrate the collation process in Section 7.3.

Evaluating whether our approach fulfills its aims is problematic as the domain (open
systems) is one in which there are characteristics change during the lifetime of the appli-
cation. Along with the fact that there is no reason to believe two designers would come
up with the same design from the same requirements, this means that the diagnostics of
any particular application are not repeatable results and provide no real indication of the
suitability of the design approach [53, 109]. Therefore, we use the concept of traceability

to judge whether the case study design is truly based on the requirements, i.e. that it is

123

justified, and that it is opportunistic as far as possible. This analysis is given in Section 7.4.

Further evaluation of the methodology in general can be made by comparing it with
the software engineering principles given in Chapter 2. This evaluation aids in judging
whether it is an effective methodology in engineering terms. The discussion is presented in

Section 7.5, and the chapter conclusions are summarised in Section 7.6.

7.2 Completing Interaction Role Design

Assurance analysis addresses the comparison of coordination mechanisms for interaction
roles. However, other aspects of interaction roles were identified in Chapter 5. These were
collectively called agent infrastructure parts and we will complete choices of model for these

parts for the case study application in the sections below.

7.2.1 Goal Adoption and Capability Discovery

In tailoring interaction roles, a designer must address when agents playing those roles would
best adopt the goal that the interaction intends to achieve. This is called the adoption
mechanism, as the agent can be said to adopt goals by volunteering to take them on. In our
case study, we allow a choice between benevolence (the agent always adopts a goal offered
when capable), 1-goal benevolence (the agent only adopts a new goal when old ones have
been achieved) and payment (the agent only adopts a goal when offered a reward). The
most flexible of these for the application as a whole is benevolence, so the designer must
justify other choices (following the flexibility bias). In Table 7.1, the adoption mechanism
for each originator interaction role is given with explanations where appropriate. For the
IPML descriptions of the mechanisms see Appendix A.

Another mechanism required for interactions to take place is discovery of capable
agents. We distinguish here between a broadcast mechanism where requests are distributed
out over the open system with information for volunteers to respond to, and using a broker
agent as a discovery service. In Table 7.1, the only originator interaction role justifying the
extra costs of a broker agent is the Prediction goal for which it is critical that the best agent
receives the request for cooperation, rather than relying on unreliable scope of broadcast.

IPML specifications of the mechanisms are given in Appendix A.

124

Interaction Coordination Adoption C-A Mapping
Role
Contributed Speed Variation: Forced cooper- | Benevolence Broadcast
(Originator) ation (fast engagement of known
cooperators), Interoperation Varia-
tion: Trust (does not limit choices)
Speed Viewed | Commitments (speed is the most | Benevolence Broadcast
(Originator) important preference to this goal,
so commitments are preferable to
trust or forced cooperation)
Accuracy Trust Benevolence Broadcast
Viewed (Orig-
inator)
Set Access | Speed Variation: Forced cooper- | Benevolence Broadcast
(Originator) ation (fast engagement of known
cooperators), Interoperation Varia-
tion: Trust (does not limit choices)
Redistributed | Negotiation (other contributor | 1-Goal Benevolence | Broadcast
(Originator) nodes are trusted and their are | (only one redistribu-
valued objects to be negotiated | tion of data should
over, so negotiation is preferable to | occur at a time)
trust)
Access Denied | Commitments (commitments are | Benevolence Broadcast
(Originator) applicable to both variations and
are a simple, fast solution for inter-
acting with other trusted agents)
Warned Commitments Benevolence Broadcast
(Originator)
Map Edited | Commitments Benevolence Broadcast
(Originator)
Success (Orig- | Commitments Benevolence Broadcast
inator)
Prediction Commitments 1-Goal Benevolence | Broker (high quality
(Originator) (predictions may | required so informed
take a substantial | discovery should be
amount of time so | encouraged by allow-
should be forced to | ing registration)
be distributed)
Displayed Commitments Benevolence Broadcast
Prediction
(Originator)
Rights Edited | Commitments Benevolence Broadcast
(Originator)
Least Ac- | Commitments Benevolence Broadcast
cessed (Origi-
nator)
Moved Data | Commitments Benevolence Broadcast
(Originator)

Table 7.1: Infrastructure part choices for case study originator interaction roles

125

Placeholder

| Capability

Access Denied (Local Actor)

Ability to check access rights for authorisation

Warned (Local Actor)

Ability to provide the user with a warning that a triggered goal
was unsuccessful.

Map Edited (Local Actor)

Ability to edit the current weather map.

Success (Local Actor)

Ability to provide the user with an acknowledgement of an op-
eration’s success.

Prediction (Local Actor)

Ability to make a weather prediction for a given location and
time.

Displayed Prediction
cal Actor)

(Lo-

Ability to provide the user with the results of a prediction in a
suitable form.

Rights Edited (Local Actor)

Ability to edit the access rights for a user.

Least Accessed (Local Ac-
tor)

Ability to determine that section of the weather map data stored
locally that is accessed least by local agents.

Moved Data (Local Actor)

Ability to move a part of the locally stored weather map data

to another point in the system.

Table 7.2: Capabilities of local actor interaction roles

7.2.2 Local Actors

The most suitable agents to achieve goals may not be provided by the application designer,
e.g. in our case study, sophisticated predicters may exist already in the open system. How-
ever, designers will often want to ensure a minimum functionality is available, regardless
of the reliability of third-party service by providing it themselves. Agents able to perform
the actions necessary to achieve goals provided by the application designer are called local
actors. They play the interaction roles of agents committing, negotiating etc. to achieve
goals with the originators. In the case study requirements it is explicitly stated that “the
functionality of the application should be available locally at each node” so the designer

should provide local actors for all goals. We list these capabilities in Table 7.2.

7.2.3 Support Required for Chosen Mechanisms

As the designer has chosen to use a broker agent to find capable agents for our case study’s
Prediction goal (see Table 7.1), the broker becomes a third interaction role in the interaction

over that goal and is specified below.

126

Prediction (Broker)

Coordination Broker (self)
Adoption Benevolence

Capability to Agent Mapping Broker (self)

Negotiation has been chosen as the coordination mechanism for the Redistributed goal
originator and, as the algorithm implementing this coordination mechanism is dependent
on the goal (see IPML description in Table 6.6), we need to provide a suitable algorithm.
The approach chosen in goal decomposition (see Chapter 4) is to move the least accessed
part of the weather map data at a node to a more suitable node. The preference for the
Redistributed goal is to prioritise fast access to data, which means ensuring the data stored

on a node is that which is most accessed by that node. The algorithm is as follows.

1. Identify the least accessed parts (locations) of the weather map data (Least Accessed

goal).
2. Offer one of the least accessed part to other nodes.

3. Receive numeric bids for the data part. The bids are proportional to the number of
accesses made on the data by the bidding node. Bidders may include in their bid for
one part, the rejection of another part they previously accepted in this redistribution,
which is then returned to those parts to be distributed. This will happen if the latest

part is of more use (more accesses are expected) than the previously accepted part.

4. The highest bid is accepted and the part transferred to the node containing the bidding

agent.

5. If more parts are to be redistributed, the agent returns to step 2 to negotiate on

another.

Depending on the requirements variation, up to three goals may be best served by a trust-
based mechanism, where agents are assessed to judge their competence and reliability for
the future. The trust mechanism IPML description (Table 6.3) notes that a scheduler is
required to allow the agent to wait for several offers before one is chosen. A model therefore

has to be chosen for the ‘scheduler’ infrastructure part. For brevity, we will not give a full

127

IPML description but simply state here that the scheduler model available allows the agent
to postpone continuing the algorithm for a specified duration, during which the agent can

take part in other activities, i.e. receiving proposals from volunteering agents.

7.3 Collation

In Chapter 5, we mentioned that there should be some process to highlight and resolve
interdependencies between infrastructure part models. Of particular concern, as suggested
in Chapter 6, is ensuring the coordination mechanisms of individual agents work together
to allow an application to function in an organised way. We call this process collation.

Other concerns should be addressed when unifying the infrastructure parts into
a final design. As discussed in Chapter 3, the designer wishes ultimately to know the
implementable form of agents to be added to the open system. It was also argued that the
existence of agents could be costly and the number added would preferably be low. These
matters will be addressed in the description of collation.

As the organisation of agents adds their collective action in implementing an ap-
plication, collation can be seen as a supporting analysis process for comparing alternative
models for the organisation (as described in Chapter 2). The design of the collation process
aims, as with all of agent interaction analysis, to enforce justification by the requirements
and allow flexibility for opportunism.

Comparable processes can be seen in other methodologies. For example, in [18]
(Bussman et al.) decision points are collated into roles. A comparable process is used in
Gaia [102], where roles are collated into agent types balancing coherence of the resultant

agent types with efficiency once implemented.

7.3.1 Organisations

The organisation of the agents within the application, as discussed in Chapter 2, defines
how resources and responsibilities are distributed amongst the agents. Whilst some method-
ologies take organisations or their component roles to be primary analysis components
[102, 107], we use agent interactions.

In the case of the agent organisation, the potential ways of distributing the resources

and capabilities to achieve goals is dependent on the application requirements because the

128

resources and required capabilities themselves are. Therefore, the models to choose between
are not application-independent but derived from the choices made for other infrastructure
parts.

For example, in our case study an organisation could contain one role for agents
coordinating editing (of the weather map and access rights) and one role for agents coordi-
nating viewing predictions. Alternatively, the organisation could contain one role for agents
coordinating operations on the weather map (editing and viewing) and one role for agents
coordinating operations on access rights (set and check). The differences between these
implementations will effect in the long term how well application preferences are matched,

and this is precisely why justification is required rather than an arbitrary decision.

7.3.2 Global Application Properties

In related work [25], Davidsson and Johansson identify several performance attributes, com-
parable to system-wide preferences in our approach, such as load-balancing, responsiveness
and modifiability. These are used to decide on the best architecture, as a whole, for the

application.

7.3.3 Flexibility Bias and Redundancy

Flexibility bias requires each interaction role to be tailored to best achieving the goals of
the interaction. However, it also demands that the flexibility be reduced where justified
by the requirements which, in the case of the organisation as a whole, means matching
preferences that are application-wide (applicable to all goals). There may be domain-specific
application-wide preferences but some others will be relevant to most applications.
Reducing the number of roles is one useful preference which may be taken into
account. Not only does this make the organisation more comprehendable but it also ensures
less roles that are incompatibile so that fewer agents are required to play all the roles.
Reducing unhelpful redundancy is likely to be an implicit preference of most appli-
cations. We can see that the collation process has some general preferences, regardless of

the application-specific ones.

Low replication To reduce unhelpful redundancy, the organisation should not replicate

functionality without reason.

129

Close approximation If a model has been chosen for an agent infrastructure part based
on the preferences, then the designer should attempt to ensure the agents in the
implementation contain that model as far as is possible after collation, i.e. interaction

roles should be tailored to match goal preferences.

Ease of integration To speed and simplify the development process, two infrastructure

parts should only be merged if it easy to do so.

The third factor, ease of integration, is of more importance to maintenance and extension,
so we do not discuss it further here. Later in this chapter, we show how it is useful as part

of the methodology’s approach to maintenance and extension.

7.3.4 Case Study

As described in Chapter 3, we do not assume that the agents taking part in interactions are
all provided by the application designer. For the application to act opportunistically, each
interaction role can be played by any agent in the open system unless otherwise restricted.

When all the agent interaction roles have been identified and agent infrastructure
parts have been chosen, the designer must determine how they comprise the final organisa-
tion of the application set. As described above, the designer could examine how well different
organisations best fit the requirements by examining low replication, close approrimation
and ease of integration.

For low replication the following five alternative organisation models are identified,

starting with the lowest replication and becoming less suitable.
1. Merge all the interaction roles into one agent.
2. Merge the interaction roles into two agents:

(a) An originator agent acting as the originator for all goals and coordinating ac-
cordingly.

(b) An local actor agent able with the capability of all local actors.
3. Merge the interaction roles into ten agents:

(a) An originator agent for the Contributed and Set Access goals (as they share all

mechanisms).

130

(b) An originator agent for the Accuracy Viewed goal.

(¢) An originator agent for the Redistributed and Prediction goals (as they share

adoption mechanisms).
(d) An originator agent for all other goals (as they share all mechanisms).

(e) A local actor agent for the Access Denied and Rights Edited capabilities (as they

share resources required).

(f) A local actor agent for the Warned, Success and Displayed Prediction capabilities

(as they share resources required).

(g) A local actor agent for the Least Accessed and Moved Data capabilities (as they

share resources required).
(h) A local actor agent for the Map Edited capability.
(i) A local actor agent for the Prediction capability.

(j) A broker agent for the Prediction goal .

4. Merge the interaction roles as above but separate the originator for the Redistributed

and Prediction goals.

5. Separate all interaction roles into different agents.

The originators and local actors are separated above because they provide different func-
tionality (the former adds coordination, the latter gives capability when it is lacking in the
rest of the system). Decisions to merge or separate originators are based on the similarity
of decisions on infrastructure parts given in the previous section. Decisions to merge or
separate local actors are based on the similarity of local resources required. A decision to
merge an originator with an local actor would only be taken where it was clearly justified
to keep the coordination and action on a goal together in one agent, as otherwise we are
unnecessarily binding the coordination needed in the future of the application to the possi-
bly temporary capability to act locally. The obvious justification for merging an originator
with a local actor would be if the coordination mechanism for an originator was chosen to
be to use intentions, where the agent acts on the goal itself.

For close approximation the following five alternative organisation models are iden-

tified, starting with the lowest replication and becoming less suitable.

131

1. Separate all interaction roles into different agents.

2. Merge only the originators for the interaction roles using exactly the same coordina-
tion, adoption and capability-to-agent mapping mechanisms (results in six originator

agents, one broker, nine local actor agents).

3. As above, but also merge local actor agents in the way described by suggestion 3 for

low replication above, i.e. Access Denied capability merged with Rights Edited etc.

4. As above, but also merge the Contributed orginator with the Set Access originator

(equivalent to suggestion 4 for low replication).

5. Merge all the interaction roles into one agent.

The lists of possible models for low replication and close approximation exclude many others
that are obviously no better than the ones given. To be more exact, those excluded do
not significantly aid in achieving one priority or the other. For example, if the Contributed
originator was merged with the Access Denied originator, some approximation would have to
be made so that the merged agent had one coordination mechanism, one adoption mechanism
and one mapping mechanism, but there would be no reason to not merge that agent with
the originators for Warned, Map Edited etc. as nothing further is approximated in merging
them and there is lower replication if it is done.

On examining the suggestions above, the designer may choose suggestion 4 in the two
lists, as this ensures no approximation of mechanisms is required but the interaction roles are
merged where possible otherwise, i.e. it is the model with the most justified flexibility. This
results in an multi-agent system with eleven agents (five originators, one broker and five local
actors) shown in Table 7.3. In the table we include the which agent will act as a designated
local adopter for the GUI to pass triggered goal instances to (this requires a benevolent
adoption mechanism). These are chosen based on the suitability of the agent (how close it
approximates the infrastructure parts needed). We also include which goals the agent will
adopt if offered. For flexibility, this is kept as wide as possible but may be limited by the
appropriateness of the coordination mechanism or capability-to-agent mapping mechanism,

e.g. forced cooperation requires agents that will be forced to adopt the goal.

132

Coordination | Adoption C-A Mapping | Capab- | GUI Trigger- | Will Adopt

ility ing

1 Forced Coop- | Benevolence Broadcast None Contributed, Contributed,

eration Set Access Set Access
2 Trust Benevolence Broadcast None Accuracy All goals
Viewed
3 Commitments | Benevolence Broadcast None All other trig- | All goals
gered goals
4 Negotiation 1-Goal Benev- | Broadcast None None Redistributed
olence
5 Commitments | 1-Goal Benev- | Broker (11) None None Prediction
olence

6 Not originator | Benevolence Broadcast ‘Warned,| None Warned,
Suc- Success,
cess, Displayed
Dis- Prediction
played
Pre-
diction

7 Not originator | Benevolence Broadcast Map None Map Edited
Edited

8 Not originator | Benevolence Broadcast Pred- None Prediction
iction

9 Not originator | Benevolence Broadcast Access | None Access De-
De- nied, Rights
nied, Edited

10 Not originator | Benevolence Broadcast Least None Least Ac-
Ac- cessed, Moved
cessed, Data

11 Broker (self) Benevolence Broker (self) None None No goals

Table 7.3: Agents produced by collation with cardinality (speed variation)

133

7.3.5 Agent Types

If the application is likely to process several goal instances at once, particularly if they are
of one type of goal, the designer may decide to use the results of the collation as a set of
agent types (this term is used for an equivalent concept in Gaia [102]). The designer would
then build useful redundancy and replication into the application by instantiating several
agents from each type, e.g. eight Redistribution originators in the initial design.

If this option was taken with the example application, the designer may reason as

follows.

e The local user is likely to trigger goals at a reasonably slow pace, so there is only need
for one agent of each of the Contributed/Set Access and Accuracy Viewed originator

agent types.

e Only one redistribution of local data should be occurring at a time to prevent conflicts,
so there only needs to be one Redistributed originator, and one local actor for Least

Accessed / Moved Data.

e The Prediction orginator and the Prediction, Map Edited and Access Denied/Rights
Edited local actors may be used by external sources so the number should be chosen
according to the expected number of collaborating weather institutions, to prevent

overloading a single agent.

e There should only be one broker for the Prediction goal, as otherwise predictors may

not all be registered in one place.

e The originator for other goals may be used several times during the attempt of one
triggered goal instance. For example, when Set Access is triggered, the same agent
type acts as originator for Access Denied, Warning, Rights Edited and Success. It may
be best to have three or four of this agent type to prevent overloading and distribute

goals.

e The local actor for Warning, Success and Displayed Prediction is only used once per
local triggered goal and displays information to the local GUI, so only one agent is

needed.

We add numbers of each agent type in Table 7.4.

134

Coordination | Adoption C-A Mapping | Capab- | GUI Trigger- | Will Adopt No.

ility ing

1 Forced Coop- | Benevolence Broadcast None Contributed, Contributed, 1

eration Set Access Set Access
2 Trust Benevolence Broadcast None Accuracy All goals 1
Viewed
3 Commitments | Benevolence Broadcast None All other trig- | All goals 4
gered goals
4 Negotiation 1-Goal Benev- | Broadcast None None Redistributed | 1
olence
5 Commitments | 1-Goal Benev- | Broker (11) None None Prediction 10
olence

6 Not originator | Benevolence Broadcast Warned,| None Warned, 1
Suc- Success,
cess, Displayed
Dis- Prediction
played
Pre-
diction

7 Not originator | Benevolence Broadcast Map None Map Edited 10
Edited

8 Not originator | Benevolence Broadcast Pred- None Prediction 10
iction

9 Not originator | Benevolence Broadcast Access | None Access De- | 10
De- nied, Rights
nied, Edited

10 Not originator | Benevolence Broadcast Least None Least Ac- | 1
Ac- cessed, Moved
cessed, Data

11 Broker (self) Benevolence Broker (self) None None No goals 1

Table 7.4: Agents produced by collation (speed variation)

In the next chapter, we highlight the points in the example application that illustrate

how this methodology has justified the entire design from the requirements, and how this

compares to the approaches of other methods.

implementing the application and agent infrastructure parts.

7.4 Evaluation

We also consider the issues involved in

The results of applying our methodology, agent interaction analysis, to a sample set of

requirements are shown throughout this thesis and collected in Appendix A. We can extract

a lot of useful evaluations on our approach by examining the results and will do so in the

following sections. However, analysis of the case study results is not an analysis of our

135

approach as a whole.
To evaluate the approach, we judge it by the initial aims. We summarise the primary

questions posed in Chapters 1 and 2 below.

e How can a designer create an application that re-uses software available in an open

system?

e How can the restrictions required for justification of a design and the flexibility required

for opportunism best be balanced?
e How can any solution to the above problems be generally and consistently applicable?

e How can an agent-oriented methodology guide designers in creating justified, oppor-

tunistic designs?

We examine how well our approach answers these in the sections below.

7.4.1 Case Study Evaluation: Justification

In Chapter 3 we suggested that judging whether a methodology allowed and guided the
production of justified designs could be determined inductively. In this way we identified
two methodology capabilities: consistent identification of the analysis entities from the re-
quirements and connection from the justification of design decisions at one stage to the
design decisions of later methodology stages.

We suggested that, following standard requirements analysis techniques, we could
identify goals and preferences (non-functional goals) from the requirements. In Chapter 4
we showed how this could be achieved using scenario (event trace), entity and goal analyses.

To connect the identified goals and preferences to the initial interaction-oriented
design, we suggested that goals would be mapped one-to-one onto interactions. This speci-
fied that each goal is seen as the result of cooperation between agents, with a single agent
‘cooperating with itself’ in the limiting case.

In Chapter 5, the designer modularised the infrastructure parts which agents used
(including those that comprise the agents) to achieve the system goals, and used IPML to
specify possible choices. The designer chose from IPML models on the basis of the prefer-
ences of each goal, or each agent interacting to achieve the goal in the case of coordination

mechanisms (in Chapter 6). This ensured that the design decisions were connected to the

136

| Agent | Coordination | Will Adopt |
1 Forced Cooperation | Contributed Weather Data, Set Access Rights
2 Trust All goals

Table 7.5: Agents produced by collation

requirements. The designer then collated the agent models to streamline the coordination
model.

While this analysis shows that we have attempted to provide connection, and so jus-
tification, in the methodology, it is worth proving it for a subset of the case study application

by tracing back from the later design decisions to the requirements.

Traceable Design

In this section we trace back from part of the final organistion of the case study, as shown
in Table 7.5, to the original requirements. We wish to show that each design decision taken
to reach that stage was justified.

The first of the example interaction roles in Table 7.5, includes the functionality
identified as most suitable for originators of two goals: Contributed and Set Access. The
designer has chosen to merge the interaction roles designed to coordinate over these goals, so
the organisation contains one interaction role tailored to providing this functionality rather
than two. By simply identifying roles of agents in the original requirements, the designer
could, for example, have chosen to implement two agents that separately dealt with the two
goals, or possibly identified one agent to deal with operations involving access to the weather
map (the Contributed, Speed Viewed and Accuracy Viewed goals) and another to change
the access rights. To see why the decision to choose this particular organisation is justified,
we can reason (trace) backwards from the collation stage, at which the final organisation is

chosen.

1. At the start of the collation stage, the designer has decided that an agent tailored
to coordinating over the Contributed goal would have an architecture which used
forced cooperation to coordinate, benevolence in adopting goals, no capability-to-
agent mapping and no capability for acting directly. The designer has also decided

that an agent tailored to coordinating over the Set Access goal would have exactly

137

the same architecture (agent infrastructure parts). These are decisions on the most
suitable architectures of interaction roles for agents initiating cooperation over the
goals (originators). The decisions on the choice of most suitable architecture for each
interaction role are the results of analysis into how the agents can be tailored to match

the requirements, and should, therefore, inform the choice of organisation.

. In collation, the designer decides what agents make up the final organisation based
on the architecture of the interaction roles. It would be likely that at least one agent
matching the architecture of the Contributed interaction role is implemented so that
when an agent, or the user, wishes to achieve an instance of the Contributed goal,
there will be an agent tailored to doing so in the open system. The same is true for
the Set Access interaction role. However, as the two interaction roles have the same
architecture, having two agents with the same architecture is not necessarily the best
organisational division, as having two agents will use up more resources. Separation
of interaction roles into more than one agent type in the organisation is not justified
by the requirements if the architectures of the interaction roles are similar enough, as

long as the architectures are themselves justified by the requirements.

. To see that the architectures of the interaction roles are justified we examine the
preference analysis stage, including assurance analysis. The assurance analysis for the
Contributed goal gives reasons why the most suitable coordination mechanisms for the
goal are Trust and Forced Cooperation, based on the comparing preferences of that
goal with the operations of each mechanism. The Set Access analysis comes to the
same conclusion for that goal. By analysis of the application preferences, the designer
could see that the Trust mechanism could take up a substantial amount of time to
check results and build up trust models, so the coordination could delay the goal
significantly. For the Speed Variation of the requirements, therefore, the designer chose
Forced Cooperation as the coordination mechanism for both of the interaction roles.
The adoption mechanism was chosen to be Benevolence for both of the interaction
roles, as this allows for the most opportunism in the system and there was no reason
found to restrict adoption by choosing another model. For an agent using the Forced
Cooperation coordination mechanism, references to trusted cooperating agents are

built-in, so no capability-to-agent mapping mechanism is needed (the model for having

138

no such mechanism is called Broadcast). The decisions on which model to choose for
each mechanism (agent infrastructure part) were informed by the IPML descriptions.
The choice of architectures for the interaction roles was decided on the basis of the goal
and application preferences aided by comparison of IPML descriptions and assurance

analysis results.

4. The Contributed and Set Access goals and their preferences were extracted from the
requirements in the requirements analysis stage by examining the scenarios, entities

and goals mentioned in the requirements.

Traceable Infrastructure

As with the agent infrastructure parts mentioned above, application infrastructure parts
are chosen on the basis of the preferences and goals identified in requirements analysis and
informed by the IPML descriptions of the potential models. For example, in the previous
chapter we chose to deal with goal instances triggered from the user interface by passing
them to local agents designated to achieve each type of goal, rather than passing all goals to
a single interface agent. This was because the IPML description for the GUI Trigger Agent
model (the one not chosen) states that it may not be suitable where the goals have widely

differing preferences, which is the case in our example application.

Basis on Requirements

Another way to emphasise how the design is justified by the requirements, besides reasoning,
is to observe the effect of altering the requirements in some minor way. In Chapter 1 we give
two variations on the requirements: one prioritising speed, the other prioritising interoper-
ability. The agents in Table 7.5 are derived from the Speed Variation of the requirements.
However, if we analyse the Interoperability Variation of the requirements, the architecture
of the first interaction role will most suitably use the Trust coordination mechanism, to
allow authorised agents from other parts of the system to edit the map and access rights.
It may then be suitable for the first two agents in the table to be merged into one, as they
will have very similar architectures. This demonstrates a significant design difference due

to alteration of the requirements.

139

7.4.2 Case Study Evaluation: Opportunism

Aside from justification, we also wish designs to be restricted as little as possible in its
opportunism. In Chapter 3 we divided opportunism into two methodology capabilities:
flexibility wherever allowed (not derived) by the requirements and providing ways to specify
interoperation between the agents under development with those unknown in the open
system. The latter capability is met in agent interaction analysis by modelling in terms
of interactions between unspecified agents. To judge how well flexibility is preserved we
return to the agents shown to be justified above. The two agents in Table 7.5 differ greatly
in their interoperability. The first agent is heavily restricted in its operations while the
second is highly interoperable. We claim that the opportunism of each is restricted only
as far as the requirements demand (there is a flezibility bias) and the design decisions are,
therefore, justified. We examine the design decisions restricting or allowing opportunism for

each agent below.
1. The first agent is heavily restricted in its activity.

(a) The preference to validate authorisation to edit the weather map and access
rights and the emphasis on reliability in contributing to the map require that the
agent uses only trusted agents in making alterations. This can either be achieved
by checking the agents actions to determine their reliability or by always using
standard cooperators chosen by the designer. In the case where speed is more
important than interoperability, the designer chose the latter option (the Forced

Cooperation coordination mechanism).

(b) Using Forced Cooperation requires that references to cooperators be known in
advance. Therefore, only the goals for which references have been provided can
be attempted by the agent, which are Contributed and Set Access in this case.
The agent will only offer to adopt these two goals.

(c¢) These restrictions are all derived from the requirements (goals and preferences).
All other behaviour is flexible to encourage opportunism in the system. For
example, the agent uses the Benevolence adoption mechanism to allow adoption

of goals from any source.

2. The second agent has very little restriction in its behaviour.

140

(a) The preferences on getting accurate predictions in Accuracy View operations,
leads the designer to use interoperation to find the most suitable cooperators
at each instance. To decide between cooperators, the agent uses a trust-based

mechanism giving information on the previous likely accuracy of results.

(b) There is no reason to prevent the agent from being given the ability to coordinate

over other goals, and so it is given the ability to do so.

(¢) The requirements encourage opportunism in this case, and the design of the agent

reflects this.

7.5 Re-use, Generality and Consistency

In Chapter 2, we discuss the principles an agent-oriented software engineering methodology
should follow to be useful and consistent. We also argue for providing structure to allow
future developments in agent technology to be incorporated into the process. In the previous
chapter, we additionally suggest that the methodology should be able to scale up to tackle
more complex applications than the one given in the example. This section examines how

well the methodology achieves all these aims.

7.5.1 Re-Use

As discussed in Chapter 1, an important aim in any approach to developing open system
applications is re-use of (parts of) designs. As with re-use of services in an open system,
the re-use of designs allows an application to make use of the best available functionality.
Re-use of designs is encouraged in agent interaction analysis through following the
design pattern approach. We provide a standard structure for description (IPML) of infras-
tructure part models that allow simple comparison between models and with the application
preferences. The IPML definitions will be provided by the third-parties that originally de-
velop the models, and so are likely to be defined with a good degree of knowledge about

their appropriate use.

141

7.5.2 Software Engineering Principles

Several software engineering principles were described in Chapter 2, that are the result of
examining the best practices of existing approaches [22, 44, 93]. We stated that achieving
them in the methodological process would help to ensure that common problems of software
engineering were addressed. The principles identified in [44] are given below, with details

on how our methodology achieves each.

Rigour Our process follows a series of structured stages each building on the last and the
resulting design is fully justified by the original requirements. It is, therefore, rigorous,
though how rigorously the application as a whole is designed depends on how extensive

the application modularisation is.

Separation of Concerns / Modularity The methodology uses modularisation by divid-
ing each goal into interaction roles for agents interacting over them, the infrastructure
into parts and goals into subgoals. These are independent except where relations are

specifically identified by analysis or design.

Abstraction Agent interactions are very abstract, in that the specification of each states
only that some unspecified agents will interact over a goal in order to achieve it.
The methodology starts with agent interactions and later addresses the details of how

agents would be tailored to best achieve the interactions.

Anticipation of Change The methodology errs towards opportunism and restricts the
application design only when demanded by the requirements. Extension is illustrated

in Section 7.5.4.

Generality The methodology uses generality by the unspecific nature of agent interactions.
It is also general itself in that it uses well recognised general requirements description
concepts (goals and preferences) and allows selection from whatever models are avail-

able for the infrastructure.

Incrementality The methodology is structured to allow the designer to return and edit
parts of the specification with relative ease. Incrementality can take the form of
maintenance (correction) of the application and iteration during the design process.

These are illustrated in Sections 7.5.4.

142

7.5.3 Iteration

Tterative design, i.e. repeatedly working through the design process adding more functional-
ity each time, and iteration in the design process, to add newly discovered requirements or
correct mistakes, are important operations for the methodology to support. Our method-
ology supports iteration by reducing dependencies between elements at each stage, which
helps the designer to edit the design without most of the rest of the specification being ef-
fected. The exception is collation, which is the final stage when the methodology is applied
sequentially. Adding goals at the requirements analysis stage does not require changes in the
decompositions of other goals or the preference analysis of those goals; adding preferences to
goals affects only the decomposition and analysis of those goals; changing the decomposition
of a goal only affects the analysis of the subgoals etc.

For example, the designer of the weather mapping application may initially assume
the access rights of users to be pre-set. The designer can later return to the requirements
analysis stage, add and analyse the Set Access goal, provide a decomposition and assurance
analysis before collating the interaction roles of the Set Access goal with the interaction

roles of the goals previously analysed.

7.5.4 Maintenance and Extension

Maintenance is effectively iteration after implementation, in that the designer returns to
correct a pre-existing product, either the implementation, if it does not follow the design
correctly, or the design, if it is found to be incorrect. If the design is altered then the
implementation will be also. Extension is adding to the design rather than merely correcting
it.

As collation makes justified choices on how to merge functionality, it will be affected
by all changes at earlier stages. The results of collation then inform the implementation.
If the design has not be implemented when it is altered, then the alteration leads to the
collation being reappraised and possibly a different organisation chosen. However, if the
design has been implemented, and, even more significantly, if it has begun to operate and
should ideally not be stopped, then the alteration must be made to the organisation as it is
implemented.

In the collation stage explanation in Chapter 5, we discussed three criteria for assess-

143

ing whether to merge interaction roles to form agents (or agent types): close approximation,
low replication and ease of integration. We omitted the last of these from our example, as it
is most applicable to maintenance and extension of applications rather than the initial de-
sign. Generally, two interaction roles are easier to integrate if they are similar in mechanisms
and one of them is not already implemented.

Continuing our iteration example from above, if the designer decides to add the
ability to set access rights after the application is running, then the ease of integrating the
ability must be taken into account. For instance, if it will be easy to alter the originator
for the Contributed goal to also include Set Access then collation will suggest the merged
originator shown in Table 7.5. If the Contributed originator is in use and cannot be easily
altered, collation will suggest a separate agent (type) to coordinate setting access rights. A
local agent capable of setting rights may also need to be included in the application.

An interesting approach is proposed by Poutakidis et al. [88] for debugging multi-
agent applications which could usefully be applied where particular coordination mechanisms
were chosen by the designer. In their technique the running system is monitored to establish
whether the interactions expected for each mechanism (the protocol) is apparent. If it is

not then an error may exist in one of those interacting agents.

7.5.5 Implementation

The implementation of the design may be aided by additional detail on the structure of the
agent and application infrastructure parts chosen. This could involve describing them in
terms of concepts already conveniently represented in programming languages, e.g. objects
or functions.

For example, implementing the GUI Trigger Agent model for graphical interface
triggering of goals, specified in Appendix A, may be aided by specifying an object model
showing how messages pass from the interface to an agent. The implementable represen-
tation could either be added to the Algorithms property of the IPML description or as an

associated annotation.

144

7.6 Summary

At the end of the design process for an open system application, a designer will aim to end
up with a specification of the software that can be implemented and added to the system
in order to realise the application. In this chapter, we showed how the analysis performed
to determine the most appropriate models for infrastructure parts could be collated into a
final design. The final design takes the form of a set of agents.

From this point, we demonstrated that the designer, or anyone else, could trace
backwards from any design decision to the requirements in order to demonstrate how the
decisions were justified, and how they retained flexibility for opportunism. Other software
engineering properties were examined in relation to our methodology to assess how well they
were met.

In the final chapter we outline our main contributions and assess how the work

should be progressed in the future.

145

Chapter 8

Conclusions

8.1 Introduction

In this thesis, we have described the problem of designing justified designs of opportunistic
applications in dynamic open systems. We taken an agent-based approach to solving this
problem. An application design is justified, in this context, if the designer is able to trace the
design decisions back to the requirements that informed. For multi-agent systems, part of
the justification required is to ensure that application functionality is appropriately divided
between agents. Opportunistic applications will aim to use the most suitable (justifiable)
functionality, for the activities they are engaged in, available within the open system at any
time. In agent-based systems, opportunism is founded on the agents being able to make
flexible decisions regarding their activities.

Coarse-grained agents can provide a useful set of functionality for localised decision-
making, but they also place demands on the system resources and application infrastructure.
Therefore, the way in which functionality is divided between agents, and the mechanisms
chosen to achieve it, can have a significant impact on how well an agent-based application
satisfies its requirements. The problem of dividing the functionality and infrastructure to
match the requirements is significantly harder for applications operating in dynamic open
systems, where the functionality most suitable for achieving application requirements at any
particular time may come from a connected software environment or application. Expressing

the structure of a proposed application of this form, in preparation for its design, without

146

making arbitrary assumptions about the way in which the functionality is divided, requires
that agents are specified in a very minimal, unrestrictive form. We have achieved this by
describing the application in terms of abstract interactions between unspecified agents, so
that each goal of the application will be cooperated over by a set of agents, which may be
implemented by the application designer or supplied by third parties.

Consistently justifiable designs require rigorous creation processes, i.e. software en-
gineering methodologies. For the methodology to be most useful, it must be acceptable to
developers, particularly in being informal, structured and related to existing technologies.
We have used and extended standard requirements engineering techniques for analysis and
base our descriptions of infrastructure parts on design patterns. At other stages of the
methodology we have used our own notation, as the concepts involved are largely unique to
the approach.

Our methodology, agent interaction analysis, contains several significant stages de-
veloped from the basis on abstract agent interactions and maintaining a flexibility bias to
ensure that the applications produced will be opportunistic where the requirements allow. In
the analysis phase, we demonstrated the identification of goals with associated preferences
(non-functional goals) from the requirements and decompose the goals into more tightly
defined parts. In the design phase, we modularised the infrastructure and chose models
for each part based on the preferences. We also developed the agents’ architectures by
analysing different models to see how well they satisfy the requirements. In particular, we
provided a general and detailed technique for examining the coordination of agents in open
systems. Finally, we constructed the final form of the multi-agent system (its organisation)
by reducing redundant replication in the architectures identified.

In this thesis, we have described our methodology, and the theories that underly it
(Chapters 3 to 6), in the context of existing work into agent-oriented software engineering,
drawing upon other useful research in agent-based system infrastructures, agent coordination
and software engineering (Chapters 2). We have provided a case study in which we developed

a weather mapping application and discuss how it solves the stated problem (Chapter 7).

147

8.2 Main Contributions

In solving the problem of designing justified, opportunistic agent-based applications, we
have developed a set of ideas. By providing concrete techniques based on these ideas, we
help others to apply the theories. In the sections below, we outline the distinct techniques

developed and the theories underlying them.

8.2.1 Agent Interaction Analysis

We have aided the creation of justified, opportunistic agent-based applications by supplying
a methodology which can be used to provide a consistent approach. Informal, structured
methodologies provide ease of use and acceptability for designers, but the informality may
disguise assumptions that arbitrarily restrict the design, as we suggest is true of existing
methodologies in Chapter 3. We have solved this problem by developing an approach in
which the designer explicitly assumes flexibility in the system unless the requirements sug-

gest restrictions. Our methodology is called agent interaction analysis.

8.2.2 Agent Interactions as Analysis Abstractions

We have developed the use of abstract agent interactions to specify a multi-agent system’s
functionality, allowing people to describe such systems without having to limit which sub-
systems are well-defined or between which subsystems operations will be distributed. Agent
interactions are particularly useful for designing agent-based systems as they provide a flex-
ible basic form to start from, regardless of whether agent interaction analysis is then used
to develop the final design. The approach we have created is used in our methodology. It
can more generally be applied wherever functionality in an open dynamic system is to be

specified without restricting where the functionality will reside.

8.2.3 Flexibility Bias in Designing Multi-Agent Systems

We have enabled designers to reconcile opportunistic behaviour of agents in a dynamic
system with achieving high worth solutions in a worth-oriented domain, i.e. satisfying quan-
titative preferences as well as possible in opportunistic cooperation. To achieve this, we
tailor agents in a multi-agent system to the preferences of different system goals and then

provide coordination mechanisms to ensure the best tailored agents are those most likely,

148

but not exclusively, chosen as collaborators when a goal needs to be achieved. This theory
ensures that restrictions are made to the cooperative abilities of agents only where nec-
essary, and so the design process has a flexibility bias. The theory of flexibility bias that
we have defined is used in our methodology. It can more generally be applied wherever a
development process that balances priorities with the desire to allow for opportunistic use

of unknown resources is required.

8.2.4 Assurance Analysis

We have developed techniques for tailoring the coordination of agents in an open system to
the functionality they are most likely to be active in attempting. Coordination can have a
large impact on whether preferences (non-functional requirements) are satisfied or not. The
mechanisms to achieve coordination between agents may be complex. We have developed
assurance analysis to separate concerns in the use of a coordination mechanism, providing

the designer with a consistent approach for analysis and comparison.

8.2.5 Infrastructure Part Modelling

We have provided a design pattern-based language, IPML, for flexibility and informally
highlighting the issues of importance for agent-based system infrastructures in open systems.

Using IPML, a designer can specify and re-use parts of a multi-agent system infrastructure.

8.3 Most Suitable Applications

Our approach aims to be suitable for a wide range of open system applications but it
is, of course, more suited to the design of some than others. Primarily, we argue that our
methodology is well suited to the design of applications with a high number of non-functional
goals (preferences). This is first because the preferences are used to justify design decisions
by providing a reason why one choice, e.g. infrastructure part model, is better than another.
Secondly, the preferences are used to determine when agents should opportunistically make
use of functionality that has been added to the open system. Conversely, an application
with relatively few preferences is not well suited to our approach. This is because, without

preferences, there is no way for a designer to justify one design decision over another or for

149

an agent to choose one functionally equivalent service over another. In this case, restrictions

imposed by arbitrarily chosen application structures are of no consequence.

8.3.1 Well-Suited Case Study

To illustrate the argument above we provide the requirements for an application well-suited
to our approach.

A music company wishes to provide customers on the Internet with a randomised
jukebox application. The jukebox will play songs drawn from any of the company’s databases.
There are several databases existing each of which overlap in the songs they contain but
songs are sometimes added to one database before others, e.g. for songs released earlier
in one country. Also, mistakes are sometimes made in the song information available in a
database so an entity in one database can be more up to date than for the same song in
another database. The customer should be able to grade the artists and genres of music
according to their taste in their jukebox. A customer’s jukebox should aim to play more
songs likely to appeal to the customer as judged by these gradings compared against the
song information in the databases. New songs should be included in those available to be
played as soon as possible after they appear in a database, and new databases should be
included as sources for a jukebox when the company creates them. The jukebox should be
secure in its retrieval and storage of songs to prevent piracy, and fast enough to make it
enjoyable to use.

The application described above is well-suited to our approach because it allows
for some opportunism and contains many non-functional goals, e.g. playing of songs graded
higher by the customer, using database entries that are the most up to date, using the most

databases of those available, security and speed in retrieval of songs etc.

8.4 Relation to Other Methodologies

As the concepts used in the design of other methodologies are undoubtably useful for ex-
pressing behaviour in multi-agent systems, it is worthwhile seeing how they relate to or

could be incorporated into agent interaction analysis.

150

8.4.1 Organisational Roles

Dynamic organisational roles, i.e. roles that can be played by different agents at different
times, could be incorporated into our methodology as part of a coordination mechanism.
The roles could act as transferable commitments to benevolently accept particular goals
with associated restrictions and permissions. Alternatively, the set of roles to be taken up
by agents could be stored by a broker from which agents can collect roles to adopt. By
treating roles as a coordination mechanism, we can justify their use as part of a wider

justified design.

8.4.2 Workflows and Decision Points

In agent interaction analysis, goal decomposition provides enumeration of the decision points
in the application, and workflow modelling may be useful in aiding the decomposition by
the designer. However, workflows pre-suppose entities between which the process can flow
and agent interaction analysis deliberately avoids identifying entities until the end of the
methodological process, as the methodology’s aim is to provide justification of those entities’

designs. This will limit the applicability of workflow modelling.

8.4.3 Societies

Societies of agents which coordinate using a single model, as in SODA, and perhaps em-
ploy other joint mechanisms, can encapsulate several agent interactions into a single set.
Societies could therefore be usefully employed as a design pattern for agent interactions. If
a set of goals are commonly identified in applications which consistently suggest a shared
coordination mechanism, this could be described as a society of agents and re-used without
the extensive analysis being replicated. It may also be appropriate to store societies of
agents for common goal sets in an implemented form to be included into applications as

components.

8.4.4 Organisational Rules

As with workflows, organisational rules require entities to define the relation between, so

are perhaps not appropriate for inclusion in agent interaction analysis.

151

8.5 Problems and Further Work

There are several clear areas in which our work could usefully be extended, perhaps taking
the form of extensions to the agent interaction analysis methodology. These are topics that
are not directly relevant to the aim of designing justified, opportunistic applications, but

are important in raising the usefulness of the methodology.

8.5.1 Reducing Analysis Volume

For an application to be opportunistic, it must make frequent decisions on which part of
the open system will achieve each piece of functionality required. If these decisions are not
made, the application cannot take opportunity of newly available services or take account of
changes in the system that cause one part to become more suitable than another. However,
each decision may depend on different criteria for judging justifiability, and, therefore, will
have different analyses in the design process. The volume of information produced for a
justified, opportunistic design will, therefore, be large. This can be seen in the case study
example in Appendix A, as the number of goals and preferences grows fairly large for the
simple application by the end of goal decomposition, which is where the designer determines
the points at which the application makes decisions.

If an application is to be both opportunistic and justified, regardless of the method-
ology, the volume of analysis produced will be large compared to the complexity of the
application. However, there exist techniques to reduce the amount of analysis and design
in software engineering that are also applicable to our methodology. One of the techniques
is approximation, whereby the designer sacrifices some justification for the reduction of
information. This can be seen where, for example, the designer chooses to decide on a
coordination mechanism for a goal without assurance analysis.

Another technique is re-use, where the designer applies the analysis from one ap-
plication design to another application. Agent interaction analysis aids re-use by making
the detailed analyses application-independent where possible. This can be seen in assurance
analysis where generally applicable coordination mechanisms can be compared to prefer-
ences. The preferences in the comparison are also reduced to only that part that is relevant
to coordination. For example, in the assurance analysis of the Accuracy Viewed goal in

Appendix A, each of the six coordination mechanisms is assessed for its ability to allow the

152

agent using it to ensure the high quality of the solution, corresponding to high accuracy of
prediction. This analysis can be reapplied to other situations and applications, such as the

Redistributed goal in Appendix A, even though the specific types of quality are different.

8.5.2 Implementation Paths

The translation from a design created in agent interaction analysis to implementations
in particular language concepts, e.g. objects, needs to be developed. All implemented
components will be models described in IPML, so it would be useful to have a mapping from
IPML properties to an object-oriented design. Such a mapping would provide consistency
in implementation to accompany consistency in design. A different approach would be to
extend agent development platforms to better express the products of our methodology. In

both cases, CASE tools may usefully support the entire development process.

8.5.3 Formal Verification

It may be useful to be able to connect the informal traceability of a design to formal
verifications where this is appropriate and possible. The definition of some infrastructure
part models could include verified formal descriptions providing the designer with extra
information for deciding between models, i.e. some applications’ requirements may have

included the preference for verified design.

8.6 Concluding Remarks

Users’ increasing willingness to use applications which take advantage of the benefits of
dynamic open systems, while exposing themselves to the inherent risks of that approach,
will allow those benefits to constantly increase as applications make use of each other’s
functionality. It also provides an obvious application for agent-based systems. However,
users will want the risks to be mitigated as much as possible, ensuring that the application
will perform to the requirements. In order to prove this, a potential application should be
justified.

In the preceding chapters, we have described a way in which justification and op-
portunism can be balanced by designing the system in terms of agent interactions. When

an open system can contain many agents of varying functionality that disappear to later

153

be replaced with new and different agents, the interaction between agents becomes more
important than the agents themselves. A user will initiate many of the actions that an
application should perform, and this interaction with the application will be translated into
many interactions between agents. By designing in terms of interactions, developers create
applications that are more easily extended. As each interaction role, the infrastructure and
the application organisation as a whole is tied directly to the requirements, any change in
the requirements can be easily translated into a new design. Depending on whether the
application can be safely altered at run-time or not, new agents may replace or be added to
the existing ones.

In the end, the various techniques we have developed to realise design in terms of
agent interactions are aimed at enabling re-use. By allowing opportunism in open systems,
re-use of existing and future functionality is created. By modularising applications into
infrastructure parts with models described in an application-independent way we promote
re-use of design. We believe that agent interaction analysis can be used both as a useful
agent-oriented methodology and an illustration of techniques for developing justified designs
of opportunistic applications.

We argue that existing agent-oriented software engineering methodologies do not
guide the designer in the creation of justified designs for opportunistic applications. In this
thesis we have presented a methodology that achieves this aim and so will be useful for the

development of open system applications in the future.

154

Appendix A

Case Study Results

This appendix contains all diagrams and tables resulting from the example application
summarised and explained throughout the thesis. For ease of examination, the terms used
in this appendix are defined in Section A.1, though they also occur in the relevant thesis
chapters. Section A.2 contains the example application requirements, as in Chapter 1,
which are then analysed in Section A.3 to determine the goals and preferences included in the
requirements following the method described in Chapter 4. In Section A.4, we decompose the
goals into subgoals. Sections A.5, A.6 and A.7 describe the design phase where infrastructure
part models are analysed and selected by the designer to create the final form of the design

drawing on the techniques discussed in Chapters 5, 6 and 7 respectively.

A.1 Definitions

To clarify the use of language in the example application, we give definitions for commonly

used terms.

User By user, we refer to any person using the application. Before implementation, the

users are likely to be involved in drafting and refining the application requirements.

Requirements The requirements are an informal description of a desired application. The

requirements for the example application are given below.

Application The application is the implemented collective functionality that provides the

user with a solution to the application requirements.

155

Designer The person creating the design from the application requirements and imple-

menting it is called the designer.

System The system is the dynamic, open software environment in which the application

will be deployed. It potentially includes many services available for use by applications.

Goals Goals are descriptions of states of the system that the application is intended to

bring about.

Goal Instance A goal instance is an explicit statement of a goal instantiated in the system,
signifying that the goal should be actively pursued at that moment. A goal instance

will be possessed and acted towards by agents in the system.

Goal Triggers Activity in or on the system that causes a goal instance to be created are

called goal triggers.

Preferences Preferences are priorities or restrictions on how goals are most suitably achieved

according to application requirements.

Opportunism Opportunism is the ability of the agents comprising an application to use

the most suitable functionality available within the system at any time.

Originator As described in Chapter 3, the originator of a goal instance is the agent that
possesses the goal instance before it is interacted (cooperated) over. The originator

will have to initiate the interaction.

Capability Agents that are able to directly act (make changes to the system not involving

agents) to achieve a goal are said to have the capability to achieve the goal.

Local Actors A local actor is an agent created by the application designer that has the
capability to achieve a goal. The existence of local actors in the design, for some goals,
is often desirable to ensure that the application can function, even if to a minimal

quality, when the system has no third-party services available for a particular goal.

A.2 Requirements

We require a collaborative weather mapping application. Using the application, a global

weather map giving the current state is accessed and edited by various collaborating organ-

156

isations. Contributors can add data they have gathered locally to the map in authorised
locations. For example, one contributor organisation may be authorised to add data to a
small local area, while another can add to any location within a country. Authorisation is
enforced to prevent accidental changes. Contributors and other (paying) organisations can
access the weather data and be provided with predictions of weather at specified locations
in the future.

For speed and robustness in a system where organisations’ software services may
become accessible at any time, and later stop being so, the weather data is distributed
among the contributors. As different organisations require access to different local areas,
the data should be distributed to try to ensure each organisation has as rapid access as
possible to the data they need. This distribution should be updated regularly to reflect the
current demands.

Several services offer predictions based on the data, and the number of predicters
available at any one time may vary, partly due to the load they each have on them. The
predicter services vary in speed and in accuracy. They must have access to the weather data
to make the prediction, either by moving onto the system on which relevant data is stored
or by repeated requests to the relevant sources.

Prediction requests specify location, time (in the future) and whether speed or
accuracy should be the priority in producing results. A prediction command, from a user,
that prioritises speed of completion is called a speed view and one prioritising accuracy of
prediction is called an accuracy view. On a speed or accuracy view, the application should
always report back to the user within 10 seconds either with the prediction or with a ‘time
out’ warning. All currently known predicters offer a time out service whereby the prediction
is halted and a warning returned after a specified interval.

As any software service may become inaccessible to the rest of the system at any
time, the functionality of the application should be available locally on the computer system
of each contributor organisation, and preferably the same software will be loaded at each

node for ease of deployment.

A.2.1 Variations

To illustrate the effects of different application priorities, we give two variations on the

application requirements. The preferences below are ones which could have been given by

157

User Application

Start Application

Initial App View

Figure A.1: Event trace for starting the application

the people drafting the requirements in addition to the text above.

Speed Variation After the priorities of the particular operations of the application, e.g.
accuracy in the predictions produced from an accuracy view command, speed should
be the most important factor in considering how the application is designed and im-

plemented.

Interoperability Variation After the priorities of the particular operations of the appli-
cation, the ability of the application to interoperate with and take advantage of many
services in the open system should be the most important factor in considering how

the application is designed and implemented.

A.3 Requirements Analysis

Requirements analysis is used to clarify the functionality required and to clearly express the
requirements in terms of the analysis concepts of the methodology, in this case goals to be

interacted over and preferences to be followed when attempting to achieve the goals.

A.3.1 Scenario analysis

Event traces were analysed for the following scenarios (interactions between the user and
the local application). Exchange of commands, queries for information and information are
shown as arrows from the sending entity (either the user or the application) to the receiving
entity (either the user or the application). The scenario starts at the top of each diagram

and a series of exchanges (events) occurs as time progresses to the bottom of the diagram.

e Starting the application (Figure A.1)
e Modifying the weather map (Figure A.2)

e Selecting a map location for a specified time to view prediction (Figure A.3)

158

ys Application
Add to Map

?Observation

Observation

Confirm Success

Figure A.2: Event trace for modifying the weather map

User Application

Get Prediction

2L ocation

Location

7Time

Time

—

Prediction

Figure A.3: Event trace for choosing a map location prediction to speed view

e Selecting a map location for viewing but times out after 10 seconds (Figure A.4)
e Changing the access rights of another user (Figure A.5)

e Stopping the application (Figure A.6)

The designer must decide which of these traces represents unique goals to be given to the
agents, which are out of the agents’ control and which are equivalent to other goals but
possibly with different parameters. In the cases above, most events suggest an obvious goal
to be achieved. Starting and stopping the local application is for the operating environment
to achieve rather than the agents.

The goals identified from scenario analysis are presented in Table A.1.

User Application

Get Prediction

2L ocation

Location

7Time

Time

<10 seconds>

Time Out

Figure A.4: Event trace for viewing a prediction but operation exceeds 10 seconds

159

Figure A.5: Event trace for

User Application

ChangeAccess

User

ProvideUser

2Rights

ProvideRights

ConfirmSuccess

changing the access rights of another user

User Application

Stop Application

Figure A.6: Event trace for stopping the application

| Type | Name | Description
Goal Contributed User contributed data to the weather map
Goal Speed Viewed User presented with view of map location predic-
tion of specified time as fast as possible
Goal Accuracy Viewed User presented with map location prediction of
specified time, as accurate as possible
Goal Set Access User has set access rights of another user

Table A.1: Data dictionary after scenario analysis

160

Start View
Predictions

- Collaborative:

Allow multiple users at
any time
- Mapping:
Contribute to Provide interface for
Map map manipulation

Gods Preferences
Contribute Open
Speed View

Accuracy View

Figure A.7: Entity analysis for a collaborative weather mapping package

A.3.2 Entity Analyses

The following entities were analysed to determine the goals and preferences implicit in their
requirements usage, adding to the data dictionary as shown in Table A.2. We analysed the
application entities mentioned in the requires to determine the goals and preferences their
presence implied. In the analysis diagrams for the entities listed below below, the application
is shown as a solid circle, with the entity in question shown as a dashed shape positioned
inside or outside the application (to show the relative position implied by the requirements).
To determine the implications of the entity’s existence, we examine its suggested interactions

with other entities, including the user, and the properties it is described to have.

Collaborative weather mapping package (Figure A.7)

Weather map (Figure A.8)

Access Rights (Figure A.9)

Predicter (Figure A.10)

161

Map location data

Contribute
- Composite Made of parts

- Distributed Possibly spread over network
- AccessRights Different for different users
- Editable By userswith given rights
- Viewable By userswith given rights
Goals Preferences
Contributed Validate Edit
Speed Viewed Validate View
Accuracy Viewed
Set Access
Redistributed

Figure A.8: Entity analysis for weather map

Adcess Rights

T \\:iew P
ocasFlights/, \AociessRians

%\ ‘Access

/

Weather Map
Data

- Editable by one or more users
- Affectsthe use, viewing and editing of data for
one or more users

Goals
Set Access

Figure A.9: Entity analysis for access rights

Access map data

Accuracy
View Request
Prediction - =~
— = \
o) \)
Request . f\\\‘,/
Predgiction e deta
Goals Preferences
Speed Viewed Rapid Data (speed view)
Accuracy Viewed Accurate Data (accuracy view)
Prediction Time Out

Figure A.10: Entity analysis for predicters

162

| Type | Name | Description

Goal Contributed User contributed data to the weather map

Goal Speed Viewed User presented with view of map location predic-
tion of specified time as fast as possible

Goal Accuracy Viewed User presented with map location prediction of
specified time, as accurate as possible

Goal Set Access User has set access rights of another user

Goal Redistributed Map data redistributed for high access speed

Preference Open No limit on number of users

Preference Validate Edit Only authorised users can contribute to map lo-
cation data

Preference Validate View Only authorised users can view predictions on
map location data

Preference Time Out If prediction takes longer than 10 seconds then
stop and warn user

Table A.2: Data dictionary after entity analysis

A.3.3 Goal Analysis

The system goals were analysed to determine the actions that trigger the addition of in-
stances to the application and the preferences associated with each. The analysis adds
preferences to the final data dictionary at the end of the requirements analysis stage, as
shown in Table A.3. In the analysis diagrams for the goals analysed below, we specify the
trigger (as an interaction with other entities) and the end state of the goal divided into those
entities affected. When showing information being passed between entities, we use the UML
convention of an arrow tailed by an empty circle for the passing of parameters required for
goal achievement, e.g. Contribution in Figure A.11, and an arrow tailed by a filled circle

for the passing of feedback on a goal’s achievement, e.g. the acknowledgement and warning

shown in Figure A.11.

Goals are desired end states so refer to the consequences of an action rather than an action

itself, e..g ‘User contributed data’ rather than ‘User contributes data’. It may seem strange

Contributed (Figure A.11)

Speed Viewed (Figure A.12)
Accuracy Viewed (Figure A.13)
Set Access (Figure A.14)

Redistributed (Figure A.15)

163

Contribution

Cc——
Contribute Contribution

TRIGGER

GOAL STATE

Acknowledgement of
contribution taking (i doestake effect)

effect ENTITY: USER

Warning as to why
contribution could
not take effect

(if does not take effect)

Map
,” Cﬁntribution
!
. ® ./ Contribution which took effect i

ENTITY: MAPDATA
included in the map

Preferences
Edit Effect

Figure A.11: Contributed goal analysis

Loca_tiqn index Access
Prediction time,
o—

Rights

TRIGGER
Request Speed View l
_GOAL STATE
.@ -
Prediction
ENTITY: USER
OR

Reason why cannot view
predicted state (no access right or time out)
Preferences
Vaéidate View
Rapid Data
Time Out

Figure A.12: Speed Viewed goal analysis

164

Loca_tiqn index Access
Prediction time,
CG—

Rights

TRIGGER
Request l

Accuracy View

_GOAL STATE
.@ -9

Prediction

ENTITY: USER
OR

Reason why cannot view
predicted state (no access rights or time out)

Preferences
Vaéidate View
Accurate Data
Time Out

Figure A.13: Accuracy Viewed goal analysis

New accessrights
User being restricted
o—— TRIGGER

Set Access Rights

GOAL STATE

- ENTITY: USER
-—0

Acknowledgement of access rights being set
Map Access Rights

[]
New Access Rights

o ENTITY: USER
—0

Reason why access rights could not be set

ENTITY: ACCESSRIGHTS

Preferences
Validate Access

Figure A.14: Set Access goal analysis

165

Loca map data

TRIGGER
Redistribute
map data

GOAL STATE
excludes locally less-accessed data
ENTITY: LOCAL STORE
includes more locally well-accessed data

excludes locally well-accessed data

ENTITY: OTHER STORES
includes more locally |ess-accessed data

Preferences
Fast Access

Figure A.15: Redistributed goal analysis

many of the goals refer to the user triggering the goal, when the goal state does not involve
the user, e.g. User contributed data. There are two reasons for referring to external entities
not obviously within the goal state. First, it is useful for the goal description to refer to all
information that the designer knows has to be provided from external sources in order for
the goal to be achieved. The user must be known in order for the agents to examine the
access rights of the user and decide whether the action is allowed to take effect. Second,
the user should be informed of the success or failure of the operation. Therefore the goal
‘User contributed data to the weather map’ is an abbreviation for ‘User is given feedback
on goal failure, or access rights of user allows contribution to be integrated into the weather
map, contribution is integrated into the weather map and user is given feedback on the goal

success’.

166

Type | Name | Description

Goal Contributed User contributed data to the weather map

Goal Speed Viewed User presented with view of map location predic-
tion of specified time (as fast as possible)

Goal Accuracy Viewed User presented with map location prediction of
specified time (as accurate as possible)

Goal Set Access User has set access rights of another user

Goal Redistributed Map data redistributed for high access speed

Preference Open No limit on number of users

Preference Validate Edit Only authorised users can contribute to map lo-
cation data

Preference Validate View Only authorised users can view predictions on
map location data

Preference Time Out If prediction takes longer than 10 seconds then
stop and warn user

Preference Validate Access Only authorised users can edit access rights

Preference Edit Effect As many contributions as possible take effect

Preference Rapid Data Predictions are presented as quickly as possible

Preference Accurate Data Predictions are as accurate as possible

Preference Fast Access Map data should be distributed to give as rapid
access by users as possible

Preference Opportunism The application should prioritise taking advan-

tage of the most suitable functionalityavailable in
the system.

Table A.3: Data dictionary after goal analysis

167

Contributed
[User, Contribution,
Location]

Access Denied Warning Map Ef1i teg Succt
[User, Location, editing]] |[User] [Contribution] |[User]
L ocation]

Edit Effect Validate Edit

Figure A.16: Decompostion of the Contributed goal

A.4 Goal Decomposition

Goal decomposition is the process of dividing goals into several subgoals each of which
can be coordinated over, discussed in Chapter 4. The following goals were decomposed to
separate concerns in the application functionality and to enable implementation. In the
goal decomposition diagrams, a goal is given by name in a box along with the information
(parameters) needed to achieve the goal. The subgoals and preferences of the goals are shown
at the end of lines below the goal. Preferences are marked with the word ‘Preference’. Where
a single horizontal line draws across the set of lines leading to subgoals, all of the subgoals
must be achieved for the goal to be achieved. Where a double horizontal line draws across
there is a choice between alternative sets of subgoals. For example, in the Contributed
decomposition in Figure A.16, the goal may be completed either by checking that access is
denied for the user to contribute data and a warning is given to the user, or the map is
edited and the success of the goal is reported to the user. Where goals are drawn in a heavy-
edged box, there are no further decompositions given for that goal, e.g. Access Denied, Map

Edited etc. in Figure A.16.

e Contributed (Figure A.16)
e Speed Viewed (Figure A.17)

e Accuracy Viewed (Figure A.18)

168

Speed Viewed
[User, Location, Time]

Access Denied \Warning| Prediction Displayed

[User, Location,viewing] |[User] [Location, Prediction
Time] [User,

Prediction]

Preference: Preference: Preferencer) [Preference:
Validate View) | Opportunism J{ Rapid Dat: Time Out

Figure A.17: Decomposition for Speed Viewed goal

Accuracy Viewed
[User, Location, Time]

Access Denied Warning Predictio Displayed

[User, Location,viewing] |[User] [Location, Prediction
Time] [User,

Prediction]

Preference: Preference: Preference: Preference:
Validate View) | Opportunism J{ Accurate DataJ { Time Out

Figure A.18: Decomposition for Accuracy Viewed goal

169

Set Access
[User, Target User,
Rights, New Setting]

Access Denied Warning Rights Edited] | Success
[User, Target User, [User] [Target User, | |[User]
Rights] Rights, New

Setting]

Preference:
Validate Ac

Figure A.19: Decomposition for Set Access goal

Redistributed

Move Data

[Least Accessed]

Least Accessed

Preference:
Fast Access

Figure A.20: Decomposition for Redistributed goal

e Set Access (Figure A.19)

e Redistributed (Figure A.20)

After decomposition, we include the resulting subgoals into our set and regard them in the
same way as the goals originally derived from the requirements. The full list of goals and

preferences at the end of the analysis phase is given in Table A.4.

A.5 Preference Analysis

The infrastructure needs to support the agent operation. In order to identify the components
of the infrastructure required for agents to interact over the system goals, the designer can
examine various aspects of the application operation. In particular, the designer can refer
back to the analyses of goals made earlier to determine the functionality required for goals
to be triggered, examine the infrastructure required to allow the agents to interact and also

examine existing infrastructures (as discussed in Chapter 5).

170

Type | Name | Description

Goal Contributed User contributed data to the weather map

Goal Speed Viewed User presented with view of map location predic-
tion of specified time (as fast as possible)

Goal Accuracy Viewed User presented with map location prediction of
specified time (as accurate as possible)

Goal Set Access User has set access rights of another user

Goal Redistributed Map data redistributed for high access speed

Goal Access Denied It has been checked that the user is not authorised
to perform the specified action

Goal Warning User has been warned of action failure

Goal Map Edited Map location data has been changed to a new
value

Goal Success User has been informed of success of action

Goal Prediction Prediction regarding map location at given time
has been made

Goal Displayed Prediction | User views prediction

Goal Rights Edited Access rights for user have been changed

Goal Least Accessed The least accessed local map data has been iden-
tified

Goal Move Data Map data stored locally is moved to a remote store

Preference Open No limit on number of users

Preference Validate Edit Only authorised users can contribute to map lo-
cation data

Preference Validate View Only authorised users can view predictions on
map location data

Preference Time Out If prediction takes longer than 10 seconds then
stop and warn user

Preference Validate Access Only authorised users can edit access rights

Preference Edit Effect As many contributions as possible take effect

Preference Rapid Data Predictions are presented as quickly as possible

Preference Accurate Data Predictions are as accurate as possible

Preference Fast Access Map data should be distributed to give as rapid
access by users as possible

Preference Opportunism The application should prioritise taking advan-

tage of the most suitable functionality

Table A.4: Data dictionary after goal decomposition

171

Command Application

[GUI triggeringj [Agmtinteractiong [GUIfeedbackj

User

[God soragej [Cooperationj Action

Goal Plan Plan Actions
representation representation) | manipulation form

Capability to agent n— ;
[mapping] [Coordmatlon] [Adopuon]

Application | (Communication (Observation) (Deduction (Assumption)

interoperatiof
Agent Belief
communication storage

language

Figure A.21: Infrastructure modularisation showing the support required for goal triggering
via the GUI and for agent interactions

Figure A.21 shows a decomposition of a generalised application in which the user
issues commands through a graphical user interface (GUI). The functionality of the appli-
cation is achieved by interacting agents that possess goals. The goals are caused to exist
(triggered) by the user interacting with the GUI, and the feedback from any goal achieve-
ment or failure) is presented on the GUL This is shown in the diagram as a decomposition
of the application. The agent interactions are further modularised into the possession of
a goal by an agent (the originator agent for the interaction), cooperation in achieving the
goal and action arising from the cooperation. Goals possessed by an agent must be rep-
resented in a pre-specified form, as must the plans (plans are decompositions of action in
this case). Cooperation is shown to require infrastructure to enable agent capabilities to be
identified, agents to be coordinated to best achieve the goal and adoption by agents of the
goal over which cooperation takes place (agreement to cooperate). Coordination between
applications may require infrastructure to translate between them (as identified by Sycara
et al. [94], described in Chapter 4). On an individual agent level, coordination depends
on the coordination mechanisms used but belief acquisition by communication, observation,
deduction and assumption (as described in Chapter 6) must be supported by the infrastruc-

ture. Communication requires a language in which to communicate and assumption may

172

require some way of storing those assumptions explicitly (as beliefs).

As described in Chapter 5, infrastructure parts can be divided into those that are
individual to each agent, agent infrastructure parts, and those that are application-wide and
support the operation of all agents, application infrastructure parts. Agent infrastructure
parts are most closely tailored to individual goals, as each part is chosen based on its appli-
cability for a particular goal. Therefore, where it is possible to choose between individual
agent infrastructure parts and universally-used application infrastructure parts, the former
is preferred due to its high applicability.

Each of the infrastructure parts can be implemented in one or more ways. We de-
scribe these possible models using the infrastructure part model language (IPML). IPML
is a set of properties that can be described for each model, similar to a design pattern
langauge. The properties highlight the significant ways in which the model would be com-
patible or conflict with application preferences, interactions over goals and choices of models
for other infrastructure parts. For brevity and realism, we provide only one option for some

infrastructure parts and several choices for others.

A.5.1 Parts of the Application

The following high-level parts were identified as fundamental to the functioning application.

We refer to the graphical user interface below as the GUI.

GUI Triggering When users interact with the interface, by clicking on buttons for exam-
ple, they issue commands to the agents making up the application. The mechanism
by which the interface and agents interact is an infrastructure part. Models that the

designer could choose from for this infrastructure part are shown in Tables A.5 and

A6.

Agent Interactions In agent interaction analysis, goals are described as being achieved
by groups of cooperating agents. This requires infrastructure to enable the agents
to interact. Agent interactions are abstractions and, therefore, are not implemented
as an infrastructure part themselves. Instead we decompose the infrastructure parts

involved in interaction below.

GUI Feedback The user will receive interface feedback on a GUI triggered goal, such as

the progress, success or failure of the goal. The suggested model that the designer has

173

Part Name GUI Triggering

Model Name GUI Trigger Agent

Description A single agent accepts all goals triggered from the local GUI and
discovers other agents tocooperate with over each.

Algorithms For each goal triggered from the GUI, the agent takes the follow-
ing steps:1. Adopt the goal benevolently (see Benevolent model
for Adoption part).2. As the originator for the goal, coordinate
with other agents to achieve it.

Priorities The model has the potential to be flexible through being agent-

Resource Use

Support Required
Scaling

Applicability

Problems

based andallows for coordination to be tailored to the goal from
the time it is triggered.

There must be a reference to the GUI trigger agent from the
GUI to allowgoals to be communicated to the agent.

A benevolent goal adoption mechanism is required in the agent.
With a large number of goals passing from the GUI, the trigger
agents maybecome a bottle-neck.

Applicable where the goals from the GUI are to remain low
in frequency, similarin preferences but with complex activities
required to achieve each.

The agent may not be able to be tailored to all goals triggered
from the GUI and maybecome a bottleneck with increased fre-
quency.

Table A.5: An IP model for the adoption of goals of a specific type.

available for this infrastructure part is shown in Table A.7.

174

Part Name GUI Triggering

Model Name Designated Local Adopters

Description When goals are triggered, the local infrastructure is queried to
discoverwhich agent is designated to deal with the goal. An
agent is chosenfor each possible goal triggered.

Algorithms On triggering a goal, the GUI does the following.1. Query the
local infrastructure to determine the agent designatedto address
this goal; 2. Offer the goal to the agent;3. The agent must
accept the goal and cooperate to achieve it.

Priorities The model prioritises division of goal execution between agents

Resource Use

Support Required

Scaling

Applicability

Problems

and a centralised,reliable point at which to query the agents
currently available.

Requires a local store that the GUI can query for references to
the designated agents.

Designated agents must be compelled to adopt the designated
goals on demand (seethe Benevolence model for Adoption and
the Forced Cooperation model forCoordination).

The number of agents may increase as the number of triggered
goals does. The effortrequired to extend the application by
adding GUI triggered goals is therefore higherthan with some
other models.

Most applicable where the frequency of triggered goals is high
and diverse, the localresources are large and the goals can be
communicated quickly so that the queriesfor local adopters do
not overwhelm the local infrastructure.

As the local infrastructure is not agent-based itself, extra effort
is required to maintainit and the triggering may be less flexible
in this regard.

Table A.6: An IP model for the adoption of goals of a specific type.

175

Part Name GUI Feedback

Model Name Local GUT Access

Description Agents can directly access and send commands to the GUI of
the local infrastructure.

Algorithms When an agent needs to communicate with the user it must send
acommand message to the local infrastructure.

Priorities The model prioritises simplicity and speed.

Resource Use The local infrastructure must have a standard interface for com-

moncommands to the GUI. Agents must possess knowledge of
the commandsinterface. As several commands may be sent to
the local infrastructureat once, a queue is used to process the

commands.
Support Required No other infrastructure parts are affected as this is purely an in-
terfacebetween agents wishing to provide feedback and the user.
Scaling The model allows communication between agents and the inter-

face tobe as direct as possible so processing is minimised. How-
ever, if thenumber of commands becomes too large, the local
infrastructure couldbe overwhelmed.

Applicability As this infrastructure part supports the agents in the trivial
task ofaddressing the user, this model will be applicable in most
situations.

Problems As the interface is not agent based, it is more difficult to extend.

Table A.7: An IP model for the adoption of goals of a specific type.

A.5.2 Parts of Agent Interaction

Goal Storage Goals can potentially appear and disappear from the application, and are
possessed by agents. To explicitly represent this varying number of goals, the agents
need suitable storage mechanisms. The suggested model that the designer has available

for this infrastructure part is shown in Table A.8.

Goal Representation In order to communicate goals, the format of the goals must be
decided. This is related to the properties of goals identified by Logan [68] and dis-
cussed in Chapter 2. The suggested model that the designer has available for this

infrastructure part is shown in Table A.9.

Cooperation Agents cooperate to achieve goals. As with agent interactions, this is a fairly
abstract idea that we believe can be adequately captured by the processes involved in
cooperation without the need for a separate infrastructure part describing it. Agents
wishing to cooperate need to be able to find capable agents, persuade them to cooper-
ate and coordinate activity with them for best effect. This decomposition is described

below.

176

Part Name Goal Storage

Model Name Queue

Description Store the goals possessed by an agent in a standard queue struc-
ture. Inconstrast to a set, this allows the same goal to be pos-
sessed in morethan one instance by an agent. The least recently
adopted goal is themost recently considered.

Algorithms Single operations allow the agent to add adopted goals to the
tail ofthe queue and remove the goal from the head of the queue.

Priorities Allows multiple instances of the same goal, prioritises speed and-

Resource Use

Support Required

simplicity over attempting more important goals first.

A standard queue data structure is required within the agent
usingthis mechanism.

Goal representations must be able to fit within a queue.

Scaling If multiple instances of the same goal should be ignored, this
modelis wasteful at large scales, otherwise it is as succinct as
any other model.

Applicability The model is applicable where multiple instances of the same
goal aretreated as separate commands.

Problems If the goal state is reached for a single goal, it is possibly wasteful
toattempt it again if the context has not changed significantly.

Table A.8: An IP model for the storage of goals.

Part Name Goal Representation

Model Name Predicate Logic

Description Uses predicate logic to represent a desired state of the environ-
ment stored inside agents.

Algorithms Logic parsing, unification and matching algorithms are stan-
dard.

Priorities This representation is well established, clear and has known ma-

Resource Use

Support Required

Scaling
Applicability

Problems

nipulation algorithms.

The goal store of an agent must be able to hold multiple predi-
cate logic statements.

Agents must be able to match the predicate logic goals to the
observed environmental state.

Succinct descriptions by predicate logic allow for good scaling.
In most agent-based applications, predicate logic is an adequate
and known standard.

The form is not as easily read or written by people as other
structures.

Table A.9: An IP model for the representation of goals.

177

Part Name Actions

Model Name Local Access Acting

Description Agents act by sending commands to the local infrastructure.

Algorithms When an agent acts it sends a command directly to the local
infrastructurewhich instantiates the action.

Priorities The model prioritises simplicity and speed through directness of
communication.

Resource Use The local infrastructure must be able to interpret and act on

several action commands.As several commands may be sent at
once, a queue is used to store the commandsbefore processing.

Support Required No other infrastucture parts are affected as this is purely an
interface between agentswishing to act and the other system
state.

Scaling The model allows communication between agents and the inter-

face tobe as direct as possible so processing is minimised. How-
ever, if thenumber of commands becomes too large, the local
infrastructure couldbe overwhelmed.

Applicability As this infrastructure part directly supports the agents in per-
forming actions on thesystem state, it will be applicable in most
situations.

Problems As the interface is not agent-based, it may be more difficult to

extend than othermodels.

Table A.10: An IP model for the processing of actions.

Actions The application environment determines how the agents act, but the form of the
interface for agents to make changes to the environment may be determined by the
application designer. The suggested model that the designer has available for this

infrastructure part is shown in Table A.10.

178

Part Name Capability to Agent Mapping

Model Name None / Broadcast

Description No idenitification of agents by capability is made. Requests of
cooperation are either directed at knownindividuals or broadcast
to all agents in the open system, as dictated by the coordination

mechanisms.
Algorithms No algorithms are required.
Priorities This model prioritises lower use of information storage, less re-

liance on a particular representationof capabilities and less re-
liance on agents registering their capabilities.

Resource Use No resources used.

Support Required The model relies on the communication mechanisms to provide
discovery of an adequate range ofagents so that the required
capabilities can be found from among them. The communication
mechanismsmust allow broadcast of requests.

Scaling The communication required for broadcast increases as the num-
ber of agents in the system increases.
Applicability Applicable where the number of agents in the system is likely

to remain low, where storage space islow and where capability
registration is difficult.

Problems The amount of communication is high as agents are contacteed
regardless of capability.

Table A.11: An IP model for mapping capablities required to agents possessing them.

A.5.3 Parts of Cooperation

Capability to Agent Mapping This infrastructure part allows an agent requiring a par-
ticular capability (ability to achieve a goal) to discover an agent that possesses that
capability. Models that the designer could choose from for this infrastructure part are

shown in Tables A.11 and A.12.

Coordination An agent uses a coordination mechanism to ensure its actions and those of
other agents are combined for greatest benefit. Models that the designer could choose
from for this infrastructure part are shown in Tables A.13, A.14, A.15, A.16, A.17 and
A.18.

Adoption An agent can be benevolent and accept all goals offered to it, accept them only
from certain other agents, accept only a limited number at a time or only accept goals
along with some reward offered for doing so. The way in which agents act when offered
a goal to achieve is the adoption mechanism of the agent. Models that the designer
could choose from for this infrastructure part are shown in Tables A.19, A.20 and

A.21.

179

Part Name Capability to Agent Mapping

Model Name Broker Agent

Description Agents pass on requests for goals to be achieved through a bro-
ker agents in this model. Agentsregister their capabilities with
the broker agent. The broker agent is an identified model for
thecoordination infrastructure part.

Algorithms See the IPML description of the Broker Agent model for the
Coordination infrastructure part.

Priorities The model prioritises extensibility through being agent-based,

Resource Use
Support Required
Scaling

Applicability

Problems

centralisation of capabilitymapping and speed by use of a rela-
tively simple mechanism.

The broker agent requires all the infrastructure needed in order
for agents to register capabilitiesand make requests.

Agents must use a boker agent as a coordination mechanism
using this approach.

The broker agent may become a bottleneck if the frequency and
size of capability requestsbecomes large.

Applicable where service requests are small or infrequent, the
number of capable agents is largeand where it is easier for ex-
ternal agents to register their services with an agent than bedis-
covered.

The broker agent adds complexity to the design and the require-
ment that it be used potentiallyreduces the design’s match to
the preferences by restricting the choice of coordinationmecha-
nisms.

Table A.12: An IP model for the adoption of goals of a specific type.

180

Part Name

Coordination

Model Name Forced Cooperation

Description In this model, certain agents are required to cooperate over a
goalon demand and are known to the agent employing this mech-
anism.The mechanism is approximately the same as message
passing in (concurrent) objects.

Algorithms To request cooperation from a forced agent, there is only one
step.1. Demand cooperation over the goal

Priorities The model prioritises speed, reliability that the cooperators will

Resource Use

Support Required

Scaling

Applicability

Problems

becapable (through explicit design) and security in knowing the-
cooperator is pre-determined to be trustworthy.

Local information regarding the forced cooperation in agents
isrequired by the agent employing this mechanism.

The model requires mandatory adoption of goals in some
agentsproviding the capability for this goal.

Scales easily as it requires no communication beyond the min-
imumdemand for cooperation, but does require suitable func-
tionality tocontinue to be available within the application over
time.

This model is most applicable where security or reliability are
ofmuch greater importance than opportunism and where it
is knownthat the forced functionality will always be available
within theapplication.

Forced cooperation allows no flexibility in choosing coopera-
torsso provides for no opportunism in exploiting the open sys-
tem.

Table A.13: An IP model for a coordination mechanism.

181

Part Name

Coordination

Model Name

Commitments

Description

Algorithms

Priorities

Resource Use
Support Required

Scaling

Applicability

Problems

Agents using this coordination mechanism send requests for goal
achievement and request offers, accepting the first offer that is-
received in reply that is acceptable by their adoption mecha-
nism. An agentoffering to achieve the goal and subsequently
being accepted is committing iscommitting themselves to the
goal’s achievement.

1. Send out requests to viable agents (see Capability to Agent
infrastructure part);2. Wait for offers; 3. Pass all offers to the
adoption mechanism to consider;4. Send acceptance of first vi-
able offer.

The model minimises processing and so is fast but still able to
take opportunityof all services in the system.

The model requires communication of requests and acceptances.
The agent communication language needs to be able to express
requests, offersand acceptances in a standard way.

As the mechanism does not require a large amount of resources
or any degreeof centralisation, it should scale well in most cases.
The model is applicable where ensuring the speed of coordina-
tion is of greater importance than the quality or reliability of
solutions. It is also useful where theapplication needs to avoid
centralisation.

As the commitment offers are not assessed to determine their
suitability, theagent using the mechanism has no guarantee of
achieving the highest qualitysolution, where this is a concern.

Table A.14: An IP model for a coordination mechanism.

182

Part Name

Coordination

Model Name

Trust

Description

Algorithms

Priorities

Resource Use

Support Required

Scaling

Applicability

Problems

The agent using this mechanism checks the quality of any solu-
tionprovided by an agent and uses these assessments to decide
whichoffers to accept in the future. The checks can be either by
observationof the state achieved, if the goal attempts to achieve
a particular observablestate, or by an independent production
of the same information, if thegoal attempts to derive some in-
formation.

1. Send requests to agents; 2. Wait for a suitable duration to
receive offers;3. If no offers received, resend requests; 4. If some
(one or more) offers arereceived, assess them to determine which
comes from the most trustworthyagent; 5. Accept the offer from
the most trustworthy agent.

A trust-based mechanism prioritises quality of solution and re-
liability inobtaining a solution.

The agent using the mechanism will need to possess quantitative
assessmentsof the trustworthiness of other agents, which rise and
fall depending onobserved quality of solution. The agent will
make observations or requestextra information for each goal.
As the agent using the trust mechanism algorithm must wait a
specifiedduration, it requires a scheduling mechanism capable of
this.

With a large number of possible collaborators for a goal, the
number ofmodels possessed by the agent will also be large. The
observational checkswill add to the time taken to process each
goal by the agent.

Where the quality of the goal is able to be checked in some way
and isof more importance than speed or the low use of resources.
A trust-based mechanism may add a significant amount of pro-
cessing toeach goal the agent seeks cooperators for.

Table A.15: An IP model for a coordination mechanism.

183

Part Name

Coordination

Model Name

Matchmaker Broker Agent

Description

Algorithms

Priorities

Resource Use

Support Required

Scaling

Applicability

Problems

A matchmaker agent is a brokering solution in which requestin-
gagents are given contact information of the providers. The
matchmakermaintains a database of the services agents can
perform (goals they canachieve) but uses this solely to iden-
tify a suitable provider for eachrequester. Requesters and
providers then communicate without anyfurther intervention by
the matchmaker, which allows for greaterflexibility.

The algorithm for an agent registering a provided service with
thematchmaker requires only one step: 1. Communicate ser-
vice provisionto matchmaker. An agent using a matchmaker to
find a service mustalso get a commitment from the provider as
the matchmaker agentdoes not do this. 1. Request communica-
tion channel to provider ofservice from matchmaker; 2. Receive
provider channel from matchmaker;3. Communicate goal com-
mitment from provider; 4. Receive commitmentto achieve goal.
The model allows agents to find service providers, gives flexibil-
ity incommunication between provider and requester and has a
relatively simpleimplementation.

The mechanism requires a data store recording the services that
eachagent provides.

The agent communication language used must support register-
ing andrequesting services. Agents also need a reference to a
matchmaker or to be ableto get one.

Little communication is needed for making a request and, by
transferringcommunication responsibility to the requester, the
matchmaker has no furtherwork after matching requester with
provider. However, the recorded servicesand the search of the
data increases as the number of agents registering servicesin-
creases. If the adverts for services are to be large in size then
the databasewill quickly expand.

The mechanism is applicable where agents will and can easily
register servicesto brokers accessible by those others that will
need the services. The model allowsan agent-based model for
the Capability to Agent Mapping part providing flexibilityand
extensibility. It is also applicable where communication between
requester andprovider must be flexible, complex or private.
The data store may become large with many agents or services.
Agent identities mustbe revealed in order to provide services, so
privacy and looseness of coupling arereduced. A requester must
ask both the matchmaker and the provider for a singlegoal.

Table A.16: An IP model for a coordination mechanism.

184

Part Name Coordination

Model Name Intentions

Description When an agent needs to find a suitable other to cooperate with
over a goal,it may be that it would be best for the agent to at-
tempt the goal itself. Thismechanism causes the agent to always
choose this option for a goal.

Algorithms On becoming originator for a goal, the agent adopts the goal
itself.

Priorities The mechanism prioritises speed in decision making and reli-

Resource Use
Support Required
Scaling

Applicability

Problems

ability incooperation over flexibility and opportunism in using
external capabilitiesthat may provide a higher quality service.
No resources are required in addition to those necessary to
achieve thegoal.

The adoption mechanism must allow several goals to be adopted
benevolentlyas there are no other agents to take them on.

If the number of goals becomes large, the agent could become
overloaded asit must adopt them all itself.

The model is applicable where security, speed and reliability are
of so muchimportance that the goal should be achieved by the
same agent requiringassurance that it will be done.

The mechanism does not take opportunity of the potentially
higher qualityservices available in the system.

Table A.17: An IP model for a coordination mechanism.

Part Name

Coordination

Model Name

Negotiation

Description

Algorithms

Priorities
Resource Use

Support Required

Scaling

Applicability

Problems

Broadly, we use negotiation to mean repeated communication
between agents over one or more values ending in an agreement
to action by the agents.

The value(s) negotiated over represents the quality of the goal
solution and its meaning will, therefore, depend on the prefer-
ences. For this reason, we cannot provide a generic negotitation
mechanism. In general terms, each communication will be a re-
quest for suggestions, a suggested allocation of values between
agents or an acceptance.

The model prioritises reaching a high quality solution through
communication.

Agents engaging in negotiation must have a means of judging
the next step of a negotiation given the current position.

The agent communication language must be sophisticated
enough to allow the expression of values being attached to do-
main concepts in order for those values to then be negotiated
over.

Negotiations need not involve many agents but can involve many
communications between agents. Therefore, negotiation may
not be suitable where this is a lot of communication occurring
in the system for too little benefit.

Negotiation is primarily applicable where there is something of
value to be exchanged or distributed.

Negotiation can involve much complexity to work well.

Table A.18: An IP model for a coordination mechanism.

185

Part Name Adoption

Model Name Benevolence

Description A benevolent agent agrees to cooperate over any request for a
specific goal.

Algorithms On receiving a request for cooperation over the goal, the agent
responds with an offer to the sender

Priorities The model priorities ease of finding agents to take on the goal

Resource Use

Support Required

when it is required,and also ease of implementation.

The model requires goals to be stored within and added to an
agent.

As benevolence could lead to a goal being adopted before an-
other is achieved,the goal storage part of a benevolent agent
must allow for multiple goals.

Scaling If the agent always accepts new goals, it may not achieve the
existing ones quickly.The application may not be most efficient
with arbitrary acceptance of goals.

Applicability Useful for goals that can be achieved relatively quickly but may
still overlap in their existencein the application, and for goals
for which it is necessary to accept them quickly.

Problems An agent taking on goals benevolently may become a bottle-neck
in the application.

Table A.19: An IP model for the adoption of goals.

Part Name Adoption

Model Name 1-Goal Benevolence

Description An agent using this mechanism will adopt only one goal(of a
specific type) at a time but indiscriminately.

Algorithms On receiving a request for cooperation over the goal, theagent
will offer to accept it if it has no other goals or rejectit otherwise.

Priorities The model prioritises wide distribution of goals, preventinga-

Resource Use
Support Required

Scaling

Applicability

Problems

gents from becoming overloaded.

The agent must be able to accept and store one goal at atime.
The mechanism requires that agents using it can store a single-
goal.

If the number of agents is large compared to the number ofgoals,
then the application will continue to scale up well. Ifthe number
of goals is larger than the number of agents thensome goals may
not be accepted.

The model is useful where a single goal takes a significantamount
of time to complete and there are a large number ofagents able
to take on the goal. It is also applicable wherewide distribution
of goals is useful in itself.

If the number of goals existing at a time exceeds the numberof
agents then the originators will not be able to find anyagent able
to cooperate, leading to delays.

Table A.20: An IP model for the adoption of goals of a specific type.

186

Part Name Adoption

Model Name Payment

Description Agents are offered some quantitative reward when requested to
adopt a goal.Within an open system, an agent will need to con-
firm the validity of thepayment offer with a trusted source.

Algorithms 1. Receive goal request with payment offer; 2. Check validity of
payment withtrusted banker; 3. Offer or refuse adoption of goal

Priorities This model allows the appropriate matching of goal adoption to

Resource Use

Support Required

Scaling

Applicability

Problems

a quantitysuch as desired capital (if the reward represents real-
life payment for services)or resource use (if the reward represents
available resources, allowing for loadbalancing).

The agent should have some built-in criteria in order to assess
whether to accepta payment or not (such as a valuation of goals
offered).

The model requires an infrastructure part offering banking fa-
cilities to check thevalidity of payments. It also requires the
form of communicated goals to allow for payment offers to be
included.

This model may aid scaling if the reward is used to represent
available resourcesand higher payments can only be offered by
agents with access to more resources.

Payments between agents are applicable where payments be-
tween humans mustbe represented, as well as where other quan-
tities should be balanced.

The model requires a substantial amount of extra support in
banking facilities,payment offers calculated and attached to
goals and assessment of offers.

Table A.21: An IP model for the adoption of goals of a specific type.

187

Resource Use

Support Required
Scaling

Applicability

Problems

Part Name Plan Representation

Model Name Tree

Description A plan is stored within an agent as a tree of goals with sub-
goals.The tree nodes include information on whether their chil-
drenare meant to be taken as disjunctives or conjunctives.

Algorithms The tree is loaded in from file when the agent is initialised.

Priorities The model prioritises data representation that closely matches-

the goal decompositions. This allows for simple translationbe-
tween the design and the implementation.

A tree data structure within each plan-manipluating agent isre-
quired.

The agent must have suitable plan manipulation algorithms.
As the model closely represents the goal decomposition, itshould
not produce significant problems at large scales.

The tree representation would be applicable under mostcondi-
tions.

The model does not allow the preferences of goals to beexplicitly
represented, which could be useful in someapplications.

Table A.22: An IP model for the representation of plans.

A.5.4 Parts of Action

Plan Representation An agent interacting over a goal may explicitly decompose the goal
into several parts for execution. The way in which this is done may be tailored to the

goal. The suggested model that the designer has available for this infrastructure part

is shown in Table A.22.

Plan Manipulation When executing a plan, an agent must be able to keep track of their

position in it. The suggested model that the designer has available for this infrastruc-

ture part is shown in Table A.23.

Actions Form The way in which actions are represented affects how they are contained

in plans. The suggested model that the designer has available for this infrastructure

part is shown in Table A.24.

188

Part Name Plan Manipulation

Model Name Tree Position

Description This plan manipulation model is associated with the Treemodel
for plan representation. The current state of the planis indicated
solely by a position in the tree. An agentprocessing a node of
the tree becomes the originator forthe goals of the child nodes
and coordinates over them.

Algorithms On adopting a goal, the agent examines the tree containingthe
goal and finds cooperators for each of the goal’schildren, or acts
directly to achieve the goal if it has nochildren.

Priorities The model is simple and prioritises opportunism by keepingall

Resource Use

Support Required
Scaling

Applicability

Problems

subgoals open to cooperation.

A status of the goals and subgoals must be maintained toprevent
the agent from repeatedly acting on the same goal.

The plan representation must be a tree structure.

The model should have no significant impact at small orlarge
scale.

The model is applicable wherever the tree representation isin
use.

The algorithm may lead to unnecessary interaction betweena-
gents but this will otherwise have to be determined atdesign-
time and so would only be applicable to morestatic environ-
ments.

Table A.23: An IP model for the manipulation of plans.

Part Name Actions Form

Model Name Predicate Logic

Description This model uses predicate logic to represent actions by agents.

Algorithms The algorithms required are those standard for logic parsing,
unification and matching.

Priorities This representation is well established, clear and has known ma-

Resource Use
Support Required

Scaling
Applicability

Problems

nipulation algorithms.

The interface by which agents perform actions (change the envi-
ronmental state) must be able toprocess predicate logic actions.
The infrastructure part for processing actions must accept pred-
icate logic form actions.

Succinct descriptions by predicate logic allow for good scaling.

In most agent-based applications, predicate logic is an adequate
and known standard.

Predicate logic descriptions may be complex and difficult to read
for some type of actions,e.g. graphical drawing instructions.

Table A.24: An IP model for the form of representation for agent actions.

189

Resource Use
Support Required
Scaling

Applicability

Problems

Part Name Application Interoperation

Model Name Uniform Standard

Description All applications wishing to interact with agents in an application
using this modelmust implement communication communication
language and protocols.

Algorithms None required.

Priorities This model prioritises speed, accuracy of application requests (as

no interpretationis required), and ease and accuracy in agents re-
questing functionality from otherfunctionality. Also, any agent
in the open system can, in principle, cooperate directlywith any
other using this model.

No internal resources but the standard must be widely available
to developers.

A broad, general agent communication language is required to
allow a range offunctionality to be accessible to all agents.

No extra resources will be required as the application interoper-
ation increases, as noadditional processing is necessary.

The model is most applicable where speed, ease of interoperation
and scaling are ofhighest importance and where the published
standard is likely to beimplemented in other systems useful to
the application.

A uniform standard for interoperation requires a standard that
is likely to be adaptedand be useful in constructing other appli-
cations, and continue to be so in the future.This may be difficult
to achieve. If the standard is not widely used, the application-
may be limited to using only a few applications, which reduces
the chances ofopportunistic behaviour by agents.

Table A.25: An IP model for interoperation between applications.

A.5.5 Parts of Coordination

Application Interoperation In order for the application to function fully in an open
system, it must have mechanisms to allow it to communicate and interoperate with
other applications. This infrastructure part is one of the layers identified by Sycara

et al. in [94] and discussed in Chapter 4. Models that the designer could choose from

for this infrastructure part are shown in Tables A.25 and A.26.

Communication Modules In order for agents to communicate, the infrastructure needs
to provide mechanisms for the transmission of messages between them. The suggested

model that the designer has available for this infrastructure part is shown in Table

A.27.

Agent Communication Language The agent communication language (ACL) defines

the form of the messages passed between agents.

190

Models that the designer could

Part Name Application Interoperation

Model Name Translators

Description Between applications, translating agents attempt to convert
fromone communication model to another.

Algorithms An algorithm is required for each external communication mod-
eland depends on that model. As not all external models may
beknown in advance, the translator agents may have to inte-
grateddynamically with newly implemented algorithms.

Priorities The model prioritises complete flexibility in accessingpotentially

Resource Use
Support Required
Scaling

Applicability

Problems

all other applications, lessening demand on developercollabora-
tion. It also allows the application not to be tied to asingle
communication model itself.

The model requires translation information and processes with-
intranslator agents to make use of this information.

The model is based on extra agents, translators, that can con-
vertbetween communication models.

Extra translating agents are required for every new communica-
tionmodel to be connected to the application.

The model is applicable where flexibility in interacting with aw-
ide range of application communication models is of highestim-
portance. It is also useful where the functionality of oneap-
plication is not be easily expressed in terms of the function-
alityof a connected application, as the translator may provide
additionalcontext-sensitive approximation.

The model needs to be updated with each communicationmodel,
it uses more resources and translation slows down theprocess of
interoperation.

Table A.26: An IP model for interoperation between applications.

191

Part Name Communication

Model Name Stubs

Description Agents communicate with remote others by sending messages
toagent stubs which then pass on the messages to the agents-
themselves. The stubs, and agents should be able to acceptmes-
sages in the agent communication language chosen,

Algorithms For agent A to send a message to agent B, A passes the mes-
sageto B’s local stub and the stub transmits the message to B.

Priorities The model prioritises flexibility, in that the stub can be alteredto

Resource Use
Support Required

Scaling

Applicability

Problems

accept other forms of communication. The model also aidsdis-
tribution by separating the points to which agent communica-
tionsare sent. Finally, it simplifies the local operation because
the methodof referencing remote agents is the same as for local
ones, requiringno additional addressing mechanism.

Each remote agent must have a stub capable of sending onmes-
sages in the agent communication language.

Agent communication language messages must have a transfer-
ableform.

As the number of remote agents accessible to a local node
grows,the number of stubs required to represent them grows
too.

The model is useful where the number of remote agents nec-
essaryto directly communicate from any local node should not
grow toolarge and where simplicity and speed in passing message
isthe priority.

The number of stubs required could become unmanageably
largeas the number of remote agents grows.

Table A.27: An IP model for communication.

192

Part Name Agent Communication Language

Model Name FIPA-ACL (subset)

Description The communication language structure and semantics
described by the FIPA standards body.It is based on
speech acts with a strictly defined syntax.

Algorithms Algorithms are required for parsing messages in FIPA-
ACL and to construct them. These depend on the per-
formatives and so will not be given here for reasons of
space.

Priorities FIPA-ACL is a known standard so prioritises interoper-
ability into the future. It has been tested through use
and is widely expressive.

Resource Use FIPA-ACL requires a semantic language, such as FIPA-
SL, to describe content. The content language used can
be stated as a property field of FIPA-ACL.Modules to
parse and construct messages are also required.

Support Required Communication modules must be able to transmit FIPA-
ACL encoded messages.
Scaling FIPA-ACL messages can be quite large so the resources

required increases morequickly with communication than
for smaller languages.

Applicability Applicable where high interoperability will be required
into the future and in domains wherehigh expressivity is
necessary.

Problems Complex message semantics, such as FIPA-ACL’s, re-

quire complex parsers.

Table A.28: An IP model for an agent communication language.

choose from for this infrastructure part are shown in Tables A.28, A.29 and A.30.

Observation This infrastructure part defines the interface that agents access the environ-
ment through. Models that the designer could choose from for this infrastructure part

are shown in Tables A.31 and A.32.

Deduction Agents may be able to transform one set of knowledge to derive further knowl-
edge. The suggested model that the designer has available for this infrastructure part

is shown in Table A.33.

Assumption Agents may have built-in knowledge represented explicitly or implicitly. This
does not really need a choice of models as the knowledge should always be possible to

integrate as part of the agent’s implementation or as an initial belief.

Belief Storage The knowledge of agents can be stored within the agents in several ways.
The suggested model that the designer has available for this infrastructure part is

shown in Table A.34.

193

Resource Use
Support Required

Scaling

Applicability

Problems

Part Name Agent Communication Language

Model Name KQML

Description KQML is a commonly implemented agent communica-
tion languagerepresenting speech acts by a set of perfor-
matives.

Algorithms Algorithms for parsing KQML statements are not pre-
sented herefor reasons of space.

Priorities The advantage of KQML is that it is implemented in

severalexisting systems, allowing the application to po-
tentially interact with them.

KQML uses the KIF language to represent content of
messages so parsers are required for KQML and KIF.
Communication modules must be able to transmit
KQML messages.

KQML messages are of a similar size to FIPA-ACL mes-
sages withsymbols kept to a minimum but several prop-
erties to each message.

Applicable where interoperation with existing agent-
based applications is particularly useful.

FIPA-ACL has mostly superceded KQML.

Table A.29: An IP model for an agent communication language.

Part Name Agent Communication Language

Model Name Application Specific

Description An application-specific language can have messages with
a succinctstructure only able to express the simple com-
mands relevant tothe application, e.g. OfferPrediction or
View(<location>, <time>)

Algorithms Parsing the messages is mostly a matter of matching the token-
sand responding accordingly.

Priorities Simplicity and speed are priorities for this model.

Resource Use
Support Required

Scaling
Applicability

Problems

The agents need modules to parse the messages.
Communication modules must be able to transmit messages
inthe application-specific language.

Application specific ACLs can be as small as possible to fit
theapplication requirements.

The model is applicable where the application is tightly defined
inits functionality and interoperability is not significant.

Using this model allows no opportunism beyond the applica-
tionsfollowing the standard application-specific language and al-
lowsfor no extension to the application.

Table A.30: An IP model for an agent communication language.

194

Part Name Observation

Model Name Event driven

Description Using an event model, agents aquire observational information
by waitingfor the local infrastructure to inform them of changes
in the system state.

Algorithms The agents receive each event and process it.

Priorities The event-driven model prioritises speed in agents response to

Resource Use
Support Required

Scaling

Applicability

Problems

changesin the system state.

The local infrastructure must be able to discover and broadcast
changes to the systemstate.

A suitable form for representing events must be decided upon,
and the agents musthave a standard method of receiving events.
With a large number of agents or system changes, the num-
ber of events may becomeunmanageably large. Registering the
events of interest to each agent (interestmanagement) could help
reduce the load to each inidividual but adds processingfurther
requirements to the local infrastructure.

This model is most applicable where state changes are readily
available as eventsfor another reason and can be exploited to in-
form agents. The application shouldalso have a slowly changing
state to reduce the amount of events.

Scaling event-driven observation may be difficult, requiring ei-
ther filtering or fastprocessing of the events.

Table A.31: An IP model for observation.

Part Name

Observation

Model Name

Polling

Description
Algorithms
Priorities
Resource Use
Support Required
Scaling

Applicability

Problems

Agents interrogate the local infrastructure toobserve system
state (or ask other agents todo so).

On requiring a piece of information, the agentsends a request to
the local infrastructure.

The model prioritises less communication due totargetted infor-
mation retrieval.

The local infrastructure requires an interface able toquery infor-
mation.

The form of beliefs should allow for queries to be madeconcern-
ing pieces of information.

As the only information transmitted will be that needed,the
model is very scalable.

The model is applicable where the agents drive theneed for in-
formation rather than having to react quicklyto changes in the
system state.

The information the agents possess may not representthe most
up to date state of the system.

Table A.32: An IP model for observation.

195

Part Name

Deduction

Model Name No Additional Deduction.

Description Using this model, the agent does not transform or combine
itscurrent beliefs to form new ones. However, transformationsoc-
cur by other infrastructure parts such as Plan Manipulation.

Algorithms None.

Priorities The model prioritises conserving resources by not processingthe

Resource Use
Support Required
Scaling
Applicability

Problems

beliefs held by an agent.

No resources are used.

No support is required.

No additional processing means that scaling is ideal.

This is applicable in applications where transformations ofbeliefs
is and will continue to be meaningless and/or unnecessary.

If this model is adopted and deduction is later required, it maybe
difficult to integrate.

Table A.33: An IP model for deduction.

Part Name

Belief Storage

Model Name Predicate Logic

Description Uses predicate logic to represent knowledge about the environ-
ment and stored inside agents.

Algorithms Logic parsing, unification and matching algorithms are stan-
dard.

Priorities This representation is well established, clear and has known ma-

Resource Use
Support Required

Scaling
Applicability

Problems

nipulation algorithms.

The belief data store must be able to hold multiple predicate
logic statements.

Agents must be able to match the predicate logic beliefs to the
observed environmental state.

Succinct descriptions by predicate logic allow for good scaling.
In most agent-based applications, predicate logic is an adequate
and known standard.

Some knowledge is better, or only, represented in other forms,
e.g. neural networks or higher order logic.

Table A.34: An IP model for the storage of beliefs in an agent.

196

A.5.6 Other Parts

Organisation The organisation is the set of agents making up the application and the ways
in which they are connected. Models for this infrastructure part are derived from the

collection of agent infrastructure parts and is discussed further below (Section A.7).

Data Storage for Weather Map The obvious data structure for storing the current weather
map is as a mapping from locations to appropriate values. This will be distributed in

accordance with the requirements.

A.5.7 Application Infrastructure Part Decisions

For most infrastructure parts, the designer can choose a model by comparing the priori-
ties of the models with the application preferences. For application infrastructure parts, it
should also be ensured that all identified goals can be interacted over and achieved. The
designer needs to check that the resources used by each model (from the IPML Resource Use
property) are available, that the other infrastructure parts required by the model (from the
IPML Support Required property) do not conflict with decisions made on those parts and
that the model will scale well enough for the application (accordining to the IPML Scaling
property). After choosing a model for each of the application infrastructure parts not re-
quiring further analysis, in this case all parts but coordination, adoption, capability-to-agent
mapping and organisation, the models shown in Table A.35 have been chosen by the de-
signer. Justifications are given relating the properties given in the IPML descriptions above
to the application requirements in Section A.2, wherever a choice of models exists. Different
models may be chosen for the Speed Variation and the Interoperability Variation of the
requirements (see Section A.2). The variations are abbreviated to SV and IV, respectively,

in Table A.35 for reasons of space.

A.6 Assurance Analysis

Coordination is a complex process and there are several possible models given in the section
above. Assurance analysis attempts to match the coordination mechanism appropriate for
the originator of a goal to the preferences of the goal. To make the analysis clearer, we

briefly summarise the coordination mechanisms that were described in full IPML descrip-

197

Part

| Model

| Justification

GUI Triggering Designated The GUI triggered goals vary widely in
Local their preferences.
Adopters
GUI Feedback Local GUI
Access
Goal Storage Queue
Actions Local Access
Acting
Goal Representation Predicate
Logic
Plan Representation Tree
Plan Manipulation Tree Position
Actions Form Predicate
Logic
Application Interoperation SV: TUniform | Where interoperation is paramount, trans-
Standard, IV: | lators are necessary,but otherwise the extra
Translators resource requirements means that a uni-
form standard is more applicable to appli-
cations with tightlydefined functionality.
Communication Stubs
Observation Polling Agents are driven by the need for weather
map data rather thanbeing driven by cur-
rent system state.
Deduction No Additional
Deduction
Agent Communication Lan- | FIPA-ACL Interoperation in the future is important
guage to the opportunism ofthe application and
using a subset of FIPA-ACL shouldnot be
significantly slower than other models.
Belief Storage Predicate
Logic

Table A.35: Infrastructure part models chosen for application infrastructure parts.

198

tions above.

Commitments A fast, simple mechanism where an request is made for collaborators to

commit to a goal and the first one(s) to reply are chosen.

Trust A mechanism whereby agents offering to cooperate are assessed on the previous

quality of solutions they have produced and the most trustworthy chosen.

Broker Agent An agent-based mechanism where a broker agent (facilitator) records reg-
istrations of agents offering to attempt a goal. The broker can then be asked to supply

cooperator references for the originator to coordinate with.

Forced Cooperation Object-oriented style cooperation where an agent is known to always

accept requests for cooperation on command.

Intention A mechanism whereby the originator does not cooperate but achieves the goal

itself.

Negotiation A mechanism allowing a group of agents to send a series of exchanges until
they have agreed on assigning particular values to objects or tasks which enables the

goal to then be best achieved.

The preferences as given in the requirements may be too application-specific to easily be
identified as obeyed or otherwise by the coordination mechanisms. Therefore, the designer
should examine the requirement preferences to determine the priorities that they require in

coordination mechanisms. See Table A.4 for the descriptions of the preferences.

Edit Effect requires reliability of each goal being completed successfully.

Validate Edit requires access to access rights and also security in the acquisition of the

rights.

Validate View requires access to access rights and also security in the acquisition of the

rights.

Validate Access requires access to access rights and also security in the acquisition of the

rights.

Rapid Data requires speed in obtaining results.

199

Accurate Data required high quality of results (accuracy of predictions).
Fast Access requires high quality of results (fast access through suitable distribution).
Opportunism requires high flexibility in the choices of agent cooperators.

Time Out requires nothing in terms of coordination as it is monitored by the agent pos-

sessing the goal.
Speed Variance requires speed in obtaining results.

Flexibility Variance requires high flexibility in the choices of agents.

The priorities identified (reliability, access to access rights, security, speed, quality and
flexibility) are all preferences but expressed in a form more suitable for comparison with
application-independent coordination mechanism models, as they are more application-
independent themselves. The final two preferences in the list above are those application-
wide preferences derived from the variations on the requirements given in Section A.2.

First, the influence of the application variances, Speed Variance and Interoperability
Variance, were analysed to discover the influence they have on the choice of coordination
mechanism. In Figure A.22, we analyse how well each of the coordination mechanisms
match the preference to prioritise speed and to prioritise flexibility. A full explanation of
the process is given in Chapter 5. In Figure A.22, the analysis is annotated where a decision
is made to state that a coordination mechanism is not as suitable for a preference. The
annotation references (marked F, G, H and I) refer to notes in Table A.36.

The following goals were analysed using the same method.

Contributed goal (see Figure A.23)

Speed Viewed goal (see Figure A.24)

Accuracy Viewed goal (see Figure A.25)

Set Access goal (see Figure A.26)

Redistributed goal (see Figure A.27)

Prediction goal (see Figure A.28)

200

BELIEF Com| Tru| Bro| For| Int| Neg
ACQUISITION Acg| C | O C A|D|C
l Spd

Fx |y |y |y |n®nF) vy

BELIEFS \L

MODEL
G H
MAINTENANCE P01 Y (NG Y 1 ¥ |y Ln(H)

Fix | y y y n|n|y
AGENT 4?
MODELS]| ﬂ

PREDICTIONS
n n
FROM Spd | y y yly
MODELS Fix | y yinh)| n| n|y
SSURANCE |
BELIEFS

COMPARISON
OF OPTIONS Spd

Flx

=
=
S
>
>
3

COORDINATED
ACTIVITY

Coordination Mechanisms Key Acq: Belief acquisition method
Com: Commitments

Tru: Trust Preferences Key

Bro: Broker Agent Spd: Speed of application prioritised

For: Forced Cooperation Flx: Flexibility in cooperation choice prioritised
Int: Intentions

Neg: Negotiation

Figure A.22: Assurance analysis for application-wide preferences.

BELIEF Com| Tru| Bro| For| Int| Neg
ACQUISITION [aeql c | o |c |a|D | c
Acc| y y y yly y
Sec | n(A
BELIEFS . YA YY)
l Rel |nB)] y |nB)| y |y |n(B)
MODEL Acc

y |y ly|y|[ny

MAINTENANCE

Sec ylnlyly|n
AGENT Rd [nlylnlylyln
MODELS ™I
PREDICTIONS
A
ROM ccly | yly|y|n|y

MODELs [/ n |l ylnlylyln
SSURANCE | R | n

BELIEFS

COMPARISON [Ace
OF OPTIONS e
Sec| n y| n ylyln
COORDINATED |[Ret|n | y i n |y |nD) n

ACTIVITY

Coordination Mechanisms Key Acq: Belief acquisition method
Com: Commitments

Tru: Trust _PreferencesKey

Bro: Broker Agent Acc: Access to access rights prioritised
For: Forced Cooperation Sec: Security prioritised

Int; Intentions Rel: Reliability prioritised

Neg: Negotiation

Figure A.23: Assurance analysis of Contributed goal

201

BELIEF Com| Tru| Bro| For| Int| Neg
ACQUISITION acglclo | c AlD|cC
Accly |y |y lylyly
Sec
BELIEFS nly niylyn
Fix | y y y nin y
Sd|y | y |y [ylyly
MODEL Acc
MAINTENANCE o ﬁ i ﬁ 5 '; z
AGENT 4? Fxly |y ly|lnlnly
MODELS| W spd| y n y y y n
PREDICTIONS
Acc n
FROM y ylyly y
MODELS Scin| y|ln|yly|n
ESSURANCE | Fix | y vyl y nlnly
BELIEFS sod| v n n y y "
COMPARISON [Acc
OF OPTIONS Sy Y ny
Sec| n yln ylyln
COORDINATED [FX |y | y | n|n|n|y
ACTIVITY [spdly [nly [y|y]|n
Coordination Mechanisms Key Acg; Belief acquisition method
Com: Commitments
Tru: Trust _PreferencesKey
Bro: Broker Agent Acc: Access to access rights prioritised (E)
For: Forced Cooperation Sec: Security prioritised (E)
Int: Intentions Flx: Flexibility in cooperation choice prioritised (J)
Neg: Negotiation Spd: Speed of application prioritised (J)

Figure A.24: Assurance analysis of Speed Viewed goal.

BELIEF Com| Tru| Bro| For| Int| Neg
ACQUISITION Acgl C | O c A c
Accly | y Ly | yly |y
Sec| n y n y n
BELIEFS
Fix |y |y |y [nBnF)| vy
QiIly |y |y [nK)y]|y
MODEL Acc .
MAINTENANCE | g Bn’ z ‘n’ z ; z
B Ehnnn
MODELS Qui[nlL)y y [n(M)| n [n(N)] y
PREDICTIONS
Al
FROM cC|y y |y y|nipy
MODELS [/ n | ylnlylyl|n
SSURANCE | Fxly | yly | nln|y
BELIEFS Q| n v 0 lnlnly
COMPARISON [Acc N
OF OPTIONS S e Y
Sc|n | y|n|y|ly|n
COORDINATED [FIx |y | yln|ininly
ACTIVITY Qul | n y|l n n|nj|y
Coordination Mechanisms Key Acq: Belief acquisition method
Com: Commitments
Tru: Trust _PreferencesKey
Bro: Broker Agent Acc: Access to access rights prioritised (E)
For: Forced Cooperation Sec: Security prioritised (E)
Int: Intentions Fix: Flexibility in cooperation choice prioritised (J)
Neg: Negotiation Qul: Quality of results prioritised

Figure A.25: Assurance analysis of Accuracy Viewed goal.

202

BELIEF ICom| Tru| Bro| For| Int| Neg
liACQmsmor\J Acglclolc|albp|c

Accly |y |y | yly |y
Sec

BELIEFS l Yoo yly n
MODEL Acc

MAINTENANCE

=
MODELS| ﬂ

PREDICTIONS
Acc n
FROM vyl ylyly y
MODELS Scin| ylnlylyln
SSURANCE |
BELIEFS

COMPARISON [Ace
OF OPTIONS

COORDINATED
ACTIVITY

Coordination Mechanisms Key Acq: Belief acquisition method
Com: Commitments

Tru: Trust _Preferences Key

Bro: Broker Agent Acc: Access to access rights prioritised (E)
For: Forced Cooperation Sec: Security prioritised (E)

Int: Intentions

Neg: Negotiation

Figure A.26: Assurance Analysis for Set Access goal.

BELIEF Com| Tru| Bro| For| Int| Neg
ACQUISITION

Q| y|ly |y |n|yly

BELIEFS l

MODEL
MAINTENANCE

=
MODELS] ﬂ

PREDICTIONS
|
FROM Qul | n y n n njly
MODELS
SSURANCE |
BELIEFS

COMPARISON Qul
OF OPTIONS

COORDINATED
ACTIVITY

Coordination Mechanisms Key Acq: Belief acquisition method
Com: Commitments

Tru: Trust _Preferences Key

Bro: Broker Agent Qul: Prioritise quality (O)
For: Forced Cooperation

Int: Intentions

Neg: Negotiation

Figure A.27: Assurance Analysis for Redistributed goal.

203

Code

Note

Security in communication-based coordination is worse than for observation, assump-
tion ordeduction as there is another stage (the communicating agent) that has to pass
through, beyond the securityprovided by the infrastructure.

Communication-based mechanisms rely on accurate information in messages passed to
them, which leavesan agent using the mechanism unable to reliably achieve the goal.
Assumption is also unreliable in general,but not in the case of forced cooperation,
where the reliability is explicitly determined by design.

The agent achieving the goal does not necessarily have access to the rights itself.

The agent does not reliably have the necessary capability to act on the goal.

= g Q

See the Contributed goal diagram (Figure A.23) for annotated analysis of this pref-
erence.

e5]

Assumption and deduction limit knowledge to products of that already known, so are
not as flexible.

Building up trust models may take significant amounts of time.

Negotiating may be significantly time consuming.

!

Broker agents take on the choice of collaborators and so limit the flexibility of choice
in the originator.

[

See the application preferences diagram (Figure A.22) for annotated analysis of this
preference.

=~

Assumption will not offer the highest quality options if the options in the open system
improve beyondthose assumed.

Commitments provide no quality information.

Brokers provide no quality information.

Intention only models the agent itself so it does not address quality in other agents.

olz|lg|l

See the Accuracy Viewed goal diagram (Figure A.25) for annotated analysis of this
preference.

Table A.36: Explanatory notes for the assurance analysis diagrams.

204

BELIEF Com| Tru| Bro| For| Int| Neg
ACQUISITION [acql c |0 |c | A |D]|C
Sd| y | y |y [Y|y |y
BELIEFS Qu |y Y y e
Fx |y y y n n y
MODEL
Spd| y n y y| n

MAINTENANCE Qu|n y n nlnly
= REREERE
MODELS|

PREDICTIONS Spd

FROM Y Y s s 1

MODELS Qu | n yln n|n|y

SSURANCE | Fx |y yly nlnl|Vy
BELIEFS

COMPARISON Spd | y y y y n

OF OPTIONS

Qul | n y n n n y

COORDINATED |FX |y | y| n|n|n|y
ACTIVITY

Coordination Mechanisms Key Acq: Belief acquisition method
Com: Commitments

Tru: Trust _PreferencesKey S

Bro: Broker Agent Spd: Speed of application prioritised (J)

For: Forced Cooperation Qul: Quality of results prioritised (O)

Int: Intentions Flx: Flexibility in cooperation choice prioritised (J)
Neg: Negotiation

Figure A.28: Assurance Analysis for Prediction goal.

A.6.1 Agent Infrastructure Part Decisions

Each goal instance is the result of interaction between an originator agent and at least
one cooperating agent. The originator agent must initiate the coordination of agents in
order to best match the preferences of the goal. The choices of mechanism for coordination,
adoption and capability to agent mapping (agent infrastructure parts) are given below for the
originator of each goal. The choices for coordination mechanism are based on the assurance
analyses in Figures A.22 to A.28. In general, the mechanism chosen for a goal is one of those
most likely to allow the goal’s preferences to be followed, i.e. the one with the most ‘y’s at
the end of the analysis. Further justification of the choice is given where appropriate. For
the adoption mechanisms, benevolence is chosen unless limiting the agent to one goal at a
time is justified, in which case 1-goal benevolence is chosen and a justification given. For
the capability-to-agent mapping mechanisms, broadcast is chosen for simplicity unless the
particular goal is more easily achieved by agents registering their capabilities, in which case
the broker model is chosen. See the IPML descriptions in Section A.5 for more details on
the priorities of these models.

As well as originators, agents within the application set may also be required to

have the ability to achieve goals directly by acting on the system, even if they will not do

205

so as preferably as other agents within the system. These local actors are also described
below for all those goals that are not decomposed into subgoals (see Section A.4). There
does not have to be local actors for every undecomposed goal in an application design. For
instance, it would be reasonable for the example application to rely on external agents to
make weather predictions, but in this case the requirements explicitly state that the local

application could be able to make, possibly poor, predictions.
Contributed (Originator)

Coordination Speed Variation: Forced cooperation (fast engagement of known co-

operators), Interoperation Variation: Trust (does not limit choices)
Adoption Benevolence

Capability to Agent Mapping Broadcast
Speed Viewed (Originator)

Coordination Commitments (speed is the most important preference to this goal,
so commitments are preferable to trust or forced cooperation)

Adoption Benevolence

Capability to Agent Mapping Broadcast
Accuracy Viewed (Originator)

Coordination Trust
Adoption Benevolence

Capability to Agent Mapping Broadcast
Set Access (Originator)

Coordination Speed Variation: Forced cooperation (fast engagement of known co-

operators), Interoperation Variation: Trust (does not limit choices)
Adoption Benevolence

Capability to Agent Mapping Broadcast

Redistributed (Originator)

206

Coordination Negotiation (other contributor nodes are trusted and their are valued

objects to be negotiated over, so negotiation is preferable to trust)

Adoption 1-Goal Benevolence (only one redistribution of data should occur at a
time)

Capability to Agent Mapping Broadcast

Access Denied (Originator) Coordination mechanisms for Access Denied and all other
goals with no associated preferences are chosen by examining the application prefer-

ences analysed in Figure A.22.

Coordination Commitments (commitments are applicable to both variations and

are a simple, fast solution for interacting with other trusted agents)
Adoption Benevolence

Capability to Agent Mapping Broadcast
Access Denied (Local Actor)

Capability Ability to check access rights for authorisation
Warned (Originator)

Coordination Commitments
Adoption Benevolence

Capability to Agent Mapping Broadcast
Warned (Local Actor)

Capability Ability to provide the user with a warning that a triggered goal was

unsuccessful.
Map Edited (Originator)

Coordination Commitments
Adoption Benevolence

Capability to Agent Mapping Broadcast

207

Map Edited (Local Actor)
Capability Ability to edit the current weather map.
Success (Originator)

Coordination Commitments
Adoption Benevolence

Capability to Agent Mapping Broadcast
Success (Local Actor)

Capability Ability to provide the user with an acknowledgement of an operation’s

success.
Prediction (Originator)

Coordination Commitments

Adoption 1-Goal Benevolence (predictions may take a substantial amount of time so

should be forced to be distributed)

Capability to Agent Mapping Broker (predictors will be mostly external so dis-

covery should be encouraged by allowing registration)
Prediction (Local Actor)
Capability Ability to make a weather prediction for a given location and time.
Displayed Prediction (Originator)

Coordination Commitments
Adoption Benevolence

Capability to Agent Mapping Broadcast
Displayed Prediction (Local Actor)

Capability Ability to provide the user with the results of a prediction in a suitable

form.

208

Rights Edited (Originator)

Coordination Commitments
Adoption Benevolence

Capability to Agent Mapping Broadcast
Rights Edited (Local Actor)

Capability Ability to edit the access rights for a user.
Least Accessed (Originator)

Coordination Commitments
Adoption Benevolence

Capability to Agent Mapping Broadcast
Least Accessed (Local Actor)

Capability Ability to determine that section of the weather map data stored locally

that is accessed least by local agents.
Moved Data (Originator)

Coordination Commitments
Adoption Benevolence

Capability to Agent Mapping Broadcast
Moved Data (Local Actor)

Capability Ability to move a part of the locally stored weather map data to another

point in the system.

209

A.6.2 Support Required for Chosen Mechanisms

As we have chosen to use a broker agent to find capable agents for the Prediction goal, the

broker becomes a third agent in the interaction over that goal and is specified below.
Prediction (Broker)

Coordination Broker (self)
Adoption Benevolence

Capability to Agent Mapping Broker (self)

Negotiation has been chosen for the Redistributed goal and, as the algorithm implementing
this coordination mechanism is dependent on the goal (see IPML description in Table A.18),
we need to provide a suitable algorithm. The approach chosen in goal decomposition (Figure
A .20) is to move the least accessed part of the weather map data at a node to a more suitable
node. The preference for the Redistributed goal is to prioritise fast access to data, which
means ensuring the data stored on a node is that which is most accessed by that node. The

algorithm is as follows.

1. Identify the least accessed parts (locations) of the weather map data (Least Accessed

goal).
2. Offer one of the least accessed part to other nodes.

3. Receive numeric bids for the data part. The bids are proportional to the number of
accesses made on the data by the bidding node. Bidders may include in their bid for
one part, the rejection of another part they previously accepted in this redistribution,
which is then returned to those parts to be distributed. This will happen if the latest

part is of more use (more accesses) than the previously accepted part.

4. The highest bid is accepted and the part transferred to the node containing the bidding

agent.

5. If more parts are to be redistributed, the agent returns to step 2 to negotiate on

another.

210

Depending on the requirements variation, up to three goals may be best served by a trust-
based mechanism, where agents are assessed to judge their competence and reliability for
the future. The trust mechanism IPML description (Table A.15) notes that a scheduler is
required to allow the agent to wait for several offers before one is chosen. A model therefore
has to be chosen for the ‘scheduler’ infrastructure part. For brevity, we will not give a full
IPML description but simply state here that the scheduler model available allows the agent
to postpone continuing the algorithm for a specified duration, during which the agent can

take part in other activities.

A.7 Collation

As described in Chapter 3, we do not assume that the agents taking part in interactions
(originators, local actors, brokers etc.) are not actual implemented agents within the ap-
plication set as the agents actually taking part in the interaction may be external to the
application set. Also, the same agent may act as originator for one goal interaction and
a cooperator in another interaction. Therefore, originators, brokers and other interaction
roles are said to be filled by place-holders for agents. We identified 24 place-holders for
agents in interaction roles in the section above (originators, local actors and a broker).

When all the agent place-holders have been identified and agent infrastructure parts
have been chosen, the designer must determine how they comprise the final organisation of
the application set. As described in Chapter 5, the designer examines how well different
organisations best fit the requirements by examining three factors. Low replication is the
priority to reduce the amount of unjustified redundancy in the design by merging agents.
Close approzimation is the priority to keep agents close to the models chosen in the previous
section by ensuring very disparate agent models are not merged, as then the infrastructure
part models would have to be approximated. Fase of integration is the priority to only
merge agents that can easily be merged. The third factor, ease of integration, is of more
importance to maintenance and extension, so we do not discuss it further here. In the next
chapter we will show how it is useful as part of the methodology’s approach to maintenance
and extension.

For low replication the following organisation models are identified, starting with

the lowest replication and becoming less suitable.

211

1. Merge all the place-holders into one agent.

2. Merge the place-holders into two agents:

(a) An originator agent acting as the originator for all goals and coordinating ac-

cordingly.
(b) An local actor agent able with the capability of all local actors.
3. Merge the place-holders into ten agents:
(a) An originator agent for the Contributed and Set Access goals (as they share all
mechanisms).

(b) An originator agent for the Accuracy Viewed goal.

(¢) An originator agent for the Redistributed and Prediction goals (as they share

adoption mechanisms).
(d) An originator agent for all other goals (as they share all mechanisms).

(e) A local actor agent for the Access Denied and Rights Edited capabilities (as they

share resources required).

(f) A local actor agent for the Warned, Success and Displayed Prediction capabilities

(as they share resources required).

(g) A local actor agent for the Least Accessed and Moved Data capabilities (as they

share resources required).
(h) A local actor agent for the Map Edited capability.
(i) A local actor agent for the Prediction capability.
(j) A broker agent for the Prediction goal .

4. Merge the place-holders as above but separate the originator for the Redistributed

and Prediction goals.
5. Separate all place-holders into different agents.

The originators and local actors are separated above because they provide different func-
tionality (the former adds coordination, the latter gives capability when it is lacking in the

rest of the system). Decisions to merge or separate originators are based on the similarity

212

of decisions on infrastructure parts given in the previous section. Decisions to merge or
separate local actors are based on the similarity of local resources required. A decision to
merge an originator with an local actor would only be taken where it was clearly justified
to keep the coordination and action on a goal together in one agent, as otherwise we are
unnecessarily binding the coordination needed in the future of the application to the possi-
bly temporary capability to act locally. The obvious justification for merging an originator
with a local actor would be if the coordination mechanism for an originator was chosen to
be to use intentions, where the agent acts on the goal itself.

For close approximation the following organisation models are identified, starting

with the lowest replication and becoming less suitable.
1. Separate all place-holders into different agents.

2. Merge only the originators for the place-holders using exactly the same coordination,
adoption and capability-to-agent mapping mechanisms (results in six originator agents,

one broker, nine local actor agents).

3. As above, but also merge local actor agents in the way described by suggestion 3 for

low replication above, i.e. Access Denied capability merged with Rights Edited etc.

4. As above, but also merge the Contributed orginator with the Set Access originator

(equivalent to suggestion 4 for low replication).
5. Merge all the place-holders into one agent.

The lists of possible models for low replication and close approximation exclude many others
that are obviously no better than the ones given. To be more exact, those excluded do
not significantly aid in achieving one priority or the other. For example, if the Contributed
originator was merged with the Access Denied originator, some approximation would have to
be made so that the merged agent had one coordination mechanism, one adoption mechanism
and one mapping mechanism, but there would be no reason to not merge that agent with
the originators for Warned, Map Edited etc. as nothing further is approximated in merging
them and there is lower replication if it is done.

On examining the suggestions above, the designer may choose suggestion 4 in the two
lists, as this ensures no approximation of mechanisms is required but the place-holders are

merged where possible otherwise. This results in an multi-agent system with eleven agents

213

Coordination | Adoption C-A Mapping | Capab- | GUI Trigger- | Will Adopt

ility ing

1 Forced Coop- | Benevolence Broadcast None Contributed, Contributed,

eration Set Access Set Access
2 Trust Benevolence Broadcast None Accuracy All goals
Viewed
3 Commitments | Benevolence Broadcast None All other trig- | All goals
gered goals
4 Negotiation 1-Goal Benev- | Broadcast None None Redistributed
olence
5 Commitments | 1-Goal Benev- | Broker (11) None None Prediction
olence

6 Not originator | Benevolence Broadcast ‘Warned,| None Warned,
Suc- Success,
cess, Displayed
Dis- Prediction
played
Pre-
diction

7 Not originator | Benevolence Broadcast Map None Map Edited
Edited

8 Not originator | Benevolence Broadcast Pred- None Prediction
iction

9 Not originator | Benevolence Broadcast Access | None Access De-
De- nied, Rights
nied, Edited

10 Not originator | Benevolence Broadcast Least None Least Ac-
Ac- cessed, Moved
cessed, Data

11 Broker (self) Benevolence Broker (self) None None No goals

Table A.37: Agents produced by collation with cardinality (speed variation)

(five originators, one broker and five local actors) shown in Table A.37. In the table we

include the which agent will act as a designated local adopter for the GUI to pass triggered

goal instances to (this requires a benevolent adoption mechanism). These are chosen based

on the suitability of the agent (how close it approximates the infrastructure parts needed).

We also include which goals the agent will adopt if offered. For flexibility, this is kept as

wide as possible but may be limited by the appropriateness of the coordination mechanism

or capability-to-agent mapping mechanism, e.g. forced cooperation requires agents that will

be forced to adopt the goal.

214

A.7.1 Agent Types

If the application is likely to process several goal instances at once, particularly if they are of
one type of goal, the designer may decide to use the results of the collation as a set of agent
types. The designer would then build useful redundancy and replication into the application
by instantiating several agents from each type, e.g. eight Redistribution originators in the
initial design.

If this option was taken with the example application, the designer may reason as

follows.

e The local user is likely to trigger goals at a reasonably slow pace, so there is only need
for one agent of each of the Contributed/Set Access and Accuracy Viewed originator

agent types.

e Only one redistribution of local data should be occurring at a time to prevent conflicts,
so there only needs to be one Redistributed originator, and one local actor for Least

Accessed / Moved Data.

e The Prediction orginator and the Prediction, Map Edited and Access Denied/Rights
Edited local actors may be used by external sources so the number should be chosen
according to the expected number of collaborating weather institutions, to prevent

overloading a single agent.

e There should only be one broker for the Prediction goal, as otherwise predictors may

not all be registered in one place.

e The originator for other goals may be used several times during the attempt of one
triggered goal instance. For example, when Set Access is triggered, the same agent
type acts as originator for Access Denied, Warning, Rights Edited and Success. It may
be best to have three or four of this agent type to prevent overloading and distribute

goals.

e The local actor for Warning, Success and Displayed Prediction is only used once per
local triggered goal and displays information to the local GUI, so only one agent is

needed.

We add numbers of each agent type in Table A.38.

215

Coordination | Adoption C-A Mapping | Capab- | GUI Trigger- | Will Adopt No.

ility ing

1 Forced Coop- | Benevolence Broadcast None Contributed, Contributed, 1

eration Set Access Set Access
2 Trust Benevolence Broadcast None Accuracy All goals 1
Viewed
3 Commitments | Benevolence Broadcast None All other trig- | All goals 4
gered goals
4 Negotiation 1-Goal Benev- | Broadcast None None Redistributed | 1
olence
5 Commitments | 1-Goal Benev- | Broker (11) None None Prediction 10
olence

6 Not originator | Benevolence Broadcast Warned,| None Warned, 1
Suc- Success,
cess, Displayed
Dis- Prediction
played
Pre-
diction

7 Not originator | Benevolence Broadcast Map None Map Edited 10
Edited

8 Not originator | Benevolence Broadcast Pred- None Prediction 10
iction

9 Not originator | Benevolence Broadcast Access | None Access De- | 10
De- nied, Rights
nied, Edited

10 Not originator | Benevolence Broadcast Least None Least Ac- | 1
Ac- cessed, Moved
cessed, Data

11 Broker (self) Benevolence Broker (self) None None No goals 1

Table A.38: Agents produced by collation (speed variation)

216

User Command Application

(Ul triggering) (Agent interactions) ((GUI feedback)

Local adopters Local GUI Access
: Local Access
[God sloragej [Cooperationj Action Acting
Queue
Goal Plan Plan Actions
representation representation) | manipulation form
Predicate Logic Tree TreePosition Predicate

Logic

Capability to agent r— ;
[mapping] [Coordmanon] [Adopuon]

Application | (Communication (Observation (Deduction (Assumption)

interoperatior Stubs Polling No
SV: Uniform Standard Additional
IV: Trandlators, Agent Deductiol Belief
communication storage
|
anguage Predicate
FIPA-ACL Logic

Figure A.29: Infrastructure modularisation annotated with application infrastructure part
model decisions.

A.8 Results

The application infrastructure parts are annotated to the modularisation diagram shown in
Figure A.29 and the agent infrastructure parts are collated into agents to be implemented
in Table A.38. In the next chapter, we highlight the points in the example application that
illustrate how this methodology has justified the entire design from the requirements, and
how this compares to the approaches of other methods. We also consider the issues involved

in implementing the application and agent infrastructure parts.

217

Bibliography

[1] H. H. Adelsberger and W. Conen. Economic Coordination Mechanisms for Holonic
Multi Agent Systems . In Workshop on Industrial Applications of Holonic and
Multi-Agent Systems (HoloMAS 2000), 2000. Also available at http://nestroy.wi-

inf.uni-essen.de/ conen/conen/publications.html.

[2] D. Amyot, L. Logrippo, R. J. A. Buhr, and T. Gray. Use Case Maps for the capture and
validation of distributed systems requirements. In Fourth International Symposium

on Requirements Engineering (RE-99), 1999.

[3] Y. Aridor and D. B. Lange. Agent design patterns: Elements of agent application
design. In Proceedings of the Second International Conference on Autonomous

Agents (Agents-98), Minneapolis, USA, 1998.

[4] Unspecified authors. Unified modeling language (UML) notation guide. Technical

report, Various institutions, September 1997.

[5] K. S. Barber, D. C. Han, and T. Liu. Strategy Selection-Based Meta-level Reasoning
for Multi-agent Problem-Solving. In P. Ciancarini and M. J. Wooldridge, editors,
Proceedings of Agent-Oriented Software Engineering 2000 (AOSE 2000), pages
269-283. Springer-Verlag.

[6] M. Barbuceanu and M. S. Fox. The design of a coordination language for multi-agent
systems. In J.P. Miiller, M.J. Wooldridge, and N.R. Jennings, editors, Intelligent
Agents III: Proceedings of the Third International Workshop on Agent Theories,
Architectures and Languages (ATAL-96), pages 341-355. Springer-Verlag, 1996.

[7] B. Bauer, J. P. Miiller, and J. Odell. Agent UML: A Formalism for Specifying Multi-
agent Software Systems. In P. Ciancarini and M. J. Wooldridge, editors, Proceed-

218

ings of Agent-Oriented Software Engineering 2000 (AOSE 2000), pages 91-104.
Springer-Verlag, 2000.

[8] M. Beer, M. d’Inverno, M. Luck, N. Jennings, C. Priest, and M. Schroeder. Negotiation

in multi-agent systems. Knowledge Engineering Review, 14(3):285-290, 1999.

[9] F. Bellifemine, A. Poggi, and G. Rimassa. JADE — a FIPA-compliant agent frame-

work. In Proceedings of the Fourth International Conference and Ezhibition on

The Practical Application of Intelligent Agents and Multi-Agents, 1999.

[10] T. J. M. Bench-Capon and P. E. Dunne. No agent is an island: A framework for the

study of inter-agent behaviour. In C. Castelfranchi and W. L. Johnson, editors,
Proceedings of the First International Joint Conference on Autonomous Agents and

MultiAgent Systems 2002 (AAMAS-2002), pages 690691, Bologna, Italy, 2002.

[11] F. Bergenti. On agentware: Ruminations on why we should use agents. In Proceedings

[12] A.

[13] M.

[14] M.

[15] W.

of the Third International Workshop on Engineering Societies in the Agents World
(ESAW-2002), Madrid, Spain, 2002.

Bonarini and M. Restelli. An architecture to implement agents co-operating in
dynamic environments. In C. Castelfranchi and W. L. Johnson, editors, Proceedings
of the First International Joint Conference on Autonomous Agents and MultiAgent

Systems 2002 (AAMAS-2002), pages 1143-1144, Bologna, Italy, 2002.

E. Bratman. Shared cooperative activity. Philosphical Review, 101(2):327-341,
April 1992.

E. Bratman, D. Israel, and M. Pollack. Plans and resource-bounded practical

reasoning. Computational Intelligence, 4:349-355, 1988.

Brauer, M. Nickles, G. Weiss, and K. F. Lorentzen. Expectation-oriented analysis
and design. In M. Wooldridge, P. Ciancarini, and G. Weiss, editors, Proceedings
of the Second International Workshop on Agent-Oriented Software Engineering
(AOSE-2001), pages 226-244, Montreal, Canada, 2001.

[16] P. Bresciani, A. Perini, P. Giogini, F. Giunchiglia, and J. Mylopolous. Modeling early

requirements in Tropos: A transformation based approach. In M. Wooldridge,
P. Ciancarini, and G. Weiss, editors, Proceedings of the Second International Work-
shop on Agent-Oriented Software Engineering (AOSE-2001), pages 151-168, Mon-
treal, Canada, 2001.

219

[17] R.

18] S.

[19] C.

J. A. Buhr, D. Amyot, E. Elammari, D. Quesnel, T. Gray, and S. Mankovski.
Feature-interaction visualization and resolution in an agent environment. In Pro-
ceedings of the Fifth International Workshop on Feature Interactions in Telecom-

munications and Software Systems, pages 135-149, 1998.

Bussmann, N. R. Jennings, and M. Wooldridge. On the identification of agents in
the design of production control systems. In P. Ciancarini and M. J. Wooldridge,
editors, Proceedings of Agent-Oriented Software Engineering 2000 (AOSE 2000),
pages 141-162. Springer-Verlag, 2000.

Castelfranchi and R. Falcone. Principles of trust in MAS: Cognitive autonomy,
social importance, and quantification. In Proceedings of the Third International

Conference on Multi-Agent Systems (ICMAS-98), pages 72-79, 1998.

[20] J. Castro, M. Kolp, and J. Mylopoulos. A requirements-driven development methodol-

21] P.

[22] D.

23] A.

[24] P.

[25] P.

ogy. In Proceedings of the 13th International Conference on Advanced Information

Systems Engineering (CAiSE-01), Interlaken, Switzerland, 2001.

Ciancarini, A. Omicini, and F. Zambonelli. Multiagent system engineering: The
coordination viewpoint. In N. R. Jennings and Y. Lesperance, editors, Intelligent
Agents VI: Proceedings of the Sixth International Workshop on Agent Theories, Ar-
chitectures and Languages (ATAL-99), Orlando, Florida, USA, 2000. Also available
at http://sirio.dsi.unimo.it/Zambonelli/pubblica.html.

Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremaes.
Object-Oriented Development: The Fusion Method. Prentice Hall, 1994.

Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements analysis.

Science of Computer Programming, 20:3-50, 1993.

Davidsson. Categories of artificial societies. In A. Omicini, P. Petta, and R. Tolks-
dorf, editors, Proceedings of the Second International Workshop on Engineering
Societies in the Agents World (ESAW-2001), pages 1-9, Prague, Czech Republic,
2001. Springer-Verlag.

Davidsson and S. Johansson. Evaluating multi-agent system architectures: A case
study concerning dynamic resource allocation. In Proceedings of the Third Inter-
national Workshop on Engineering Societies in the Agents World (ESAW-2002),
Madrid, Spain, 2002.

220

[26] A.

27] K.

[28] R.

[29] R.

[30] F.

[31] V.

[32] E.

33] C.

[34] C.

M. Davis. Software Requirements: Objects, States and Functions. Prentice Hall,

1993.

S. Decker and V. R. Lesser. Designing a family of coordination algorithms. In Pro-
ceedings of the First International Conference on Multi-Agent Systems (ICMAS-
95), pages 73-80, 1995.

Depke, R. Heckel, and J. M. Kiister. Agent-oriented modeling with graph trans-
formations. In P. Ciancarini and M. J. Wooldridge, editors, Proceedings of
Agent-Oriented Software Engineering 2000 (AOSE 2000), pages 105-120. Springer-
Verlag, 2000.

Deters. Developing and deploying a multi-agent system. In Proceedings of the Forth
International Conference on Autonomous Agents (Agents-00), 2000.

Dignum and M. Greaves. Technology for agent communication. In F. Dignum and
M. Greaves, editors, Issues in Agent Communication (LNCS-1916), pages 1-16.
Springer-Verlag, 2000.

Dignum, H. Weigand, and L. Xu. Agent Societies: Toward Frameworks-Based
Design. In M. Wooldridge, P. Ciancarini, and G. Weiss, editors, Proceedings of the
Second International Workshop on Agent-Oriented Software Engineering (AOSE-
2001), pages 25-32, Montreal, Canada, 2001.

H. Durfee and V. R. Lesser. Using partial global plans to coordinate distributed
problem solvers. In Proceedings of the Tenth International Joint Conference on

Artificial Intelligence (IJCAI-87), Milan, Italy, 1987.

B. Excelente-Toledo, R. A. Bourne, and N. R. Jennings. = Reasoning about
Commitments and Penalties for Coordination between Autonomous Agents . In
M. Wooldridge, P. Ciancarini, and G. Weiss, editors, Proceedings of the Second
International Workshop on Agent-Oriented Software Engineering (AOSE-2001),
Montreal, Canada, 2001.

B. Excelente-Toledo and N. R. Jennings. Learning to select a coordination mech-
anism. In C. Castelfranchi and W. L. Johnson, editors, Proceedings of the First
International Joint Conference on Autonomous Agents and MultiAgent Systems

2002 (AAMAS-2002), pages 1106-1113, Bologna, Italy, 2002.

221

[35] R.

[36] T.

[37] T.

[38] M.

39] E.

[40] E.

[41] L.

[42] M.

Falcone and B. S. Firozabadi. The challenge of trust: The Autonomous Agents
’98 Workshop on Deception, Fraud and Trust in Agent Societies. Knowledge En-
gineering Review, 14(1):81-89, 1999.

Finin, R. Fritzson, D. McKay, and R. McEntire. KQML — A Language and
Protocol for Knowledge and Information Exchange. In K. Fuchi and T. Yokoi,

editors, Knowledge Building and Knowledge Sharing. I0S Press, 1994.

Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an Agent Communi-
cation Language. In N. Adam, B. Bhargava, and Y. Yesha, editors, Proceedings
of the 8rd International Conference on Information and Knowledge Management

(CIKM’94), pages 456-463, Gaithersburg, MD, USA, 1994. ACM Press.

Fisher and W. Wooldridge. On the formal specification and verification of multi-
agent systems. International Journal of Cooperative Information Systems, 6(1):37—

65, 1997. Also available at http://www.csc.liv.ac.uk/ mjw/pubs/.

Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Abstraction
and reuse of object oriented design. In Proceedings of ECOOP’93, Kaiserslautern,
Germany, 1993.

Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-oriented Software . Addison Wesley, Reading, Mass., 1995.

Gasser. MAS Infrastructure Definitions, Needs and Prospects. In Proceedings of

the Forth International Conference on Autonomous Agents (Agents-00), 2000.

Georgett, B. Pell, M. Pollack, M. Tambe, and M. Wooldridge. The belief-desire-
intention model of agency. In Intelligent Agents V: Proceedings of the Fifth Inter-
national Workshop on Agent Theories, Architectures and Languages (ATAL-98),
1998.

[43] M.P. Georgeff and A.L. Lansky. Reactive reasoning and planning. In Proceedings of

[44] C.

[45] F.

the Sizth National Conference on Artificial Intelligence (AAAI-87), pages 677682,
Seattle, WA, 1987.

Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering.

Prentice-Hall International, 1991.

Giunchiglia, J. Mylopoulos, and A. Perini. The Tropos software development

222

[46] P.

methodology: Processes, models and diagrams. In C. Castelfranchi and W. L.
Johnson, editors, Proceedings of the First International Joint Conference on Au-
tonomous Agents and MultiAgent Systems 2002 (AAMAS-2002), pages 35-36,
Bologna, Italy, 2002.

J. Gmytrasiewicz and E. H. Durfee. Toward a theory of honesty and trust among
communicating autonomous agents. Group Decision and Negotiation, 2:237-258,

1993.

[47] P. J. Gmytrasiewicz and E. H. Durfee. A rigorous, operational formalization of recur-

48] N.

[49] F.

[50] P.

[51] S.

[52] C.

[53] M.

[54] C.

sive modeling. In Proceedings of the First International Conference on Multi-Agent

Systems (ICMAS-95), pages 125-132, San Francisco, CA, June 1995.

Griffiths and M. Luck. Cooperative plan selection through trust. In Proceedings of
the European Workshop on Modelling Autonomous Agents in a Multi-Agent World
1999 (MAAMAW-99), 1999.

Guerin and J. Pitt. Proving properties of open agent systems. In C. Castelfranchi
and W. L. Johnson, editors, Proceedings of the First International Joint Conference
on Autonomous Agents and MultiAgent Systems 2002 (AAMAS-2002), Bologna,
Italy, 2002.

Haumer, K. Pohl, and K. Weidenhaupt. Requirements elicitation and validation
with real world scenes. IEEE Transactions on Software Engineering, 24(12), De-

cember 1998.

Hayden, C. Carrick, and Q. Yang. Architectural design patterns for multi-agent
coordination. In Proceedings of the International Conference on Agent Systems

1999 (Agents’99), Seattle, WA, 1999.

E. Hewitt and P. de Jong. Analyzing the roles of descriptions and actions in open
systems. In Proceedings of the Third National Conference on Artificial Intelligence
(AAAI-83), pages 162-166, 1983.

N. Huhns. Interaction-oriented programming. In P. Ciancarini and M. J.
Wooldridge, editors, Proceedings of Agent-Oriented Software Engineering 2000
(AOSE 2000), 2000.

A. Tglesias, M. Garijo, and J. C. Gonzalez. A survey of agent-oriented methodolo-
gies. In J. P. Miiller, M. P. Singh, and A. S. Rao, editors, Intelligent Agents V:

223

[55] N.

[56] N.

[57] N.

[58] N.

[59] N.

[60] N.

[61] N.

[62] T.

[63] E.

[64] E.

Proceedings of the Fifth International Workshop on Agent Theories, Architectures
and Languages (ATAL-98), 1998.

Jennings. On argumentation-based negotiation. In Proceedings of the International

Workshop on Multi-Agent Systems (IWMAS-1998), 1998.

R. Jennings. Commitments and conventions: The foundation of coordination in

multi-agent systems. Knowledge Engineering Review, 8(3):223-250, 1993.

R. Jennings. On agent-based software engineering. Artificial Intelligence, 117:277—
296, 2000.

R Jennings. Building Complex Software Systems: The Case for an Agent-Based
Approach. Communications of the ACM, 2001.

R. Jennings, E. H. Mamdani, I. Laresgotti, J. Perez, and J. Corera. Grate: A
general framework for cooperative problem solving. IEE-BCS Journal of Intelligent

Systems Engineering, 1(2), 1992.

R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and
development. Autonomous Agents and Multi- Agent Systems, 1(1):275-306, 1998.

R. Jennings and M. Wooldridge. Agent-oriented software engineering. In
Proceedings of the FEuropean Workshop on Modelling Autonomous Agents
in a Multi-Agent World 1999 (MAAMAW-99), 1999. Also available at
http://www.ecs.soton.ac.uk/ nrj/pubs.html.

Juan, A. Pearce, and L. Sterling. ROADMAP: Extending the Gaia methodology for
complex open systems. In C. Castelfranchi and W. L. Johnson, editors, Proceedings
of the First International Joint Conference on Autonomous Agents and MultiAgent

Systems 2002 (AAMAS-2002), pages 3-10, Bologna, Italy, 2002.

A. Kendall. Agent software engineering with role modelling. In P. Ciancarini and
M. J. Wooldridge, editors, Proceedings of Agent-Oriented Software Engineering
2000 (AOSE 2000), pages 163-170. Springer-Verlag, 2000.

A. Kendall, M. T. Malkoun, and C. Jiang. A methodology for developing agent
based systems for enterprise integration. In First Australian Workshop on Dis-

tributed Artificial Intelligence, 1995.

224

[65] M.

[66] B.

[67] Y.

[68] B.

[69] F.

[70] M.

[71] M.

[72] M.

Klusch and K. Sycara. Brokering and matchmaking for coordination of agent
societies: A survey. In A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf,
editors, Coordination of Internet Agents, pages 197-224. Springer-Verlag, 2001.

Langley, M. Paolucci, and K. Sycara. Discovery of infrastructure in multi-agent
systems. In Agents 2001 Workshop on Infrastructure for Agents, MAS, and Scalable
MAS, 2001.

Larou, T. Finin, and Y. Peng. Agent communication languages: The current

landscape. IEEE Intelligent Systems, 14(2):45-52, 1999.

Logan. Classifying agent systems. Technical Report WS-98-10, School of Computer

Science, University of Birmingham, 1998.

Lopez y Lopez, M. Luck, and M. d’Inverno. Constraining autonomy through norms.
In C. Castelfranchi and W. L. Johnson, editors, Proceedings of the First Inter-
national Joint Conference on Autonomous Agents and MultiAgent Systems 2002

(AAMAS-2002), pages 674-681, Bologna, Italy, 2002.

Luck and M. d’Inverno. Structuring a Z specification to provide a formal frame-
work for autonomous agent systems. In J. P. Bowen and M. G. Hinchey, editors,
Proceedings of the Ninth International Conference of Z Users (ZUM-95), pages
47-62, Heidelberg, 1995. Springer-Verlag.

Luck and M. d’Inverno. Engagement and cooperation in motivated agent modelling.
In C. Zhang and D. Lukose, editors, Distributed Artificial Intelligence Architecture
and Modelling: Proceedings of the First Australian DAI Workshop, pages 70-84.
Springer-Verlag, 1996.

Luck, N. Griffiths, and M. d’Inverno. From agent theory to agent construction: A
case study. In J.P. Miiller, M.J. Wooldridge, and N.R. Jennings, editors, Intelligent
Agents III: Proceedings of the Third International Workshop on Agent Theories,
Architectures and Languages (ATAL-96), pages 49-63. Springer-Verlag, 1997.

[73] S. P. Marsh. Formalising Trust as a Computational Concept. PhD thesis, Department

[74] D.

of Computing Science and Mathematics, University of Stirling, 1994.

L. Martin, A. J. Cheyer, and D. B. Moran. The open agent architecture: A
framework for building distributed software systems. Applied Artificial Intelligence,
13(1-2), January 1999.

225

[75] J. Mayfield, Y. Labrou, and T. Finin. Evaluation of kqml! as an agent communication
language. In M. J. Wooldridge, J. P. Miiller, and M. Tambe, editors, Intelligent
Agents II: Proceedings of the Second International Workshop on Theories, Archi-
tectures and Languages (ATAL-95), pages 347-360. Springer-Verlag, 1995.

[76] S. Miles, M. Joy, and M. Luck. Designing agent-oriented systems by analysing agent
interactions. In P. Ciancarini and M. J. Wooldridge, editors, Proceedings of Agent-

Oriented Software Engineering 2000 (AOSE 2000), pages 171-184, 2000.

[77] S. Miles, M. Joy, and M. Luck. Towards a methodology for coordination mechanism
selection in open systems. In Proceedings of the Third International Workshop on

Engineering Societies in the Agents World (ESAW-2002), Madrid, Spain, 2002.

[78] L. Moreau, N. Gibbins, D. DeRoure, S. El-Beltagy, W. Hall, G. Hughes, D. Joyce,
S. Kim, S. Michaelides, S. Millard, S. Reich, R. Tansley, and M. Weal. Sofar
with dim agents: An agent framework for distributed information management. In
Proceedings of The Fifth International Conference and Exhibition on The Practical
Application of Intelligent Agents and Multi-Agents, pages 369-388, Manchester,
UK, 2000.

[79] J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for agents. In G. Wagner,
Y. Lesperance, and E. Yu, editors, Proceedings of the Agent-Oriented Information
Systems Workshop at the 17th National conference on Artificial Intelligence (AOILS-
00), pages 3-17, Austin, TX, 2000.

[80] J. Odell, H. V. D. Parunak, and B. Bauer. Representing agent interaction protocols in
UML. In Proceedings of Agent-Oriented Software Engineering 2000 (AOSE 2000),
2000.

[81] Foundation of Intelligent Physical Agents. http://www.fipa.org.

[82] A. Omicini. From objects to agent societies: Abstractions and methodologies for the
engineering of open systems. In WOA-00, Parma, Italy, 2000. Also available at
http://lia.deis.unibo.it/ ao/.

[83] A. Omicini. SODA: Societies and infastructures in the analysis and design of agent-
based systems. In P. Ciancarini and M. J. Wooldridge, editors, Proceedings of
Agent-Oriented Software Engineering 2000 (AOSE 2000), 2000.

226

[84] L.

Padgham and M. Winikoff. Prometheus: A methodology for developing intelligent
agents. In C. Castelfranchi and W. L. Johnson, editors, Proceedings of the First
International Joint Conference on Autonomous Agents and MultiAgent Systems

2002 (AAMAS-2002), pages 37-38, Bologna, Italy, 2002.

[85] P. Panzarasa and N. R. Jennings. The organisation of sociality: A manifesto for a new

[86] I

87] C.

[88] D.

[89] L.

[90] R.

[91] O.

[92] M.

science of multi-agent systems. In Proceedings of the Tenth European Workshop

on Multi-Agent Systems (MAAMAW-01), 2001.

V. D. Parunak and J. J. Odell. Representing social structures in UML. In
M. Wooldridge, P. Ciancarini, and G. Weiss, editors, Proceedings of the Second
International Workshop on Agent-Oriented Software Engineering (AOSE-2001),
pages 1-16, Montreal, Canada, 2001.

Petrie. Agent-based software engineering. In P. Ciancarini and M. J. Wooldridge,
editors, Proceedings of Agent-Oriented Software Engineering 2000 (AOSE 2000),
pages 59-75. Springer-Verlag, 2000.

Poutakidis, L. Padgham, and M. Winikoff. Debugging multi-agent systems using
design artifacts: The case of interaction protocols. In C. Castelfranchi and W. L.
Johnson, editors, Proceedings of the First International Joint Conference on Au-
tonomous Agents and MultiAgent Systems 2002 (AAMAS-2002), Bologna, Italy,
2002.

Rising. Pattern writing. In L. Rising, editor, The Patterns Handbook: Techniques,
Strategies and Applications, pages 69-82. Cambridge University Press, 1998.

S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. IEEE Computer, 29(2):38-47, 1996.

Shehory. Software architecture attributes of multi-agent systems. In P. Ciancarini
and M. J. Wooldridge, editors, Proceedings of Agent-Oriented Software Engineering
2000 (AOSE 2000), pages 77-90. Springer-Verlag, 2000.

P. Singh. Agent communication languages: Rethinking the principles. IEEE
Computer, 31(12):40-47, December 1998.

[93] I. Sommerville. Software Engineering. Addison-Wesley, fifth edition edition, 1995.

227

[94] K. Sycara. The RETSINA MAS infrastructure. Journal of Autonomous Agents and
Multi-Agent Systems, 2001.

[95] A. van Lamsweerde. Requirements engineering in the year 00: A research perspec-
tive. In Proceeding of the Twenty-Second International Conference on Software

Engineering (ICSE-00), 2000.

[96] A. van Lamsweerde and L. Willemet. Inferring declarative requirements specifications

from operational scenarios. IEEE Transactions on Software Engineering, 1998.

[97] W. W. Vasconcelos, J. Sabater, C. Sierra, and J. Querol. Skeleton-based agent devel-
opment for electronic institutions. In C. Castelfranchi and W. L. Johnson, editors,
Proceedings of the First International Joint Conference on Autonomous Agents and

MultiAgent Systems 2002 (AAMAS-2002), pages 696-703, Bologna, Italy, 2002.
[98] G. Wagner. Towards Agent-Oriented Information Systems. 2000.

[99] F. Wang. Self-organising communities formed by middle agents. In C. Castelfranchi
and W. L. Johnson, editors, Proceedings of the First International Joint Confer-
ence on Autonomous Agents and MultiAgent Systems 2002 (AAMAS-2002), pages
1333-1339, Bologna, Italy, 2002.

[100] G. Weiff. Agent orientation in software engineering. Knowledge Engineering Review,

16(4), December 2001.

[101] M. Wooldridge and P. Ciancarini. Agent-oriented software engineering: The state of
the art. In P. Ciancarini and M. J. Wooldridge, editors, Proceedings of Agent-
Oriented Software Engineering 2000 (AOSE 2000), 2000.

[102] M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent

Systems, (3), 2000.

[103] P. Yolum and M. P. Singh. Synthesizing Finite State Machines for Communication
Protocols . Technical report, Department of Computer Science, North Carolina

State University, USA, June 2001.

[104] E. Yu. Towards modelling and reasoning support for early-phase requirements en-
gineering, washington d.c., usa. In Proceedings of the 8rd IEEE Int. Symp. on
Requirements Engineering (RE’97), pages 226-235, January 1997.

228

[105] E.

[106] L.

[107] F.

[108] F.

[109] F.

Yu. Agent-oriented modelling: Software versus the world. In M. Wooldridge,
P. Ciancarini, and G. Weiss, editors, Proceedings of the Second International Work-
shop on Agent-Oriented Software Engineering (AOSE-2001), pages 206-225, Mon-
treal, Canada, 2001.

Yu and B. F. Schmid. A conceptual framework for agent oriented and role based
workflow modeling. In Proceedings of Agent-Oriented Information Systems 1999
(AOIS-99), 1999.

Zambonelli, N. R. Jennings, and M. Wooldridge. Organisational abstractions for the
analysis and design of multi-agent systems. In P. Ciancarini and M. J. Wooldridge,
editors, Proceedings of Agent-Oriented Software Engineering 2000 (AOSE 2000),
2000.

Zambonelli, N. R. Jennings, and M. Wooldridge. Organisational rules as an ab-
straction for the analysis and design of multi-agent systems. International Journal

of Software Engineering and Knowledge Engineering, 2000.

Zambonelli and H. V. D. Parunak. Signs of a revolution in computer science
and software engineering. In Proceedings of the Third International Workshop on

Engineering Societies in the Agents World (ESAW-2002), Madrid, Spain, 2002.

229

