
Chapter 1

AGENTS AND THE GRID: SERVICE DISCOVERY

Luc Moreau1, Michael Luck1, Simon Miles1, Juri Papay1, Keith Decker1,2,
Terry Payne1
Department of Electronics and Computer Science1

University of Southampton
L.Moreau,mml,sm,jp,ksd,trp@ecs.soton.ac.uk
Department of Computer and Information Sciences2
University of Delaware
decker@cis.udel.edu

Abstract The Grid is a large-scale computer system, capable of coordinating resources
that are not subject to centralised control, while using standard, open, general-
purpose protocols and interfaces, and delivering non-trivial qualities of service.
In this chapter, we argue that Grid applications very strongly suggest the use of
agent-based computing, and we review key uses of agent technologies in Grids:
user agents, able to customise and personalise data, agent communication lan-
guages offering a generic and portable communication medium, and negotiation
allowing multiple distributed entities to reach service-level agreements. In the
second part of the chapter, we focus on Grid service discovery, which we have
identified as a prime candidate for the use of agent technologies: we show that
Grid services need to be located via personalised, semantic-rich discovery pro-
cesses, which must rely on arbitrary metadata about services that originates from
both service providers and service users. We present uddi-mT , an extension to
the standard uddi service directory approach that supports the storage of such
metadata via a tunnelling technique that ties the metadata store to the original
uddi directory. The outcome is a flexible service registry that is compatible with
existing standards and also provides metadata-enhanced service discovery.

Keywords: Agents, Grid computing, service discovery, bioinformatics.

1. Introduction
The Grid [Foster and Kesselman, 1998], an open computing infrastructure

that supports large-scale distributed scientific research and applications, has
recently gained heightened and sustained interest from several communities. It



2 METHODOLOGIES AND SOFTWARE ENGINEERING FOR AGENT SYSTEMS

provides a means of developing a variety of e-Science applications including
the study of genetic diseases (such as that described later in this chapter), par-
ticle physics making use of the Large Hadron Collider facility at CERN [data-
grid, 2001], engineering design optimisation [Cox et al., 2001], and combina-
torial chemistry [Frey et al., 2003]. The underlying computing infrastructure
also supports more general applications that involve large-scale information
handling, knowledge management and service provision [Roure et al., 2003].
Initially geared towards high performance computing, Grid computing is now
being recognised as the future model for service-oriented environments, within
and across enterprises, facilitating the formation of collections of coordinated
services, or virtual organisations [Foster et al., 2001].
Large systems are naturally viewed in terms of the services they offer, and

consequently in terms of the entities providing or consuming services. Grid
applications typically consist of a set of such services that may be spread
across a geographically distributed environment, and selected from a dynam-
ically changing pool of available services. This service-oriented perspective,
in which services (and their availability) may come and go, and collections of
services are combined to achieve more complex tasks, very strongly suggests
the use of agent-based computing [Luck et al., 2003]. In this view, agents act
on behalf of service providers, managing access to services and ensuring that
contracts are fulfilled. They also act on behalf of service consumers, locating
services, agreeing contracts, and receiving and presenting results. Agents are
required to engage in interactions, to negotiate, and to make pro-active run-
time decisions while responding to changing circumstances.
In this chapter, we discuss the issues of agent-based Grid computing in the

context of the myGrid project, and then focus in more detail on the specific
issues involved in service discovery, which we identify as a prime candidate
for use of agent technologies. We begin by describing myGrid, which seeks
to provide Grid middleware for bioinformatics (Section 1.2), and then move
to a general discussion of the role and use of agents in Grid computing for
bioinformatics (Section 1.3). Section 1.4 addresses the use of agents for one
area of Grid computing in more detail, namely service discovery. We review
the current technologies and introduce in Section 1.5 a new service directory
mechanism, uddi-mT , which augments the functionality of uddi, the de facto
standard directory for Web Services, with a metadata facility to better cus-
tomise the publishing and discovering of services. As uddi already offers a
complex interface (for example, allowing searches on business categories and
service names), uddi-mT uses a tunnelling technique for dispatching regular
uddi requests to a uddi service, and intercepting uddi-mT metadata specific
requests. Finally, we present conclusions and discuss further work.



Agents and the Grid: Service Discovery 3

2. The Grid and Bioinformatics
The Grid. The Grid is a large-scale computer system capable of coor-
dinating resources that are not subject to centralised control, and which uses
standard, open, general-purpose protocols and interfaces, delivering non-trivial
qualities of service [Foster, 2002]. As part of the endeavour to define the
Grid, a service-oriented approach has been adopted by which computational
resources, storage resources, networks, programs and databases are all repre-
sented by services [Foster et al., 2002]. In this context, a service is a network-
enabled entity capable of encapsulating diverse implementations behind a com-
mon interface.
The service-oriented aproach allows the composition of services into work-

flows in order to form more sophisticated services. Workflows are used for
modelling the coordination between services, with each step in a workflow
corresponding to an environment-dependent decision that must be made by
some computational process.
In the e-Business community, a service-oriented architecture is also being

adopted in the form of Web Services, which have emerged as a set of open
standards, defined by the World Wide Web consortium and oasis, and ubiq-
uitously supported by IT vendors and users. Web Services rely on the xml
syntactic framework, soap for exchanging messages, the wsdl interface def-
inition language [wsdl, 2001], and the uddi service directory [uddi, 2001].
Against this background, the Grid community has extended Web Services

to support resource management required by Grid computing. This effort has
resulted in the Open Grid Service Architecture (OGSA), a Grid architecture
standardised by the Global Grid Forum, that defines a Grid Service as a Web
Service providing a set of well-defined interfaces, following specific conven-
tions [Foster et al., 2002]. In particular, Grid Services have some support for
lifecycle management, and a conventional mechanism for discovery using ser-
vice data elements (a service-specific type of metadata).

Bioinformatics. myGrid (www.mygrid.org.uk) is a pilot project funded
by the UK e-Science programme to develop Grid middleware in a biological
sciences context [Moreau et al., 2003]. To illustrate the functionality of Grid-
based bioinformatics, myGrid has adopted an application that helps scientists
study Graves Disease, a hormonal disorder caused by over-stimulation of the
thyrotrophin receptor by thyroid-stimulating autoantibodies secreted by lym-
phocytes of the immune system. The Graves Disease application follows an
in-silico experimental process typical of bioinformatics. In this process, the
scientist: (i) attempts to discover information about candidate genes; (ii)
makes an educated guess of the gene involved in the disease; and (iii) designs
an experiment to be realised in the laboratory in order to validate the guess.



4 METHODOLOGIES AND SOFTWARE ENGINEERING FOR AGENT SYSTEMS

This in-silico experiment operates over the Grid, in which resources are geo-
graphically distributed and managed by multiple institutions, and the necessary
tools, services and workflows are discovered and invoked dynamically. It is a
data-intensive Grid, in which the complexity is in the data itself, the number
of repositories and tools that need to be invoked in the computations, and the
heterogeneity of the data, operations and tools.
In many resources, each record is analogous to an individual publication

with not only raw data, but also additional annotations supplied by a small
number of human experts (curators). Annotations are typically semi-structured
text that may use keywords and controlled vocabularies, for parsing both by
computers and by humans. Thus, in addition to a large number of data types,
much of the valuable knowledge is locked into semi-structured text, under the
premise that the scientist will read and interpret it.
In broad terms, myGrid follows common agent-oriented approaches in pro-

viding points at which automated processes can make decisions on what to do
next depending on context. This manifests itself as automated service discov-
ery, which we study in some detail in this chapter. First, however, we review
the use of agent technologies in this context.

3. Agents in Bioinformatics Grids
Over the last few years, bioinformatics has undergone a rapid and substantial

change. The key problem faced in this domain is the multitude, heterogeneity
and variability of data, tools and technical literature available to bioscientists.
Although there are several well-known and highly regarded databases, they are
not exhaustive, and new ones often appear with new and different data. Thus,
any system intended for application to the bioinformatics domain should be
able to cope with this dynamism and openness, and nothing addresses these
concerns as comprehensively as the agent approach. Agents are flexible, au-
tonomous components designed to satisfy overarching strategic goals, while at
the same time being able to respond to the uncertainty inherent in the environ-
ment. On the one hand, agents provide an appropriate paradigm or abstraction
for the design of scalable systems aimed at this kind of problem; on the other,
the field of agent-based computing offers a set of technologies that may be
used for particular purposes in certain aspects of the system, including per-
sonalisation, communication and negotiation. It is the latter aspect of agent
technologies that we analyse in this context, and discuss below.

User Agent
The user agent (also known as a personal agent [Maes, 1994]) is an agent

in the sense that it represents a user within the myGrid system. It maintains a
model of the user’s goals and preferences, and uses these to make decisions and



Agents and the Grid: Service Discovery 5

(if necessary) coordinate with other agents on the user’s behalf. This is a use-
ful feature, especially during workflow enactment, when a workflow is being
executed and a choice of services becomes available. The choice should not be
made arbitrarily, but based on the priorities and circumstances of the particular
user. For example, a user may have more trust in the accuracy of one service
than in others. Instead of querying the user each time a particular service needs
to be selected, the user agent can mediate the selection process based on pre-
scribed preferences, or on prior experience. This adaptive behaviour is known
as personalisation.
Another application of the user agent is as a contact point between services

within the Grid and the user. By introducing an intermediary able to receive,
for example, requests from services for the user to enter data or notifications
about changes to remote databases, these messages can be delivered to the user
only when the user is able and willing to receive them. Conversely, the user
can delegate repetitive actions to the user agent, such as authenticating itself
with a service before use.

Agent Communication Language
The idea of an agent communication language dates back to the darpa

Knowledge Sharing Effort, which led to the design of kqml (Knowledge
Query and Manipulation Language) [Finin et al., 1997], and was later followed
by the fipa (Foundation for Intelligent Physical Agents) Agent Communica-
tion Language [FIPA, 1997].
In multi-agent systems, it is common practice to separate intention from

content in communicative acts, abstracting and classifying the former accord-
ing to Searle’s speech act theory [Searle, 1969]. Thus, an agent’s communica-
tions can be structured and classified according to a predefined set of message
categorisations, usually referred to as performatives.
In seeking to integrate agent communication with standard Grid technolo-

gies, we have previously described how the idea of agent communication lan-
guages could be mapped onto the communication stack of Web Services. First,
we focused only on the communication layer by encoding performatives and
message contents in soap [Moreau, 2002]. Second, we used the wsdl lan-
guage for describing agents and the performatives they support [Avila-Rosas
et al., 2002]. The aim of this research was to expose agent capabilities as
Web Services so that agents can publish their capabilities (and subsequently
be discovered) in a uddi registry. The approach turns out to be promising, be-
cause it offers a declarative communication semantics, which promotes inter-
operability, openness, dynamic discovery and reuse of agents. It also opens
the agent world to the Web Services community, helping in the design of more
complex interactions.



6 METHODOLOGIES AND SOFTWARE ENGINEERING FOR AGENT SYSTEMS

Negotiation Broker
Service users and service providers typically have different criteria regard-

ing the quality and content of services, but can resolve the differences through
the use of negotiation. In Grid computing, one area in which negotiation can be
particularly useful is in notification support. The providers of various services
may want to send out notifications concerning improvements to tools, changes
to databases or updates reflecting the state of enacted workflows, and so on.
Other services or agents might want to register to receive a subset of these
notifications. For stability, we consider asynchronous messages, and manage
their distribution using a notification service.
The subjects (quantitative and qualitative) over which negotiation is under-

taken could include the following forms of quality of service: the cost of receiv-
ing the notification; the topic (event category) of the notification; the frequency
at which notifications are received; the generality of the change described by
the notifications; and the format and accuracy of information contained in the
notification message. These items, and many more, provide a metric for the
quality of service.
An essential requirement for the smooth operation of any distributed system

is that the consumer’s demands of the service are met by the service providers.
However, if these demands are not exactly met for some reason, the consumer
may choose to negotiate with the publisher to find the next best quality of ser-
vice that the publisher can provide. For example, the subscriber may require
notifications weekly, whereas the publisher may only wish to provide them
daily or fortnightly. In this case, the subscriber must choose between the avail-
able options or may decide not to subscribe at all, depending on their particular
priorities. Alternatively, the publisher may be able to exceed the quality of ser-
vice in several ways in which the subscriber may be unaware, and which could
also lead to negotiation.
As the notification service must provide notification support for a potentially

large and varying number of consumers, it should not change the contract cov-
ering the quality of service based solely on the results of negotiation between
a single consumer and a publisher. Therefore, the notification service should
have some control over the quality of service agreed upon. There are also
other reasons why the notification service may usefully limit the interaction
between the publisher and consumer, such as limiting one party’s knowledge
of the other for reasons of privacy or anonymity.
The quality of service broker described in [Lawley et al., 2003] is an agent

conceptually contained within a notification service. This agent negotiates on
behalf of each consumer wishing to receive notifications of a specified quality,
and then produces a final proposal to both the consumer and the producer. It
can negotiate with any of the publishers known to the notification service, and



Agents and the Grid: Service Discovery 7

can also set boundaries on the agreed quality of service so that it is acceptable
to the notification service.

4. Agent-Based Service Discovery for Grid Computing
Service discovery is a critical element in large scale, open distributed sys-

tems such as the Grid, as it facilitates the dynamic identification of resources
abstracted as services. Providers may adopt various ways of describing their
services, such as access polices or contract negotiation details. However, many
resource consumers also impose their own selection policies on the services
they prefer to use, such as derived quality of service, reputation metrics and.
Consequently, both providers and consumers need to be able to locally manage
and augment service descriptions with additional information, i.e. metadata.
The problem of service discovery is compounded by the plethora of different

types of available service directories. Such services may include: public direc-
tories such as uddi servers hosted by IBM orMicrosoft; specialised directories
such as the I3C bioinformatics service directory; provider-specific directories
such as that of all the services hosted by a research institute; or even local di-
rectories such as the catalogue of all the services hosted by a laboratory for its
own users. However, access to different types of service directory may require
different protocols and query formats, with heterogeneous response formats.
Against this background, we have identified some key requirements that

can enhance the process of service discovery by making the discovery process
personalised to the user.

1 Users (not just service providers) should be able to attach metadata to
service descriptions registered in service directories.

2 Users cannot be expected to systematically query all service directories
in a discovery process. Instead, federating a selected set of service direc-
tories should provide a single point of access for the discovery process.

3 Users should be able to provide a semantic description of the task they
want to locate, and the discovery should match the requirements against
semantic descriptions of published services.

We will refer to the first two techniques as syntactic, whereas the third is
semantic. Semantic descriptions can be used to specify what a service does in
terms of the application domain (such as bioinformatics). Semantic techniques
can then be applied to broaden or refine the list of services returned on dis-
covery, based on the semantic descriptions and expert knowledge encoded in
ontologies. For instance, queries for services of a general semantic type, such
as sequence alignment tool, may also discover services described by a more
specific type (sub-concept), such as blast tool. In the rest of this chapter, we
shall only discuss the first technique, which allows users to attach metadata



8 METHODOLOGIES AND SOFTWARE ENGINEERING FOR AGENT SYSTEMS

to published service instances. We refer the interested reader to [Lord et al.,
2003] for a discussion of a semantic approach to service discovery.

Service Discovery Technologies
Service discovery has always played a crucial role in the evolution and de-

ployment of distributed systems. Early distributed systems comprised collec-
tions of components (e.g. client-server or object-oriented) that were implicitly
linked through function names, or linked through tcp/ip-based host and port
addresses. The introduction of federated domain name servers (dns) simpli-
fied and abstracted the use of numerical addresses by providing a registry-
based mechanism for locating hosts. Jini [Arnold et al., 1999] used a similar
approach as part of its Java-based distributed infrastructure. In this system,
classes expose and publish their interfaces as proxy objects with the Jini dis-
covery service. By searching for a given class-name, matching proxy objects
can then be retrieved and invoked, which in turn call the remote service. While
providing a mechanism by which services can easily be added, removed or re-
placed within a system, this approach is based on an assumption that there is a
shared agreement about what a given service type is called (i.e. its class name)
and that there was an agreed and well defined interface. Other distributed tech-
nologies support similar principles, including dcom and Corba.
Web Services relax several assumptions of the Jini model. Unlike Jini,

Web Services do not form well-defined class hierarchies, so it is difficult to
locate services through class labels. To solve this problem, the uddi service
directory [uddi, 2001] was introduced, to register both service and provider
specific information. The uddi registry can be searched through a list of ser-
vice descriptions, but there is little support provided for searches based on the
service’s signature or user-defined data.

uddi supports the tModel (Technical Model) construct, which essentially
serves two purposes: it provides a namespace for a taxonomy, and a proxy
for a technical specification that lives outside the registry. tModels represent
a powerful but limited mechanism for augmenting service registrations with
metadata; their expressiveness was demonstrated by encoding properties from
the daml-Services (daml-s) ontology [Ankolekar et al., 2002] within uddi
records [Paolucci et al., 2002].
However, before tModels may be used, they need to be registered with a

uddi server and hence be unique. While this is suitable for mapping well de-
fined specifications to tModels, it is inappropriate for specifying large numbers
of locally used metadata attributes (such as a set of attributes that may be shared
by a single organisation or domain). The uddi V3 specification attempts to
amend this oversight by defining a specific tModel, general keywords, to allow
simple unregistered key-value pairs to be attached to a uddi entity. However,



Agents and the Grid: Service Discovery 9

this solution is oriented towards metadata supplied by the service providers,
not users, and allows only simple textual metadata as opposed to more com-
plex structures. An alternative approach to storing explicit, personalised, and
possibly dynamic metadata that is associated with a service description is re-
quired to address these deficiencies.
In contrast to uddi, the discovery services used by agent-based systems are

typically designed to provide capability-based search, but provide little sup-
port for metadata-based search. These service registries index and search for
registered services based on capability descriptions (or abstract descriptions of
the service and its interface), rather than provider descriptions. Agents typi-
cally achieve their goals by identifying the types of services or tasks that need
to be assembled together, and by delegating these tasks to those agents that
provide the corresponding services. Such services are normally located by
contacting one of several different middle agents [Decker et al., 1997]. Indeed,
some middle agents have been developed for the adoption of a semantically-
rich capability description language such as larks [Sycara and Klusch, 2001]
and daml-s [Ankolekar et al., 2002] to facilitate the matching of semantically
equivalent, interoperable services, despite the fact that labels or syntactic con-
structs in the returned interface definition may not exactly match those in the
query.
Interestingly, however, many Grid projects require large numbers of service

and domain specific metadata. This might include, for example:

perceived reputation of the service, which is critical to build a network
of trusted services in an open environment;

perceived reliability of the service, which has more value if it is provided
by a third party, and not by the service provider itself;

perceived quality of service by taking into account external factors, such
as network connectivity, bandwidth, latency etc.;

price for accessing a service (the user’s institution may have negotiated a
local price to access a resource, such as ACM or IEEE digital libraries);
and

ontological descriptions of a service, which may differ if there are multi-
ple ontologies or interpretations of a service. While we may imagine that
a whole scientific community shares a common ontology, the very nature
of undertaking research necessarily entails that ontology revisions will
be created by those who undertake this research, and who will therefore
want to use them in order to characterise services within their refined
ontologies.



10 METHODOLOGIES AND SOFTWARE ENGINEERING FOR AGENT SYSTEMS

Notions of services
One of the necessary elements to tackle in building a service directory re-

lates to the differing notions of what a service actually is. Even within a uni-
fied model such as uddi, the term is used in subtly different ways. In its
most abstract form, the term service has two complementary meanings. For
specifications driven mostly by the traditional distributed computing commu-
nity (uddi, wsdl), service tends to indicate a physical computing entity or
entities that present some well-specified interface at particular physical end-
points. For specifications driven by the agents or more general AI commu-
nity (daml-s [Ankolekar et al., 2002]), service tends to indicate a process by
which one may achieve a goal. These two viewpoints have significant overlap
— an extremely common case in specification examples and in real imple-
mentations is one where a physical computing entity presents a well-specified
interface which, in turn, enacts a process that achieves a goal. However, there
are also situations that are harder to reconcile at this very high level of ab-
straction. First, from an agent perspective, a service could very well represent
a large workflow quite explicitly spanning multiple physical computing enti-
ties (for example, composite daml-s services), whereas a single service from
the uddi perspective may encompass many processes, each of which achieves
different goals.
Not surprisingly, since the computational representation of semantic infor-

mation has been a subject of study in AI for years, the most expressive mod-
els for semantic service description tend to be built around the agent-style
service-as-process concept. While wsdl studiously avoids semantic infor-
mation, uddi does allow the assignment of predefined categorical values to
both Business Services and Technical Services. Note that such categories are
tied into the view of service-as-endpoint (e.g., geographical location) type of
business, etc.

daml-s attempts a full description of a service from the point of view that
it is a process that can be enacted to achieve a goal. A full daml-s service de-
scription incorporates three component perspectives: an abstract description of
the service from the AI planning view (based on inputs, outputs, preconditions,
and effects of a service — the service profile); the workflow view of the more
primitive services needed to accomplish a complex goal (the service process);
the mapping of the atomic parts of this workflow to their concrete wsdl de-
scriptions (the service grounding). At its most complex, the daml-s process
view may be nested and include an explicit control model in order to monitor,
alter, and possibly terminate the execution of a non-atomic service. Such mod-
els are analogous to emerging Web Service workflow proposals, such aswsfl
and bpel [Leyman, 2001, Curbera et al., 2002] and their associated standards,
but this is beyond the scope of this chapter.



Agents and the Grid: Service Discovery 11

Service-Oriented Computing through Agent Technology
Service oriented computing, as described above in the context of the Grid,

fits very well with agent technologies on the one hand, and the agent paradigm
on the other. First, agent technologies of middle agents such as matchmakers
and brokers can be used to address the problem of service discovery based on
capability descriptions.
More generally, however, the paradigm of agent-based computing offers a

way to view complex systems, with the area of agent-oriented software engi-
neering [Wooldridge et al., 2000, Miles et al., 2000] providing ways of mod-
elling and engineering such systems. These approaches make use of the agent
metaphor to allow developers to reason about sophisticated behaviour in com-
plex distributed systems, while avoiding explicit complexity in system design.
In this view, the complexity arises out of the interactions of individual compo-
nents at run-time rather than at design-time.
Clearly, however, distinct elements of the application must be identifiable

as agents exhibiting flexible behaviour. Service directories matching the re-
quirements given in the previous section are thus good candidates for an agent
modelling approach for several reasons. First, they are federated, with anno-
tations made in one registry being communicated to another with no guaran-
tee of its inclusion in the latter: this is flexible social multi-agent behaviour.
Such directories are autonomous in that they poll other registries according
to some query, and reactive in that they may incorporate the results into their
store, within the current environmental context provided both by a policy and
by communication from other directories. Such flexible, autonomous, pro-
active, reactive behaviour demonstrates just those properties that characterise
the agent approach.
Similarly, services surrounding service discovery can be viewed as agents.

Agents can be present in the system as automatic publishers (or re-publishers)
of services into multiple registries, as automated discoverers of services to be
used in workflows, as personal agents adjusting service discovery to a user’s
preferences, and as automated executors that handle the invocation, compo-
sition and failure of services. Agents can also be used to regularly update
metadata attached to a service description.

5. Architecture Design
The previous sections have identified Grid service discovery as a good can-

didate for deployment of agent technologies. Indeed, personalisation of con-
tent, flexible social behaviour through federation, and autonomy in the han-
dling of requests, are all features of complex multi-agent systems. In this sec-
tion, we describe a registry that can personalise content through a mechanism
to attach metadata to service descriptions.



12 METHODOLOGIES AND SOFTWARE ENGINEERING FOR AGENT SYSTEMS

Since the types of personalised metadata that are required naturally vary
greatly between individuals, organisations, and scientific user communities,
an abstract and highly flexible representation is required. By regarding and
implementing metadata items as triples that specify a relation between a sub-
ject and an object, arbitrary metadata can be described and queried via graph-
based search criteria. This can be achieved through the use of rdf (the W3C
Resource Description Framework) [rdf, 2001], which underpins the Semantic
Web effort [Berners-Lee et al., 2001].
While uddi is the acknowledged standard directory service mechanism for

Web Services, it is limited in the kind of metadata that can be stored about
services, the ways in which it can be queried, and who can annotate service
descriptions with metadata. Our previous work, uddi-m, was an early attempt
to associate metadata with services and maintain soft state information [Fos-
ter et al., 2002], based on leases a la Jini. Both ideas have been reused in a
service directory with quality of service information [ShaikhAli et al., 2003].
With uddi-mT , we take a further step by regarding and implementing meta-
data as triples, which gives us access to Semantic Web technologies such as
rdf, and powerful query languages such as rdql over a uniform represen-
tation of information. uddi-mT works in conjunction with a uddi service to
provide precisely these extra capabilities, and eventually support for person-
alised directory service federation and semantic service discovery.
In this section, we describe the principles underlying the architecture of

uddi-mT , which was underpinned by the following requirements during the
design:

1 uddi-mT should be compliant with the uddi specification [uddi, 2001]
and support future development in this direction.

2 Existing client applications and service providers should be able to make
use of uddi-mT .

The key components of the architecture are depicted in Figure 1.1, where we
see that uddi-mT is the point of contact for clients, used either for dispatching
requests to uddi or for processing them locally.
As far as implementation is concerned, uddi-mT was designed to be as

generic as possible. First, all incoming requests are dispatched to the appropri-
ate handler according to their type. Second, the uddi-mT backend is specified
by an interface, which can be implemented in different ways: currently, we
support a relational database and the Jena triple store [Jena, 2002].
This design assumes that all soap messages for the service directory is-

sued by the client are routed to uddi-mT , which selectively filters them. This
mechanism relies on the combination of the soap envelope and namespace
contained in the message to dispatch the message to the appropriate handler,
as specified by a configuration file. Messages with the uddi namespace are



Agents and the Grid: Service Discovery 13

UDDI−M UDDI

publish publish

publish

UDDIM4J 

Proxy

Client

configuration file
handler

backend interface

Metadata

Lease

Method

Method Parameters

Services

Relational Database Backend Triple Store Backend

T

Figure 1.1. Architecture of uddi-mT

directly tunnelled to other uddi registries, whereas messages with a uddi-mT

namespace are handled locally.
All metadata-related information is stored in the uddi-mT backend. Its

interface is implemented in two different ways. On the one hand, we use a
relational database with five tables for metadata, leases, methods, method pa-
rameters and services. On the other hand, the same information is encoded
by triples in a Jena triple store [Jena, 2002], for which three implementations
are possible: an in-memory store, a relational database or the Berkeley Triple
stores [Berkeley, 2002].

uddi-mT offers several extensions to uddi. First, uddi-mT allows the as-
sociation of metadata with services. Second, it supports a lease mechanism that
requires services to renew their lease in order to maintain their registration in
uddi-mT ; such functionality is present in Jini [Arnold et al., 1999] and is also
ubiquitous in the Open Grid Services Architecture [Foster et al., 2002]. Third,
uddi-mT is able to extract the information contained inwsdl files describing
the interface. Fourth, uddi-mT extends the query mechanism of uddi to al-
low searches of all the extra information it accumulates about services. Fifth,
in the specific case of the Jena backend, uddi-mT allows users to express
queries in the rdql-query language [Jena, 2002], offering homogeneous ways
of traversing the metadata graph associated with services.
While uddi is defined as a Web Service, a programmatic interface (uddi4j

[uddi4j, 2001]) is also available for Java: it provides a client-side proxy with



14 METHODOLOGIES AND SOFTWARE ENGINEERING FOR AGENT SYSTEMS

an api implementing the uddi functionality, which allows programmers to
abstract away from the messaging layer. We have extended this proxy, by sub-
classing it, with additional uddi-mT functions for managing leases and meta-
data. Thus, we preserve clients’ binary compatibility. Indeed, a uddi proxy
can be transparently substituted for a uddi-mT proxy, in existing clients, since
the latter is a subclass of the former. Clients do not have to use the function-
ality provided by uddi-mT , they can use the existing namespace specification
and the calls will be directly tunnelled to the underlying uddi service.

6. Performance Analysis
The Grid checklist [Foster, 2002] identifies “non-trivial qualities of service”

as an essential feature of Grids. In taking this on board, the purpose of this
section is to understand the impact of our design decisions on the performance
of discovery. We focus our attention on two specific aspects. First, adopting
the tunnelling technique reduces the implementation effort and allows us to
maintain compatibility with evolving standards, but it comes at the price of
soap-message forwarding; in the first part of this section, we analyse the cost
of tunnelling. Second, the use of metadata in a service directory allows us to
reduce the computational load on clients, while performing more selective and
computationally intensive queries at the server side; in the second part of this
section, we analyse the cost of metadata querying, and see how the use of the
rdql language, offering extended expressiveness to the user, impacts on the
querying cost. A more detailed analysis can be foung in [Miles et al., 2003].

Tunnelling Cost. Our hypothesis is that the overhead introduced by the
tunnelling technique is acceptable. In order to evaluate such a hypothesis, we
have set up the following experimental framework.
A uddi-mT service and its associated uddi service are hosted in a Tomcat

server. A client uses a uddi4j proxy successively configured to use uddi and
uddi-mT . In order to avoid the cost of networking, both the client and ser-
vices are run on a same machine, and communications take place through the
“localhost” network device. We issue a uddi-query that searches for a service
with a specific name, for which a single instance has been registered. Figure
1.2 shows the overhead introduced by uddi-mT , which tunnels the request to
uddi. The tests were run on a Pentium 4, 1.5GHz, with 512Mb, using Tom-
cat 4.0 and the Registry Server 1.0 02, in the Java Web Services Developer
Pack (1.0 01). The data plotted were averaged over 10 runs. The tunnelling
overhead is 7.2%.
We also evaluated the cost of tunnelling as the size of query results in-

creases, but did not obtain any significant result, as the marginal tunnelling
cost was noise compared to the querying cost.



Agents and the Grid: Service Discovery 15

0

5000

10000

15000

20000

25000

10 20 30 40 50 60 70 80 90 100

Ti
m

e 
in

 m
s

Number of Queries

cost of tunneling (constant query size)
UDDI

UDDI-M

uddi
Mean 189.9ms
Std Dev 24.9ms

uddi-m
Mean 203.7ms
Std Dev 24.8ms

Abs Overhead 13.8ms
Rel Overhead 7.2%

Figure 1.2. Overhead of Tunnelling

Metadata Querying Cost. Our second hypothesis is that using a triple
store as an internal representation mechanism for uddi-mT is practical, and
the use of the rdql-query language can reduce communication costs, and
offload the client, by performing some server-side computation. For these ex-
periments the associated uddi is not involved, resulting in a commensurate
reduction in query times from the previous experiments.
In Figure 1.3, we show the costs of attaching a property value pair to a ser-

vice already registered, which we call a property write operation, and of finding
a service with a given property value pair, which we call a property read oper-
ation. We used the two different backends, a mySQL relational database and
Jena with the Berkeley triple store for these experiments. For the Jena backend,
we used the Jena api to find the service with given metadata, and we did not
rely on the rdql-query language. We plotted the results in Figure 1.3(a) using
a logarithmic scale to differentiate the curves better. Our purpose here is not
to compare persistent storage technologies, but to understand the cost of meta-
data management. We can see that read operations for both backends and the
write operation in the Jena store are very similar. We explain the higher cost
for the write operation with the sql database by the cost of storing information
on disk, which is probably not measured with the triple store.
In Figure 1.3(b), we used the rdql-query language to search for a service

satisfying 100 properties; 20 such services were found in the system. For
convenience, we again plotted the Jena read line from Figure 1.3(a). We can
see that the rdql-query engine processing a complex query that checks 100
properties marginally outperforms our direct use of the triple store api, which
itself behaved well compared to a relational backend.



16 METHODOLOGIES AND SOFTWARE ENGINEERING FOR AGENT SYSTEMS

100

1000

10000

100000

1e+06

10 20 30 40 50 60 70 80 90 100

Ti
m

e 
in

 m
s

Number of Requests

Reading and Writing Properties (both backends)
direct jena write
direct jena read

sql write
sql read

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90 100

Ti
m

e 
in

 m
s

Number of Requests

RDQL queries vs direct triple store query
rdql read avg
rdql read max
rdql read min

direct Jena read

Figure 1.3. (a) Property Read and Write (b) rdql Queries

7. Related Work
The notion of agents has recently become popular in the Grid community.

Rana and Walker [Rana and Walker, 2000] advocate the use of the agent para-
digm to integrate multiple information sources in problem-solving environ-
ments. Busetta et al. [Busetta et al., 2001] describe a Belief-Desire-Intention
(BDI) agent architecture to simulate query optimisations in the Data Grid; their
long term goal is to provide advanced and adaptable Grid services (of which
query optimisation is one) based on agent technologies. Rana and Moreau
[Rana and Moreau, 2000] review how agent techniques may be used to imple-
ment services at the computational Grid layer.
The DARPA CoABS (Control of Agent Based Systems) Grid [coabs, 2000]

integrates various heterogeneous agent-based systems, mobile agent systems,
object-based and legacy systems. It is based on Jini [Oaks and Wong, 2000]
for its lookup service and Java rmi for inter-agent communication, and tests of
scalability of the registration mechanism have been undertaken in [Kahn and
Cicalese, 2001].
Without mentioning agents explicitly, Furmento, Newhouse and Darlington

[Furmento et al., 2001] discuss another Jini-based technique for federating
resources. Their long-term goal is the building of a computational economy
for the Grid. Several other projects investigate this idea of a computational
economy, according to which an economics framework regulates the supply
and demand of resources. In particular, Nimrod/G [Buyya et al., 2001] is a
resource broker capable of budget-based scheduling, giving users incentives to
trade execution time for economic cost.
From the agent side, the community has been very active in devising high-

level interaction protocols able to coordinate the activities of suppliers and
consumers. Agents may cooperate in order to achieve a common goal, re-
sulting in cooperative problem-solving which, sometimes, gives rise to adap-
tive behaviour. An alternative approach to this cooperation paradigm is the



Agents and the Grid: Service Discovery 17

market-based model in which agents act as self-interested entities competing
in a market, where goods such as computational resources are traded. Systems
based on this paradigm have been shown to reach an overall equilibrium, in
which resources are efficiently allocated [Clearwater, 1996, Kuwabara et al.,
1996, Miller et al., 1996]. The market-based approach gives good results in
particular when resources become scarce, and is a specific case of the more
general type of interaction among self-interested agents, negotiation [Jennings
et al., 1998]. As suggested earlier in this chapter, the key characteristics of
negotiation are the presence of some form of conflict that must be resolved in
a decentralised manner, by self-interested rational agents with incomplete in-
formation. Negotiation is the paradigm case of persuasion. It is a process by
which agents come to a mutually acceptable agreement; apart from the work
mentioned earlier, we are not aware of any of these techniques being applied
in the context of the Grid.
Although the paradigm of agents has been used in the context of bioinfor-

matics previously, this has not taken a Grid perspective. For instance, both
[Decker et al., 2001] and [Bryson et al., 2002] used agent systems to federate
data sources and tools in bioinformatics applications.

8. Conclusion and Future Work
In this chapter, we have discussed the roles and use of agents in Grid com-

puting in general, but drilled down to explore service discovery in more detail.
The examples of the use of agents that we have presented offer substantial new
capabilities for Grid computing but still remain rather localised to some spe-
cific services. In particular, the full potential of agent technologies is yet to be
exploited in future features of our service directory.
More specifically, the chapter describes the need for attaching metadata to

services registered in service directories. This metadata describes functional
and non-functional characteristics of services, and can be supplied by both
publishers and consumers of a service. We have presented the architecture
and the implementation of uddi-mT , an extension of uddi, supporting meta-
data attachment and query. Our experimental evaluation has demonstrated the
soundness of architectural design and implementation.
For the long term, agent-based computing also counts in its armoury a range

of techniques for enabling individual components to collaborate with others, as
well as for competing with others in the provision of services as may be found
in bioinformatics. For example, the former aspects include issues in the con-
struction of virtual organisations, whereby different services come together in
some coherent whole subsystem for a particular purpose; and issues in the reg-
ulation of open societies of services through the use of norms and electronic
institutions. The latter aspects, for example, include the possible use of sophis-



18 METHODOLOGIES AND SOFTWARE ENGINEERING FOR AGENT SYSTEMS

ticated auction mechanisms, or electronic marketplaces, for obtaining the best
services or resources at the least cost to the user. Additionally, whenever in-
teractions take place between different agents, the issues of provenance, trust
and reputation become important. Though some work has been done in this
area, the focus on both agent-based computing and Grid computing has been
limited, with the majority adopting the stance of assuming complete trust, and
avoiding the issue; questions of deception and fraud in communication and
interaction, of assurance and reputation, and of risk and confidence, are partic-
ularly significant, especially where interactions take place with new partners.

9. Acknowledgement
This research is funded in part by EPSRC myGrid project (reference GR/

R67743/01). Thanks to myGrid colleagues: Matthew Addis, Nedim Alpdemir,
Andy Brass, Rich Cawley, Neil Davis, David De Roure, Vijay Dialani, Al-
varo Fernandes, Justin Ferris, Rob Gaizauskas, Kevin Glover, Carole Goble,
Mark Greenwood, Chris Greenhalgh, Yikun Guo, Simon Harper, Clare Jen-
nings, Ananth Krishna, Peter Li, Xiaojian Liu, Phillip Lord, Darren Marvin,
Karon Mee, Arijit Mukherjee, Tom Oinn, Steve Oliver, Savas Parastiditis, Nor-
man Paton, Simon Pearce, Stephen Pettifer, Milena V Radenkovic, Peter Rice,
Angus Roberts, Alan Robinson, Tom Rodden, Martin Senger, Nick Sharman,
Robert Stevens, Victor Tan, Brian Warboys, Paul Watson, Anil Wipat, Chris
Wroe.

References

[Ankolekar et al., 2002] Ankolekar, Anupriya, Burstein, Mark, Hobbs, Jerry,
Lassila, Ora, McDermott, Drew, Martin, David, McIlraith, Sheila,
Narayanan, Srini, Paolucci, Massimo, Payne, Terry, and Sycara, Katia
(2002). DAML-S: Web Service Description for the Semantic Web. In First
International Semantic Web Conference (ISWC) Proceedings, pages 348–
363.

[Arnold et al., 1999] Arnold, Ken, O’Sullivan, Bryan, Scheifler, Robert,
Waldo, Jim, and Wollrath, Ann (1999). The Jini Specification. Sun Mi-
crosystems.

[Avila-Rosas et al., 2002] Avila-Rosas, Arturo, Moreau, Luc, Dialani, Vijay,
Miles, Simon, and Liu, Xiaojian (2002). Agents for the Grid: A Comparison
with Web Services (part II: Service Discovery). InWorkshop on Challenges
in Open Agent Systems, Bologna, Italy.

[Berkeley, 2002] Berkeley (2002). Berkeley DB. http://www.sleepycat.com/.
[Berners-Lee et al., 2001] Berners-Lee, Tim, Hendler, James, and Lassila, Ora
(2001). The Semantic Web. Scientific American, 284(5):34–43.



Agents and the Grid: Service Discovery 19

[Bryson et al., 2002] Bryson, Kevin, Luck, Michael, Joy, Mike, and Jones,
David (2002). Agent Interaction for Bioinformatics Data Management. Ap-
plied Artificial Intelligence.

[Busetta et al., 2001] Busetta, Paolo, Carman, Mark, Serafini, Luciano,
Stockinger, Kurt, and Zini, Floriano (2001). Grid Query Optimisation in
the Data Grid. Technical Report IRST 0109-01, Istituto Trentino di Cul-
tura.

[Buyya et al., 2001] Buyya, Rajkumar, Giddy, Jonathan, and Abramson,
David (2001). An economy grid architecture for service-oriented grid com-
puting. In 10th IEEE International Heterogeneous Computing Workshop
(HCW 2001), In conjunction with IPDPS 2001, San Francisco, USA.

[Clearwater, 1996] Clearwater, Scott H., editor (1996). Market-Based Con-
trol. A Paradigm for Distributed Resource Allocation. World Scientific Pub-
lishing.

[coabs, 2000] coabs (2000). The DARPA CoABS Project: “Control of Agent
Based Systems”. http://coabs.globalinfotek.com/.

[Cox et al., 2001] Cox, Simon J., Fairman, Matthew J., Xue, Gang, Wason,
Jasmin L., and Keane, Andy J. (2001). The Grid: Computational and Data
Resource Sharing in Engineering Optimisation and Design Search. In IEEE
Proceedings of the 2001 ICPP Workshops, pages 207–212, Valencia, Spain.

[Curbera et al., 2002] Curbera, Francisco, Goland, Yaron, Klein, Johannes,
Leymann, Frank, Roller, Dieter, Thatte, Satish, and Weerawarana, San-
jiva (2002). Business process execution language for web services.
http://www.ibm.com/developerworks/library/ws-bpel/.

[datagrid, 2001] datagrid (2001). The datagrid project. http://eu-
datagrid.web.cern.ch/eu-datagrid/.

[Decker et al., 1997] Decker, Keith, Sycara, Katia, and Williamson, Mike
(1997). Middle-Agents for the Internet. In IJCAI97.

[Decker et al., 2001] Decker, Keith, Zheng, X., and Schmidt, C. (2001). A
Multi-Agent System for Automated Genetic Annotation. In The fifth ACM
International Conference on Autonomous Agents, Montreal, Canada.

[Finin et al., 1997] Finin, Tim, Labrou, Yannis, and Mayfield, James (1997).
Software Agents, J. Bradshaw, Ed., chapter KQML as an Agent Communi-
cation Language. MIT Press.

[FIPA, 1997] FIPA (1997). FIPA: Foundation for Intelligent Physical Agents.
http://www.fipa.org/.

[Foster, 2002] Foster, Ian (2002). What is the grid? a three point checklist.
http://www-fp.mcs.anl.gov/ foster/.



20 METHODOLOGIES AND SOFTWARE ENGINEERING FOR AGENT SYSTEMS

[Foster and Kesselman, 1998] Foster, Ian and Kesselman, Carl, editors
(1998). The Grid: Blueprint for a New Computing Infrastructure. Mor-
gan Kaufman Publishers.

[Foster et al., 2002] Foster, Ian, Kesselman, Carl, Nick, Jeffrey M., and
Tuecke, Steven (2002). The Physiology of the Grid — An Open Grid Ser-
vices Architecture for Distributed Systems Integration. Technical report,
Argonne National Laboratory.

[Foster et al., 2001] Foster, Ian, Kesselman, Carl, and Tuecke, Steve (2001).
The Anatomy of the Grid. Enabling Scalable Virtual Organizations. Inter-
national Journal of Supercomputer Applications.

[Frey et al., 2003] Frey, Jeremy G., Bradley, Mark, Essex, Jonathan W., Hurst-
house, Michael B., Lewis, Susan M., Luck, Michael M., Moreau, Luc,
Roure, Dave C. De, Surridge, Mike, and Welsh, Alan (2003). Grid Comput-
ing — Making the Global Infrastructure a Reality (Editors: Fran Berman,
Geoffrey Fox and Tony Hey), chapter Combinatorial chemistry and the Grid,
pages 945–962. Wiley Series in Communications Networking and Dis-
tributed Systems. John Wiley and Sons, Chichester, England.

[Furmento et al., 2001] Furmento, Nathalie, Newhouse, Steven, and Darling-
ton, John (2001). Building Computational Communities from Federated
Resources_ In Proceedings of the 7th International Euro-Par Conference
(Euro-Par 2001), pages 855–863, Manchester, UK.

[Jena, 2002] Jena (2002). Jena semantic web toolkit.
http://www.hpl.hp.com/semweb/jena.htm.

[Jennings et al., 1998] Jennings, Nicholas R., Sycara, Katia, and Wooldridge,
Michael (1998). A Roadmap of Agent Research and Development. Int.
Journal of Autonomous Agents and Multi-Agent Systems, 1(1):7–38.

[Kahn and Cicalese, 2001] Kahn, Martha L. and Cicalese, Cynthia Della Torre
(2001). CoABS Grid Scalability Experiments. In Second Interna-
tional Workshop on Infrastructure for Scalable Multi-Agent systems at Au-
tonomous Agents, Montreal, Canada.

[Kuwabara et al., 1996] Kuwabara, Kazuhiro, Ishida, Toru, Nishibe,
Yoshiyasu, and Suda, Tatsuya (1996). An Equilibratory Market-Based
Approach for Distributed Resource Allocation and Its Applications to Com-
munication Network Control. In Market-Based Control. A Paradigm for
Distributed Resource Allocation, pages 53–73. World Scientific Publishing.

[Lawley et al., 2003] Lawley, Richard, Decker, Keith, Luck, Mike, Payne,
Terry, and Moreau, Luc (2003). Automated negotiation for grid notifica-
tion services. In Ninth International Europar Conference (EURO-PAR’03),
Lecture Notes in Computer Science, Klagenfurt, Austria. Springer-Verlag.



Agents and the Grid: Service Discovery 21

[Leyman, 2001] Leyman, Frank (2001). Web Services Flow Language
(WSFL). Technical report, IBM.

[Lord et al., 2003] Lord, Phillip, Wroe, Chris, Stevens, Robert, Goble, Carole,
Miles, Simon, Moreau, Luc, Decker, Keith, Payne, Terry, and Papay, Juri
(2003). Semantic and Personalised Service Discovery. In Cheung, W. K.
and Ye, Y., editors, Proceedings of Workshop on Knowledge Grid and Grid
Intelligence (KGGI’03), in conjunction with 2003 IEEE/WIC International
Conference on Web Intelligence/Intelligent Agent Technology, pages 100–
107, Halifax, Canada. Department of Mathematics and Computing Science,
Saint Mary’s University, Halifax, Nova Scotia, Canada.

[Luck et al., 2003] Luck, Michael, McBurney, Peter, and Preist, Chris (2003).
Agent Technology: Enabling Next Generation Computing. AgentLink.

[Maes, 1994] Maes, Pattie (1994). Agents that Reduce Work and Information
Overload. Communications of the ACM, 37(7):31–40.

[Miles et al., 2000] Miles, Simon, Joy, Mike, and Luck, Michael (2000). De-
signing agent-oriented systems by analysing agent interactions. In Cian-
carini, P. and Wooldridge, M. J., editors, Proceedings of Agent-Oriented
Software Engineering 2000 (AOSE 2000), pages 171–184.

[Miles et al., 2003] Miles, Simon, Papay, Juri, Dialani, Vijay, Luck, Michael,
Decker, Keith, Payne, Terry, and Moreau, Luc (2003). Personalised grid
service discovery. IEE Proceedings Software: Special Issue on Performance
Engineering, 150(4):252–256.

[Miller et al., 1996] Miller, Mark S., Krieger, David, Hardy, Norman, Hibbert,
Chris, and Tribble, E. Dean (1996). An Automated Auction in ATM Net-
work Bandwidth. In Market-Based Control. A Paradigm for Distributed
Resource Allocation, pages 96–125. World Scientific Publishing.

[Moreau, 2002] Moreau, Luc (2002). Agents for the Grid: A Comparison with
Web Services (Part 1: the transport layer). In Bal, Henri E., Lohr, Klaus-
Peter, and Reinefeld, Alexander, editors, Second IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGRID 2002), pages
220–228, Berlin, Germany. IEEE Computer Society.

[Moreau et al., 2003] Moreau, Luc, Miles, Simon, Goble, Carole, Greenwood,
Mark, Dialani, Vijay, Addis, Matthew, Alpdemir, Nedim, Cawley, Rich,
Roure, David De, Ferris, Justin, Gaizauskas, Rob, Glover, Kevin, Green-
halgh, Chris, Li, Peter, Liu, Xiaojian, Lord, Phillip, Luck, Michael, Mar-
vin, Darren, Oinn, Tom, Paton, Norman, Pettifer, Stephen, Radenkovic,
Milena V, Roberts, Angus, Robinson, Alan, Rodden, Tom, Senger, Martin,
Sharman, Nick, Stevens, Robert, Warboys, Brian, Wipat, Anil, and Wroe,
Chris (2003). On the Use of Agents in a BioInformatics Grid. In Lee,
Sangsan, Sekguchi, Satoshi, Matsuoka, Satoshi, and Sato, Mitsuhisa, ed-



22 METHODOLOGIES AND SOFTWARE ENGINEERING FOR AGENT SYSTEMS

itors, Proceedings of the Third IEEE/ACM CCGRID’2003 Workshop on
Agent Based Cluster and Grid Computing, pages 653–661, Tokyo, Japan.

[Oaks and Wong, 2000] Oaks, Scott and Wong, Henry (2000). Jini In a Nut-
shell. O’Reilly.

[Paolucci et al., 2002] Paolucci, Massimo, Kawamura, Takahiro, Payne,
Terry R., and Sycara, Katia (2002). Importing the Semantic Web in UDDI.
InWeb Services, E-Business and Semantic Web Workshop.

[Rana and Moreau, 2000] Rana, Omer F. and Moreau, Luc (2000). Issues in
Building Agent based Computational Grids. In Third Workshop of the UK
Special Interest Group on Multi-Agent Systems (UKMAS’2000), Oxford,
UK.

[Rana and Walker, 2000] Rana, Omer F. and Walker, David W. (2000). ‘The
Agent Grid’: Agent-Based Resource Integration in PSEs. In Proceedings of
the 16th IMACS World Congress on Scientific Computation, Applied Math-
ematics and Simulation, Lausanne, Switzerland.

[rdf, 2001] rdf (2001). Resource Description Framework (RDF).
http://www.w3.org/RDF/.

[Roure et al., 2003] Roure, David De, Jennings, Nicholas, and Shadbolt, Nigel
(2003). The Semantic Grid: A Future e-Science Infrastructure. In Berman,
F., Fox, G., and Hey, A. J. G., editors, Grid Computing: Making the Global
Infrastructure a Reality, pages 437–470. Wiley.

[Searle, 1969] Searle, John (1969). Speech Acts: An Essay in the Philosophy
of Language. Cambridge University Press.

[ShaikhAli et al., 2003] ShaikhAli, Ali, Rana, Omer F., Al-Ali, Rashid, and
Walker, David W. (2003). UDDIe: An Extended Registry for Web Services.
In Workshop on Service Oriented Computing: Models, Architectures and
Applications at SAINT Conference. IEEE Computer Society Press.

[Sycara and Klusch, 2001] Sycara, Katia and Klusch, Mattheus (2001). Bro-
kering and matchmaking for coordination of agent societies: A survey. In
et al, Omicini, editor, Coordination of Internet Agents. Springer.

[uddi, 2001] uddi (2001). Universal Description, Discovery and Integration of
Business of the Web. www.uddi.org.

[uddi4j, 2001] uddi4j (2001). UDDI4J Home Page. www.uddi4j.org.
[Wooldridge et al., 2000] Wooldridge, Michael, Jennings, Nicholas R., and
Kinny, David (2000). The Gaia methodology for agent-oriented analysis
and design. Journal of Autonomous Agents and Multi-Agent Systems, 3.

[wsdl, 2001] wsdl (2001). Web Services Description Language (WSDL).
http://www.w3.org/TR/wsdl.


