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The transition from laboratory science to in silico e-science has facilitated a para-

digmatic shift in the way we conduct modern science. We can use computation-

ally based analytical models to simulate and investigate scientific questions such as those

posed by high-energy physics and bioinformatics, yielding high-quality results and 

discoveries at an unprecedented rate. However, while
experimental media have changed, the scientific
methodologies and processes we choose for con-
ducting experiments are still relevant. As in the lab
environment, experimental methodology requires
samples (or in this case, data) to undergo several pro-
cessing stages. The staging of operations is what con-
stitutes the in silico experimental process.

Initial bioinformatics experiments typically required
passing data through several programs in sequence.
We’d format the data to conform to application-
dependent file formats and then pass it through selected
scientific applications or services, which would yield
a handful of results or generate new data. This new data
would in turn require reformatting and passing through
other services. Often, a bioinformatician would have to
manually transfer results between services by noting
these values and rekeying them into a new interface or
by cutting and pasting. Although problematic and error
prone, this approach facilitated scientific exploration
through experimentation with different hypotheses
using different services. This service-oriented approach
underpins emerging technologies such as Web Ser-
vices and the Grid.

The use of workflows formalizes earlier ad hoc
approaches for representing experimental methodol-
ogy. We can represent the stages of in silico experi-
ments formally as a set of services to invoke. Although
this formalization can simplify the representation of
experimental methodology, referring to specific ser-

vices limits the utility, portability, and scalability of
such workflows. They’re prone to the removal or mod-
ification of any of the services on which they depend.
We can’t readily share workflows with colleagues or
execute them on other computer infrastructures unless
the same services exist on the new infrastructure. Even
in an open, shared-services environment, several sci-
entists invoking the same workflow would result in
service contention, because each workflow would
require the same instances. Additionally, social and
human factors add further constraints: to preserve their
intellectual property, scientists prefer to publish their
experiments’structure while keeping the invoked ser-
vice instances’details private.

By abstracting the workflows, we can construct
workflow templates representing the type or class of
service to invoke at each experimental stage, without
specifying which instance of the service should be
used. To use a template, we instantiate the abstracted
service representations according to the available
services and then manage the data flow appropriately
to ensure interoperation between the services. In this
article, we address how to use workflow resolution
to perform such instantiation through service dis-
covery and semantic reasoning. We’ll also consider
whether to perform resolution before or during work-
flow execution and whether resolution should be
manual or automated. These choices have implica-
tions on the metadata’s nature and the workflow exe-
cution engine’s capabilities.

Services form the 

key component 

of the workflows 

used in the myGrid

project to represent

bioinformatics

experiments.

Abstraction allows

greater portability,

but choosing a service

to execute depends 

on a large amount of

additional metadata.



Several projects have recognized the need for
abstract scientific workflows and processes to
produce executable workflows from them (see
the “Related Work” sidebar for more infor-
mation). myGrid, a UK-based e-science pilot
project, is implementing an environment to
support in silico experimentation guided by
existing bioinformatics scenarios, including
investigation of the genetic basis of Grave’s
disease.1 By describing and registering ser-
vices and by writing and executing workflows,
we’ve reiterated the need for abstraction while
uncovering significant complexity beneath an
apparently simple story. This is particularly
the case in dealing with the surprising diver-
sity among apparently identical services.
Using the Basic Local Alignment Search Tool,
or BLAST, as an example (see the “BLAST” side-
bar), we can demonstrate this diversity and the
mechanisms of workflow harmonization nec-
essary to address it.

The bioinformatics 
experimental life cycle

Current practice in laboratory e-science
can be described as an experimental life cycle.
The scientist begins with a high-level goal to
test a hypothesis or integrate new discoveries
with existing knowledge. Both before and
during an experiment, the scientist must make
decisions about the granularity of each sub-
task in the experimental design, thus ensuring
that each task is unambiguous and realizable
(that is, some service actually exists that
might achieve this task). The decisions
involve decomposing high-level goals into
simpler tasks and choosing the most appro-
priate class of service to accomplish each
task. We’re developing a methodology and
the software environment to help scientists
use the Grid’s resources in performing these
in silico experiments.

To illustrate this, consider a scenario involv-
ing a hypothesis about whether a novel protein
found in diseased tissue could have a causative
role in that disease. The first step consists of
finding out whether biologists have designed
these types of in silico experiments before. A
centralized service registry categorizes previ-
ously published experimental designs and ser-
vices using associated metadata (see the
“Metadata” sidebar on page 50). If no existing
design matches the desired experiment, the
biologist will instead search or browse for
designs that possess some features relevant to
the current goal, including those that operate
on protein data and those that infer functional
information. Such informal registries already

exist on the Web covering both laboratory
and in silico design (see, for example, www.
protocol-online.org/prot/Bioinformatics).
myGrid is also developing registries that pro-
vide more structured metadata descriptions to
support more precise searches.2

Each experimental goal can be accom-
plished by a sequence of tasks. For our exam-
ple, we might use this sequence:

1. Find similar proteins that have already
been studied.

2. Retrieve functional information about
those proteins.

3. Collate these functions.
4. Search the biomedical literature to find

associations between these functions
and the disease.

Initially, the scientist must choose credi-
ble methods to accomplish each task. The
registry provides a classification of services.
Browsing this classification would reveal that
several classes of sequence similarity service
exist, one of which uses BLAST. This tool is
available from numerous locations, and the
most appropriate one to use will vary over
time. By using service classes, the scientist is
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Several other groups have found the need for more abstract workflows to de-
couple the scientific process from the Grid’s complexities and rapid turnover. 

The Planning for Execution in Grids project, or Pegasus (http://pegasus.isi.edu) is
part of the Grid Physics Network (GriPhyN) project. Like myGrid, it too uses the notion
of abstract workflows, but here automation takes a much more prominent role at
all stages in the workflow life cycle. Rather than deferring to the scientist to break
down the goal into smaller tasks, Pegasus uses AI planning to construct a strategy
for processing input data into a desired data product by the most efficient means.1

The Scientific Data Management Center project has developed an environment
in which abstract scientific workflows can be created and compiled into an exe-
cutable workflow through an abstract-as-view mapping. That is, abstract tasks are
created as a view over executable tasks.2
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Related Work

Biologists often begin with a newly discovered sequence and must then deduce
its role by comparing it with databases of already characterized sequences and find-
ing similar ones. BLAST, the Basic Local Alignment Search Tool, is the most widely
used tool for performing these similarity searches.1 BLAST is highly parameterizable,
able to search over many databases with many types of sequences. In fact, BLAST

has several subprograms that are used for specific tasks. For example, BLASTp is used
to search protein databases for similar protein sequences, and BLASTn is used to
search nucleotide databases for similar nucleotide sequences. The user chooses the
appropriate subprogram.

Sequence similarity searches are highly computationally intensive but amenable
to parallelization. At least one grid solutions provider, AVAKI, is working with BioGrid
projects to allow grid-based access to BLAST.
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committing to the way a task is performed,
not the particular instance of a service used
to perform it. If the scientist wants to rerun

the experiment later, the workflow template
can be resolved again to account for changes
in BLAST service availability. If the scientist

wants to share the design, others can per-
sonalize the choice of BLAST service to suit
their local preferences. Because resolution
doesn’t affect the workflow’s scientific
design, it’s a credible target for automation.

However, on the Web (and the Grid), het-
erogeneous services provide similar capa-
bilities but with varying configurations.
We’ve found that even if two services pro-
vide access to exactly the same application,
there’s no guarantee we can use them in the
same way. This is certainly the case with our
example service providing access to BLAST.
Several have been implemented, including
one by DNA Databank of Japan, or DDBJ
(www.xml.nig.ac.jp/wsdl/index.jsp), and
another within Soaplab (http://industry.
ebi.ac.uk/soaplab), developed by the Euro-
pean Bioinformatics Institute as part of the
myGrid project. To accommodate this diver-
sity, we need an additional stage in which we
modify the experiment’s low-level design to
accommodate the specifics of the service
instances to be executed. We call this process
workflow harmonization. Figure 1 shows
how the initial task of finding similar
sequences progresses through several tiers of
detail during the experiment’s life cycle until
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Rich, structured metadata is a key feature of the Semantic Grid
and therefore pervades myGrid’s design. It provides machine-
interpretable descriptions to drive discovery and interoperation
of resources such as services, workflows, data, notifications,
and people. We can gain far more by searching over the rela-
tions between resources than by finding resources in isolation—
for example, “Who has published a paper with a topic related
to Graves’ disease?” By using common underlying technolo-
gies such as RDF,1 the RDQL query language,2 and OWL3 to
explicitly represent structured metadata, we aim to provide
uniform access to this often underutilized and implicit body
of links.

In the case of service metadata, service providers use various
ways to describe their services, access policies, contract negoti-
ation details, and so on.4–7 Although these descriptions share
many features, there’s little agreement on how to incorporate
them into a unified model. myGrid researchers at the Univer-
sity of Southampton have used RDF and RDQL to implement a
framework for unifying various service metadata models and
so to simplify metadata querying.8

The provision of metadata should be open to both service
providers and users who can give extra information on that ser-
vice—for example, a statement of recommendation or other-
wise. The latter type of metadata, called third-party metadata,
has interesting related problems in that publishing such meta-
data in public registries might not be reasonable. In myGrid,
we provide local personalized views over public registries so
that third-party metadata can be locally stored and used.
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Figure 1. Tiered specification of a single step in an in silico experimental design: 
(a) Specify the high-level task. (b) Specify a class of service that accomplishes that 
task, in this case the BLAST service. (c) Choose a specific service, and modify the design
to work with that service.



it eventually becomes a segment of an exe-
cutable workflow.

myGrid discovery and 
execution architecture

The myGrid project has developed four
key components (see Figure 2) to support the
proposed experimental design life cycle. The
scientist interacts with, personalizes, and
chooses services, workflows, and data through
a workbench. This workbench acts as a client
to two components, used for discovering
workflows and the services that can instanti-
ate parts of a workflow. The personalized
view component lets the scientist personalize
the description of services by attaching third-
party metadata.2 It draws service descriptions
from global or local service registries into a
unified RDF-based framework, and it gives
the user functions for attaching metadata to
those service descriptions and querying the
metadata. This lets the user attach his or her
own recommendations in the form of local
service metadata, which can be acted upon
during workflow resolution. The semantic
find component caters to conceptual metadata
expressed in OWL. OWL descriptions of ser-
vice classes are classified using description
logic reasoning. This lets the registry index
services against an evolving service classifi-
cation and thus help resolve service classes
to service instances.

Once discovered or built, a workflow is run
by our FreeFluo workflow execution engine,
which can handle WSDL-based Web service
invocation. FreeFluo supports two XML work-
flow languages:

• One was inspired by IBM’s Web Service
Flow Language, which we used early on.

• Our own, XScufl, was developed as part of
the Taverna project in collaboration with
the Human Genome Mapping Project.

The FreeFluo engine (http://freefluo.sourceforge.
net) and the Taverna workflow development
environment (http://sourceforge.net/projects/
taverna) are open source and downloadable.
FreeFluo specifically supports workflow res-
olution, either asking the user to select between
alternative services or automatically using the
personalized view component. We envisage
that the execution engine will eventually sup-
port automatic workflow harmonization. We
also intend to support the use of the grid ser-
vices specified by the Open Grid Services
Architecture (see the “Grid Service Discov-
ery” sidebar) alongside Web services.

Metadata to support resolution
and harmonization

Although we first thought we could sup-
port automated resolution and harmonization
by attaching a single, homogenous nugget of
metadata to each service, we discovered that
the scientist must create and use at least seven

types of service metadata at specific points in
the life cycle. Before discussing the metadata
types, let’s look at the lifecycle stages.

Stage 1. Workflow creation 
The availability or otherwise of specific

services at workflow creation time shouldn’t
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Figure 2. The interaction of components in the myGrid architecture during workflow
creation, resolution, and execution.

Service discovery is a critical element in large-scale, open distributed systems such
as the Grid because it facilitates the dynamic identification of resources (abstracted
as services).1 Although standards have been developed for grid service registries,
there has been little experience in using them for high-level tasks such as workflow
resolution and harmonization. Condor is a workload management system that
incorporates many Grid protocols and methodologies. ClassAds is the metadata
language central to Condor’s ability to match resource requests to resource offers.
However, in general, ClassAds has been used for matching lower-level resource
requirements such as memory and disk space with a job’s requirements.2

Grid services have additional factors that must be considered during semantic
discovery. First, services have lifetimes, so that a service found to be suitable at the
time of instantiating a workflow template might not exist when the workflow
instance is executed. Related to this is the concept of factories, which are used to
create service instances with particular functions, possibly giving different service
configurations on creation. Also, grid services include the idea of structural service
data elements—that is, metadata that is attached to and can be queried from ser-
vices at the location at which they are deployed. This provides a mechanism for
providing metadata in addition to publishing their descriptions in registries.
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dictate what scientists use at runtime: they
must be able at this point to choose between
service classes. In the scenario described ear-
lier, the biologist starts with a protein sequence
and searches for similar proteins. In addition
to BLAST, several other services including
InterProScan and FASTA could be used to per-
form these searches. By organizing these ser-
vice classes along several axes, such as the
input data they accept and the function they
provide, the biologist can also discover func-
tionally similar service classes by simply
browsing multiple hierarchical views. How-
ever, providing such a multiaxial classifica-
tion by hand is difficult and error prone.3 So,
our system automatically calculates the
myGrid service classification by using
description logic reasoning over conceptual
descriptions of service functionality written
in OWL.4 (The initial implementation is in
DAML+OIL, OWL’s predecessor.) Figure 3
shows an extract of such a service classifica-
tion and an example of an OWL class descrip-
tion used to calculate the hierarchy.

We found that these classes must be very
specific to ensure the workflow resolution
process doesn’t alter the experiment’s bio-
informatics design against the scientist’s
wishes—for example, inserting an Inter-
ProScan service for a BLAST service. OWL
allows the use of anonymous class descrip-
tions in place of preenumerated service class
names. We can therefore provide a compo-
sitional mechanism for forming service class
descriptions. This lets service publishers
describe exactly the class to which their ser-
vice belongs and lets users specify require-
ments without needing a prohibitively large
preenumerated classification. An exact, un-
ambiguous description of functionality is
essential if these descriptions are to success-
fully drive automated resolution.

A high-level standard for this conceptual
description of a service is being developed by

the DAML services coalition5 and is now
available as an OWL ontology (OWL-S ver-
sion 0.9; www.daml.org/services/daml-s/0.9).

Stage 2. Workflow resolution
For common tasks, we assume each class

(however specific) has several available
member services at any one time. So, when
selecting a service, the scientist should con-
sider additional criteria that are particular to
a workflow’s user (as opposed to its creator).
Let’s look first at those criteria and then at
the process of using them to select services.

Metadata. From the bioinformatics point of
view, the services can be considered to be
functionally equivalent. So, the scientist
might need to consider additional opera-
tional metadata such as performance, secu-
rity, provenance recording, or cost of a ser-
vice. For example, one BLAST service might
provide much more provenance metadata
than another on the versions of databases
searched, while performance monitoring
might show that the other returns results
much faster. The service’s publisher can’t
provide all this information at registration.
Both the Web Services and Grid communi-
ties are developing architectures and meta-
data standards for constantly monitoring per-
formance.6 Performance metadata is seen as
dynamic and provided by third parties,
whereas the service provider might publish
static forms of operational metadata in pub-
lic registries or personalized views.2

How a service is presented can affect the
degree to which it can be configured. For
example, the Soaplab BLAST service lets users
configure the number of search hits returned,
while the simple version of the DDBJ service
doesn’t provide this. If the user has specific
requirements on the way a service must be
configured (for example, the number of hits
returned), she must add this to the abstract ser-

vice description so that it can be considered
when the system chooses which BLAST service
to execute. Each service also requires a
description of possible configurations. Choos-
ing between functionally similar services
should also be informed by others’experience,
so we must provide access to information
detailing how others have used these services
in their workflows. Therefore, we need prove-
nance information about services. In myGrid,
execution of a workflow gives rise to a prove-
nance record detailing what data was used and
with which services.7 Users can query this
information to find out the context in which
service classes have been used.

Resolution before or during workflow exe-
cution.A service class constrained by the cri-
teria just described should provide enough
information to select an individual service at
any given time. The scientist can perform res-
olution either before executing a workflow
or once the service is actually required in the
running workflow. Providing resolution dur-
ing execution lets the user select services
most suited to current conditions. This is
essential on the Grid, where services con-
stantly appear and disappear during the life-
time of long-running workflows.

Resolution by hand or by machine. To ac-
commodate this in myGrid, the workflow
execution engine, FreeFluo, can perform on-
the-fly resolution either automatically or by
prompting for user intervention. Manual res-
olution can occur by browsing over unstruc-
tured metadata in the personalized view com-
ponent. In the short term, most services don’t
have all the necessary types of structured
metadata to support automated service selec-
tion. So, we must at least support a manual
version of resolution that relies on human
users interpreting unstructured metadata.
However, supporting just-in-time resolution
becomes difficult if that resolution depends
on repeated intervention by the user. In
myGrid, we’re driving the provision of more
structured metadata at each level and devel-
oping a two-step automated resolution
process that will depend on that metadata.

The first step finds all services that are
members of the service class specified in the
workflow. This uses the semantic find com-
ponent to look up all services that are indexed
by the relevant class. If the class is specified
as an OWL class definition, the system’s find
component uses description logic reasoning
to relate this description to the current ser-
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Example service class description in OWL 
abstract syntax on which classification is based

Class(BLASTpService complete WebService
         restriction(input someValuesFrom(Protein))
         restriction(usesResource someValuesFrom(protein sequence database))
         restriction(isFunctionOf someValuesFrom(BLAST)))

Extract of service classification

Similarity search service

BLAST Protein data service

BLASTp service

InterProScan service

Figure 3. Using a classification to discover classes of service to fulfill a task. 



vice classification and so link into the index
of available services. Again, to preserve the
experiment’s overall scientific design, auto-
mated substitution occurs only between
highly similar services.

The system’s workflow execution compo-
nent invokes the second step if more than one
service is available to perform the task. Addi-
tional operational constraints specified by the
workflow author help the system select a ser-
vice that, for example, performs better, costs
less, or provides more provenance informa-
tion. The system queries for operational meta-
data within the registry, which is then com-
pared and the appropriate selection made.

Stage 3. Workflow harmonization
Although the chosen service might perform

the task adequately, we have no information
about how to actually run it. We need a strat-
egy to take the selected service and ensure that
we can run it within the workflow context. For
this, we need two mechanisms to accommo-
date the low-level differences between func-
tionally equivalent services:

• Mapping the format of parameters passed
in and out of the service

• Mapping the invocation method in terms
of calls to low-level service operations

Format harmonization. In our example, the
specific BLAST program BLASTp requires a
protein sequence as input. Bioinformatics has
many formats for protein sequences, or
records that include protein sequences. In
workflow resolution, we might have selected
between different services that required the
same information but in different data for-
mats. We aim to accommodate this by inter-
posing harmonization services to transform
data upstream of the main user-specified ser-
vice (such as BLAST). We find these harmo-
nization services automatically through a
registry query for the service class that sup-
ports format transformation with the relevant
inputs and outputs. We then insert them into
the workflow. To preserve the experiment’s
overall design, these inserted services must
be experimentally neutral. Automatic inser-
tion of an experimentally significant service
such as InterProScan would alter the high-
level design and, from the scientist’s point of
view, might invalidate the results.

Invocation and interface harmonization.
Invocation of a service often has several
stages, and multiple low-level operation calls

are often needed to perform a given high-
level workflow step. Each service might pro-
vide calls for each one of these stages or
might combine several stages into a single
call. This is certainly the DDBJ’s imple-
mentation of a BLAST Web Service. Table 1
shows the steps involved and how each ser-
vice combines invocation steps differently
and conforms to a different interface. Invo-
cation and interface metadata are deeply
intertwined, with specific operation calls in
the interface reflecting each invocation stage.
Much of the difference is due to Soaplab’s
implementation of a stateful service. (Stateful
services maintain state information between
operation calls. They are used when a multi-
step conversation is required but a constant
connection can’t be maintained.) As such, it
has much more in common with emerging
grid services as opposed to the simple inter-
faces advocated in the Web Services com-
munity. With BLAST searches taking a signif-
icant period of time (usually several minutes
to hours), most BLAST providers operate a
job-based service with queuing better suited
to stateful interaction.

WSDL specifies the interface information
in the table; of all the categories of metadata
described, it’s the one service developers pro-
vide most readily. However, to explicitly
translate from an abstract description of a
task such as “align protein sequences” to the
specific sequence of low-level service calls,
we need additional information to map
between the two levels. To address this issue,
myGrid has tried several approaches:

• Abolish diversity between services. Soaplab
provides access to 150 services, all accessi-
ble via a common interface.

• Require each service to register an exe-
cutable workflow fragment, which can be
automatically swapped in for the abstract
task if that service is chosen for the task.

• Provide constructs in the workflow lan-
guage that simplify execution of services
that require a series of calls. For example,
Taverna developers have included plug-

ins that allow the execution of a Soaplab
service to appear to the user as one step in
the workflow but which is in fact automat-
ically expanded into the five calls shown
in Table 1. 

To complicate the issue, we’ve found
there’s often no simple one-to-one link be-
tween the higher-level domain description of
service functionality and lower-level descrip-
tions of invocation. For example, the DDBJ
BLAST service is more generic than the
Soaplab BLASTp service and can support two
additional tasks using the underlying BLAST

programs: BLASTn and BLASTx. To specify the
task (in this case which program to use), the
workflow system must pass additional para-
meters to the service. The simplest way to
denote this many-to-one mapping is by reg-
istering the DDBJ BLAST service as belong-
ing to three separate functional service
classes and by providing separate invocation
model metadata to correspond to each of
these functionalities. Describing these poly-
morphic services is a difficult issue for which
an ideal solution has yet to be found.

Harmonization before or during workflow
execution. Workflow harmonization must
occur after resolution. So, if resolution is to
occur at execution time, so must harmoniza-
tion. This places challenges on the execution
engine, which must respond to changes not
only in services called but also in the struc-
ture of the workflow itself. FreeFluo provides
the ability to nest component workflows
within a top-level workflow. This allows the
decoupling of fine-grained changes to indi-
vidual service interaction from the work-
flow’s high-level structure.

Harmonization by hand or machine. Auto-
mating this process would greatly benefit sci-
entists. Users shouldn’t need the expertise
required to rewrite the workflow at this fine-
grained service interface level, because
changes at this level should have no bearing
on the scientific outcome. If these changes
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Table 1. How Soaplab and DDBJ BLAST services support different stages of invocation.

Stage of invocation DDBJ BLAST service Soaplab BLAST service

Creating a job n/a createEmptyJob()

Configuring the service set_database(database,job)

Setting input data simpleSearch (program, set_query_sequence(query,job)

Running the job database, query) run(job)

Getting output data getSomeResults(job)



are done manually, they can take significant
time and effort. However, the difficulties of
providing sufficient structured metadata, and
the complex mapping between abstract task
and concrete invocation, described earlier,
make automated harmonization a challenge.

Seven kinds of metadata
We’ve identified seven kinds of metadata

that aid users and the myGrid system to cre-
ate, resolve, and harmonize workflows:

• A concept-based description of the service
would be written by the provider at publi-
cation time or possibly later by a third
party and stored in a registry. For exam-
ple, “BLAST would be described as a se-
quence similarity search service.”

• Configuration metadata to support a par-
ticular task would be written by the
provider at publication time and stored 
in the registry. For example, “blast@
somedomainname.org can be configured
to return version information about data-
bases used in the search and the version of
the software.”

• A provenance description would state how
others have used this service in the past
and any recommendation or opinion they
might have (opinions would be handwrit-
ten by third parties but usage information
could be aggregated automatically from
workflow provenance records). For exam-
ple, “A colleague has stated that blast@
somedomainname.org is reliable and that
he has used this type of service in several
published workflows.”

• An operational description of the ser-
vice in terms of cost, access rights, and
quality of service would be written by
both the provider and third parties and
stored in a registry. For example, “blast@
somedomainname.org provides public
access at no cost, although a benchmark
query takes on average 10 minutes.”

• The invocation model of a service would
be written by the provider at publication
time and stored in the registry. For exam-
ple, “blast@somedomainname.org pro-
vides a stateful invocation model which
requires multiple service calls.”

• The interface to a service would be writ-
ten by the provider at publication time and
stored in the registry. For example, “blast@
somedomainname.org provides a WSDL
interface document.”

• The format in which the service expects
input data and produces output data would
be written by the provider at publication
time and stored in the registry. For exam-
ple, “blast@somedomainname.org returns
a search report as an XML document con-
forming to a specified schema.”

Table 2 summarizes how each kind of
metadata is used during the experimental life
cycle and by whom—a person or an auto-
mated process. The user specifies the con-
cept, operational, configuration, and prove-
nance metadata when the workflow is created
and used in resolution. Either the user or an
automated process uses the data formats,
invocation model, and interface metadata to
harmonize the workflow.

In the dynamic Grid environment, we must
shield the scientist from the complexities of

substituting one functionally equivalent ser-
vice with another by either enforcing common
interfaces or, more realistically, developing
automated processes to cope with low-level
diversity. Explicitly identifying the seven
types of metadata (seven ways in which one
service can differ from another) in myGrid is
helping us understand the diversity of services
and systematically develop mechanisms to
cater to it. The mechanisms for creating,
resolving, harmonizing, and executing work-
flows are integrated into the myGrid archi-
tecture. The architecture supports the whole
experimental life cycle with components for
storing the different types of metadata, such
as personal preferences and semantic descrip-
tions, and for reasoning over this data to find
appropriate services in workflow resolution.

However, the key challenge still remains
of how to provide and maintain sufficiently
structured service metadata. Within myGrid,
we’re beginning to assess whether the devel-
opment of service metadata creation and col-
lection applications can make the mainte-
nance of this metadata a realistic task. We’re
developing applications that let service pub-
lishers or third parties create functional
descriptions of services that can then be reg-
istered. We’re also investigating mechanisms
to automatically collect performance and
reliability metadata. Only when we can pro-
vide such accurate and up-to-date metadata
will we be able to let the system make appro-
priate service selections and integrate them in
the workflow.
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Harmonize service 
resolution and 
workflow (machine)

Conceptual

Configuration

Provenance

Operational
(performance/cost)

Registry query to select
between members based on
configuration and provenance
Registry query or negotiation
based on cost performance

Invocation model

Interface

Data format

Table 2. Metadata’s uses in the experimental life cycle.

 Stages in service publication and use within a workflow

Harmonize service 
resolution and 
workflow (human)

Advertise a service
(human)

Index a service
(machine)

Specify a service
class during workflow
construction (human)

Description logic reasoning 
to determine current mem-
bers of service class

Description logic
reasoning used to
index service within
service classification

Desired characteristics
described by scientist
using DAML-S-style
description of function-
ality together with oper-
ational constraints 
such as acceptable
performance

Registry browsing
search to select 
appropriate service

Service characteristics
described by provider
using conceptual descrip-
tion and advertised in a 
service registry; third 
parties add personal 
recommendation

On-the-fly workflow harmo-
nization by the workflow 
executor

Ignoring low-level
characteristics of 
individual services at 
this point      

Service characteristics 
described by provider 
using WSDL description
and mapped to high-level
conceptual description

Manual workflow har-
monization to accommo-
date specific invocation 
sequences, formats, and 
parameter names
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