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Abstract. Recommender systems are widely used to cope with the prolem
information overload and, consequently, many recomméahethods have
been developed. However, no one technique is best for ab isall situations.
To combat this, we have previously developed a market-bassinmender sys-
tem that allows multiple agents (each representing a differecommendation
method or system) to compete with one another to presemttibsi recommen-
dations to the user. In our system, the marketplace encesiggpd recommen-
dations by rewarding the corresponding agents accorditigetasers’ ratings of
their suggestions. Moreover, we have shown this incertivite agents to bid
in a manner that ensures only the best recommendations eserped. To do
this effectively, however, each agent needs to classifyeiemmendations into
different internal quality levels, learn the users’ instgeand adapt its bidding be-
haviour for the various internal quality levels accordinglo this end, in this pa-
per, we develop a reinforcement learning and Boltzmanroeapbn strategy that
the recommending agents can exploit for these tasks. Wediagonstrate that
this strategy helps the agents to effectively obtain infation about the users’ in-
terests which, in turn, speeds up the market convergenceraties the system
to rapidly highlight the best recommendations.

1 Introduction

Recommender systems have been widely advocated as a wapinfaaith the prob-
lem of information overload. Such systems help make ch@oesng recommendations
from all kinds of sources for users who do not have sufficierspnal experience of
all these alternatives [1]. Many recommender systems haee beveloped but they
are primarily based on two main kinds of filtering techniqu@scontent-based filter-
ing recommends items based on their objective features (suttteasxt content of a
Web document), whereds) collaborative filteringrecommends items based on their
subjective features (e.g., the fact that a user with sintéates likes them). However,
both kinds of techniques have their weaknesses. The foramerat easily recommend
non-machine parsable items (such as audio and video itevhgreas the latter fail
when there are an insufficient number of peers to accurateljigt a user’s interests.
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Given this, it has been argued that there is no universafiyyiethod for all users in all
situations [2].

In previous work, we have shown that an information marlestplcan function ef-
fectively as an overarching coordinator for a multi-agecommender system [3,4]. In
our system, the various recommendation methods, repezsaatrecommender agents,
compete to advertise their recommendations to the usesLghrthis competition, only
the best recommendations (from whatever source) are pgegsrthe user. Essentially,
our system uses a particular type of auction (generalizetigiice sealed bid) and a
corresponding reward regime to incentivise the agentdda #heir bids with the user's
preferences. Thus, recommendations that the user cosgided are encouraged by
receiving a reward, whereas poor ones are deterred (by gp&yiadvertise their rec-
ommendations but by receiving no reward). In short, the etaskts as a feedback
mechanism that helps agents to correlate their oMernal ratingsof recommenda-
tions (i.e. the relevance rating computed by whatever regendation algorithm they
use) to the desires of the user.

While our system works effectively most of the time, an opeobfem from the
point of view of the individual recommender agents remagigen a set of recom-
mendations with different internal rating levels, in whatier should an agent try to
advertise them so that it can learn the user’s interests askjuas possible, while still
maximizing its revenuerhus, for example, the agent could bid the items that havernev
been advertised to the user, which would allow it to learnuber’s interests quickly
but would also result in it losing money. Conversely, therag®uld always bid those
that have been highly rewarded, so ensuring a good returit,veould take a very long
time to learn the extent of the user’s interests. While thigbfiem is couched in the
context of our specific system, this is a general problemahaecommender systems
face. Thus, even though they may not have a currency or aicéxplvard, they still
need to determine the user’s preferences as quickly adyp@sshile still making good
suggestions, in order to make effective recommendations.

To overcome this problem, we have developaglality classificatiormechanism
and a reinforcement learning strategy for the agents tm lthar user’s interests. Intu-
itively, to make good suggestions, an agent needs to gfassifecommendations into
different categories based on some specific features oettmmmendations and then
suggest the right categories of items to the user accordinig interests. In our context,
each agent classifies its recommendations into differealitgjuevels (e.g. very good,
good, bad, etc) based on its internal belief about theivaglee to the user’'s context.
Then, to assist an agent to direct the right categories aimetendations to the user,
we developed a concomitant reinforcement learning styafigs strategy enables an
agent to relate the user’s feedback about its recommemdatioits internal quality
measure and then to put forward those recommendationsrénabasistent with this.
This is important because the more effectively an agentagits recommendations to
the user’s interests, the better it serves the user and themawards it receives.

Against this background, this paper advances the stateeddrthin the following
ways. First, a novel reinforcement learning strategy ietigred to enable the agents to
effectively and quickly learn the user’s interests whiiél staking good recommenda-
tions. Second, and perhaps more important, we demonstratetr learning strategy,



coordinated through the marketplace, can be viewed as &ygclaksification problem
and how the marketplace assists the classification andsalgrright recommendations
to the right people. Third, from an individual agent’s paifitziew, we show the learn-
ing strategy enables an agent to maximize its revenue.lfima show that when all
agents adopt our strategy, the market rapidly convergesahkes good recommenda-
tions quickly and frequently.

The remainder of this paper is structured in the followingwmer. Section 2 briefly
recaps the basics of our multi-agent recommender systerhightights the problem
an individual agent faces in it. Section 3 details the desifjour learning strategy.
Section 4 empirically evaluates this design. Section Srmeglrelated work in terms of
reinforcement learning and market-based recommendat8ettion 6 concludes and
points to future work.

2 The Quality Classification Problem for Market-Based
Recommendations

Different recommendation methods use different metriad different algorithms to
evaluate the items they may recommend. Thus, the intertingraf the quality of a
recommendation can vary dramatically from one method tdherqe.g. some may
think it is very relevant for the user, others may think it recately relevant, while yet
others may believe it is irrelevant). Here, we term thisriné evaluation the method’s
internal quality(INQ). However, a highNnQ recommendation from one method does not
necessarily mean the recommendation is any more likelytteisatisfy a user than a
low INQ item suggested by another. Ultimately, whether a recomaomdsatisfies a
user can only be decided by that user. Therefore, we termdegsuevaluation of a
recommendation theser’s perceived qualitfupPQ).

With these concepts in place, we now briefly outline our mablesed recommender
in the order of the market processes (see the circled nurrbEig. 1) as follows. First,
when the market calls the agents for a numker ¢f recommendations, each agent
submitsS items and bids a price for each of them. Second, the markiks @hrecom-
mendations in decreasing order of their prices and disphayS items with the highest
bid prices to the user. Consequently, each agent with disdléems pays an amount
of credits (equal to how much it bids) for each of the corresfiog displayed items for
the advertisement. Third, the user then visits a numbereofiibplayed items and gives
a rating (i.e.uPQ) to each visited item based on his satisfaction. Fourth ntleket
rewards the agents with positive@Q recommendations an amount of credit that is pro-
portional to theiupPQvalues (see [3] for the details and the proof that this meichars
Pareto optimal with respect to the group of rewarded agemtsraaximizes their social
welfare). Thus, the system completes one round of operatidiproceeds with another
following the above four steps.

In this context, the role of the reward mechanism is to previte agents with in-
centives to align their bidding behaviour with the intesasitthe user. From the point of
view of an individual agent, however, it needs to learn whietommendations the user
prefers. To do this, agents classify their recommendatidns predetermined number
(G) of categories (or segments) based on the@s (e.g. in the simplest case, where
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G = 2, an agent could classify bad recommendations as those withaof less than
0.5 and those with amnQ between 0.5 and 1.0 as good) and then they relate these
to theupgs. Intuitively, the more the user is satisfied with a recomdagion, the more
reward the corresponding agent receives. Thus, an agértdhaufficient experience
of the user’s feedback can learn the user’s interests bgleimg its recommendations
(and their correspondingiQ segments) to the rewards (that reflect theigs) they
receive [4]. This, in turn, enables a self-interested agembnsciously make recom-
mendations from thoseliQ segments that correspond to highgs so that it can best
satisfy the user and, thus, gain maximal revenue. To effggtcompute the agents’
revenue, we define an agenit'emediate rewardmade from a recommendation dis-
played to the user in one auction round) as the reward it vedeninus the price it
has paid for the advertiseménWith this, what an agent needs to do is to learn how
much immediate rewards, on average, it can expect for itareaéh category (i.e. each
INQ segment). We term this average immediate reward for paglsegment an agent’s
expected revenud&hus, a self-interested agent can maximize its revenuedoyiéntly
bidding recommendations from the segments with high explaeivenue. Therefore, an
agent’'s recommending task can be seen as a quality clasgsifiggoblem and it needs
to align the user’s preferences with itéQ segments (reflected by expected revenue)
and meanwhile make maximal revenue.

However, when an agent starts bidding in the marketpladegstno information
about how much revenue it can expect for each segment. Tner¢he agent needs
to interact in the marketplace by taking actions overdtsegments to learn this infor-
mation (as per Fig. 1). In this way, an agent can produce a@affsuch information
from which it can form an optimal strategy to maximize its lerevenue. In this
context, the agent’s learning behaviour is on a “trial-@nbr” basis. The agent bids
its recommendations and receives the corresponding fekdba manner that good

! Agents pay nothing for items they put forward that are nopldiged to the user (this occurs
when other agents are willing to pay more to advertise tlegiommendations). By definition,
an immediate reward may be either positive or negative. I§plalyed recommendation is not
selected by the user or if it has paid too much to display an,itbe corresponding agent’s
immediate reward is negative since it has paid for the dysatal received less reward.



recommendations gain rewards, whereas bad ones attrass. & luis kind of trial-and-
error learning behaviour is exactly what happens in Reagorent Learning [5]. Thus,
to be more concrete, an agent needs an algorithm to learnxfiezted revenue over
each segment. In addition, it also needs an exploratiotegyydo make trials on it&/
segments such that it strikes a balance between learningieldygas possible, while
still maximizing revenue.

3 The Learning Strategy

This section details the design of an agent’s learning #élgorand exploration strat-
egy in sections 3.1 and 3.2 respectively. The overall gjyaitethen pulled together in
section 3.3.

3.1 The Q-Learning Algorithm

In previous work, we have proved (theoretically and emplhg that our marketplace
enables an agent to relate the rewards it received @ itsQ segments [4]. Building
on this basis, the contribution of this paper is in how to edire expected revenue
that is likely to accrue over it6&' segments. Such a strategy is desirable because high
expected revenue on a specific segment implies that moredswan be expected if
it repeats bidding on that segment in future. Thereforg, shbsection aims to address
the problem of producing the expected revenue profile ovaigamt'sG segments.

In detail, an agent needs to execute a seaatfons(bidding on itsG segments),
(a1,as2, - ,a¢), to learn the expected revenue of each segmBtv,(, i € [1..G]).
Specifically, an action,; that results in its recommendation being displayed to tlee us
must pay some amount of credit. Then, it may or may not recaivamount of re-
ward (depending on whether its recommendation satisfiesgtg. We record th&"
immediate reward that; has received as ; (¢t = 1,2, - - -). From a statistical perspec-
tive, the expected revenue can be obtained from the meaa vhthe series of discrete
immediate reward values:

E[R(a;)] = lim (l > rid) (1)

t—o0o
In this context, the Q-learning technique provides a welldshed way of estimat-

ing the optimality [5]. In particular, we use a standard @rteng algorithm to estimate
R(a;) by learning the mean value of the immediate rewards:

Qi3:(17%)'Qi+%'ri,t; (2

whereQ; is the current estimation d#(a;), and+ is the learning rate that controls how
much weight is given to the immediate reward (as opposecetolthestimation). As
decreases); builds up an average of all experiences, and the odd new ahewsperi-
ence,r; ;, does not significantly affect the establish@gd As ¢t approaches infinity, the
learning rate tends to zero which means that no learnin&isdalace. This, in turn,



makes(Q; converge to a unique set of values that define the expecteduewf each
segment.

PROPOSITION: Ast — 00, ; converges tdv[R(a;)]. R

PROOF: We useQ); o to represent the initial value @§;, andQ); ; to represent the
Igcal estimgtion taR(a;) whena; has been experiencedmes.Qi’s updates go:
Qin=0-Qio+1-71i1="ri1

Qiz=7% Ti1+ 5 -ria=3(ri1+7ri2)

Qi3 g(rig + i) + 5 ris = 5(ri1 +ri2 +7i3)

WIN N[

Qi,t = %(7’1',1 Friod i) = %22:1 Ti,j

Ast — 00, im0 (3 Y7_; i) statistically define€[R(a;)]. B

This proof exemplifies how newly experienced immediate reaacombined with
the learning rate, produce convergence. With the Q-legrgorithm in place, an agent
needs an exploration strategy to execute actions to builtsup profile.

3.2 The Exploration Strategy

We assume all agents are self-interested and want to gaimmabsevenue as they
bid. However, befor&); converges, it is difficult for an agent to know how much can
be expected through each action and, therefore, whichraitishould choose. It is
faced with the classic dilemma of choosing actions that fzawesll known reward or
choosing new ones that have uncertain rewards (which maigbeiror lower than the
well known actions). To this end, the agent needs an exjpboratrategy over its+
segments to build up i9; in an effective way so that it can know how much return can
be expected from each segment.

In general, there is a fairly well developed formal theory dégploration strategies
for problems similar to that faced by our agents [6]. Howettlee standard methods
require very specific conditions (detailed in section 5} thmnot hold in our context
Specifically, the number of times that an agent can interébttive marketplace is not
limited. Thus, the agent can gather as much informationwaarits in order to form its
expected revenue profile. Knowing how much can be expectedgh each action, an
agent can use a probabilistic approach to select actiorsllmsthe law of effect [7]:
choices that have led to good outcomes in the past are maly lik be repeated in
the future To this end, 8oltzmann exploratiostrategy fits our context well; it ensures
the agent exploits high&p value actions with higher probability, whereas it explores
lower @ value actions with lower probability [6]. The probability aking actiona; is
formally defined as:

eQ@i/T

Pp= ————
Z?:l er/T

(T >0). (3)

2n fact, it is hard to find the absolutely best strategy for tmasnplex problems. In reinforce-
ment learning practice, therefore, approaches tend to\mageed for specific contexts. They
solve the problems in question in a reasonable and compnédly tractable manner, although
they are often not the absolutely optimal choice [6].



whereT is a system variable that controls the priority of actioresgbn. In practice,

as the agent's experience increases an@alltend to converge, the agent's knowledge
approaches optimality. Thug, can be decreased such that the agent chooses fewer
actions with smallQ; values (meaning trying not to lose credits) and chooses more
actions with large); values (meaning trying to gain credits).

In general, however, we have observed that the learningitigoof equation (2)
accompanied with the exploration strategy of equation &3) & problem of producing
bias from the optimal and very little work has been done tarasklthis. This problem
occurs when an agent obtains a very small negafivealue for a particular action in
its first few trial$. If this happens, a bias from the true expected revenue tttion
may occur (since the action may in general produce posRivg)) and the agent will
seldom choose it. This kind of bias is a particular problemunsystem. Because a user
may not always visit all displayed items and, thus, some gesdmmendations may
be skipped and, therefore, be deemed as bad ones. To avbidisis¢I” needs to be
assigned a very large value in the beginning of learningné tihe exploration priority
given to those actions with very largg values. However, controlling’ in terms of
producing the unbiased optimal strategy is hard to achiuee different actions?)s
converge with different speeds and their convergence fedif to detect. Even with
other exploration strategies, such biases still existesmz exploration can avoid such
unlucky trials at the beginning of learning. To this end, veeeloped an algorithm that
takes positive initia@i values into account to overcome this problem. We detailithis
the next section.

3.3 The Overall Strategy

To overcome the impact of bias in the beginning of learning,use positive initial)
values (i.e(); o) and make them affect the learning. Thus, instead of alyor{2), we
use the following learning algorithm:

N 1 A 1
Qi3:(1*t0+t)'Qi+

. Ti,t . (4)

The difference between (2) and (4) is that the former doe$a’m@i70 into account,
whereas the latter does. Specifically, algorithm (4) assuifmat each action has been
experienced, (to is positive and finite) times and each time with a feedbac@m
(Qi,o > 0) before the agent starts learning. This, in turn, removesptioblem dis-
cussed in section 3.2. Indeed, if an action causes a negetivediate reward in the
beginning, it does not force itg; to become negative. In this way, all actions will still
be allocated a relatively equal opportunity of being exptbas an agent begins learn-
ing. As the agent continues to interact with the marketplise&),;s update gradually
to different levels and these levels still make its expliorafollow the law of effect.
Thus, the agent's exploitation tends to optimality with@tvalues tending to converge.

3 A negative immediate reward means punishment and an emwsraaion. A reward of zero
means that the action has received no feedback. Thus, setitimnegative, zero and positive
feedback are differentiated and exploration priority stidae given to the latter two.



Additionally, by initializing Q with positive values, the exploration does not need a so-
phisticated control off’, since a relatively small positive value is sufficient andasier
to control. Moreover, the change from (2) to (4) does notciffiee convergence.

PROPOSITION:  GivenQ;'s definition by algorithm (4), its convergence9/(a; )]
is independent of its initial valu€; o and initial timet, .
PROOF: (@);’s updates go:

Q:)u: i Qio + Tt T

Qiz= (1 - @)(% “Qi0 + 7 i) + s T

s - Qio + g - (Tia +Ti2)

Qis=(1— @)(totb - Qio + o (rig +7i2)) Tt T

1
= 05 Qo+ g (ria iz i)

A , t A t 1 t
Qir= 747 Qio + 557 ¢ 2j=1 i
Sincety is finite, lim;_, oo ﬁ — 0 andlimy_, o # — 1.
Thus,limy 0 Qi — limy oo (2 320, 73 j) = E[R(a;)]. B
This proof shows that algorithm (4) also produces unbiasacdhing. Thus, we will
use (4) and (3) for our agents and the overall strategy isldéta Fig. 2.

THE MAIN STRATEGY:
for i=1t0o G do{

Q0 = Qinit: !l Initialize Q; and Qini¢ > 0
t; =0; /I Initialize t;

)

do {

for i=1to G do
P,, = ExploreProbability i, Q1, Q2,- - -, Q¢ ); // Equation (3)

ai, = ActionSelectio\Py,, Pay, . Pag) *; Ik € [1..G]

te =t + 1; Il a, has been experienced times
Tk,t, = ImmediateRewaiday, ); /I compute immediate reward
Q. = UpdateQ Q. ti, Tk 1, )i Il Equation (4)

} while (true)

* METHOD ACTION SELECTION :
ActionSelectio P, , Pag, - - Pac){
double boundary[0..GI; /I probability boundary forG segments
for i=0to G do
boundary[i] = 0;
for i=1to G do /I compute the&Z actions’ probability boundary
for j=1to4do
boundary[i] = boundaryli]+ P, .;
double Rand = UniformRandomOto() *; I generate a probability
for k=1to G do
if (boundary[k — 1] < Rand < boundarylk])
return ag; /I select a random action based on its probability
}

* UniformRandom0to1() returns a random value that followsidoum distribution within the range [0, 1.0).

Fig. 2. The Learning Strategy



4 Evaluation

This section reports on the experiments to evaluate theilggastrategy we have de-
veloped. The experimental settings are discussed in sett®) before the evaluations
are presented in section 4.3. First, however, we discussritegia with which we can
evaluate our design.

4.1 Evaluation Metrics

To evaluate the learning strategy we use the following extan metrics (the first two
are concerned with an individual learner’s performance thiedsecond two are con-
cerned with the performance of the collective of learners):

Convergence to Optimality: Many learning algorithms come with a provable guaran-
tee of asymptotic convergence to optimal behaviour [5]sTmiterion is included
here to evaluate the quality of learning itself; it is im@tbecause if an algorithm
does not converge, the agent will have no incentive to foltsvaehaviour.

Individual Rationality: All componentrecommendersin our system are self-intedest
agents that aim to maximise their revenue by bidding theiomeamendations [3].
Thus, if an agent can make a profit by participate in a padicehcounter it will
do so. Thus, such individually rational mechanisms are mamd because without
them, there is no motivation for the agents to participathésystem.

Quick Market Convergence: If the prices of the displayed recommendations reach a
steady state after a number of consecutive auctions, thetiaiconvergent. In the
analysis of our recommender system, we proved that corneegs necessary to
ensure only the best items are displayed and that they ardisteal in decreasing
order ofuPQ [4]. Therefore, a market that converges quickly means thstaits
satisfying the user quickly. This is clearly important grecuser will stop using a
recommender if it takes too long to produce good suggestions

Best Recommendation’s Identification: A good recommender system should be able
to identify the best recommendation (the one with the highes) quickly and
suggest it frequently [8]. This is important because, otlie, if the best recom-
mendation cannot be identified and displayed, the user tojtl 8sing the system.

4.2 Experimental Settings

Having previously shown that our marketplace is capableffettively incentivising
good recommendation methods to relate tineg@rs to theuprQ [4], we will not discuss
how the agents do this. Rather, here, we simply assume #rat #ine four good recom-
mendation methods (able to correlate theips to theurQ) and four poor ones (unable
to do so). Given a specific recommendatidz(), the correlations of it PQto a good
method’sINQ (INQ,) and to a poor one’'s/(NQ,) are described in equations (5) and
(6) respectively (%" means “has no relation to”):

UPQ(Rec) = INQ4(Rec) £0.1 - random() (5)
UPQ(Rec) 2 INQ,(Rec) (6)



whererandom() returns a random value that follows a uniform distributicithin the
range [0, 1.0). This random value can be seen as the noise§between theng and
theurQ. All upQ andINQ values are fixed within [0, 1.0). In each auction round the
marketplace calls for ten bids. We use an independentigeiagser model to decide
which recommendations displayed to the user will be rewaf8e4]. In this model,
selecting one item is independent of selecting another bhnéc@mmendations with a
UPQ higher than a particular threshold will be rewarded. Here set this threshold to
0.75. To correlate theings to theupgs, all agents divide theinQ range intoG = 20
equal segments. We assume that all agents share the sarheesgtiromendations and
each agent has at least ten items in each segment. Befaiagstarbid, Q;,,;; is set

to 250,17 = 20 andt, = 1 for all agents. All agents are initially endowed with same
amount of credit (65536). At the beginning, each agent wdl the same (128) for
items from any segment, since it does not know which segnagatsore valuable than
others.

4.3 Learning Strategy Effectiveness

Having outlined the configuration of the agents, this sectetails the evaluations.
Among all the properties that we want the learning strateggxhibit, convergence is
the most important. Indeed, in its absence, an agent losesadis to reason. Thus, we
will start with experiments on the convergencepfalues.

e Convergence to Optimality: To evaluate an agent®§ value convergence, we ar-
ranged 300 consecutive auctions. Among the eight agerddijrit four employ the
good recommendation method and the last four employ thegrumrWe find that, with
a good method, an agentsvalues always converge such that higlo segmentsQs
(corresponding to highPQ because of equation (5)) converge to high values and low
INQ segments)s converge to low values (see Fig. 3(a)). Specifically,@healues of
thoseINQ segments corresponding to thegQs above the user’s satisfaction threshold
(0.75) converge proportionally to their correspondirgs. The higher the correspond-
ing UPQ, the higher the),’s convergence value, because the recommendations from a
segment corresponding to high&rQs receive more immediate reward than those cor-
responding to loweopPgs. TheQ) values of those segments that correspond tasthgs
below 0.75 converge to negative values, since they do netwvecewards if their rec-
ommendations are displayed. Moreover, the convergenndépendent of the specific
form of equation (5). Specifically, once there is a unique level corresponding to
eachiNQ level (even highNQ corresponding to lowPQ), the @ value of aniNg seg-
ment corresponding to a higlpQwill always converge to a high level (since it induces
high immediate rewards). However, with a poor method, amégé) values cannot
converge such that highio segmentsi)s converge to high values (see Fig. 3(b)). This
is because a specifing corresponds to very differentrgs (and very different imme-
diate rewards) at different times because of equation (6).

To exemplify that our learning algorithm (4) overcomes theskproblem that may
occur in (2), we organized another set of experiments withgents taking zero initial
Q; values (all other settings remained unchanged (see Fi})).3kom Fig. 3(c), we
can see thaf),» is updated only once and with a very small value of -82 (thiegthe
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Fig. 3. Q-Learning Convergence

corresponding action virtually no chance of being seleirtédture). Q1 also produces
a bias in the beginning. In even worse cas@sg; can never update itself lik&);,
(however, it should actually have a positive expected reggrHowever, with positive
initial Q; values, such biases do not occur (see Fig. 3(a)).

e Individual Rationality: The agents with good methods are able to know what recom-
mendations better satisfy the user. Therefore, they camacmore immediate rewards.
Thus, good recommendations are raised more frequently &graihg agent than by a
non-learning one. This, in turn, means learning agents aimize their revenue by
selecting good recommendations. In particular, Fig. 4 shitvat good recommendation
methods with learning capability (the first four agents ig.F(a)) make, on average,
significantly greater amounts (about 43%) of credit thars¢hwithout (the first four
agents in Fig. 4(b)). With a poor method, the agents cantegertheir bids to the user’s
interest and therefore bid randomly. Thus, they cannotistargly achieve positive im-
mediate rewards and their revenue is low (the last four agienfFig. 4 (a) and (b)).
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e Quick Market Convergence: We have shown that market convergence enables the

agents to know what prices to bid for recommendations rejat certainuPQs so as
to gain maximal revenue [3, 4]. Thus, quick market convecgdat agents reach this
state quickly. To evaluate this, we organized two sets oBdrpents (using the same
settings as the experiments assessing the convergened)tSttone contains all learn-
ing agents and the other contains none. We find that a maaketplith learning agents
always converges quicker than the one without. From Fig.e5can see that a market-
place with learning agents (Fig. 5(a)) converges after adBlauctions, whereas one
without (Fig. 5(b)) converges after about 120 auctionsetr] as the learning agents’
profiles converge, more high quality recommendations amsistently suggested (since
their highQ values induce high probability for the agent to bid thesmitdecause of
equation (3)) and low quality ones are deterred. This, in,taccelerates effective price
iterations to chase the market equilibrium. It takes apimaxely one third of the time
for a market with learning agents to chase the equilibriumpgared to one without.

e Best Recommendation’s Identification:To evaluate the learning strategy’s ability
to identify the best recommendation (from the viewpointh# user, i.e. the toppPQ
item) quickly and bid it consistently, we use the same setxpkedments that were
used to assess the market convergence. We then trace tbheqafem highlighted by
a randomly selected learning agent with a good recommeandatethod and a corre-
sponding one from a non-learning agent in Fig. 5 (a) and @peetively. We do this by
plotting this topuPQ items’ bidding prices with circle points in the figures. Teatly
display the points of the trace and not to damage the qudliines (representing the
three displayed bids), we do not display the points whenitbis is raised by other
agents. From Fig. 5(a), we can see that this item’s biddingeMeeps increasing till
it converges to the first bid price of the displayed items.sTiieans that as long as
the randomly selected agent chooses this particular itdoidtin an auction (after the
market converges), it is always displayed in the top pastisplayed to the user. How-
ever, in contrast, this phenomenon in a market without legragents proceeds slowly
(see Fig. 5(b)). This means that a learning market can gatisf user quicker than a
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non-learning one. Additionally, a learning market raisestiest recommendation more
frequently (39 times by the selected learning agent, seekdg) than a market without
learning capability (13 times by the corresponding nomrery agent, see Fig. 5(b)).

5 Related Work

The learning strategy presented in this paper significamfyroves our previously re-
ported market-based recommender system [3, 4] by speegititgeumarket’s ability to
make good recommendations. Previously, the strategy waelalged for selecting which
recommendations to bid was random (i.e. an agent randon@gtsean item from any
one of theG INQ segments in one auction round) [4]. While this strategy qrentd
sufficiently to enable the viability of the market-basedamenender to be evaluated,
it sometimes presented poor recommendations for too loddesrned the user’s in-
terests too slowly. In contrast, by learning the expectedmae of eachNnQ segment
and consistently bidding on those items that have high éggeevenue (since they sat-
isfy the user), an agent quickly identifies the best recontagon and maximizes its
revenue (making 43% more credits than our previous methdith.all agents employ-
ing the learning strategy, the market converges quickhatiout one third of the time
of the previous method) and satisfies the user more contlisfemaking high quality
recommendations about three times as often as the previetrod).

In terms of learning users’ interests, most existing recemader systems use tech-
nigues that are based on two kinds of features of recommiendabbjective features



(such as textual content in content-based recommendetsudnjective features (such
as user ratings in collaborative recommenders). For exanydBRA is a book rec-
ommender system that extracts textual information fromkdbat a user has previ-
ously indicated a liking for and learns his interests thiotlge extracted contents [10].
GrouplLens is a Usenet news recommender that predictsithef a specific recom-
mendation based on other users’ ratings on it [8]. Howevemnyrresearchers have
shown that learning techniques based on either objectigalgective features of rec-
ommendations cannot successfully make high quality recendations to users in all
situations [11, 12, 2]. Thus, no one learning technique igarsally best for all users in
all situations. The fundamental reason for this is thatdheedgsting learning algorithms
are builtinsidethe recommenders and, thus, the recommendation featatahdy em-
ploy to predict the user’s preferences are fixed and cannehbaged. Therefore, if
a learning algorithm is computing its recommendations th@sethe features that are
relevant to a user’s context, the recommender is able tcesstudly predict the user’s
preferences (e.g. a customer wants to buy a “blue” cup oalirgethe recommendation
method’s learning algorithm is just measuring the “colobut not the “size” or the
“price” of cups). Otherwise, if the user’s context relatedtures do not overlap any of
those that the learning algorithm is computing on, the recemder will fail (e.g. the
user considers “colour” and the learning algorithm meastsize”).

To overcome this problem and successfully align the feattirat a learning tech-
nigue measures with a user’s context in all possible siinatiwe seek to integrate
multiple recommendation methods (each with a differentrlies algorithm) into one
single system and use an overarching marketplace to cadedinem. Essentially, our
market-based system’s learning technique encapsulateslessners and each learner
computes its recommendations based on some specific feafimes, our approach has
a larger probability of relating its features to the usedatext and so, correspondingly,
has a larger opportunity to offer high quality recommerafai

In terms of general work on market-based recommendatibasnbst related work
to our own is that of [9]. This work uses a market to competifnallocate consumers’
attention space in the domain of retailing online produstsl as PC peripherals).
Here, the scarce resource is the consumer’s ability to fonwsset of banners or prod-
ucts. However, this work and our own use the market mechanismifferent ways to
help recommendations. The market in [9] is used only to coatd agents’ bidding,
whereas ours is used not only for this purpose, but also telate theNg to theurPQ
of recommendations (i.e. the quality classification angratient).

6 Conclusions and Future Work

To be effective in a multi-agent recommender system (suatuasnarket-based sys-
tem), an individual agent needs to adapt its behaviour teaethe user’s interests.
However, in general, an agent initially has no knowledgeuaivese preferences and
it needs to obtain such information. But, in so doing, it rexlensure that it contin-
ues to maximize its revenue. To this end, we have developadbtyyclassification

mechanism and a reinforcement learning strategy that\eetiés balance. Essentially,
our approach enables an agent to classify its recommendatito different categories



(based on its own quality measure) and then direct the rigtetgories of items to the
right users (by learning their interests by bidding and lenang rewards). Specifi-
cally, through empirical evaluation, we have shown thatsitategy works effectively
at this task. In particular, a good recommendation methadpped with our learning
strategy is capable of rapidly producing a profile of the 8daterests and maximiz-
ing its revenue. Moreover, a market in which all agents emplar learning strategy
converges rapidly and identifies the best recommendatioickly. Finally, we showed
that our Q-learning strategy with positive initi@l values avoids bias. For the future,
however, we need to carry out more extensive field trials watil users to determine
whether the theoretical properties of the strategy do #gtald in practice.
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