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Abstract. Recommender systems are widely used to cope with the problemof
information overload and, consequently, many recommendation methods have
been developed. However, no one technique is best for all users in all situations.
To combat this, we have previously developed a market-basedrecommender sys-
tem that allows multiple agents (each representing a different recommendation
method or system) to compete with one another to present their best recommen-
dations to the user. In our system, the marketplace encourages good recommen-
dations by rewarding the corresponding agents according tothe users’ ratings of
their suggestions. Moreover, we have shown this incentivises the agents to bid
in a manner that ensures only the best recommendations are presented. To do
this effectively, however, each agent needs to classify itsrecommendations into
different internal quality levels, learn the users’ interests and adapt its bidding be-
haviour for the various internal quality levels accordingly. To this end, in this pa-
per, we develop a reinforcement learning and Boltzmann exploration strategy that
the recommending agents can exploit for these tasks. We thendemonstrate that
this strategy helps the agents to effectively obtain information about the users’ in-
terests which, in turn, speeds up the market convergence andenables the system
to rapidly highlight the best recommendations.

1 Introduction

Recommender systems have been widely advocated as a way of coping with the prob-
lem of information overload. Such systems help make choicesamong recommendations
from all kinds of sources for users who do not have sufficient personal experience of
all these alternatives [1]. Many recommender systems have been developed but they
are primarily based on two main kinds of filtering techniques: (i) content-based filter-
ing recommends items based on their objective features (such asthe text content of a
Web document), whereas(ii) collaborative filteringrecommends items based on their
subjective features (e.g., the fact that a user with similartastes likes them). However,
both kinds of techniques have their weaknesses. The former cannot easily recommend
non-machine parsable items (such as audio and video items),whereas the latter fail
when there are an insufficient number of peers to accurately predict a user’s interests.
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Given this, it has been argued that there is no universally best method for all users in all
situations [2].

In previous work, we have shown that an information marketplace can function ef-
fectively as an overarching coordinator for a multi-agent recommender system [3, 4]. In
our system, the various recommendation methods, represented as recommender agents,
compete to advertise their recommendations to the user. Through this competition, only
the best recommendations (from whatever source) are presented to the user. Essentially,
our system uses a particular type of auction (generalized first price sealed bid) and a
corresponding reward regime to incentivise the agents to align their bids with the user’s
preferences. Thus, recommendations that the user considers good are encouraged by
receiving a reward, whereas poor ones are deterred (by paying to advertise their rec-
ommendations but by receiving no reward). In short, the market acts as a feedback
mechanism that helps agents to correlate their owninternal ratingsof recommenda-
tions (i.e. the relevance rating computed by whatever recommendation algorithm they
use) to the desires of the user.

While our system works effectively most of the time, an open problem from the
point of view of the individual recommender agents remains:given a set of recom-
mendations with different internal rating levels, in what order should an agent try to
advertise them so that it can learn the user’s interests as quickly as possible, while still
maximizing its revenue?Thus, for example, the agent could bid the items that have never
been advertised to the user, which would allow it to learn theuser’s interests quickly
but would also result in it losing money. Conversely, the agent could always bid those
that have been highly rewarded, so ensuring a good return, but it would take a very long
time to learn the extent of the user’s interests. While this problem is couched in the
context of our specific system, this is a general problem thatall recommender systems
face. Thus, even though they may not have a currency or an explicit reward, they still
need to determine the user’s preferences as quickly as possible, while still making good
suggestions, in order to make effective recommendations.

To overcome this problem, we have developed aquality classificationmechanism
and a reinforcement learning strategy for the agents to learn the user’s interests. Intu-
itively, to make good suggestions, an agent needs to classify its recommendations into
different categories based on some specific features of the recommendations and then
suggest the right categories of items to the user according to his interests. In our context,
each agent classifies its recommendations into different quality levels (e.g. very good,
good, bad, etc) based on its internal belief about their relevance to the user’s context.
Then, to assist an agent to direct the right categories of recommendations to the user,
we developed a concomitant reinforcement learning strategy. This strategy enables an
agent to relate the user’s feedback about its recommendations to its internal quality
measure and then to put forward those recommendations that are consistent with this.
This is important because the more effectively an agent relates its recommendations to
the user’s interests, the better it serves the user and the more rewards it receives.

Against this background, this paper advances the state of the art in the following
ways. First, a novel reinforcement learning strategy is developed to enable the agents to
effectively and quickly learn the user’s interests while still making good recommenda-
tions. Second, and perhaps more important, we demonstrate how our learning strategy,



coordinated through the marketplace, can be viewed as a quality classification problem
and how the marketplace assists the classification and aligns the right recommendations
to the right people. Third, from an individual agent’s pointof view, we show the learn-
ing strategy enables an agent to maximize its revenue. Finally, we show that when all
agents adopt our strategy, the market rapidly converges andmakes good recommenda-
tions quickly and frequently.

The remainder of this paper is structured in the following manner. Section 2 briefly
recaps the basics of our multi-agent recommender system andhighlights the problem
an individual agent faces in it. Section 3 details the designof our learning strategy.
Section 4 empirically evaluates this design. Section 5 outlines related work in terms of
reinforcement learning and market-based recommendations. Section 6 concludes and
points to future work.

2 The Quality Classification Problem for Market-Based
Recommendations

Different recommendation methods use different metrics and different algorithms to
evaluate the items they may recommend. Thus, the internal rating of the quality of a
recommendation can vary dramatically from one method to another (e.g. some may
think it is very relevant for the user, others may think it moderately relevant, while yet
others may believe it is irrelevant). Here, we term this internal evaluation the method’s
internal quality(INQ). However, a highINQ recommendation from one method does not
necessarily mean the recommendation is any more likely to better satisfy a user than a
low INQ item suggested by another. Ultimately, whether a recommendation satisfies a
user can only be decided by that user. Therefore, we term the user’s evaluation of a
recommendation theuser’s perceived quality(UPQ).

With these concepts in place, we now briefly outline our market-based recommender
in the order of the market processes (see the circled numbersin Fig. 1) as follows. First,
when the market calls the agents for a number (S) of recommendations, each agent
submitsS items and bids a price for each of them. Second, the market ranks all recom-
mendations in decreasing order of their prices and displaystheS items with the highest
bid prices to the user. Consequently, each agent with displayed items pays an amount
of credits (equal to how much it bids) for each of the corresponding displayed items for
the advertisement. Third, the user then visits a number of the displayed items and gives
a rating (i.e.UPQ) to each visited item based on his satisfaction. Fourth, themarket
rewards the agents with positiveUPQ recommendations an amount of credit that is pro-
portional to theirUPQvalues (see [3] for the details and the proof that this mechanism is
Pareto optimal with respect to the group of rewarded agents and maximizes their social
welfare). Thus, the system completes one round of operationand proceeds with another
following the above four steps.

In this context, the role of the reward mechanism is to provide the agents with in-
centives to align their bidding behaviour with the interests of the user. From the point of
view of an individual agent, however, it needs to learn whichrecommendations the user
prefers. To do this, agents classify their recommendationsinto a predetermined number
(G) of categories (or segments) based on theirINQs (e.g. in the simplest case, where
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Fig. 1. An Agent’s Learning Problem

G = 2, an agent could classify bad recommendations as those with an INQ of less than
0.5 and those with anINQ between 0.5 and 1.0 as good) and then they relate theseINQs
to theUPQs. Intuitively, the more the user is satisfied with a recommendation, the more
reward the corresponding agent receives. Thus, an agent that has sufficient experience
of the user’s feedback can learn the user’s interests by correlating its recommendations
(and their correspondingINQ segments) to the rewards (that reflect theirUPQs) they
receive [4]. This, in turn, enables a self-interested agentto consciously make recom-
mendations from thoseINQ segments that correspond to highUPQs so that it can best
satisfy the user and, thus, gain maximal revenue. To effectively compute the agents’
revenue, we define an agent’simmediate reward(made from a recommendation dis-
played to the user in one auction round) as the reward it received minus the price it
has paid for the advertisement1. With this, what an agent needs to do is to learn how
much immediate rewards, on average, it can expect for items in each category (i.e. each
INQ segment). We term this average immediate reward for eachINQ segment an agent’s
expected revenue. Thus, a self-interested agent can maximize its revenue by frequently
bidding recommendations from the segments with high expected revenue. Therefore, an
agent’s recommending task can be seen as a quality classification problem and it needs
to align the user’s preferences with itsINQ segments (reflected by expected revenue)
and meanwhile make maximal revenue.

However, when an agent starts bidding in the marketplace, ithas no information
about how much revenue it can expect for each segment. Therefore, the agent needs
to interact in the marketplace by taking actions over itsG segments to learn this infor-
mation (as per Fig. 1). In this way, an agent can produce a profile of such information
from which it can form an optimal strategy to maximize its overall revenue. In this
context, the agent’s learning behaviour is on a “trial-and-error” basis. The agent bids
its recommendations and receives the corresponding feedback in a manner that good

1 Agents pay nothing for items they put forward that are not displayed to the user (this occurs
when other agents are willing to pay more to advertise their recommendations). By definition,
an immediate reward may be either positive or negative. If a displayed recommendation is not
selected by the user or if it has paid too much to display an item, the corresponding agent’s
immediate reward is negative since it has paid for the display and received less reward.



recommendations gain rewards, whereas bad ones attract a loss. This kind of trial-and-
error learning behaviour is exactly what happens in Reinforcement Learning [5]. Thus,
to be more concrete, an agent needs an algorithm to learn the expected revenue over
each segment. In addition, it also needs an exploration strategy to make trials on itsG
segments such that it strikes a balance between learning as quickly as possible, while
still maximizing revenue.

3 The Learning Strategy

This section details the design of an agent’s learning algorithm and exploration strat-
egy in sections 3.1 and 3.2 respectively. The overall strategy is then pulled together in
section 3.3.

3.1 The Q-Learning Algorithm

In previous work, we have proved (theoretically and empirically) that our marketplace
enables an agent to relate the rewards it received to itsG INQ segments [4]. Building
on this basis, the contribution of this paper is in how to learn the expected revenue
that is likely to accrue over itsG segments. Such a strategy is desirable because high
expected revenue on a specific segment implies that more rewards can be expected if
it repeats bidding on that segment in future. Therefore, this subsection aims to address
the problem of producing the expected revenue profile over anagent’sG segments.

In detail, an agent needs to execute a set ofactions(bidding on itsG segments),
(a1, a2, · · · , aG), to learn the expected revenue of each segment (R(ai), i ∈ [1..G]).
Specifically, an actionai that results in its recommendation being displayed to the user
must pay some amount of credit. Then, it may or may not receivean amount of re-
ward (depending on whether its recommendation satisfies theuser). We record thetth

immediate reward thatai has received asri,t (t = 1, 2, · · · ). From a statistical perspec-
tive, the expected revenue can be obtained from the mean value of the series of discrete
immediate reward values:

E[R(ai)] = lim
t→∞

(
1

t

∑

t

ri,t) . (1)

In this context, the Q-learning technique provides a well established way of estimat-
ing the optimality [5]. In particular, we use a standard Q-learning algorithm to estimate
R(ai) by learning the mean value of the immediate rewards:

Q̂i := (1 −
1

t
) · Q̂i +

1

t
· ri,t , (2)

whereQ̂i is the current estimation ofR(ai), and1
t is the learning rate that controls how

much weight is given to the immediate reward (as opposed to the old estimation). As1t
decreases,̂Qi builds up an average of all experiences, and the odd new unusual experi-
ence,ri,t, does not significantly affect the establishedQ̂i. As t approaches infinity, the
learning rate tends to zero which means that no learning is taking place. This, in turn,



makesQ̂i converge to a unique set of values that define the expected revenue of each
segment.

PROPOSITION : Ast −→ ∞, Q̂i converges toE[R(ai)].
PROOF: We useQi,0 to represent the initial value of̂Qi, andQ̂i,t to represent the
local estimation toR(ai) whenai has been experiencedt times.Q̂i’s updates go:
Q̂i,1 = 0 · Q̂i,0 + 1 · ri,1 = ri,1

Q̂i,2 = 1
2 · ri,1 + 1

2 · ri,2 = 1
2 (ri,1 + ri,2)

Q̂i,3 = 2
3 ·

1
2 (ri,1 + ri,2) + 1

3 · ri,3 = 1
3 (ri,1 + ri,2 + ri,3)

...
Q̂i,t = 1

t (ri,1 + ri,2 + · · · + ri,t) = 1
t

∑t
j=1 ri,j

As t → ∞, limt→∞(1
t

∑t
j=1 ri,j) statistically definesE[R(ai)]. �

This proof exemplifies how newly experienced immediate rewards, combined with
the learning rate, produce convergence.With the Q-learning algorithm in place, an agent
needs an exploration strategy to execute actions to build upits Q̂ profile.

3.2 The Exploration Strategy

We assume all agents are self-interested and want to gain maximal revenue as they
bid. However, beforêQi converges, it is difficult for an agent to know how much can
be expected through each action and, therefore, which action it should choose. It is
faced with the classic dilemma of choosing actions that havea well known reward or
choosing new ones that have uncertain rewards (which may be higher or lower than the
well known actions). To this end, the agent needs an exploration strategy over itsG
segments to build up itŝQi in an effective way so that it can know how much return can
be expected from each segment.

In general, there is a fairly well developed formal theory for exploration strategies
for problems similar to that faced by our agents [6]. However, the standard methods
require very specific conditions (detailed in section 5) that do not hold in our context2.
Specifically, the number of times that an agent can interact with the marketplace is not
limited. Thus, the agent can gather as much information as itwants in order to form its
expected revenue profile. Knowing how much can be expected through each action, an
agent can use a probabilistic approach to select actions based on the law of effect [7]:
choices that have led to good outcomes in the past are more likely to be repeated in
the future. To this end, aBoltzmann explorationstrategy fits our context well; it ensures
the agent exploits higher̂Q value actions with higher probability, whereas it explores
lower Q̂ value actions with lower probability [6]. The probability of taking actionai is
formally defined as:

Pai
=

e
Q̂i/T

∑G
j=1 e

Q̂j/T
(T > 0). (3)

2 In fact, it is hard to find the absolutely best strategy for most complex problems. In reinforce-
ment learning practice, therefore, approaches tend to be developed for specific contexts. They
solve the problems in question in a reasonable and computationally tractable manner, although
they are often not the absolutely optimal choice [6].



whereT is a system variable that controls the priority of action selection. In practice,
as the agent’s experience increases and allQ̂is tend to converge, the agent’s knowledge
approaches optimality. Thus,T can be decreased such that the agent chooses fewer
actions with smallQ̂i values (meaning trying not to lose credits) and chooses more
actions with largêQi values (meaning trying to gain credits).

In general, however, we have observed that the learning algorithm of equation (2)
accompanied with the exploration strategy of equation (3) has a problem of producing
bias from the optimal and very little work has been done to address this. This problem
occurs when an agent obtains a very small negativeQ̂i value for a particular action in
its first few trials3. If this happens, a bias from the true expected revenue of this action
may occur (since the action may in general produce positiveR(ai)) and the agent will
seldom choose it. This kind of bias is a particular problem inour system. Because a user
may not always visit all displayed items and, thus, some goodrecommendations may
be skipped and, therefore, be deemed as bad ones. To avoid such bias,T needs to be
assigned a very large value in the beginning of learning to limit the exploration priority
given to those actions with very largêQ values. However, controllingT in terms of
producing the unbiased optimal strategy is hard to achieve,since different actions’̂Qs
converge with different speeds and their convergence is difficult to detect. Even with
other exploration strategies, such biases still exist since no exploration can avoid such
unlucky trials at the beginning of learning. To this end, we developed an algorithm that
takes positive initial̂Qi values into account to overcome this problem. We detail thisin
the next section.

3.3 The Overall Strategy

To overcome the impact of bias in the beginning of learning, we use positive initial̂Q
values (i.e.Q̂i,0) and make them affect the learning. Thus, instead of algorithm (2), we
use the following learning algorithm:

Q̂i := (1 −
1

t0 + t
) · Q̂i +

1

t0 + t
· ri,t . (4)

The difference between (2) and (4) is that the former does nottakeQ̂i,0 into account,
whereas the latter does. Specifically, algorithm (4) assumes that each action has been
experiencedt0 (t0 is positive and finite) times and each time with a feedback ofQ̂i,0

(Q̂i,0 � 0) before the agent starts learning. This, in turn, removes the problem dis-
cussed in section 3.2. Indeed, if an action causes a negativeimmediate reward in the
beginning, it does not force itŝQi to become negative. In this way, all actions will still
be allocated a relatively equal opportunity of being explored as an agent begins learn-
ing. As the agent continues to interact with the marketplace, its Q̂is update gradually
to different levels and these levels still make its exploration follow the law of effect.
Thus, the agent’s exploitation tends to optimality with itsQ̂ values tending to converge.

3 A negative immediate reward means punishment and an erroneous action. A reward of zero
means that the action has received no feedback. Thus, actions with negative, zero and positive
feedback are differentiated and exploration priority should be given to the latter two.



Additionally, by initializingQ̂ with positive values, the exploration does not need a so-
phisticated control onT , since a relatively small positive value is sufficient and iseasier
to control. Moreover, the change from (2) to (4) does not affect the convergence.

PROPOSITION : GivenQ̂i’s definition by algorithm (4), its convergence toE[R(ai)]
is independent of its initial valuêQi,0 and initial timet0 .
PROOF: Q̂i’s updates go:

Q̂i,1=
t0

t0+1 · Q̂i,0 + 1
t0+1 · ri,1

Q̂i,2= (1 −
1

t0+2 )( t0
t0+1 · Q̂i,0 + 1

t0+1 · ri,1) + 1
t0+2 · ri,2

= t0
t0+2 · Q̂i,0 + 1

t0+2 · (ri,1 + ri,2)

Q̂i,3= (1 −
1

t0+3 )( t0
t0+2 · Q̂i,0 + 1

t0+2 · (ri,1 + ri,2)) + 1
t0+3 · ri,3

= t0
t0+3 · Q̂i,0 + 1

t0+3 · (ri,1 + ri,2 + ri,3)
...

Q̂i,t =
t0

t0+t · Q̂i,0 + t
t0+t ·

1
t ·

∑t
j=1 ri,j

Sincet0 is finite, limt→∞
t0

t0+t −→ 0 andlimt→∞
t

t0+t −→ 1.
Thus,limt→∞ Q̂i,t −→ limt→∞(1

t

∑t
j=1 ri,j) = E[R(ai)]. �

This proof shows that algorithm (4) also produces unbiased learning. Thus, we will
use (4) and (3) for our agents and the overall strategy is detailed in Fig. 2.

THE M AIN STRATEGY :
for i = 1 to G do {

Q̂i,0 = Qinit; // Initialize Q̂i andQinit � 0
ti = 0; // Initialize ti

}
do {

for i = 1 to G do
Pai

= ExploreProbability( i, Q̂1, Q̂2,· · · , Q̂G ); // Equation (3)
ak = ActionSelection( Pa1

, Pa2
, · · · , PaG

) F; // k ∈ [1..G]
tk = tk + 1; // ak has been experiencedtk times
rk,tk

= ImmediateReward( ak ); // compute immediate reward
Q̂k = UpdateQ( Q̂k , tk, rk,tk

); // Equation (4)
} while (true)

F M ETHOD ACTION SELECTION :
ActionSelection( Pa1

, Pa2
, · · · , PaG

){
double boundary[0..G]; // probability boundary forG segments
for i = 0 to G do

boundary[i] = 0;
for i = 1 to G do // compute theG actions’ probability boundary

for j = 1 to i do
boundary[i] = boundary[i] + Paj

;

double Rand = UniformRandom0to1() ♠; // generate a probability
for k = 1 to G do

if ( boundary[k − 1] 6 Rand < boundary[k] )
return ak; // select a random action based on its probability

}

♠ UniformRandom0to1() returns a random value that follows a uniform distribution within the range [0, 1.0).

Fig. 2. The Learning Strategy



4 Evaluation

This section reports on the experiments to evaluate the learning strategy we have de-
veloped. The experimental settings are discussed in section 4.2, before the evaluations
are presented in section 4.3. First, however, we discuss thecriteria with which we can
evaluate our design.

4.1 Evaluation Metrics

To evaluate the learning strategy we use the following evaluation metrics (the first two
are concerned with an individual learner’s performance andthe second two are con-
cerned with the performance of the collective of learners):

Convergence to Optimality: Many learning algorithms come with a provable guaran-
tee of asymptotic convergence to optimal behaviour [5]. This criterion is included
here to evaluate the quality of learning itself; it is important because if an algorithm
does not converge, the agent will have no incentive to followits behaviour.

Individual Rationality: All component recommenders in our system are self-interested
agents that aim to maximise their revenue by bidding their recommendations [3].
Thus, if an agent can make a profit by participate in a particular encounter it will
do so. Thus, such individually rational mechanisms are important because without
them, there is no motivation for the agents to participate inthe system.

Quick Market Convergence: If the prices of the displayed recommendations reach a
steady state after a number of consecutive auctions, the market is convergent. In the
analysis of our recommender system, we proved that convergence is necessary to
ensure only the best items are displayed and that they are shortlisted in decreasing
order ofUPQ [4]. Therefore, a market that converges quickly means that it starts
satisfying the user quickly. This is clearly important since a user will stop using a
recommender if it takes too long to produce good suggestions.

Best Recommendation’s Identification: A good recommender system should be able
to identify the best recommendation (the one with the highest UPQ) quickly and
suggest it frequently [8]. This is important because, otherwise, if the best recom-
mendation cannot be identified and displayed, the user will stop using the system.

4.2 Experimental Settings

Having previously shown that our marketplace is capable of effectively incentivising
good recommendation methods to relate theirINQs to theUPQ [4], we will not discuss
how the agents do this. Rather, here, we simply assume that there are four good recom-
mendation methods (able to correlate theirINQs to theUPQ) and four poor ones (unable
to do so). Given a specific recommendation (Rec), the correlations of itsUPQ to a good
method’sINQ (INQg) and to a poor one’s (INQp) are described in equations (5) and
(6) respectively (“�” means “has no relation to”):

UPQ(Rec) = INQg(Rec) ± 0.1 · random() (5)

UPQ(Rec) � INQp(Rec) (6)



whererandom() returns a random value that follows a uniform distribution within the
range [0, 1.0). This random value can be seen as the noise (or bias) between theINQ and
the UPQ. All UPQ and INQ values are fixed within [0, 1.0). In each auction round the
marketplace calls for ten bids. We use an independent-selection user model to decide
which recommendations displayed to the user will be rewarded [9, 4]. In this model,
selecting one item is independent of selecting another and all recommendations with a
UPQ higher than a particular threshold will be rewarded. Here, we set this threshold to
0.75. To correlate theirINQs to theUPQs, all agents divide theirINQ range intoG = 20
equal segments. We assume that all agents share the same set of recommendations and
each agent has at least ten items in each segment. Before starting to bid,Qinit is set
to 250,T = 20 andt0 = 1 for all agents. All agents are initially endowed with same
amount of credit (65536). At the beginning, each agent will bid the same (128) for
items from any segment, since it does not know which segmentsare more valuable than
others.

4.3 Learning Strategy Effectiveness

Having outlined the configuration of the agents, this section details the evaluations.
Among all the properties that we want the learning strategy to exhibit, convergence is
the most important. Indeed, in its absence, an agent loses its basis to reason. Thus, we
will start with experiments on the convergence ofQ̂ values.

• Convergence to Optimality: To evaluate an agent’ŝQ value convergence, we ar-
ranged 300 consecutive auctions. Among the eight agents, the first four employ the
good recommendation method and the last four employ the poorone. We find that, with
a good method, an agent’ŝQ values always converge such that highINQ segments’Q̂s
(corresponding to highUPQ because of equation (5)) converge to high values and low
INQ segments’Q̂s converge to low values (see Fig. 3(a)). Specifically, theQ̂ values of
thoseINQ segments corresponding to theUPQs above the user’s satisfaction threshold
(0.75) converge proportionally to their correspondingUPQs. The higher the correspond-
ing UPQ, the higher theQ̂i’s convergence value, because the recommendations from a
segment corresponding to higherUPQs receive more immediate reward than those cor-
responding to lowerUPQs. TheQ̂ values of those segments that correspond to theUPQs
below 0.75 converge to negative values, since they do not receive rewards if their rec-
ommendations are displayed. Moreover, the convergence is independent of the specific
form of equation (5). Specifically, once there is a uniqueUPQ level corresponding to
eachINQ level (even highINQ corresponding to lowUPQ), theQ̂ value of anINQ seg-
ment corresponding to a highUPQwill always converge to a high level (since it induces
high immediate rewards). However, with a poor method, an agent’s Q̂ values cannot
converge such that highINQ segments’̂Qs converge to high values (see Fig. 3(b)). This
is because a specificINQ corresponds to very differentUPQs (and very different imme-
diate rewards) at different times because of equation (6).

To exemplify that our learning algorithm (4) overcomes the bias problem that may
occur in (2), we organized another set of experiments with all agents taking zero initial
Q̂i values (all other settings remained unchanged (see Fig. 3(c))). From Fig. 3(c), we
can see that̂Q12 is updated only once and with a very small value of -82 (this gives the
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Fig. 3.Q-Learning Convergence

corresponding action virtually no chance of being selectedin future).Q̂16 also produces
a bias in the beginning. In even worse cases,Q̂16 can never update itself likêQ12

(however, it should actually have a positive expected revenue). However, with positive
initial Q̂i values, such biases do not occur (see Fig. 3(a)).

• Individual Rationality: The agents with good methods are able to know what recom-
mendations better satisfy the user. Therefore, they can achieve more immediate rewards.
Thus, good recommendations are raised more frequently by a learning agent than by a
non-learning one. This, in turn, means learning agents can maximize their revenue by
selecting good recommendations. In particular, Fig. 4 shows that good recommendation
methods with learning capability (the first four agents in Fig. 4(a)) make, on average,
significantly greater amounts (about 43%) of credit than those without (the first four
agents in Fig. 4(b)). With a poor method, the agents cannot relate their bids to the user’s
interest and therefore bid randomly. Thus, they cannot consistently achieve positive im-
mediate rewards and their revenue is low (the last four agents in Fig. 4 (a) and (b)).
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• Quick Market Convergence: We have shown that market convergence enables the
agents to know what prices to bid for recommendations relating to certainUPQs so as
to gain maximal revenue [3, 4]. Thus, quick market convergence let agents reach this
state quickly. To evaluate this, we organized two sets of experiments (using the same
settings as the experiments assessing the convergence). The first one contains all learn-
ing agents and the other contains none. We find that a marketplace with learning agents
always converges quicker than the one without. From Fig. 5, we can see that a market-
place with learning agents (Fig. 5(a)) converges after about 40 auctions, whereas one
without (Fig. 5(b)) converges after about 120 auctions. Indeed, as the learning agents’Q̂

profiles converge, more high quality recommendations are consistently suggested (since
their highQ̂ values induce high probability for the agent to bid these items because of
equation (3)) and low quality ones are deterred. This, in turn, accelerates effective price
iterations to chase the market equilibrium. It takes approximately one third of the time
for a market with learning agents to chase the equilibrium compared to one without.

• Best Recommendation’s Identification:To evaluate the learning strategy’s ability
to identify the best recommendation (from the viewpoint of the user, i.e. the topUPQ

item) quickly and bid it consistently, we use the same set of experiments that were
used to assess the market convergence. We then trace the topUPQ item highlighted by
a randomly selected learning agent with a good recommendation method and a corre-
sponding one from a non-learning agent in Fig. 5 (a) and (b) respectively. We do this by
plotting this topUPQ items’ bidding prices with circle points in the figures. To clearly
display the points of the trace and not to damage the quality of lines (representing the
three displayed bids), we do not display the points when thisitem is raised by other
agents. From Fig. 5(a), we can see that this item’s bidding price keeps increasing till
it converges to the first bid price of the displayed items. This means that as long as
the randomly selected agent chooses this particular item tobid in an auction (after the
market converges), it is always displayed in the top position displayed to the user. How-
ever, in contrast, this phenomenon in a market without learning agents proceeds slowly
(see Fig. 5(b)). This means that a learning market can satisfy the user quicker than a
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non-learning one. Additionally, a learning market raises the best recommendation more
frequently (39 times by the selected learning agent, see Fig. 5(a)) than a market without
learning capability (13 times by the corresponding non-learning agent, see Fig. 5(b)).

5 Related Work

The learning strategy presented in this paper significantlyimproves our previously re-
ported market-based recommender system [3, 4] by speeding up the market’s ability to
make good recommendations. Previously, the strategy we developed for selecting which
recommendations to bid was random (i.e. an agent randomly selects an item from any
one of theG INQ segments in one auction round) [4]. While this strategy performed
sufficiently to enable the viability of the market-based recommender to be evaluated,
it sometimes presented poor recommendations for too long and learned the user’s in-
terests too slowly. In contrast, by learning the expected revenue of eachINQ segment
and consistently bidding on those items that have high expected revenue (since they sat-
isfy the user), an agent quickly identifies the best recommendation and maximizes its
revenue (making 43% more credits than our previous method).With all agents employ-
ing the learning strategy, the market converges quickly (inabout one third of the time
of the previous method) and satisfies the user more consistently (making high quality
recommendations about three times as often as the previous method).

In terms of learning users’ interests, most existing recommender systems use tech-
niques that are based on two kinds of features of recommendations: objective features



(such as textual content in content-based recommenders) and subjective features (such
as user ratings in collaborative recommenders). For example, LIBRA is a book rec-
ommender system that extracts textual information from books that a user has previ-
ously indicated a liking for and learns his interests through the extracted contents [10].
GroupLens is a Usenet news recommender that predicts theINQ of a specific recom-
mendation based on other users’ ratings on it [8]. However, many researchers have
shown that learning techniques based on either objective orsubjective features of rec-
ommendations cannot successfully make high quality recommendations to users in all
situations [11, 12, 2]. Thus, no one learning technique is universally best for all users in
all situations. The fundamental reason for this is that these existing learning algorithms
are builtinsidethe recommenders and, thus, the recommendation features that they em-
ploy to predict the user’s preferences are fixed and cannot bechanged. Therefore, if
a learning algorithm is computing its recommendations based on the features that are
relevant to a user’s context, the recommender is able to successfully predict the user’s
preferences (e.g. a customer wants to buy a “blue” cup onlineand the recommendation
method’s learning algorithm is just measuring the “colour”but not the “size” or the
“price” of cups). Otherwise, if the user’s context related features do not overlap any of
those that the learning algorithm is computing on, the recommender will fail (e.g. the
user considers “colour” and the learning algorithm measures “size”).

To overcome this problem and successfully align the features that a learning tech-
nique measures with a user’s context in all possible situations, we seek to integrate
multiple recommendation methods (each with a different learning algorithm) into one
single system and use an overarching marketplace to coordinate them. Essentially, our
market-based system’s learning technique encapsulates more learners and each learner
computes its recommendations based on some specific features. Thus, our approach has
a larger probability of relating its features to the user’s context and so, correspondingly,
has a larger opportunity to offer high quality recommendations.

In terms of general work on market-based recommendations, the most related work
to our own is that of [9]. This work uses a market to competitively allocate consumers’
attention space in the domain of retailing online products (such as PC peripherals).
Here, the scarce resource is the consumer’s ability to focuson a set of banners or prod-
ucts. However, this work and our own use the market mechanisms in different ways to
help recommendations. The market in [9] is used only to coordinate agents’ bidding,
whereas ours is used not only for this purpose, but also to correlate theINQ to theUPQ

of recommendations (i.e. the quality classification and alignment).

6 Conclusions and Future Work

To be effective in a multi-agent recommender system (such asour market-based sys-
tem), an individual agent needs to adapt its behaviour to reflect the user’s interests.
However, in general, an agent initially has no knowledge about these preferences and
it needs to obtain such information. But, in so doing, it needs to ensure that it contin-
ues to maximize its revenue. To this end, we have developed a quality classification
mechanism and a reinforcement learning strategy that achieve this balance. Essentially,
our approach enables an agent to classify its recommendations into different categories



(based on its own quality measure) and then direct the right categories of items to the
right users (by learning their interests by bidding and by receiving rewards). Specifi-
cally, through empirical evaluation, we have shown that ourstrategy works effectively
at this task. In particular, a good recommendation method equipped with our learning
strategy is capable of rapidly producing a profile of the user’s interests and maximiz-
ing its revenue. Moreover, a market in which all agents employ our learning strategy
converges rapidly and identifies the best recommendations quickly. Finally, we showed
that our Q-learning strategy with positive initial̂Q values avoids bias. For the future,
however, we need to carry out more extensive field trials withreal users to determine
whether the theoretical properties of the strategy do actually hold in practice.
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