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ABSTRACT

This paper presents a environment using the eXtensible
Markup Language ,xML, to describe a robotic systems in a for-
mat suitable for simulation, and to support the integration of sev-
eral programming environments to create a flexible physical sim-
ulation system. Data exchange via open-standard based plain text
files allows the system components to be loosely-coupled, rather
than combined them into a single integrated development envi-
ronment. This ensures that the most appropriate tools can be used
for each component and the system can be extended with mini-
mal disruption. Those parts of the system that require real-time
data exchange use simple UNIX socket-based interactions, which
are configured using shared xmML configuration files. The envi-
ronment is demonstrated by the simulation of a simple task using
a SCARA robot.
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INTRODUCTION

Although originally designed for large-scale electronic pub-
lishing, the eXtensible Markup Language xmL has found a role
in supporting the exchange of a wide variety of data over the
World-Wide-Web and in other software systems, [1]. In this pa-
per we describe the use of XML to integrate several software com-
ponents for the simulation of a robotic manipulator. The simu-
lation includes the robotic manipulator interacting with its en-
vironment, together with the manipulation of a range of objects
(e.g., cube, sphere). The flexibility of XML ensures that this ap-

proach is equally applicable to other physical simulations where
there is a need to describe complex multi-jointed, multi-actuated
mechanical systems, for example a walking robot.

Our previous work [2, 3], has leading to a development of
a number of dexterous end effectors and sensors. As part of this
activity we have need for a high fidelity simulation environment,
that is capable of accurately modelling the physical interaction
between the grasped object, a multi-fingered end effector, and its
serving manipulator. One of the most significant challenges in
robotics is the grasping of the object in an unstructured environ-
ment, where the object’s parameters are not known a priori and
the sensory information is subjected to uncertainty. We have de-
veloped a neurofuzzy control approach to this problem, [4]. In
order to validate this approach we need to fully simulate the con-
trol system, together with the physics of the robotic manipulator,
its sensors and in particular its interaction with the environment.

Our current research aims to add to the understanding of
manipulation with the objective of developing advanced manip-
ulators. Inspiration will be drawn from biological and synthetic
studies, although cross fertilization will be likely, the overall ob-
jective is the development of real world systems.

SIMULATION

Geometric modelling with or without simulation is of con-
siderable importance in the design and development of robotic
systems, typical application areas include, [5]:

1. Provision of a research environment where novel control
techniques can be validated before being used on an actual
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robotic system. This approach ensure that expensive hard-
ware is not exposed to damage if the control laws imple-
mented are incorrect.

2. Design and testing of the manipulator to ensure that it is
capable of satisfying the design specifications.

3. Using the modelling environment to resolve problems with
the interacting between robots and plant in a manufacturing
process.

4. Following simulation the actual paths and other variables
can be passed to the real robot for execution of the task.

5. Telerobotic user interface; if the actual workspace can not
be accessed, a simulation can be used to provide direct user
feed back to the operator.

To prove successful, a simulation environment needs to pro-
vide the following features:

[ERN

. Run time storage of simulation objects.

2. Dynamics models that update the state of the simulation ob-

jects.

3. A suitable interface to monitor the progress of the simula-

tion.

4. A flexible controller environment, allowing the comparison
of different control strategies with minimum reprogramming
effort.

. Tools for editing simulation objects off-line.

. A structured method of configuring simulation options.

7. Flexibility in capturing output data, including files and im-

ages for subsequent analysis.

8. Complete system scriptablility to maximise flexibility of the

simulations being undertaken.

o Ol

Robotic systems have two features that lend themselves well
to XML descriptions: a hierarchical structure and a large hum-
bers of parameters. Although it would be possible to describe
a manipulator as a single list of joints, body parts, sensors and
actuators, such a list would have to be accompanied by consid-
erable extra information defining how these elements are inter-
connected. Also, this information would have to be checked
and corrected whenever the structure was modified. More gen-
erally, robotic simulations requires a large number of parame-
ters which need to be stored in a standardized machine-readable
fashion, that will allow the manipulator and its environment to be
moved between the simulation and other applications, including,
for example, Finite Element Modeling and CAD systems. This
is achievable as XML provides a means by which these data can
be hierarchically structured and clearly linked to the objects de-
scribed and easily coupled with metadata that adds physical units
(e.g., millimeters, Newtons) and labels where required.

ROBOTIC MODELLING

One of the most widely used approach to robotic analysis is
based on the Denavit-Hartenberg (DH) descriptions, [6]. These
descriptions have a very limited structure: a list of the joint-link
pairs, each with four parameters. This approach provides a com-
pact and flexible approach to modelling the kinematic structure
of the manipulator. However, the DH parameters in its basic form
does not provide an accurate description of the physical attributes
of the robot, in that they do not contain information regarding
actuator specification, physical link shape, joint characteristics
and sensor placement. The DH descriptions of a manipulator’s
kinematic structure does however have several properties that fa-
cilitate mathematical analysis, but since we are undertaking re-
quires fully-featured physical simulation, these properties are not
especially useful in this work. A MATLAB toolbox [7] is readily
available that will handle joint-link based simulations directly.
However, it currently does not perform collision detection and
is therefore unsuitable for simulation of manipulators and their
direct interaction with their environment.

Robotic grasping and manipulation is a well researched area
[8, 9, 10]. In many cases the results are supported by modelling
and/or simulation, concerned with force or form closure, and the
interaction between the object and a dexterous end effector. In
order to simulate the interaction between the object, end-effector
and manipulator, a full physics model is required, we selected
Vortex!. Vortex is a powerful dynamics engine, based on funda-
mental Newtonian physics. It enables application developers to
build physically accurate motion and object interaction for real
time simulation applications. The software features, stable rigid-
body dynamics, an accurate collision detection and collision re-
sponse capability, multiple joint types with motors and associ-
ated constraints, and the capability for high-fidelity vehicle dy-
namics.

It should however be recognised that there are a number of
other robotic simulation environments available, however these
are either tailored toward mobile robotics and path-finding, mak-
ing them less suitable for simulation of manipulation tasks,
[11, 12] or are in the early stages of development, [13]. Where
real-time rigid body simulation is performed by these systems,
the Open Dynamics Engine [14] is used instead of the Vortex sim-
ulation libraries. A simulation environments such as Grasplt!,
[15], is capable of performing the simulations required, but does
not give us the flexibility required for control algorithm develop-
ment. If the robot is to be simulated in a manufacturing environ-
ment a package such as WorkSpace [16] can be used.

SIMULATOR FOR PHYSICAL SYSTEMS
To support our research in robotic manipulation, we need to
simulate the accurate, real-time dynamics of physical hardware,

1supplied by CMLabs, Montreal, Quebec, Canada.
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Figure 1. Block diagram of the developed simulation environment which combines several different software components.
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Figure 2. A two fingered end effector which is described by the configuration files detailed in Figures 3 and 4

including the manipulator, end effector and their interation with
the environment, with a requirement for flexible and intelligent
control actions. Also, to decrease development time, we want to
minimise the amount of bespoke code by exploiting proprietary,
commercial software. We therefore need a framework which can
couple together the different proprietary software components.

Figure 1 shows a block diagram of the developed simula-
tion environment. Two commercial packages were used — \Vor-
tex Smulation Libraries and MATLAB — together with a be-
spoke C++ object hierarchy that mirrors the manipulator struc-
ture. Vortex has extensive documentation, and is easily inte-
grated with other libraries to create powerful simulation pro-
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grams. MATLAB is the industry standard package for rapid math-
ematical algorithm prototyping, especially for control applica-
tions. In addition Python? is used for scripting. A lightweight
OpenGL/DirectX viewer supplied with Vortex was considered
adequate for this work.

Configuration Files

A suitable approach to describe the robotic system is pro-
vided by Vortex, which provides a methodology to load and store
simulation objects directly from XML files. However, Vortex's
XML files do not allow any structuring or labeling information
(e.g, joint names, for example ‘wrist’) to be stored and made
available to other system components, including MATLAB which
is used to model the joint and system controllers. To resolve this
problem we have developed our own XML definition structure to
describe the robot in its environment.

An overview of the xmL configuration file is shown in Fig.
3, and should be compared with outline of the end effector shown
in Fig 2. For clarity the majority of the the detail has been re-
moved from the snippet. The SCENE element contains all the ele-
ments of the system that are not part of the robot being tested, in-
cluding the floor and the target objects. The MANIPULATOR con-
tains three sections; PATCHBOX, ARM and HAND. The PATCH-
Box defines the order in which the manipulator’s various input
and output signals are sent and received over the UNIX socket.
The robot is fully described in ARM and HAND, as a number of
linkchains consisting of a number of interconnected links. In this
example the SPHERE object is used as the palm of the end effec-
tor.

Figure 4 details the parameters for an individual link entry,
in this case the upper link of LINKCHAIN “finger 2’ of the HAND,
termed phlange2.1. The elements POSITION and QUATERNION
specify the initial position and orientation for this link, in the
axis-frame of the previous link. The Box entry defines the link’s
geometry; the mass and polar moment of inertia are calculated
using by the Vortex libraries. The JOINT entry specifies the axis
and range of movement permitted between this link and the pre-
vious link, with the option of storing motor parameters. Each
link can have a number of SENSOR elements, with their position
defined in the axis-frame of the link. In this case a slip sensor is
defined. As this sensor is not standard in Vortex, it was modeled
by considering the relative positions of the point of contract of
the finger with reference frame of the grasped object.

The simulation is based on a family of C++ objects. At con-
figuration time, these objects parse an XML file using I i bxm 2
and store the results in standard template library container
classes. By using | i bxmi 2, we reduce coding and debugging
time and will benefit from future releases. At the same time,
xML allows us to exploit standard tools to write, modify and ver-
ify the simulation description files, which can be used easily by

2http://www.python.org/doc/

<TEST>
<SCENE/ >
<FLOOR/ >
<TOYI >
</ SCENE>
<MANI PULATCR/ >
<PATCHBOX/ >
<I NPUT>MD</ | NPUT>
<I NPUT>ML</ | NPUT>
<QUTPUT>SLI P1</ QUTPUT>
<QUTPUT>ACCL</ QUTPUT>
</ PATCHBOX>
<ARM>
<PCsSI TI OV >
<QUATERNI QN >
<BOX/ >
<LI NKCHAI N>
<LI NK/ >
<LI NK/ >
</ LI NKCHAI N>
</ ARM>
<HANDY >
<SPHERE/ >
<PCsSI TI OV >
<JONT | abel="wist"/>
<LI NKCHAI N | abel ="fi nger1"/>
<LI NK/ >
<LI NK/ >
</ LI NKCHAI N>
<LI NKCHAI N | abel ="fi nger 2" >
<LI NK | abel ="phl ange2. 1"/ >
<LINK />
</ L1 NKCHAI N>
</ HAND>
</ MANI PULATOR>
<NOTES/ >
</ TEST>

Figure 3. The XML configuration file used to define a robot and end
effector in the simulated environment. The details of ‘phlange2.1’ are
expanded in Fig. 4.

all stages of the system. It is expected that future simulations will
requires large amounts of binary data ( for example height fields
or vertex meshes), in these cases external files will be referenced
rather than included the data directly.

Socket Interface

A separate Vortex-based client was developed that would ex-
ecute the physical simulation while interacting with a MATLAB-
driven controller, via a UNIX-socket. MATLAB provides a direct
interface to C++, via late linked pre-compiled binary files (MEX-
files). These files have access to the MATLAB work space, and
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<LI NK | abel =" phl ange2. 1" >
<PCSI TION z="50.0" x="30" />
<QUATERNI ON angl e="180"
<BOX | engt h="50" wi dt h="10" dept h="10"
<JO NT linear="true" axis="x" |abel ="J7">

ux="0" uy="0" uz="1"/>
density="0.1" />

<UPPERLI M T danpi ng="5000" stiffness="1000" range="0" />
<LOWNERLI M T danpi ng="5000" stiffness="1000" range="-35" />

<MOTOR maxf orce="0. 01" >Mr</ MOTOR>
</ JOA NT>

<SENSOR | ogged="true" gai n="1.0" | abel ="SLI P2"

<PCSI TION x="5" y="0" z="20"/>
</ SENSOR>
</ LI NK>

size="10" type="slip">

Figure 4. The XML description of an individual link. The parameter’s units are defined earlier in the XML file.

share its file descriptors. It should be noted that the file descriptor
numbers provided within MATLAB do not map directly to those
in the operating system, in our case Linux, and so care must be
taken when sharing descriptors between MEx-files and standard
MATLAB M-files. Each mEX-file is loaded, run and then removed
from memory, so any state information required must be loaded
from the MATLAB workspace and, stored before termination.

The link provided by the socket contains a stop byte fol-
lowed by a block of floating point values (either actuator or trans-
ducer signals, depending on direction of the signal flow). Al-
though this limits the communication options available, it has
the advantage of ensuring that the controller is only presented
with information that it could reasonably gain from a real robot.
The test configuration file provides the option to label each actu-
ator and transducer. It also includes a PATCHBOX element, which
contains a list of input and output labels. After loading a test con-
figuration, the simulation environment scans through the PATCH-
BOX, looking for matches between the labels specified there and
those in the rest of the file. It then presents and receives the
information in the order given in the PATCHBOX, and forwards
the information appropriately. This gives the test designer com-
plete control over which inputs/outputs are transmitted over the
socket, over their order, and also allows MATLAB to configure
itself appropriately.

Scripting

For our purposes, it is an essential that the system can run
multiple tests unattended. Three operations must be undertaken
for this to happen. First, a range of pre-processing tools are re-
quired for the generation of valid and variable xMmL test descrip-
tions. Second, a further set of post-processing tools should be
able to take the results logged by the simulation run and extract
useful metrics from them. Third, a set of tools to coordinate the
pre- and post-processing activities to create a series of simula-
tions.

It is therefore important that the input files can be easily
modified by automated scripts and that the output can be properly

interpreted. Python has been chosen for this because it facilitates
clear readable code through its modular name-spacing and rigid
source code layout. It already has well-developed support for
XML parsing and generation and so was easy to integrate into
the system. The physical simulation is used (with the output dis-
abled) to parse the robot xmL files when processing is required.
This means that the same input parsing code is reused, reducing
maintenance time.

System Overview

The main component of our system is the Manipulation
Simulation Client (MaSC) which provides a wrapper around the
commercial dynamics and collision library, Vortex. On execution
the MaSC loads a Test Specification File (TSF), builds a simula-
tion from the Vortex components and creates a UNIX local socket
though which it can exchange actuator demands and sensor read-
ing. MaSC is written in C++ and will be easily extensible in the
future. A Document Type Definition (DTD) has been written for
the TSFs. This allows for independent validation and faster, more
controlled, editing in packages such as Xeena3.

Two harness have been written that facilitate connection to
the MaSC from C/C++ and MATLAB. These also process the TSF
file to calculate the appropriate number of actuators and sensors.
These may be extended to extract more detailed labelling infor-
mation from the TsFs if this becomes useful and the TsFs format
settles down enough for this to become practical. We has written
individual robot joint controllers in both C and MATLAB to prove
the connection to the MaSC via the appropriate harnesses. In the
simulation presented in this paper the proportional joint-position
controller was implemented in MATLAB, however this will be re-
placed by other control strategies as part of our ongoing research.

Two Python support scripts have been developed. The first
generates a fully wired patch box for a Manipulator or com-
bines a Arm and a Hand to generate a Manipulator (with PATCH-
BOX). The second takes the (XML based) output generated by

Shttp://www.al phaworks.ibm.com/tech/xeena
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the MaSC and extracts comma-separated-variable files. These
are more compact and easily imported into other packages, for
either further processing or graphing. The only disadvantage of
this approach is that labelling inherent in the original format is
nor preserved.

SIMULATION OF A ROBOT

The developed system runs on a standard 2.4GHz Intel desk-
top with a NVIDA graphics card running a standard install of
RedHat 8.0.

To demonstrate the performance of the simulation en-
vironment we drove a model of a SCARA robot through a
five stage, pick and drop activity (I ower, gri p- obj ect,
tilt-wist, raise-arm rel ease). The developed
model was based on a RTX SCARA robot, a small industrial robot
capable of handelling loads of up to 2Kg at 100mm s~*. Figure
5 shows screen shots of the robot in its test environment, prior to
picking up an object.

In this simulation a simple proportional joint-position con-
troller based on the actual robot’s control algorithms was imple-
mented in MATLAB. The end effector’s control was again pro-
portional using slip and force sensors developed in house.

After completing the simulation, the Python script extracts
comma-separated-variable files from the XML output log. These
files were imported into MATLAB and used to generate the results
presented in Figure 6.

As expected the slip is a function of the robot’s orientation
and acceleration, together with the gripper’s contact forces. The
increase in slip at 600 time steps indicates that the object has
been picked up by the robot’s end effector. As the robot’s speed
and orientation is changes, their is a corresponding increase in
measured slip, which is used to control the grip force, and main-
tain a stable grasp. When the object is released from the jaws, it
fall to the ground, and bounces. The bounce is clearly visible on
the upper plot, together with the object’s slip relative to the end
effector as it is released.

This simple simulation demonstrates the features of our ap-
proach in that:

1. A task can be programmed into the simulation.

2. The full physics of the robot, sensors, grasped object and
environment can be modelled.

3. Results can be presented both as graphics and images (both
moving and still)

CONCLUDING REMARKS

This paper has discussed the development of a simulation
environment that will provide a flexible tool for the ongoing re-
search into robotic systems at the University of Southampton.
The systems being simulated are configured using xmL files.

(a) The simulated SCARA robot in its test environment. The object be-
ing picked up is the block on the bench

(b) A close up of the simple two fi ngered end effector. The sensors are
shown at the end of thefi nger tips

Figure 5. Screen shots generated during the simulation

This approach provides a number of benefits, firstly the hierar-
chical structure of the XML maps directly onto the physical de-
scription of a robotic manipulator, secondly the use of a loosely
coupled architecture allows us to explore various control op-
tions, without modifying the physical simulation. Our prelimi-
nary evaluations has shown that the system provides the required
flexibility.
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