The University of Southampton
University of Southampton Institutional Repository

Adaptive neurofuzzy control of a robotic gripper with online machine learning

Adaptive neurofuzzy control of a robotic gripper with online machine learning
Adaptive neurofuzzy control of a robotic gripper with online machine learning
93-110
Dominguez-Lopez, J. A.
e2a72cc8-4004-47c9-840f-901663051ca6
Damper, R. I.
6e0e7fdc-57ec-44d4-bc0f-029d17ba441d
Crowder, R. M.
ddeb646d-cc9e-487b-bd84-e1726d3ac023
Harris, C. J.
c4fd3763-7b3f-4db1-9ca3-5501080f797a
Dominguez-Lopez, J. A.
e2a72cc8-4004-47c9-840f-901663051ca6
Damper, R. I.
6e0e7fdc-57ec-44d4-bc0f-029d17ba441d
Crowder, R. M.
ddeb646d-cc9e-487b-bd84-e1726d3ac023
Harris, C. J.
c4fd3763-7b3f-4db1-9ca3-5501080f797a

Dominguez-Lopez, J. A., Damper, R. I., Crowder, R. M. and Harris, C. J. (2004) Adaptive neurofuzzy control of a robotic gripper with online machine learning. Robotics and Autonomous Systems, 48 (2-3), 93-110. (doi:10.1016/j.robot.2004.06.001).

Record type: Article
Text
jorgeetal04.pdf - Other
Download (346kB)

More information

Published date: 2004
Additional Information: Organisation: IEEE Address: Toronto, Canada
Venue - Dates: IEEE International Conference on Machine Learning and Cybernetics, Xi'an, China, 2004-01-01
Organisations: Agents, Interactions & Complexity, Southampton Wireless Group

Identifiers

Local EPrints ID: 259492
URI: http://eprints.soton.ac.uk/id/eprint/259492
PURE UUID: 0cc38ed6-bc96-4ace-a7c8-30b2ffb077b4

Catalogue record

Date deposited: 06 Sep 2004
Last modified: 14 Mar 2024 06:24

Export record

Altmetrics

Contributors

Author: J. A. Dominguez-Lopez
Author: R. I. Damper
Author: R. M. Crowder
Author: C. J. Harris

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×