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Abstract – Robotic grippers are commonly required to
grasp and manipulate loads under a wide range of con-
ditions, without the load slipping from the end effector,
and avoiding damage to the load. We have previously
demonstrated the adaptive neurofuzzy control of a simple
gripper with a two-input, one-output action. When the
robotic gripper is integrated with a multi-degree of freedom
robot, the controller could face the curse of dimensionality.
To show that satisfactory control was still feasible, we
undertook extensive simulations of this gripper mounted on
a multi-degree of freedom robot. We also report enhanced
control by using the gripper’s acceleration as an additional
input.
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1 Introduction
In many applications, robotic grippers must manipulate

loads under a wide range of conditions including unexpected
external disturbances, which unless compensated for, will
result in damage to the load. Here, we consider two types
of disturbance: (1) an impact on the load itself, as would be
experienced if material is being transferred to the load, for
example by pouring; (2) acceleration of the end effector as
the robot on which it is mounted moves.

Many techniques can be used to achieve satisfactory grip-
per control. Some use analytic solutions and cannot be easily
implemented in real-time applications, particularly when
dynamic adaptation to random external disturbances is an
important requirement. Also, the analytic approach cannot
be used if variables such as the load’s weight and end effector
acceleration are unknown. To overcome this problem, fuzzy
controllers have been developed, using gripper variables as
inputs [8].

We discuss four approaches to gripper control, developed
and validated by simulation: (i) Hybrid Neurofuzzy Control
(Section 2); (ii) Hybrid Neurofuzzy Control incorporating
information about end effector acceleration (Section 3);
(iii) Hybrid Neurofuzzy Hierarchical Control, also with
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information about end effector acceleration (Section 4);
(iv) Hybrid Neurofuzzy Hierarchical Control incorporating
end effector acceleration information and a scheme for
limiting it (Section 5).

In comparing performances between controllers, a simu-
lated gripper was subjected to a range of identical load distur-
bances. The gripper was a simple two-fingered, single degree
of freedom system with slip and force sensors, based on the
experimental system developed in our previous work [6, 7].
Full details of the simulation (kinematics equations) can be
found in Appendix A of [4]. The simulation was validated
against earlier results of the gripper handling a range of
weights [5, 6, 7]

The gripper was simulated holding a 0.1 kg object. During
simulation the end effector was initially stationary. An
external transient force of 10 N was applied to the load
3 seconds into the simulation, and a second force of −10 N
was applied at 5 seconds. Between 6 and 10 seconds, the
gripper was moved, thereby applying acceleration forces
along its z-axis.

2 Hybrid neurofuzzy controller
To accommodate rapid adaptation to environmental

changes, the controller uses a hybrid learning approach
which combines supervised and reinforcement learning.
This combination allows the system to adapt faster, as the
use of prior knowledge helps to achieve quicker neurofuzzy
learning [5]. The reinforcement learning part of the hybrid
algorithm is based on the well-known GARIC architec-
ture [2].

The structure of the hybrid controller is shown in Figure 1,
where a (neurofuzzy) Supervised Learning Network (SLN)
augments the conventional GARIC structure. It consists of
a fuzzy controller (the Action Selection Networks, ASN)
that operates as the actor and a neural network (the Action
Evaluation Network, AEN) that criticises the actions made
by the ASN, in an actor-critic framework. The outputs of
these two networks feed into the Stochastic Action Mod-
ifier (SAM) which solves stochastically the exploration-
exploitation dilemma: Neither exploration of the parameter
space to learn new capabilities nor exploitation of what has



Weight Updating

Labelled
Training Data

Supervised Learning
Network

Action Selection
Network

(neurofuzzy controller)

Action Evaluation
Network

(neural predictor)

Stochastic Action
Modifier

Motor Voltage

Sample
and
hold

v(t-1)

Environment

Weight Updating

)t(r̂

)t(f ′

)t(f

)t(s

)1t(failure −

)t(state 1−

)t(state

Figure 1: Hybrid system with a Supervised Learning Net-
work (SLN) added to the basic GARIC architecture.

already been learned can be pursued exclusively.
Action Selection Network: This is the fuzzy controller

that performs all control operations. It is implemented as
a neurofuzzy controller so its parameters can be updated
according to the signal received from the Action Evaluation
Network. Using a (neuro)fuzzy network as the critic gives
transparency to the system.

The ASN output, f (t), determines the ‘provisional’ grip-
per motor voltage, and hence applied force. This ‘pro-
visional’ value is subject to random modification by the
Stochastic Action Module as described below. Updating
of the ASN modifiable parameters (i.e., the rule confidence
vector of connection weights between rule and defuzzifica-
tion layers) is in the direction which increases the future
reward v(t), predicted by the AEN. To effect gradient de-
scent optimisation, the weight update should be proportional
to ∂v(t)

∂wi j (t)
> 0, giving:

�ωi j (n) = η

n∑
k=0

mn−kr̂(k)s(k)
∂v(k)

∂ωi j (n)
(1)

where k is an index that runs from the initial time 0 up to the
current time n [9, p. 170], r̂(t) is the ‘internal’ reinforcement
signal, s(t) is an output of the SAM, and η and m are the
learning and momentum constants which were empirically
set to 0.75.

Action Evaluation Network: This is a neural predictor,
as shown in Figure 2. The AEN indicates the current state
‘goodness’, mapping the input state vector to the reward sig-
nal from the environment r(t). This mapping uses a Markov
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decision transition graph [12, p. 66] and produces a scalar
score, r̂(t), which predicts future reinforcements, v(t). This
is combined with r(t) to generate an ‘internal’ reinforcement
signal, r̂(t):

r̂(t) =

⎧⎨
⎩

0 start state
−r(t) − v(t − 1) failure state
−r(t) + γ v(t) − v(t − 1) otherwise

(2)

where γ , set here to 0.47, is a discount rate used to control the
balance between long-term and short-term consequences of
the system’s actions [9, p. 606]. Here, ‘start’ state means the
state encountered on power-up, and ‘failure’ state indicates
that the system has to be restarted, after dropping or crushing
the load.

This network fine-tunes the rule confidence vector. Its
input variables are the normalised measurements of the slip
rate, the applied force to the load and the applied motor
voltage. The hidden layer activation function is a sigmoidal
function. Using a gradient descent algorithm, the formulae
for updating the AEN weights are:

ai j (t) = ai j (t − 1) + β1r̂(t)y j (t − 1)(1 − y j (t − 1))

sgn(c j (t − 1))xi (t − 1)

bi (t) = bi (t − 1) + β2r̂(t)xi (t − 1)

c j (t) = c j (t − 1) + β2r̂(t)y j (t − 1)

for i = 1, 2, 3 and j = 1, . . . , 5, where β1 and β2 were set
empirically to 0.68 and 0.45 respectively. The signum func-
tion, sgn( ), takes the value 1 when its argument is positive
and the value 0 otherwise.

Stochastic Action Modifier: This gives a stochastic
deviation to the output of the ASN, so the system can
have a better exploration of the state space and a better
generalisation ability [2].



Supervised Learning Network: This is a neurofuzzy
controller trained off-line with error back-propagation [11].
We used the labelled training data previously collected [4, 5]
to train the SLN ab initio. The resulting weights were also
used as the initial weights of the ASN. The learning rate and
momentum for back-propagation were both 0.5, and training
terminated when the mean squared error between actual and
desired output voltages was less than 0.2 V2.

During operation, input and output information are col-
lected on-line. As ‘good’ control actions—defined as main-
taining stable grip over 3 seconds—are discovered, the input-
output data are concatenated onto the supervised training
dataset, and training of the SLN reinitiated, without stopping
system execution. Once the SLN (re)training has finished
(i.e., stop criterion is satisfied), its new rule weight (confi-
dence) vector is compared with that of the ASN. Specific
weights of the ASN can be overwritten by corresponding
weights of the SLN if the difference is lower than or equal
to 5%. The value of 5% was set empirically, although the
system was not especially sensitive to this value.

Following twenty minutes of training, the force applied
by the basic neurofuzzy controller and the load slip are
shown (as solid lines) in Figure 3(a) and 3(b), as a result of
the vertical acceleration applied after 6 seconds and shown
in Fig. 3(c). While the system manages to maintain a
satisfactory grasp, the lack of information on the gripper’s
acceleration means the controller cannot respond correctly,
and hence the load slips considerably.

3 Using acceleration information
If the controller has knowledge of the gripper’s accelera-

tion (by some measurement), it will be able to react to this
disturbance and thereby improve performance. A controller
meeting this criterion was developed by incorporating end
effector acceleration into one single fuzzy machine (Fig-
ure 4). The controller was based on the previously discussed
architecture, although a revised AEN is required, as in
Figure 5.

In Figure 3, the dashed lines show the performance of
the system with acceleration information compared with the
original system of Section 2 without. The new system is
also able to maintain a stable grip despite the disturbances.
However, it increases the applied force earlier when the
end effector starts to accelerate, reducing the possibility of
slippage, as shown in Figure 3(b). Both systems reduce
load slippage due to negative acceleration; however, positive
acceleration is still able to induce significant slip.

Comparing the performance of the two systems, when
there is no end effector acceleration, both systems perform
similarly. In the presence of end effector acceleration,
however, the system with the acceleration information is
able to reduce slippage, particularly in the negative direction.
However, this improvement actually comes at the price
of having 700 against 140 possible rules in the controller
of Section 2. So there is a trade-off between simplicity
and better performance. Nevertheless, this application is
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Figure 3: Simulation results for controllers with (dashed) and
without (solid) end effector acceleration
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still considered a low-dimensional problem, which demands
modest memory and processing time.

4 Hierarchical controller
Hierarchical control divides a problem into several simpler

subproblems, making this an attractive approach to use for
parsimonious neurofuzzy modelling [10, 3]. In Section 3,
we saw that the addition of just one input to the neurofuzzy
controller results in a bigger, more complex rule base—
the so-called curse of dimensionality [1]. Figure 6 shows
the neurofuzzy hierarchical structure commonly used to
mitigate the curse of dimensionality. The outputs of the
subnetworks X and Y form the inputs of the subnetwork Z .
With this approach, the addition of an extra input variable
increases linearly the number of rules. However, the training
of this network is difficult as the outputs are complex
nonlinear functions of the weights [3].

Figure 7 shows the proposed neurofuzzy hierarchical
structure for the gripper controller with acceleration infor-
mation; the product of the outputs of the subnetworks A
and B gives the overall output. The design of this structure
is based on the previous results, which have shown that the
gripper controller has to increase the motor voltage when
the acceleration increases.
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In a neurofuzzy hierarchical structure the rule base in-
creases linearly, so the density of the end effector accelera-
tion fuzzy set can be finer. The total possible number of rules
of the entire network is equal to 188. Accordingly, there has
been a considerable reduction of the rule base in comparison
with the approach of Section 3 (cf. 700 rules). The training
of subnetworks A and B is identical to the training of
the previous neurofuzzy systems, but subnetwork B has a
revised AEN, as shown in Figure 8.

Figure 9 compares the performance of the controller dis-
cussed in Section 3 (solid lines) with the controller discussed
in this section (dashed lines). Figures 9(a) and 9(b) show
the force applied by the basic neurofuzzy controller and the
load slip for the two systems in response to the acceleration
applied shown in Fig. 9(c) (identical to that in Fig. 3(c)).
The controller based on the hierarchical approach is capable
of stable gripping despite the induced disturbances. The
controller is able to manage the negative accelerations and
to reduce the slippage for the positive end effector accelera-
tions. The neurofuzzy hierarchical system not only reduces
the number of rules but also gives a slight improvement in
system performance.

5 Limiting acceleration
As end effector acceleration can induce slippage, an

approach to reducing slip is to restrict the gripper’s accel-
eration. Accordingly, a framework to control the maximum
end effector acceleration is proposed, as shown in Figure 10.
As with hierarchical systems in general, such a structure
facilities the development of intelligent control system for
robots, as the problem is subdivided into several simpler
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Figure 9: Simulated results for the controller of Section 3
(solid) compared with the hierarchical controller (dashed).

subproblems.
The maximum allowable acceleration depends on the

force applied to the load and the current motor voltage,
because these two factors dictate if it is possible for the force
applied by the gripper to increase. When the applied force
and the motor voltage are high, it is not possible to accom-
modate an increase in gripper acceleration. As result, there
is also a limit in the gripper’s acceleration to maintain stable
gripping. The neurofuzzy controller (2) (NFC2) shown in
Figure 10 determines the maximum gripper acceleration that
guarantees stable gripping.

The output of NFC2 is the maximum absolute accel-
eration (|amax|) which guarantees stable gripping. (The
absolute value gives a more transparent network.) The
output of the limiter is the maximum permitted end effector
acceleration: as = min(|amax|, |ad |) sgn(ad), where ad is
the desired acceleration.

It is recognised that limiting the robot’s performance may
compromise the robot’s path-following capabilities. Hence,
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Figure 10: Hierarchical framework to improve the perfor-
mance of the end effector by limiting its maximum accelera-
tion.
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in a practical system, the output of NFC2 may need to be
fed back to the robot’s controller as opposed to the limiter
approach used in the simulation.

Both NFCs in Fig. 10 have identical Markov decision tran-
sition graphs. NFC1 is trained first prior to training NFC2.
If the two NFCs were trained simultaneously, it would be
impossible to determine which controller was responsible
for either failure or success. The form used for NFC1 is
the neurofuzzy hierarchical controller described in Section 4.
Figure 11 shows the AEN of NFC2.

This controller required 45 minutes of training. The solid
lines in Figures 12(a) and 12(b) show its performance against
the standard disturbances (Fig 12(c), dashed line, which is
limited as shown by the solid line). Despite the disturbances,
the system is capable of maintaining a stable grip. As illus-
trated in Figure 12(b), the hierarchical end effector controller
was able to eliminate entirely the load slippage due to end
effector acceleration. These results should be compared with
the dashed lines in Figs. 12(a) and 12(b) which are for the
hierarchical controller of Section 4. Clearly, by limiting the
acceleration, the system performance can be improved.

6 Conclusions
We have described the simulation of a hybrid super-

vised/reinforcement learning neurofuzzy controller for a
simulated end-effector, validated against earlier work with
a real system. Results show that when the system has
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(c) Gripper acceleration: desired (dashed), limited (solid)

Figure 12: Simulated results for the hierarchical controller
with acceleration limitation (solid) and that of Section 4
(dashed) in which there was no limitation.

knowledge of a disturbance (i.e., gripper acceleration), the
controller is able to take action to reduce its impact, and
improve the gripping action. Further, when the system is
able to modify the disturbance (i.e., limiting the gripper’s
acceleration), again the gripper performance is improved.

The curse of dimensionality affects not only the system’s
transparency but also its learning speed. As the number of
inputs increases, so the system’s complexity increases too,
with a corresponding increase in the number of possible
rules, neurons and synaptic weights. A disadvantage of
supervised learning is that the size of the training dataset has
to be large if it is to represent adequately the input-output

mapping. These two disadvantages can be reduced using
parsimonious adaptive/product models.

References
[1] R. Bellman. Adaptive Control Processes: A Guided

Tour. Princeton University Press, Princeton, NJ, 1961.

[2] H. Berenji and P. Khedkar. Learning and tuning
fuzzy logic controllers through reinforcements. IEEE
Transactions on Neural Networks, 3(5):724–740, 1992.

[3] M. Brown, K. M. Bossley, D. J. Mills, and C. J Harris.
High dimensional neurofuzzy systems: Overcoming
the curse of dimensionality. In Proceedings of IEEE
International Conference on Fuzzy Systems, volume 4,
pages 2139–2146, Yokohama, Japan, 1995.
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