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Abstract - The paper reviews recent advances in methods of
design and optimisation of electromechanical devices where
intensive field simulation studies are required. Six techniques
appear to be particularly promising and are summarised,
including: Minimal Function Calls Method; combined Evolution
Strategy, Differential Evolution and Multiquadrics Interpolation;
Neuro-Fuzzy Modelling; Combined Finite Elements with Neural
Network; Sensitivity Analysis; and finally Pareto Optimisation.

I. INTRODUCTION

Optimal design often necessitates repetitive usage of finite-
element or other numerically intensive field computation.
Calling the FE package every time an objective function
evaluation is needed is straightforward but very inefficient, as
each set of selected design parameters leads to full field
analysis. The number of FE runs escalates as more design
variables are used; moreover, additional calls are normally
required to evaluate gradients of the objective function. In the
design office environment such an approach becomes
impractical and thus more efficient schemes are sought. This
contribution builds on a recently published review [1].

II. MINIMAL FUNCTION CALLS APPROACH

The Minimum Function Calls (MFC) approach relies on
evaluating the objective function a priori for a number of pre-
determined cases and fitting an interpolating function through
the data points [2]. The optimiser then uses the interpolating
function rather than calling the FE directly. In this Response
Surface Methodology (RSM) it is usual to use polynomial
interpolating functions. The minimum number of function
evaluations needed for curve fitting is equal to the number of
coefficients in the interpolating equation. For example, using
a third order polynomial and five design variables requires 56
function calls, which will be quite acceptable in practical
situations. The position of initial points is carefully selected to
be optimal in a sense that the resulting algorithms have
proven stable. Using the Response Surface Methodology
reduces computing times dramatically, and accuracy is
maintained by introducing on-line learning with dynamic
weighting. As the optimisation process proceeds, more points
become available for curve fitting and thus the estimate of the
optimum position becomes more accurate. It is therefore
appropriate to apply lower weighting to points far from the
predicted optimum. To illustrate the process a brushless
permanent magnet motor has been optimised for efficiency
(with minimum torque constraint) in terms of magnet height,
tooth width and stack length. Figure 1 shows a section
through the response surface illustrating the nature of the
optimisation problem. The efficiency is calculated by
integrating input power and losses in a time-stepping model.
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Fig.1. Brushless PM motor optimisation response surface [2].

III. EVOLUTION STRATEGIES

If local minima traps are identified as a potential problem,
stochastic techniques may be preferred. Most such techniques
are very expensive in terms of number of necessary function
evaluations and thus impractical. Some more recent methods,
however, look more promising and one such techniques,
introduced originally in [3], is reported here. It uses a
combination of Evolution Strategy, Differential Evolution and
Multiquadrics Interpolation (ES/DE/MQ) as shown in Fig. 4.
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Fig.2. Flowchart of the ES/DE/MQ method [3].

The comparison of the ES/DE/MQ method with standard
strategies (one Evolution Strategy ES, two versions of
Differential Evolution DE1 and DE2 and a Gradient Based
Algorithm GBA) for a popular C-core problem where the pole
faces are shaped to achieve homogeneous field in a region in
the centre of the air gap, is shown in Table I. The number of
objective function calls is greatly reduced, whereas the value
of the objective function is similar to ES and DE2 results and
better than those obtained with DE1 and GBA.



TABLEI
COMPARATIVE OPTIMISATION RESULTS FOR A C-CORE

Starting Optimum n
DE1 9 random 0.0803 720
DE2 13 random 0.0704 881
ES 0.7532/0.4344 /0.6411 0.0642 450
GBA 0.7532 0.0855 188
ES/DE/MQ 0.7532 0.0718 118

IV. OTHER METHODS

The Neuro-Fuzzy Modelling (NFM) uses optimisation
based on Genetic Algorithm (GA) and Sequential Quadratic
Programming (SQP). In this NF/GA/SQP approach, an n-
dimensional hyper-space is sampled initially using a grid
structure or a suitable Design of Experiment (DoE) orthogonal
array. The model data is subsequently employed to create a
neuro-fuzzy model which approximates a real function [4].
Results for unconstrained optimisation using a magnetizer
problem with six design parameters [5] are summarised in
Table II and compared with the ES/DE/MQ method, as well
as with standard evolutionary strategies and MATLAB’s
gradient based algorithm. On average the DE/ES/MQ method
finds a better solution at the cost of slightly greater number of
function evaluations. Both methods, however, require
significantly fewer function calls than conventional stochastic
techniques. The success of both methods lies in their ability to
search unexplored regions of space whilst exploiting available
knowledge to identify more accurately regions of minima.

TABLEII
UNCONSTRAINED OPTIMISATION RESULTS FOR MAGNETISER
Starting Optimum n

DEI 11 Random 1.235E-5 987
DE2 11 Random 5.423E-5 1035

ES 1.457E-3 1.187E-5 433

ES 9.486E-2 1.318E-4 351
GBA 1.457E-3 1.238E-4 41
GBA 9.486E-2 2.433E-4 281
ES/DE/MQ  1.457E-3 1.961E-5 234
ES/DE/MQ  9.486E-2 2.125E-5 206
NE/GA/SQP 6.570E-5 189

There is growing interest in the ways in which the
performance of a specific device could be modelled using a
neural network. Such a network learns the shape of the hyper-
surface and provides a fast evaluation of any point in it.
Typically, the neural network is trained in a batch mode, prior
to the optimisation process — essentially “off-line”. A recent
attempt has been made to construct a system which can
provide “on-line” training, i.e. a network which is capable of
learning and modifying its behaviour as it is used [6]. Such a
network has major benefits over a static system in that it can
handle a large number of variations of a device and track
developments in design related to material changes and
manufacturing processes.

Research into Sensitivity Analysis as an optimisation tool is
also gaining momentum. Some successful implementations
have already been reported. For example in [7] a generalized
continuum sensitivity formula is applied to electrostatic
problems. By exploiting the material derivative concept and
the augmented Lagrangian method, the analytical sensitivity
formula is derived from a multiobjective function and the
variational equation describing the system, and can be

expressed in terms of the fields of the primary system and the
corresponding adjoint one. The formula is adaptable to all
analysis methods (finite elements, boundary elements, finite
differences) and the optimisation is not affected — in terms of
overall computing times — by the number of design variables.

V. PARETO OPTIMISATION

Finally, multi-objective optimisation is becoming important
as practical designs usually involve conflicting requirements.
Problems are often converted into single-objective tasks with
a priori application of some knowledge or imposition of a
decision (for example weighting factors), but information can
easily be lost in the process and some existing ‘optimal’
solutions may even be mathematically impossible to achieve.
Instead the application of Pareto Optimal Front (POF) is
advocated. The theory of Pareto multi-objective optimisation
is somewhat complicated but some basic definitions and
properties are easily explained using a special case of two
objective functions being minimised as shown in Fig 3.
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Fig. 3. Example of objective domain search space showing the Pareto
Optimal Front (POF) and UTOPIA, DISTOPIA and NADIR points.
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