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 Abstract - The paper reviews recent advances in methods of 
design and optimisation of electromechanical devices where 
intensive field simulation studies are required. Six techniques 
appear to be particularly promising and are summarised, 
including: Minimal Function Calls Method; combined Evolution 
Strategy, Differential Evolution and Multiquadrics Interpolation; 
Neuro-Fuzzy Modelling; Combined Finite Elements with Neural 
Network; Sensitivity Analysis; and finally Pareto Optimisation. 
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I. INTRODUCTION 

 
Optimal design often necessitates repetitive usage of finite-

element or other numerically intensive field computation. 
Calling the FE package every time an objective function 
evaluation is needed is straightforward but very inefficient, as 
each set of selected design parameters leads to full field 
analysis. The number of FE runs escalates as more design 
variables are used; moreover, additional calls are normally 
required to evaluate gradients of the objective function. In the 
design office environment such an approach becomes 
impractical and thus more efficient schemes are sought. This 
contribution builds on a recently published review [1].  

 Fig.1. Brushless PM motor optimisation response surface [2]. 
 

III. EVOLUTION STRATEGIES 
 
If local minima traps are identified as a potential problem, 

stochastic techniques may be preferred. Most such techniques 
are very expensive in terms of number of necessary function 
evaluations and thus impractical. Some more recent methods, 
however, look more promising and one such techniques, 
introduced originally in [3], is reported here. It uses a 
combination of Evolution Strategy, Differential Evolution and 
Multiquadrics Interpolation (ES/DE/MQ) as shown in Fig. 4. 

 
II. MINIMAL FUNCTION CALLS APPROACH 

 
The Minimum Function Calls (MFC) approach relies on 

evaluating the objective function a priori for a number of pre-
determined cases and fitting an interpolating function through 
the data points [2]. The optimiser then uses the interpolating 
function rather than calling the FE directly. In this Response 
Surface Methodology (RSM) it is usual to use polynomial 
interpolating functions. The minimum number of function 
evaluations needed for curve fitting is equal to the number of 
coefficients in the interpolating equation. For example, using 
a third order polynomial and five design variables requires 56 
function calls, which will be quite acceptable in practical 
situations. The position of initial points is carefully selected to 
be optimal in a sense that the resulting algorithms have 
proven stable. Using the Response Surface Methodology 
reduces computing times dramatically, and accuracy is 
maintained by introducing on-line learning with dynamic 
weighting. As the optimisation process proceeds, more points 
become available for curve fitting and thus the estimate of the 
optimum position becomes more accurate. It is therefore 
appropriate to apply lower weighting to points far from the 
predicted optimum. To illustrate the process a brushless 
permanent magnet motor has been optimised for efficiency 
(with minimum torque constraint) in terms of magnet height, 
tooth width and stack length. Figure 1 shows a section 
through the response surface illustrating the nature of the 
optimisation problem. The efficiency is calculated by 
integrating input power and losses in a time-stepping model. 

 
Fig.2. Flowchart of the ES/DE/MQ method [3]. 

The comparison of the ES/DE/MQ method with standard 
strategies (one Evolution Strategy ES, two versions of 
Differential Evolution DE1 and DE2 and a Gradient Based 
Algorithm GBA) for a popular C-core problem where the pole 
faces are shaped to achieve homogeneous field in a region in 
the centre of the air gap, is shown in Table I. The number of 
objective function calls is greatly reduced, whereas the value 
of the objective function is similar to ES and DE2 results and 
better than those obtained with DE1 and GBA. 



TABLE I 
COMPARATIVE OPTIMISATION RESULTS FOR A C-CORE 

 Starting Optimum n 
DE1 9 random 0.0803 720 
DE2 13 random 0.0704 881 
ES 0.7532 / 0.4344 / 0.6411 0.0642 450 

GBA 0.7532 0.0855 188 
ES/DE/MQ 0.7532 0.0718 118 

 
IV. OTHER METHODS 

The Neuro-Fuzzy Modelling (NFM) uses optimisation 
based on Genetic Algorithm (GA) and Sequential Quadratic 
Programming (SQP). In this NF/GA/SQP approach, an n-
dimensional hyper-space is sampled initially using a grid 
structure or a suitable Design of Experiment (DoE) orthogonal 
array. The model data is subsequently employed to create a 
neuro-fuzzy model which approximates a real function [4]. 
Results for unconstrained optimisation using a magnetizer 
problem with six design parameters [5] are summarised in 
Table II and compared with the ES/DE/MQ method, as well 
as with standard evolutionary strategies and MATLAB’s 
gradient based algorithm. On average the DE/ES/MQ method 
finds a better solution at the cost of slightly greater number of 
function evaluations. Both methods, however, require 
significantly fewer function calls than conventional stochastic 
techniques. The success of both methods lies in their ability to 
search unexplored regions of space whilst exploiting available 
knowledge to identify more accurately regions of minima. 

TABLE II 
UNCONSTRAINED OPTIMISATION RESULTS FOR MAGNETISER 

 Starting Optimum n 
DE1 11 Random 1.235E-5 987 
DE2 11 Random 5.423E-5 1035 
ES 1.457E-3 1.187E-5 433 
ES 9.486E-2 1.318E-4 351 

GBA 1.457E-3 1.238E-4 41 
GBA 9.486E-2 2.433E-4 281 

ES/DE/MQ 1.457E-3 1.961E-5 234 
ES/DE/MQ 9.486E-2 2.125E-5 206 
NF/GA/SQP  6.570E-5 189 

There is growing interest in the ways in which the 
performance of a specific device could be modelled using a 
neural network. Such a network learns the shape of the hyper-
surface and provides a fast evaluation of any point in it. 
Typically, the neural network is trained in a batch mode, prior 
to the optimisation process – essentially “off-line”. A recent 
attempt has been made to construct a system which can 
provide “on-line” training, i.e. a network which is capable of 
learning and modifying its behaviour as it is used [6]. Such a 
network has major benefits over a static system in that it can 
handle a large number of variations of a device and track 
developments in design related to material changes and 
manufacturing processes. 

Research into Sensitivity Analysis as an optimisation tool is 
also gaining momentum. Some successful implementations 
have already been reported. For example in [7] a generalized 
continuum sensitivity formula is applied to electrostatic 
problems. By exploiting the material derivative concept and 
the augmented Lagrangian method, the analytical sensitivity 
formula is derived from a multiobjective function and the 
variational equation describing the system, and can be 

expressed in terms of the fields of the primary system and the 
corresponding adjoint one. The formula is adaptable to all 
analysis methods (finite elements, boundary elements, finite 
differences) and the optimisation is not affected – in terms of 
overall computing times – by the number of design variables. 

 
V.  PARETO OPTIMISATION 

Finally, multi-objective optimisation is becoming important 
as practical designs usually involve conflicting requirements. 
Problems are often converted into single-objective tasks with 
a priori application of some knowledge or imposition of a 
decision (for example weighting factors), but information can 
easily be lost in the process and some existing ‘optimal’ 
solutions may even be mathematically impossible to achieve. 
Instead the application of Pareto Optimal Front (POF) is 
advocated. The theory of Pareto multi-objective optimisation 
is somewhat complicated but some basic definitions and 
properties are easily explained using a special case of two 
objective functions being minimised as shown in Fig 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Example of objective domain search space showing the Pareto 
Optimal Front (POF) and UTOPIA, DISTOPIA and NADIR points. 
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