
Using String Kernels to Identify Famous
Performers from their Playing Style

Craig Saunders, David R. Hardoon, John Shawe-Taylor, and Gerhard Widmer

1 {cjs,drh,jst}@ecs.soton.ac.uk
School of Electronics & Computer Science, ISIS Research Group, Building 1,

Highfield, University of Southampton, Southampton, SO17 1BJ, UK
2 gerhard@ai.univie.ac.at

Department of Medical Cybernetics and Artificial Intelligence, Medical University of
Vienna, Freyung 6/2, A-1010 Vienna, Austria and Austrian Research Institute for

Artificial Intelligence Freyung 6/6/7, A-1010 Vienna, Austria

Abstract. In this paper we show a novel application of string ker-
nels: that is to the problem of recognising famous pianists from their
style of playing. The characteristics of performers playing the same piece
are obtained from changes in beat-level tempo and beat-level loudness,
which over the time of the piece form a performance worm. From such
worms, general performance alphabets can be derived, and pianists’ per-
formances can then be represented as strings. We show that when using
the string kernel on this data, both kernel partial least squares and Sup-
port Vector Machines outperform the current best results. Furthermore
we suggest a new method of obtaining feature directions from the Ker-
nel Partial Least Squares algorithm and show that this can deliver better
performance than methods previously used in the literature when used
in conjunction with a Support Vector Machine.

1 Introduction

This paper focuses on the problem of identifying famous pianists using only
minimal information obtained from audio recordings of their playing. A tech-
nique called the performance worm which plots a real-time trajectory over 2D
space is used to analyse changes in tempo and loudness at the beat level, and
extract features for learning. Previous work on this data has compared a vari-
ety of machine learning techniques whilst using as features statistical quantities
obtained from the performance worm. It is possible however to obtain a set of
cluster prototypes from the worm trajectory which capture certain characteris-
tics over a small time frame, say of two beats. These cluster prototypes form
a ’performance alphabet’ and there is evidence that they capture some aspects
of individual playing style. For example a performer may consistently produce
loudness/tempo changes unique to themselves at specific points in a piece, e.g.
at the loudest sections of a piece. Once a performance alphabet is obtained, the
prototypes can each be assigned a symbol and the audio recordings can then be
represented as strings constructed from this alphabet. We show that using this



representation delivers an improvement in performance over the current best
results obtained using a feature-based approach. The ability of the string kernel
to include non-contiguous features is shown to be key in the performance of the
algorithm.

The rest of this paper is laid out as follows. In the following section we
provide background details on the performance worm representation used for
the music data. Section 3 outlines the Partial Least Squares (PLS) algorithm
and string kernel function used to analyse the data. Section 4 then presents the
Kernel variant of PLS algorithm and gives a formulation for extracting features
which are then used in conjunction with support vector machines (SVMs). We
then present experimental results in Section 5 and end with some analysis and
suggestions for future research.

2 A Musical Representation

The data used in this paper, first described in [1], was obtained from record-
ings of sonatas by W.A. Mozart played by six famous concert pianists. In total
the performances of 6 pianists were analysed across 12 different movements of
Mozart sonatas. The movements represent a cross section of playing keys, tempi
and time signatures, see Table 1 for details. In many cases the only data avail-
able for different performances are standard audio recordings (as opposed to
for example MIDI format data from which more detailed analysis is possible),
which poses particular difficulties for the extraction of relevant performance in-
formation. A tool for analysing this type of data called the performance worm
has recently been developed [2, 1, 3]. The performance worm extracts data from

Table 1. Movements of Mozart piano sonatas selected for analysis.

Sonata Movement Key Time sig. Sonata Movement Key Time sig.

K.279 1st mvt. C major 4/4 K.281 1st mvt. Bb major 2/4
K.279 2nd mvt. C major 3/4 K.282 1st mvt. Eb major 4/4
K.279 3rd mvt. C major 2/4 K.282 2nd mvt. Eb major 3/4
K.280 1st mvt. F major 3/4 K.282 3rd mvt. Eb major 2/4
K.280 2nd mvt. F major 6/8 K.330 3rd mvt. C major 2/4
K.280 3rd mvt. F major 3/8 K.332 2nd mvt. F major 4/4

audio recordings by examining tempo and general loudness of the audio when
measured at the beat level. An interactive beat tracking program [4] is used to
find the beat from which changes in beat-level tempo and beat-level loudness
can be calculated. These two types of changes can be integrated to form tra-
jectories over tempo-loudness space that show the joint development of tempo
and dynamics over time. As data is extracted from the audio the 2D plot of the
performance curve can be constructed in real time to aid in visualisation of these



dynamics, and this is called the performance worm. Figure 1(a) shows a screen-
shot of the worm in progress. Note that this is the only information used in the

(a)

305

319

344

399

525

208

371

844

288

326

335

460

574

243

160

209

873

410

337

488

388

452

342

319

(b)

Fig. 1. (a) The performance worm: A 2D representation of changes in beat-level tempo
and loudness can be plotted in realtime from an audio recording. (b) The performance
alphabet: A set of cluster prototypes extracted from the performance worm.

creation of the worm, more detailed information such as articulation, individual
voicing or timing details of that below the level of a beat is not available.

2.1 A performance alphabet

From the performance worm, patterns can be observed which can help charac-
terise the individual playing styles of some pianists. For example, in [3] a set
of tempo-loudness shapes typical of the performer Mitsuko Uchida were found.
These shapes represented a particular way of combining a crescendo-decrescendo
with a slowing down during a loudness maximum. These patterns were often re-
peated in Mozart performances by Mitsuko Uchida, but were rarely found when
analysing the recordings of other performers.

In order to try and capture more of these types of characterisations a ‘Mozart
Performance Alphabet’ can be constructed in the following way. The trajectories
of the performance worm are cut into short segments of a fixed length (e.g. 2
beats) and clustered into groups of similar patterns to form a series of proto-
types (see Figure 1(b)). Recordings of a performance can then be transcribed
in terms of this alphabet which can then be compared using string matching
techniques. The list of pianists and the recordings used to obtain the data can
be found in Table 2. For more detailed information on the performance worm
and constructing a performance alphabet of cluster prototypes, please refer to
[1, 3]. The task addressed in this paper is to learn to recognise pianists solely
from characteristics of their performance strings. The ability of kernel methods
to operate over string-like structures using kernels such as the n-gram kernel and
the string kernel will be evaluated on this task. In addition to simply applying an



Table 2. List of pianists and recordings used

ID Name Recording

DB Daniel Barenboim EMI Classics CDZ 7 67295 2, 1984
RB Roland Batik Gramola 98701-705, 1990
GG Glenn Gould Sony Classical SM4K 52627, 1967
MP Maria João Pires DGG 431 761-2, 1991
AS András Schiff ADD (Decca) 443 720-2, 1980
MU Mitsuko Uchida Philips Classics 464 856-2, 1987

SVM to the data however, we will also examine the ability of dimension reduc-
tion methods such as Kernel PCA and Kernel Partial Least Squares (KPLS) to
extract relevant features from the data before applying an SVM, which will hope-
fully lead to improved classification performance. KPCA is well known method
and has often been used to extract features from data (see e.g. [5]). Partial least
squares and its kernel-based variant KPLS has recenlty gained popularity within
the machine learning community [6–8] and either can be used as a method for
regression or classification, or as a method for dimension reduction. It is not
always clear however, how to use the PLS-based methods to generate new input
features for training and test data, so we shall briefly review the methods here.

3 Previous results

3.1 String kernels

The use of string kernels for analysing text documents was first studied by Lodhi
et al. [9]. We briefly review the approach to creating a feature space and associ-
ated kernel.

The key idea behind the gap-weighted subsequences kernel is to compare
strings by means of the subsequences they contain – the more subsequences in
common, the more similar they are – rather than only considering contiguous
n-grams, the degree of contiguity of the subsequence in the input string s deter-
mines how much it will contribute to the comparison.

In order to deal with non-contiguous substrings, it is necessary to introduce a
decay factor λ ∈ (0, 1) that can be used to weight the presence of a certain feature
in a string. For an index sequence i = (i1, . . . , ik) identifying the occurrence of
a subsequence u = s (i) in a string s, we use l(i) = ik − i1 + 1 to denote the
length of the string in s. In the gap-weighted kernel, we weight the occurrence
of u with the exponentially decaying weight λl(i).

Definition 1 (Gap-weighted subsequences kernel). The feature space as-
sociated with the gap-weighted subsequences kernel of length p is indexed by
I = Σp (i.e. subsequences of length p from some alphabet Σ), with the embedding
given by

φp
u (s) =

∑
i : u=s(i)

λl(i), u ∈ Σp.



The associated kernel is defined as

κp (s, t) = 〈φp (s) , φp (t)〉 =
∑

u∈Σp

φp
u (s) φp

u (t) .

Example 1. Consider the simple strings "cat", "car", "bat", and "bar". Fixing
p = 2, the words are mapped as follows:

φ ca ct at ba bt cr ar br

cat λ2 λ3 λ2 0 0 0 0 0
car λ2 0 0 0 0 λ3 λ2 0
bat 0 0 λ2 λ2 λ3 0 0 0
bar 0 0 0 λ2 0 0 λ2 λ3

So the unnormalised kernel between "cat" and "car" is κ("cat","car") = λ4,
while the normalised version is obtained using

κ("cat", "cat") = κ("car", "car") = 2λ4 + λ6

as κ̂("cat","car") = λ4/(2λ4 + λ6) = (2 + λ2)−1.

We omit a description of the efficient dynamic programming algorithms for
computing this kernel referring the reader to Lodhi et al. [9].

3.2 Partial Least Squares

Partial Least Squares (PLS) was developed by Herman Wold during the 1960’s in
the field of econometrics [10]. It offers an effective approach to solving problems
with training data that has few points but high dimensionality, by first project-
ing the data into a lower-dimensional space and then utilising a Least Squares
(LS) regression model. This problem is common in the field of Chemometrics
where PLS is regularly used. PLS is a flexible algorithm that was designed for
regression problems, though it can be used for classification by treating the labels
{+1,−1} as real outputs. Alternatively it can also be stopped after constructing
the low-dimensional projection. The resulting features can then be used in a
different classification or regression algorithm. We will also adopt this approach
by applying an SVM in this feature space, an approach pioneered by Rosipal et
al. [8]. The procedure for PLS feature extraction is shown in Algorithm 3.2. The
algorithmic procedure iteratively takes the first singular vector ui of the matrix
X′

iY, and then deflates the matrix Xi to obtain Xi+1. The deflation is done by
projecting the columns of Xi into the space orthogonal to Xiui. The difficulty
with this simple description is that the feature directions uj are defined relative
to the deflated matrix. We would like to be able to compute the PLS features
directly from the original feature vector.

If we now consider a test point with feature vector φ (x) the transformations
that we perform at each step should also be applied to φ1 (x) = φ (x) to create
a series of feature vectors

φj+1 (x)′ = φj (x)′
(
I− ujp′j

)
,



Algorithm 1 The PLS feature extraction algorithm
The PLS feature extraction algorithm is as follows:

input Data matrix X ∈ R`×N , dimension k, target vectors Y ∈ R`×m.

process X1 = X
for j = 1, . . . , k

let uj , σj be the first singular vector/value of X′
jY,

Xj+1 = Xj

(
I− uju

′
jX

′
jXj

u′
jX

′
jXjuj

)
end

output Feature directions uj , j = 1, . . . , k.

where

pj =
X′

jXjuj

u′jX
′
jXjuj

,

This is the same operation that is performed on the rows of Xj in Algorithm
3.2. We can now write

φ (x)′ = φk+1 (x)′ +
k∑

j=1

φj (x)′ ujp′j .

The feature vector that we need for the regression φ̂ (x) has components

φ̂ (x) =
(
φj (x)′ uj

)k

j=1
,

since these are the projections of the residual vector at stage j onto the next
feature vector uj . Rather than compute φj (x)′ iteratively, consider using the
inner products between the original φ (x)′ and the feature vectors uj stored as
the columns of the matrix U:

φ (x)′ U = φk+1 (x)′ U +
k∑

j=1

φj (x)′ ujp′jU

= φk+1 (x)′ U + φ̂ (x)′ P′U,

where P is the matrix whose columns are pj , j = 1, . . . , k. Finally, it can be
verified that

u′ipj = δij for i ≤ j. (1)

Hence, for s > j, (I− usp′s)uj = uj , while
(
I− ujp′j

)
uj = 0, so we can write

φk+1 (x)′ uj = φj (x)′
k∏

i=j

(I− uip′i)uj = 0, for j = 1, . . . , k.

It follows that the new feature vector can be expressed as

φ̂ (x)′ = φ (x)′ U (P′U)−1 .



These feature vectors can now be used in conjunction with a learning algorithm.
If one wished to calculate the overall regression coefficients as in the full PLS
algorithm, these can be computed as:

W = U (P′U)−1 C′, (2)

where C is the matrix with columns

cj =
Y′Xjuj

u′jX
′
jXjuj

.

4 Kernel PLS

In this section we set out the kernel PLS algorithm and describe its feature
extraction stage. The kernel PLS algorithm is given in Algorithm 1. The vector

Algorithm 2 Pseudocode for kernel-PLS
Input: Data S = x1, . . . , xl dimension k target outputs Y ∈ Rl×m

Kij = κ (xi, xj)
K1 = K
Ŷ = Y

for i = 1, . . . , k do
βi = first column of Ŷ
normalise βi

repeat
βi = Y Y ′Kiβi

normalise βi

until convergence
τi = Kiβi

ci = Ŷ ′τi

Ŷ = Ŷ − τic
′
i

Ki+1 = (I − τiτ
′
i) Ki (I − τiτ

′
i)

end for

B = [βi, . . . , βk]
T = [τi, . . . , τk]
α = B(TKB)−1T ′Y

Output: Training outputs Y − Ŷ and dual regression coefficients α

βi is a rescaled dual representation of the primal vectors ui:

aiui = X′
iβi,

the rescaling arising because of the different point at which the renormalising is
performed in the dual. We can now express the primal matrix P′U in terms of



the dual variables as

P′U = diag (a) diag (τ ′iτi)
−1 T′XX′Bdiag (a)−1

= diag (a) diag (τ ′iτi)
−1 T′KBdiag (a)−1 .

Here diag (τ ′iτi) is the diagonal matrix with entries diag (τ ′iτi)ii = τ ′iτi, where
τi = Kiβi. Finally, again using the orthogonality of Xjuj to τi, for i < j, we
obtain

cj =
Y′

jXjuj

u′jX
′
jXjuj

=
Y′Xjuj

u′jX
′
jXjuj

= aj
Y′τj

τ ′jτj
,

making
C = Y′Tdiag (τ ′iτi)

−1 diag (a) .

Putting the pieces together we can compute the dual regression variables as

α = B (T′KB)−1 T′Y.

It is tempting to assume like [8] that a dual representation of the PLS features
is then given by

B (T′KB)−1 ,

but in fact

U (P′U)−1 = X′Bdiag (a)−1
(
diag (a) diag (τ ′iτi)

−1 T′KBdiag (a)−1
)−1

so that the dual representation is

B (T′KB)−1 diag (a)−1 diag (τ ′iτi) = B (T′KB)−1 diag (τ ′iτi) diag (a)−1
.

The missing diagonal matrices perform a rescaling of the features extracted,
which skews the geometry of the space and affects the performance of for ex-
ample an SVM. The quantities ai are difficult to assess, though these should
not vary significantly over similar adjacent features since they will be related to
the corresponding singular values. In our experiments we have compared the re-
sults that can be obtained ignoring both diagonal matrices with those obtained
including diag (τ ′iτi).

5 Experiments

In our experiments we followed the setup given in [1]. For each pair of performers
a leave-one-out procedure was followed where on each iteration one movement
played by each of a pair of performers was used for testing and the rest of the
data was used for training. That is, for a given pair of performers, say Mitsuko
Uchida and Daniel Barenboim (MU-DB), a total of 12 runs of an algorithm
were performed (there are 12 movements and each time one movement by both
performers was left out of the training set and tested upon). This was repeated
for each of the possible 15 pairings of performers. Note that in all results the
number reported is the number of correct classifications made by the algorithm.



5.1 Previous results

Previous results on the data (as described in [1]) used a feature-based repre-
sentation and considered a range of machine learning techniques by using the
well-known Waikato Environment for Knowledge Analysis (WEKA) software
package [11] to compare bayesian, rule-based, tree-based and nearest-neighbour
methods. The best results obtained previously on the data are for a classification
via regression meta-learner. These results are reported as FB (feature-based) in
the results table. The feature-based representation used in the experiments in-
cluded the raw measures of tempo and loudness along with various statistics
regarding the variance and standard deviation of these and additional informa-
tion extracted from the worm such as the correlation of tempo and loudness
values.

5.2 Results

Experiments were conducted using both the standard string kernel and the n-
gram kernel and several algorithms. In both cases experiments were conducted
using a standard SVM on the relevant kernel matrix. Kernel Partial Least
Squares and Kernel Principal Component Regression were also used for com-
parison. Finally, an SVM was used in conjunction with the projected features
obtained from the iterative KPLS deflation steps. For these features there were
two options, either to use the features as described in [8] or to include the extra
reweighting factors diag (τ ′iτi) described above. We first performed a comparison
of these two options by counting the total number of correct predictions across
all splits for different feature dimensions (T ) for the original weighting (ORIG)
and the reweighted (REW) features. Table 3 shows the results obtained. There
is a clear advantage shown for the reweighting scheme and so we adopted this
method for the remaining experiments.

Table 3. Total number of correct predictions across all splits against number of feature
directions used (T ) for both the feature projection method described in this paper
(REW) and that in previous work (ORIG). The parameters used in this were those
optimal for the KP-SV combination (k = 5,λ = 0.9).

Method/T 1 2 3 4 5 6 7 8 9 10

ORIG 287 265 248 251 253 250 256 252 246 238

REW 287 295 293 293 296 296 295 295 295 295

In the remaining experiments we chose one pair of composers (RB–DB) to
select the various parameters. These included the number of characters used by
the string kernel, the decay parameter and the number of PLS features extracted
where appropriate. Substring lengths of k = 1, . . . , 10 were tried for both the n-
gram and string kernels, λ = {0.2, 0.5, 0.9} decay parameters were used for the
string kernel and for both KPLS and KPCR methods the number of feature



directions (T ) ranged from 1 to 10. All kernel matrices were normalised and
whenever an SVM was used, the parameter C was set to one. In each case the
parameters that delivered the best performance on the RB–DB data were chosen.
Once selected the settings of these parameters were fixed for the remaining test
experiments for all of the results reported in Table 4 – note that the RB–DB
row is deliberately left blank to emphasise this.

The results obtained from using these methods and kernels show an improve-
ment over the previous best results using statistical features extracted from the
performance worm. We use the following shorthand to refer to the relevant algo-
rithm/kernel combinations; FB: Previous best method using statistical features,
KPLS: Kernel Partial Least Squares, SVM: Support Vector Machine, KP-SV:
SVM using KPLS features, KPCR: Kernel Principal Components regression.
If an n-gram kernel is used rather than a string kernel we append ’-n’ to the
method name.

Table 4. Comparison of algorithms across each pairwise coupling of performers. Note
that in all case the figures given are the number of movements correctly identified out
of a maximum of 24. FB represents the previous best results using a feature-based
representation rather than the ’performance alphabet’ used for the other approaches.

String Kernel n-gram Kernel

Pairing FB KPLS SVM KP-SV KPCR KPLS-n SVM-n KP-SV-n KPCR-n

RB - DB – – – – – – – – –
GG - DB 15 19 21 22 21 18 18 22 14
GG - RB 17 24 22 23 24 21 21 20 11
MP - DB 17 18 18 20 17 16 16 18 17
MP - RB 21 22 22 23 19 18 15 17 12
MP - GG 17 23 23 23 23 20 20 22 18
AS - DB 15 19 19 19 18 15 16 16 10
AS - RB 16 23 23 21 16 17 17 20 14
AS - GG 17 17 18 18 17 18 15 18 13
AS - MP 20 23 23 22 22 20 17 22 14
MU - DB 17 15 15 15 13 13 13 14 12
MU - RB 16 17 17 14 11 18 16 17 12
MU - GG 16 19 19 19 20 16 16 20 14
MU - MP 15 18 19 17 17 17 17 21 16
MU - AS 17 16 16 18 16 16 15 16 17

Total 236 273 275 274 254 243 232 263 194

Average (%) 70.2 81.3 81.9 81.6 75.6 72.3 69.5 78.2 57.7

The use of the methods in this paper in conjunction with the n-gram kernel
offer a clear performance advantage over the feature-based approach. Interest-
ingly, KPLS outperforms an SVM when using this kernel. This may suggest that
for this kernel, projecting into a lower subspace is beneficial. Indeed, the per-
formance of KPCR is also close to the SVM. The ability of KPLS however to
correlate the feature directions it selects with the output variable gives it a clear



advantage over KPCR and as expected from previous results on other data [6,
7], a performance gain is achieved. When using the SVM in conjunction with
the features obtained from the KPLS deflation steps, the performance improves
further which has also been the case on other data sets [8]. In all cases short
substrings achieved the best performance (with substring lengths of only 1 or 2
characters, which would perhaps indicate that complex features are not used).
It is interesting to note that in the experiments KPCR requires more feature di-
rections to achieve good performance, whereas KPLS consistently requires fewer
directions to perform well.

The string kernel operating over the performance alphabet provides signifi-
cantly better classification performance than the feature-based method and in
every case also outperforms the n-gram kernel. This would indicate that the
ability of the string kernel to allow gaps in matching subsequences is a key ben-
efit for this data, and that complex features are indeed needed to obtain good
performance. This is in contrast to results reported using the string kernel for
text, where the classification rate of n-gram kernels using contiguous sequences
is equal to that of the string kernel if not superior [9]. For the string kernel how-
ever, the use of KPLS features did not improve the performance of the support
vector machine (in fact over all of the data it made 1 more misclassification). It
is therefore not clear in which situations the use of KPLS features in conjunction
with an SVM will produce a performance gain.

6 Conclusions

In this paper we have presented a novel application of the string kernel: to classify
pianists by examining their playing style. This is an extremely complex task and
has previously been attempted by analysing statistical features obtained from
audio recordings. Here we have taken a different approach and have examined
using feature-projection methods in conjunction with kernels which operate on
text. These can be applied to the performer recognition problem by representing
the performance as a string of characteristic tempo-loudness curves, which are
obtained by analysing a performance worm. We have reviewed the Kernel Partial
Least Squares method and shown how this can be successfully used to generate
new features which can then be used in conjunction with learning methods such
as an SVM. We have also shown a reweighting scheme for obtaining feature
directions from KPLS that peforms better than the technique used in current
literature. All algorithms tested in this paper provided higher performance than
the previous state of the art results on the data. We have also shown that the
ability of the string kernel to consider and match non-contiguous substrings of
input sequence has a real performance benefit over only considering contiguous
substrings. This is in contrast to many applications of the string kernel to text,
where the relative performance of the string kernel to the n-gram kernel tends
to be very close or even slightly worse. It is an open problem to determine in
what circumstances using KPLS to obtain features will result in an improvement
in generalisation performance. Also, currently the number of dimensions has to



be chosen via cross-validation or some other method, therefore an automatic
selection method for this parameter would also be beneficial. These two problems
will be addressed in future research.

7 Acknowledgements

This work was supported in part by EPSRC grant no GR/S22301/01 (”Develop-
ment and Application of String-Type Kernels”), the IST Programme of the Euro-
pean Community, under the PASCAL Network of Excellence, IST-2002-506778
and by the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung
(FWF) under grant Y99-INF. The Austrian Research Institute for Artificial In-
telligence is supported by the Austrian Federal Ministry for Education, Science,
and Culture, and by the Austrian Federal Ministry for Transport, Innovation,
and Technology.

References

1. Zanon, P., Widmer, G.: Learning to recognise famous pianists with machine learn-
ing techniques. In: Proceedings of the Stockholm Music Acoustics Conference
(SMAC ’03). (2003)

2. Dixon, S., Goebl, W., Widmer, G.: The performance worm: Real time visualisation
of expression based on langner’s tempo-loudness animation. In: Proceedings of the
International Computer Music Conference (ICMC 2002). (2002)

3. Widmer, G., Dixon, S., Goebel, W., Pampalk, E., Tobudic, A.: In search of the
horowitz factor. AI Magazine 3 (2003) 111–130

4. Dixon, S.: Automatic extraction of tempo and beat from expressive performances.
Journal of New Music Research 30 (2001) 39–58

5. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation (1998)

6. Rosipal, R., Trejo, L.: Kernel partial least squares regression in reproducing kernel
hilbert space. In: Journal of Machine Learning Research 2. (2001) 97–123

7. Bennett, K.P., Embrechts, M.J.: An optimization perspective on kernel partial
least squares regression. Advances in Learning Theory: Methods, Models and
Applications. NATO Science Series III: Computer & Systems Science 190 (2003)
227–250

8. Rosipal, R., Trejo, L., Matthews, B.: Kernel pls-svc for linear and nonlinear clas-
sification. In: Proceedings of the Twentieth International Conference on Machine
Learning (ICML-2003). (2003)

9. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classi-
fication using string kernels. Journal of Machine Learning Research (2002) 419–444

10. Wold, H.: Estimation of principal components and related models by iterative least
squares. Multivariate Analysis (1966) 391–420

11. Witten, I., Frank, E.: Data Mining. Morgan Kaufmann, San Francisco, CA (1999)


