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Abstract

Repetitive processes are a distinct class of 2D systems (i.e. information propagation in two independent directions) of both systems
theoretic and applications interest. They cannot be controlled by direct extension of existing techniques from either standard (termed 1D
here) or 2D systems theory. Here, we give new results on the relatively open problem of the design of physically based control laws using
an LMI setting. These results are for the sub-class of the so-called discrete linear repetitive processes which arise in applications areas
such as iterative learning control.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Repetitive processes are a distinct class of 2D systems
of both system theoretic and applications interest. The es-
sential unique characteristic of such a process is a series of
sweeps, termed passes, through a set of dynamics defined
over a fixed finite duration known as the pass length. On each
pass an output, termed the pass profile, is produced which
acts as a forcing function on, and hence contributes to, the
dynamics of the next pass profile. This in turn leads to the
unique control problem for these processes in that the output
sequence of pass profiles generated can contain oscillations
that increase in amplitude in the pass-to-pass direction.
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To introduce a formal definition, let� < + ∞ denote the
pass length (assumed constant). Then in a repetitive process
the pass profileyk(p), 0�p�� − 1, generated on passk
acts as a forcing function on, and hence contributes to, the
dynamics of next pass profileyk+1(p), 0�p��−1, k�0.
Physical examples of repetitive processes include long-

wall coal cutting and metal rolling operations (see for exam-
ple, Rogers & Owens, 1992). Also in recent years applica-
tions have arisen where adopting a repetitive process setting
for analysis has distinct advantages over alternatives. Ex-
amples of these so-called algorithmic applications include
classes of iterative learning control (ILC) schemes (Owens,
Amann, Rogers, & French, 2000) and iterative algorithms for
solving nonlinear dynamic optimal control problems based
on the maximum principle (Roberts, 2000).
One feature of repetitive processes in comparison to some

other classes of 2D linear systems is that it is possible to
define physically meaningful control laws for their dynam-
ics. For example, in the ILC application, one such family of
control laws is composed of state feedback control action on
the current pass combined with information ‘feedforward’
from the previous pass (or trial in the ILC context) which,
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of course, has already been generated and is therefore avail-
able for use.
In the general case of repetitive processes it is clearly

highly desirable to have an analysis setting where control
laws can be designed for stability and/or performance. In
which context, previous work has shown that an LMI re-
formulation of the stability conditions for discrete linear
repetitive processes leads naturally to design algorithms
to ensure closed-loop stability along the pass under con-
trol laws of the form referred to above—see, for example,
Gałkowski, Rogers, Xu, Lam, and Owens (2002).
To implement a control law which uses the current pass

state vector will, in general, require an observer to estimate
the elements in this vector which are not directly measur-
able. As an alternative, this paper shows how to use the LMI
setting to design control laws which only require pass profile
information (which has already been generated and hence is
available as a control signal) for implementation. Note here
that LMI-based methods have also been investigated as a
means of stability analysis and controller design for 2D dis-
crete linear systems described by the well-known Roesser
(Roesser, 1975) and Fornasini–Marchesini (Fornasini &
Marchesini, 1978) state-space models, see, for example (Du
& Xie, 2002). Discrete linear repetitive processes have
strong structural links with such systems and some re-
sults can be exchanged between them. Other work (Du &
Xie, 2002) has considered the use of a dynamic output
feedback-based controller for other classes of 2D linear sys-
tems. Such a controller is obviously of a more complicated
structure than a static alternative but is justified for these
systems by the fact that static control is known to be of very
limited use.
For discrete repetitive processes it is already known that

static control laws can be highly effective (with attendant
onward advantages in terms of eventual application). This
has been established in previous work referred to above. The
key novelty in this paper is the use of physically motivated
control scheme which are actuated only by pass profile in-
formation and designed using LMI based methods. Then it
is shown how to further strengthen such control laws by
making enhanced use of already generated, and hence avail-
able for control purposes, current and previous pass profiles
vector information.
Throughout this paper, the null and identity matrices with

the required dimensions are denoted by 0 andI respectively.
Moreover,M >0 (<0) denotes a real symmetric positive
(negative) definite matrix.We use(∗) to denote the transpose
of matrix blocks in some of the LMIs employed (which are
required to be symmetric).

2. Background

Following (Rogers & Owens, 1992), the state-space
model of a discrete linear repetitive process has the

following form over 0�p�� − 1, k�0.

xk+1(p + 1) = Axk+1(p) + Buk+1(p) + B0yk(p),

yk+1(p) = Cxk+1(p) + Duk+1(p) + D0yk(p). (1)

Here on passk, xk(p) ∈ Rn is the state vector,yk(p) ∈ Rm

is the pass profile vector anduk(p) ∈ Rr is the vector of
control inputs.
To complete the process description, it is necessary to

specify the boundary conditions, i.e. the state initial vector
on each pass and the initial pass profile. Here no loss of gen-
erality arises from assumingxk+1(0) = dk+1 ∈ Rn, k�0,
and y0(p) = f (p) ∈ Rm, where dk+1 is a vector with
known constant entries andf (p) is a vector whose entries
are known functions ofp. (For ease of presentation, we will
make no further explicit reference to the boundary condi-
tions in this paper.)
The stability theory (Rogers & Owens, 1992) for lin-

ear repetitive processes consists of two distinct concepts,
termed asymptotic stability and stability along the pass re-
spectively. In effect, asymptotic stability is bounded-input
bounded-output stability (defined in terms of the norm on
the underlying function space) over the finite pass length,
and for the processes considered here requires that all eigen-
values of the matrixD0 have modulus strictly less than unity
(written r(D0) <1 wherer(·) denotes the spectral radius).
If this property holds, and the control input sequence ap-
plied {uk}k �1 converges strongly tou∞ as k → ∞, then
the resulting output pass profile sequence{yk}k �1 converges
strongly toy∞—the so-called limit profile—which is de-
scribed (withD = 0 for simplicity) by a 1D discrete linear
system with state matrixAlp := A + B0(I − D0)

−1C.

The fact that the pass length is finite means that the
limit profile may not be stable as a 1D linear system, i.e.
r(Alp) <1, e.g. A = −0.5, B = 0, B0 = 0.5 + b0, C =
1, D = D0 = 0, and the real scalarb0 is chosen such that
|b0|�1. Stability along the pass prevents this from arising
by demanding the bounded-input bounded-output property
uniformly, i.e. independent of the pass length�. (Mathemat-
ically, this can be analyzed by letting� → +∞.) Several
equivalent sets of necessary and sufficient conditions for
processes described by (1) to have this property are known,
but here the essential starting point is based on the so-called
2D characteristic polynomial given next.
Define the shift operatorsz1, z2 in the along the pass (p)

and pass-to-pass directions (k) acting e.g. on the state and
pass profile vectors respectively as

xk(p) := z1xk(p + 1), yk(p) := z2yk+1(p). (2)

Then the 2D characteristic polynomial for processes de-
scribed by (1) is defined as

C(z1, z2) = det

[
I − z1A −z1B0
−z2C I − z2D0

]
(3)



B. Sulikowski et al. / Automatica 40 (2004) 2167–2173 2169

and it can be shown (Rogers & Owens, 1992) that stability
along the pass holds if, and only if,

C(z1, z2) 
= 0 in U
2
,

whereU
2 = {(z1, z2) : |z1|�1, |z2|�1}. Note that stability

along the pass can also be expressed in the form

C(z1, z2) = det(I − z1Â1 − z2Â2) 
= 0 in U
2
, (4)

where

Â1 =
[

A B0
0 0

]
, Â2 =

[
0 0
C D0

]
. (5)

In this work, we use the following LMI-based sufficient
condition derived from (4) which, unlike all other existing
stability tests, leads immediately (see below) to systematic
methods for control law design. The proof of this result can
be found inGałkowski et al. (2002).

Theorem 1. A discrete linear repetitive process described
by (1) is stable along the pass if there exist matricesY >0
andZ >0 such that the following LMI holds:[

Y − Z (∗) (∗)

0 −Z (∗)

Â1Y Â2Y −Y

]
<0.

The control law considered in previous work has the fol-
lowing form over 0�p�� − 1, k�0:

uk+1(p) := K

[
xk+1(p)

yk(p)

]
= K1xk+1(p) + K2yk(p), (6)

whereK1 andK2 are appropriately dimensioned matrices
to be designed. In effect, this control law uses feedback of
the current state vector (which is assumed to be available
for use) and ‘feedforward’ of the previous pass profile vec-
tor. Note that in repetitive processes the term ‘feedforward’
is used to describe the case where state or pass profile in-
formation from the previous pass (or passes) is used as (part
of) the input to a control law applied on the current pass, i.e.
to information which is propagated in the pass-to-pass (k)
direction. The basic result for the design of this control law
for closed-loop stability along the pass is as follows. (For a
similar approach in the case of 1D linear systems seeCrusius
& Trofino, 1999.)

Theorem 2 (Gałkowski et al., 2002). Consider a discrete
linear repetitive process of the form described by(1) subject
to a control law of the form(6). Then the resulting closed-
loop process is stable along the pass if there exist matrices
Y >0, Z >0, and N such that the following LMI holds:[

Z − Y (∗) (∗)

0 −Z (∗)

Â1Y + B̂1N Â2Y + B̂2N −Y

]
<0, (7)

whereÂ1, Â2 are given in(5) and

B̂1 =
[

B

0

]
, B̂2 =

[
0
D

]
. (8)

If (7) holds, then a stabilizing K in the control law(6) is
given by

K = NY−1. (9)

3. Output feedback-based controller design

In many cases the state vectorxk+1(p) may not be avail-
able or, at best, only some of its entries are. Hence, we
now consider the use of output-based feedback-based con-
trol laws to achieve closed-loop stability along the pass. The
first law considered has the following form over 0�p��−
1, k�0:

uk+1(p) = K̃1yk+1(p) + K̃2yk(p). (10)

This control law is, in general, weaker than that of (6) and
examples are easily given where stability along the pass can
be achieved using (6) but not (10). It is important to note
here that by definition the pass profile produced on each
pass is available for control purposes before the start of each
new pass.As such, this control law (and extensions) assumes
storage of the required previous pass profiles and that they
are not corrupted by noise etc.
To consider the effect of a controller of form (10) on the

process dynamics, first substitute the pass profile (second)
equation of (1) into (10) to obtain (assuming the required
matrix inverse exists)

uk+1(p) = (I − K̃1D)−1K̃1Cxk+1(p)

+ (I − K̃1D)−1[K̃2 + K̃1D0]yk(p) (11)

and hence (11) can be treated as a particular case of (6) with

K1 = (I − K̃1D)−1K̃1C,

K2 = (I − K̃1D)−1(K̃2 + K̃1D0). (12)

This route may, however, encounter serious numerical diffi-
culties (arising from the fact that (12) is a set of matrix non-
linear algebraic equations) and hence we proceed by rewrit-
ing these last equations to obtain

(I − K̃1D)K1 = K̃1C,

(I − K̃1D)K2 = K̃2 + K̃1D0 (13)

and assume that

K1 = L1C. (14)

Note that this assumption imposes no restrictions on the
results developed here but could be a source of difficulty in
other cases, e.g. in uncertainty analysis where the resulting
robust control problem may not be convex.
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It now follows immediately that

K̃1 = L1(I + DL1)
−1,

K̃2 = [I − L1(I + DL1)
−1D]K2

− L1(I + DL1)
−1D0 (15)

for anyL1 such thatI + DL1 is nonsingular, and we have
the following result.

Theorem 3. Suppose that a discrete linear repetitive pro-
cess of the form described by(1) is subject to a control law
of form (10) and that(14) holds. Then the resulting closed-
loop process is stable along the pass if there exist matri-
cesY >0, Z >0, X >0 and N such that the following LMI
holds[

Z − Y (∗) (∗)

0 −Z (∗)

Â1Y + B̂1NC̃ Â2Y + B̂2NC̃ −Y

]
<0,

XC̃ = C̃Y, (16)

whereB̂1, B̂2, Â1, Â2, N are defined as in Theorem2, and
C̃ = diag(C, I). Also if this condition holds, the controller
matricesK̃1 and K̃2 can be obtained from(15),where

[L1 K2] = NX−1 (17)

and it is required thatI + DL1 is nonsingular.

Proof. From (17), we have thatN=LX, L := [L1 K2], and
substitution into the LMI of (16) now gives withXC̃ = C̃Y

applied

[
Z − Y (∗) (∗)

0 −Z (∗)

Â1Y + B̂1LC̃Y Â2Y + B̂2LC̃Y −Y

]
<0.

Finally, setLC̃=K to obtain the LMI stabilization condition
(i.e Theorem 1 applied to the closed-loop process) which
completes the proof.�

The design developed above is easily implemented using
LMI toolboxes, such as Scilab or Matlab, but has the pos-
sible disadvantage that it is based on a sufficient but not
necessary stability condition. (Also (14) can be a source of
numerical difficulties when using the Matlab LMI toolbox
but Scilab avoids such problems and hence is used in the nu-
merical computations reported here.) This means that there
could well be a not insignificant degree of conservativeness
in the sense that in some cases it will fail to produce a sta-
bilizing controller when one actually exists. To avoid, or
lower, the level of conservativeness present, we next develop
an extension of the control law considered in this section.

4. Extended output feedback-based controller design

The control law considered in this section has the fol-
lowing form and is, in effect, (10) augmented at pointp by
additive contributions from pointp−1 on the previous pass
profile and pointp on the previous pass profile

uk+1(p) = K̃1yk+1(p) + K̃2yk(p) + K̃3yk(p − 1)

+ K̃4yk−1(p). (18)

Substituting the second equation of (1) into the control law
(18) now yields that this last control law is, in fact, a partic-
ular case of the so-called extended, mixed state, pass profile
controller

uk+1(p) = K1xk+1(p) + K2yk(p) + K3yk(p − 1)

+ K4yk−1(p). (19)

This last control law is, in effect, an extension of that of the
previous section but here it is used as an intermediate step in
the computation of the matrices̃Ki, i = 1, . . . ,4, through
use of the following result.

Theorem 4. Suppose that a discrete linear repetitive pro-
cess of the form described by(1) is subject to a control law
of form (19) and that(14) holds. Then the resulting closed
loop process is stable along the pass if there exist matrices
Y >0, X = diag(X1, X2, X3, X4) >0, Z >0 and N such
that[

Y − Z (∗) (∗)

0 −Z (∗)

Â1Y + B̂1NĈ Â2Y + B̂2NĈ −Y

]
<0

XĈ = ĈY, (20)

where

Â1 =


A −I 0 B0
0 0 0 0
0 0 0 0
0 0 0 0

 , Â2 =

0 0 0 0
0 0 0 0
0 0 0 0
C 0 −I D0

 ,

B̂1 =


B 0 0 B

0 B 0 0
0 D 0 0
0 0 0 0

 ,

B̂2 =

0 0 0 0
0 0 B 0
0 0 D 0
D 0 0 D

 , N =


N1 0 0 0
0 0 0 −N3
0 0 0 −N4
0 0 0 N2

 ,

Ĉ =


C 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

 (21)

with
L1 0 0 0
0 0 0 K3
0 0 0 K4
0 0 0 K2

 = NX−1. (22)
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Also if (20) holds, the controller matrices̃K1 and K̃2 can
be computed using(15) and then

K̃3 = [I − L1(I + DL1)
−1D]K3,

K̃4 = [I − L1(I + DL1)
−1D]K4, (23)

where it is assumed thatI + DL1 is nonsingular.

Proof. Substitute (19) into (1) and using (14) we obtain the
closed-loop state-space model

xk+1(p + 1) = (A + BL1C)xk+1(p) + (B0 + BK2)yk(p)

+ BK3yk(p − 1) + BK4yk−1(p),

yk+1(p) = (C + DL1C)xk+1(p) + (D0 + DK2)yk(p)

+ DK3yk(p − 1) + DK4yk−1(p). (24)

This last description is not in the form to which Theorem 1
can be applied but it is possible to obtain an equivalent state-
space model for which this is the case. Here the route is by
using the delay operators of (2) and the 2D characteristic
polynomial. To begin, apply (2) to (24) to obtain (after some
routine manipulations)

Cc(z1, z2)

:= det

[
I − z1Ã −z1B̃0 − z21F1 − z1z2F3

−z2C̃ I − z2D̃0 − z1z2F2 − z22F4

]
,

where

Ã = A + BL1C, B̃0 = B0 + BK2,

F1 = BK3, F2 = DK3,

C̃ = C + DL1C, D̃0 = D0 + DK2,

F3 = BK4, F4 = DK4.

Application of appropriate elementary operations (which
leave the determinant invariant) to the right-hand side of this
last expression now yields that it can be replaced by

det


I − z1Ã z1I 0 −z1B̃0

0 I 0 z1F1 + z2F3
0 0 I z1F2 + z2F4

−z2C̃ 0 z2I I − z2D̃0

 . (25)

At this stage, the closed-loop state-space model has a 2D
characteristic polynomial which is of the form required for
use in (4) (and therefore Theorem 1 can be directly applied).
Application of Theorem 1 together with some obvious

algebraic operations now yield directly the LMI of (20) as a
sufficient condition for closed-loop stability along the pass.
Finally, by an identical argument to that of the previous
section we have that̃K1 andK̃2 can be computed using (15)
andK̃3 andK̃4 using (23), providedI + DL1 nonsingular,
and the proof is complete.�

Note that the LMI of (20) is of dimension 6(n+m)×6(n+
m) but, since we are dealing with stability along the pass, this
does not depend on the number of samples along the pass,
i.e. on the pass length�. The existing LMI toolboxes also
allow us to solve relatively large problems. For example, we

have successfully completed this design for the case when
in the basic process state-space modeln=15, m=3, which
gives an LMI of dimension 108× 108.

5. Numerical example

As a numerical example, consider the following process,
with xk+1(0) = 1, k�0, y0(p) = 1, 1�p�19, which is
unstable along the pass sincer(D0) >1.

A =
[−1.36 −1.29 −0.8

0.15 0.34 0
−0.19 0 −1.36

]
, B0 =

[0.44 0.51
0.93 0.14
0.65 0

]
,

B =
[ 0.18 −2.35 0.8

1.07 −2.5 0.5
−0.43 0.8 2.82

]
,

C =
[−0.38 0 −0.37

0 0 −0.98

]
,

D =
[−2.85 −0.65 −2.5
−0.28 −2.98 1.96

]
, D0 =

[−1.15 0
−0.42 1.13

]
.

In this case

K̃1 =
[ 49.5 −40.8

14.27 −11.77
−44.49 36.46

]
, K̃2 =

[−1.77 0.96
−0.18 0.31
1.26 −0.97

]
,

K̃3 = 10−12 ×
[ 0.37 −0.33

0.11 −0.1
−0.33 0.29

]
,

K̃4 = 10−13×
[ 0.68 −0.6

0.2 −0.17
−0.61 0.53

]
.

Fig. 1shows the response of the first entry in the pass profile
vector for this example and demonstrates that it is unstable
along the pass.Fig. 2shows the corresponding stable along
the pass response with the control law of Section 4 applied.
Note that in the example here the elements ofK̃3 and

K̃4 are significantly smaller in magnitude than those in the
other controller matrices. Also if these matrices are deleted
from the control law then it can be verified that the closed-
loop process is still stable along the pass and there is very
little difference in the controlled response. Note also that
direct use of the design method of Theorem 3 fails to give
a stable design. Hence, it can be conjectured that this last
design method can be exploited to reduce the degree of con-
servativeness due to the use of a sufficient but not necessary
stability condition.

6. Conclusions

This paper reports substantial new results on the control
of discrete linear repetitive processes. The major conclusion
is that the LMI-based approach which was previously de-
veloped for control laws which included a current pass state
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Fig. 1. Open-loop response.

Fig. 2. Controlled response.

feedback component also extends to the more practically
relevant case when state component is replaced by pass pro-
file information from the current and the previous two pass
profiles. In actual fact, there are a great number of other
possibilities for partially (or completely) activating control
laws with information from previous pass profiles and fur-
ther work will include a detailed investigation of the relative
merits of such laws. The results in Section 4 here provide a
starting point for such work.
It is important to place these results in context, especially

with respect to eventual practical applicability. In particular,
the basic model is practically relevant as it does arise in
approximating the dynamics of physical examples within

the ILC area (see, for example,Hatonen, Harte, Owens,
Ratcliffe, Lewin, & Rogers, 2003). It is eventually aimed
to apply the control laws of this work to this problem area,
for which the results in this paper provide part of the basic
foundation.
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