Learning an Opponent’s Preferences to Make Effective
Multi-Issue Negotiation Trade-Offs

Robert M. Coehoorn
rc1603@ecs.soton.ac.uk

Nicholas R. Jennings
nrj@ecs.soton.ac.uk

School of Electronics and Computer Science
University of Southampton
Southampton SO17 1BJ, United Kingdom.

ABSTRACT

Software agents that autonomously act and interact to achie-
ve their design objectives are increasingly being developed
for a range of e-commerce applications. In this context, au-
tomated negotiation is a central concern since it is the de
facto means of establishing contracts for goods or services
between the agents. Now, in many cases these contracts
consist of multiple issues (e.g. price, time of delivery, quan-
tity, quality) which makes the negotiation more complex
than when dealing with just price. In particular, effec-
tive and efficient multi-issue negotiation requires an agent
to have some indication of its opponent’s preferences over
these issues. However, in competitive domains, such as
e-commerce, an agent will not reveal this information and
so the best that can be achieved is to learn some approxima-
tion of it through the negotiation exchanges. To this end,
we explore and evaluate the use of kernel density estima-
tion for this purpose. Specifically, we couch our work in the
context of making negotiation trade-offs and show how our
approach can make the negotiation outcome more efficient
for both participants.

1. INTRODUCTION

Software agents that autonomously act and interact to achie-
ve their design objectives are increasingly being developed
for a range of e-commerce applications (see [8] for a review).
In such agent-mediated applications, a key component of the
solution is the way in which the agents negotiate to establish
contracts with one another to provide particular services or
goods under particular terms and conditions.

In many cases, it is important that the agents do not only
bargain over the price of a service, but also take into account
aspects like delivery time, quality, and payment method.
Moreover, in such multi-issue negotiations, it is often pos-
sible to reach an agreement that is mutually beneficial for
both parties [11]. This opportunity of joint improvement

Permission to make digital or hard copies of all or part of this work for

is provided by the difference in importance (weight) atta-
ched to the different issues by the different agents. However,
an impediment to this win-win scenario occurs in many e-
commerce settings because the agents are unlikely to truth-
fully reveal their preferences, utility functions or reservation
values for fear of being exploited. In such circumstances, the
best that can be achieved is to try and approximate these
preferences based upon past experience and the offers and
counter-offers that the opponent makes during the current
negotiation encounter.

To this end, this paper reports on the development of a
novel method for attempting to learn the negotiation pre-
ferences of the opponent. Specifically, we try to learn this
information with respect to the provision of a particular ser-
vice (since an agent’s preferences may vary for different ser-
vices). The particular approach we use is kernel density
estimation (KDE) which is a statistical method known to
provide a simple way of finding structure in data sets with-
out the imposition of a parametric model [15]. It works
in the following way; any data that is available about pre-
vious negotiation encounters for the provision of a particular
service is processed offline (as described in section 3.2) to
acquire a probability density function over the opponent’s
likely weights for the various issues. This function can then
be augmented by online learning that reflects new informa-
tion emerging from the ongoing encounter.

The KDE-method was chosen for two main reasons. First,
the computational complexity of the model is important
because agents are bounded in their computational power.
With KDE, the lookup of a prediction is constant, much of
the learning can be performed offline and the online learning
has nlog n complexity (as discussed in section 3.2). Second,
we want to make as few explicit assumptions about the re-
lation between the negotiation history and the importance
of the negotiation issue as possible (so the method can be
used for a wide variety of opponents with varying strategies
without having to fundamentally alter the model). Since
KDE is a non-parametric method, we do not have to make
any assumptions about the relation between time, negotia-
tion history, and issue-weight. In contrast, when using para-
metric regression methods (such as linear regression or the
expectation-maximization algorithm) an assumption must

personal or classroom use is granted without fee provided that copies arebe made about the underlying distribution function (respec-
not made or distributed for profit or commercial advantage and that copies tively linear and gaussian). Similarly, in Bayesian learning

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

an a priori distribution must be given for the weights of the
opponent, whereas in KDE the initial distribution is based

solely on the training data.

We choose to evaluate the efficacy of KDE in the context
of making negotiation trade-offs in bilateral encounters. We
focus on trade-offs because they are a key feature of bar-
gaining behaviour and cannot be achieved without a reaso-
nable degree of information about an opponent. In making
a trade-off an agent concedes on one issue and demands
more on another. Overall, the aim is for the agent to keep
the same utility for itself, but increase the utility of the
opponent, hence making the trade-off more likely to be ac-
cepted by the opponent. For the actual computation of the
trade-offs, we use Faratin’s algorithm [4] which evaluates
possible trade-offs based on fuzzy similarity. Thus while
this algorithm makes use of the fact that different nego-
tiation issues are of different degrees of importance to the
agent, it does not actually provide a method for learning
these weights.

Against this background, this research advances the state
of the art in the following ways. First, KDE has never been
used to learn the preferences of a negotiation opponent. Mo-
reover, although we demonstrate it in the context of making
negotiation trade-offs, the method can be applied to other
aspects of negotiation where more accurate knowledge about
an opponent’s preferences can lead to better negotiation out-
comes. Second, we extend Faratin’s trade-off algorithm by
incorporating a learning model, thereby making it more ef-
fective in finding trade-offs in a wider variety of circum-
stances.

The remainder of the paper is structured as follows. Sec-
tion 2 discusses related work in the area of negotiation and
learning in negotiation. After that, we describe the theoreti-
cal models that underpin this work; namely, the negotiation
model, the KDE-method and the trade-off algorithm (sec-
tion 3). The experiments and their analysis are presented
in section 4. Finally, in section 5 we present the conclusions
and outline avenues for future work.

2. RELATED WORK

In this section we will briefly review relevant work in the
areas of automated negotiation (in general) and learning in
negotiation (in particular).

When considering research in automated negotiation, three
broad topics need to be dealt with [9]. First, negotiation pro-
tocols are the set of rules that govern the interaction. These
fall into two broad camps: auctions and bilateral negotia-
tions. Here, we consider the latter. Such protocols involve
two parties (a service supplier and a service consumer) and,
generally speaking, an alternating offers protocol (in which
the parties take turns to submit offers and counter-offers
until they come to a mutually acceptable agreement over
the terms and conditions of a trade or one of the parties
withdraws (typically because its negotiation deadline has
passed)).

The second broad topic for research are the negotiation
contracts which specify the range of issues over which agree-
ment must be reached. In this area, Fatima et al. [5, 6] have
analysed the optimal outcomes of single-issue negotiations,
and multi-issue negotiations in which the issues are nego-
tiated sequentially. A key question that arises in the latter
case is the order in which the issues are negotiated or the
agenda. When the agenda is endogenously defined, i.e. the
agents are allowed to decide which issue they will negotiate
next during the process of negotiation, a unique equilibrium

exists [6]. In [5] the agenda is defined partly endogenously
and partly exogenously (i.e. before the negotiations). Howe-
ver, this scenario requires a mediator to identify the optimal
scenario, and is therefore not compatible with our require-
ments. Given this, we consider agendas that are set entirely
exogenously and in which all the issues are considered si-
multaneously.

Finally, the most important topic for this research is the
reasoning models which provide the decision making me-
thods the agents employ to compute their negotiation moves.
Within this area, the importance of learning from past ne-
gotiation experiences was first recognised in Sycara’s work
on the PERSUADER system [14] which modeled an itera-
tive process of multi-issue negotiation. It uses past agree-
ments between similarly situated parties to suggest propo-
sals that might succeed in the current negotiations. When
conflicts arise, a mediator engages in parallel negotiations
with the parties, either to change the proposal to something
that is acceptable, or to attempt to change the belief of the
disagreeing parties using persuasive argumentation. In our
domain, however, mediation is undesirable because of the
competitive nature of the encounter and the desire to keep
information private.

After this, a variety of learning techniques have been used
to try and improve the effectiveness of the agents’ negotia-
tion capabilities. For example, genetic algorithms have been
used to discover effective negotiation strategies (e.g. [7, 10]).
In this research, agents are modelled as chromosomes and
the parameters of the negotiation model are genes in the
chromosome. By evolving these agents, the benefits and
drawbacks of a number of negotiation strategies are asses-
sed. However, this method typically focusses on finding the
most optimal offer/counter-offer strategy, whereas we want
an explicit reasoning model about the opponent.

Probably the most widely used paradigm is Bayesian lear-
ning (e.g. [1, 16]). In this line of work, the estimates of the
probability of a set of hypotheses about the opponent’s pre-
ferences or reservation prices are produced, given the pre-
vious negotiation encounters. However, a significant draw-
back of Bayesian learning is that the agent has to have a
priori knowledge about the probability distribution of the
likely outcome of the negotiation. This is difficult to pro-
vide because of the private nature of the information needed
to compute this. Furthermore, many encounters are neces-
sary before a good model can be provided because individual
opponents are modeled, whereas in our work the strategy (in
terms of the agent’s preferences) with respect to the provi-
sion of a particular service is modeled.

Probably the work that is most closely related to ours
is [13]. In this work, a reinforcement learning algorithm
is presented that learns to propose a solution that is more
likely to be accepted by the opponent. Specifically, offers
that are rejected by its opponent are treated as negative
instances for the learning algorithm, while counter-proposals
from its opponents give a positive reward. However, their
model does not combine the learning model with a reasoning
model that models the properties of the problem domain as
the fuzzy similarity method of Faratin does (see section 3.3
for details). This means their model is less robust when
the prediction about preference weights is not completely
precise.

3. THEORETICAL MODELS

In our work, three models can be distinguished. First, the
model that describes the negotiation (see section 3.1). After
that, section 3.2 will describe the KDE-method we use for
predicting the weights of the opponent. Finally, we present
the method for calculating the trade-offs (section 3.3).

3.1 The Negotiation Model

Before evaluating the negotiation model, let us first start
with defining some of the necessary parameters: If [is
a pair of (self-interested) negotiating agents (I = {a,b}),
let ¢ (¢ € I) represent a specific negotiating agent, and J
(J = {1,...,n}) be the issues under negotiation in a gi-
ven encounter. For each issue j (j € J), every agent has
a lower and an upper reservation price, respectively min;
and max;, resulting in a domain for each particular issue:
D; = [minj, maz;]. These values represent the value which
is the best reasonable value expected and the worst value
still acceptable for the agent. In all negotiation interchanges,
every issue gets assigned a value x; € D;. To evaluate a va-
lue of an issue, each agent has a scoring function over this
domain: V} : D; — [0, 1] which assigns a valuation to every
possible value x;. Finally, each agent has a weight vector
over the issues, representing the relative importance it at-
taches to the issues, where w§ is the importance agent ¢
attaches to issue j. We assume these weights are norma-
lized (ie. Vi € I : 37, w} = 1). Thus, the utility of
agent ¢ over a contract x, a set of values for all issues, can
be defined as:

u'(z) = Y wVj(a) (1)

1<j<n

Now, if all this information is known to both agents, the
Pareto-optimal set can be calculated by both of them [11].
However, in e-commerce settings, several of the assumptions
needed for this calculation are not tenable. First, an agent
will not give out information about its reservation prices,
the weights over the issues and its utility function because
doing so would enable it to be exploited. Second, each agent
will have distinctive reservation prices (whereas in [11] these
were defined to be equal for all agents). The zone of agree-
ment Z we will use is thus defined as the intersection of the
individual domains: Z; = ,¢; [min%mamﬂ. Finally, the
resources, and especially the time available for the negotia-
tions, will be bounded. Specifically, we assume each agent
has a (hard) deadline, denoted as t,,,, by when it must
have completed the negotiation. The negotiation protocol
is a two-agent variant of Rubinstein’s model of alternating
offers [12]. Specifically, let z,_, be the offer of agent a to b,
at time t and x%,_,,[j] denote the value of issue j of this offer.
Note that in this model time is discrete. The agent who has
the first turn is chosen randomly. After the first offer, at
every timestep the agent who received the last offer decides
whether to accept the offer, propose a counter-offer or with-
draw from the negotiation. This continues until the reaction
is one of the communication particles {accept, withdraw}.
The agents decide which of the alternatives to choose from
definition 1 (taken from [3]). When the deadline of the agent
has passed, the agent withdraws. Otherwise, the reaction
depends on the offer of the opponent. If this offer has a
higher utility than the offer the agent itself is prepared to
make at that moment (xfz;b, calculated as per equation 3),
the offer of the opponent is accepted. In the other case, the

calculated counter-offer will be made.

DEFINITION 1. Given an agent a and its associated sco-
ring function V*, the interpretation by agent a at time t’
of an offer x}_, sent at time t < t', is defined as:

withdraw Ift > t%..
’
I° (t',xflﬂb> = { accept If u*(zh_,) > u®(xh)
¢ otherwise

a—b

T

The scoring function over the issues, as required by equa-
tion 1, is given by the distance to the worst bid acceptable to
this agent, relative to its range of acceptable values. Hence
this scales the acceptable bids for the agent to the domain
[0,1]:

t - sa
T _,p[j]—minf P .
—a—bll 4 if increasing
max? — min?

3j J (2)

) t .
max; 7za*>b[j]

max% — min%
J J

Vi(z;) =
T if decreasing

where increasing and decreasing refer to the direction of
change in score with increasing value of the issue.

To calculate the counter-offers used in definition 1, a range
of different strategies could be deployed. Given the time-
constrained nature of our domain, however, we use the fa-
mily of polynomial strategies (as advocated by [4]):

- min§ +(1 — o (t))(max§ —minf) if increasing
Taopli] = . : . .
ol minf +-aj (t)(maxj — min%) if decreasing
(3)
where the function « is a polynomial function dependent
on the time remaining, and (3 is the strategy parameter,
defining the form of the function:

1
min(¢, £ 4.)) By

a
tmaw

a5 = (()
When this strategy parameter is between 0 and 1, the agent
will make an offer and stick to it: only when the deadline
comes near it will concede towards the upper reservation
price. When the parameter is greater than 1, the higher the
value, the faster the agent will concede towards its upper
reservation price.

Note that since the counter-offer acquired in this manner
is dependent on the time remaining, the interpretation of
an offer as per definition 1 will also be (indirectly) time-
dependent.

3.2 Kernel Density Estimation

The only information we can definitely assume to be avai-
lable to the agent is its negotiation history. This covers the
offers and counter-offers of all its previous negotiations for
a particular service’. Therefore, our aim is to obtain an
estimate of the opponent’s weights by only looking at this
history. In particular, we consider the difference between
the opponent’s last two offers in a given encounter and try
to find a relation between this difference and the weight the
opponent places on various issues. For example, a relatively
small change in the bid on one issue at the beginning of
the negotiation process might indicate that it is more im-
portant to the opponent than the other issues. Likewise,

!This history can be on a per agent basis or can cover all
agents with which the modeller has interacted for the parti-
cular service in question.

time =5,

251

0 0.1 0.2 03 0.4 6 0.7 0.8 0.9 1

05 0.
Issue weight

Figure 1: Kernel density estimation example. The
dashed lines are the kernels and the solid line the
estimate. The individual observations are marked
with a cross and the predicted weight for the nego-
tiation issue in question with a dot.

a relatively large concession towards the end of the nego-
tiation might indicate that this issue is important and the
opponent is performing a final concession on that issue to
save the agreement.

The method we will use to find this relation is kernel den-
sity estimation (for reasons outlined in section 1). In more
detail, the basis of this method is the kernel: a function K
satisfying [K(X)dz = 1. Intuitively, these kernels can be
seen as representing a “probability distribution” of size 1/n
(where n is the number of observations) associated with each
data point, about its neighbourhood [15]. This is illustrated
in figure 1, where a two-dimensional estimate is based on
five observations®. This example could be viewed as the es-
timate of the opponent’s weight for a particular negotiation
issue, given a specific time in the negotiation process and the
relative difference of the two last bids on an issue. In this
case, as indicated in the top-right corner of the graph, we
see that these observations, for example from simulations,
took place at the beginning of a negotiation encounter (time
= 5) and there was a relatively small change between two
consecutive offers (7 percent of the total change). Here,
the dashed lines are the kernels. It can be shown that the
particular unimodal distribution used as a kernel does not
degrade performance [15] and so we choose the N(0,1) dis-
tribution for reasons of computational efficiency. The ker-
nels are formed by centering a kernel at each observation
(e.g. the difference between two consecutive offers and the
believed weight of the issue). Note the kernels are scaled by
the total number of observations and thus the value of the
kernel estimate at point x is simply the sum of the scaled
kernels. For example, in figure 1 it can be seen that there
are no observations for a very low weight and therefore the
density of 0.1 has a low value. On the contrary, there are re-
latively many observations around a weight of 0.4 and hence
the probability estimate has a high value here. From this
distribution the weight predicted for the negotiation issue

2We should point out that we use just five observations
here purely for clarity in illustrating how the kernel method
works. Practical density estimation usually involves a much
higher number of observations.

in question is the expected value, using the estimate as a
probability density function (indicated with a circle in the
graph).

In this illustrative example we used two-dimensional ker-
nels. However, the kernels we use in this research are in fact
three-dimensional (the difference of two consecutive offers,
the weight of the issue and the probability density of this
weight given this difference). Furthermore, since we assume
the opponent uses a time-dependent strategy, we expect the
agents to behave differently over time. Therefore, for each
time ¢, we make such a density estimate to predict the den-
sity of a certain weight given the relative difference between
the last two offers.

One of the most important issues in this work is the band-
width or the amount of spread of the kernels. In figure 1, a
smaller bandwidth would lead to higher but smaller kernels,
whereas a higher bandwidth would lead to broader and lo-
wer kernels. Here we use the solve-the-equation (STE) rule
as suggested by [15] to calculate this bandwidth. This me-
thod takes an initial guess of the bandwidth and calculates a
new value, using the error in the resulting density estimate,
until the process converges. The reasons for choosing this
method are its good performance on our domain (due to the
direct feedback from the results of previous values), and the
ease of computation.

Since the negotiating agents have bounded computatio-
nal resources, it is important to determine the computatio-
nal complexity of KDE. To this end, when the probability
density estimate is learnt, the prediction of a weight is a
table lookup of constant time. The learning algorithm cal-
culates this estimate by using a fourier transformation of
the kernels. The complexity is determined by the use of
a convolution, which can be performed in O(nlogn) time
(where n is the sampling rate, taken to be 128). This is
also the complexity of the bandwidth estimation, since the
error of the estimate is used in the computation and thus
the estimate has to be formed.

3.3 Trade-Offs Based on Similarity Criteria

To solve the problem of finding a trade-off when agents have
incomplete information about their opponent we exploit Fa-
ratin’s algorithm [4]. This works by performing an iterated
hill-climbing search in the landscape of possible contracts.
The search starts at the opponent’s last offered contract and
proceeds by successively generating contracts whose utility
is progressively closer to the desired threshold of the agent
making the trade-off. During this search the contract that
maximizes the similarity to the opponent’s last offering is
used as the starting point of the next iteration. This algo-
rithm is chosen because it has a number of desirable proper-
ties: (i) its complexity is linearly proportional to the number
of issues under consideration and (ii) by using the notion of
fuzzy similarity the uncertainty of an agent’s belief over the
preferences of the other agents are modelled as fuzzy rela-
tionships between values of the domain (and not the other
agent’s actual preferences). Hence, the algorithm models
the domain of the issues under consideration (the problem
domain), instead of the individual agents (recall the discus-
sion at the end of section 2). By extending this basis with
a separate learning model, as per section 3.2, we obtain a
hybrid algorithm which makes the trade-off algorithm more
adaptive and robust.

In more detail, the algorithm consists of two steps, assu-

ming that agent a has to make a bid:

i) Find the iso-curve for a, that is, the set of contracts

xfl;b that have the same utility for agent a as its pre-
vious offer (i.e. z5_,),

a—b

ii) Out of this set, take the contract that agent a believes
is most preferable to the opponent, and send this as
the trade-off counter-offer.

In the second step, the aforementioned fuzzy similarity is
used. The algorithm thus tries to find the deal that is most
“similar” to the previous offer. The rationale behind this is
that a deal which is similar to an acceptable offer of your
opponent has a reasonable probability of being acceptable
itself.

In this context, the notion of similarity between two va-
luations of issue j, xj,y; € D; uses a criteria evaluation
function h : D — [0, 1] which maps the value of the issue to
a valuation between zero and one®. When comparing two
values for a specific issue, the issue-similarity is defined by
comparing the values of the function h:

Simj (25, y;) = 1 — |h(z5) — h(y;)| ()

The similarity of two contracts is then defined by the sum
of the issue-similarities weighted by the opponent’s weight
of that issue:

Sim =D wj - Simy (@, ;) (6)
J€d
This results in the following formal definition of the algo-
rithm:

DEFINITION 2. Given an offer © from agent a to b, and a
subsequent counter offer y from agent b to a, and given that
6 = u®(x), agent a defines its trade-off proposal with respect
toy as:

i) 1804(0) = {z | V(x) = 6}.
”‘) t'r‘ade—oﬁa (‘T7y) = arg maXinsoa(9)(Sim(Z7 y))

To increase the exploration of the space of possible deals,
the algorithm starts at the utility of the contract of the
opponent (y), and takes S steps in increasing the value of 0,
until the utility of the previous proposal x is reached. The
number of elements generated in step 4 is defined by N.

While this algorithm has been showed to be effective in
a number of scenarios [3], a major shortcoming is that the
weights the opponent used in calculating the similarity bet-
ween two offers (see equation 6) are private information and
thus unknown to agent a. Given this, the aim of our research
is to see if the KDE-method outlined in section 3.2 is effec-
tive at learning this information using only the negotiation
history.

4. EXPERIMENTAL ANALYSIS

The aim of these experiments is to examine the effects of
using a weight vector, as predicted by kernel density estima-
tion, on the performance of the trade-off algorithm. Since

3The function used here has the form of a sigmoid to have
an optimal discriminability in the, most important, middle
part of the domain of reservation prices:

. . @
h(l‘):% tan—l[(Q\z—mln\ z—min —1>tan (W(%—E))}—‘r

r—min ‘ max — min

Wl

the utility of this trade-off remains the same for the agent
itself (see definition 2), we measure performance in terms
of the opponent’s utility of the proposed trade-off contract.
Specifically, we start by looking at a single offer to investi-
gate how the prediction of the weights by KDE influences
the performance of the trade-off algorithm. After that, we
investigate the effects of the KDE-method on a complete
negotiation process by analysing agents which use the pre-
dictions in their negotiation strategy.

4.1 Single Offers

These experiments investigate the effect of using the KDE-
method to calculate a single trade-off. Thus a specific in-
stance of a negotiation session is considered, resulting in
a single offer — counter-offer pair. Due to the number of
private and thus unknown dependent variables, we do not
expect the prediction of the KDE to be completely precise.
Therefore, we analyse the results when a random pertur-
bation is added to the real weight of the opponent. After
that, we explore to what extent a priori knowledge of the
opponent is necessary for good performance of the trade-off
algorithm. We do this by looking at the concrete effects
of using KDE’s formed under different levels of knowledge
about the opponent. Finally, to test whether using KDE in-
creases the performance with respect to the method propo-
sed by Faratin, we compare the performance to a situation in
which uniform weights are used. All experiments described
here follow the settings as described in 4.1.1 unless stated
otherwise.

4.1.1 Random Perturbation of Real Weights

For this experiment a negotiation between two agents (that
generate their offers according to equation 3) was underta-
ken to get a range of plausible contracts (using the model
described in section 3.1). Specifically, the contracts consist
of four issues of unequal weight that remain fixed throughout
the negotiations (w, = {0.5,0.1,0.05,0.35}, ws =
{0.1,0.5,0.25,0.15}). For simplicity it is assumed for all
issues that an increase of value results in a utility gain for
one agent (“the seller”, or agent s), and a utility decrease
for the other agent (“the buyer”, or agent b).

From this negotiation, we take two consecutive proposals:
a bid = of b and a counterproposal y of s. Using these
two proposals, a trade-off for the buyer is calculated (as
per definition 2). Specifically, we consider two environments
(A, in the beginning of the negotiations, and B, later in the
negotiations) in which the utility of b varies. In environment
A, the utility of agent b is high (because it has not conceded
much with its time-dependent strategy), hence there will be
fewer contracts on its iso-curve. In environment B, however,
the utility of b is much lower (because time has passed and it
has conceded utility). This results in more contracts on the
iso-curve, and, consequently, more opportunity to improve
the utility of agent s.

For the parameters of the trade-off algorithm we will use
the values of [4]: 40 steps (S) using 100 children per step
(N). More steps or more children are shown not too improve
the performance of the algorithm. The similarity function
h(z) used in equation 5 is parameterized to be a linear func-
tion. In this way, the discrimination of two contracts will
be similar across the domain of the issue. Since there is
a random factor in the trade-off algorithm, the proposals
are calculated 50 times (a significant sample size, at the

=
Tl - ~
- /
st !
08 / '\\
I~
m \
07t ot
= | <
\E R
52 06f 5 " £
o = S
o 12 e
© w
S 05f ! W5
> |
= n
D 041 [
|
o
03F D
I
m X (initial) oy
02| o y (counter—proposal) vy \ ! \
O trade-off in scenario full N ‘ ! \
1> trade-off in scenario § = .05 ! \
011 9 trade—off in scenario 5 = .1 \ /’ \
* trade-off in scenario ran \ D/
L0 trade—off in scenario no sim . . . R)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Utility buyer: Uy

Figure 2: The mean utility of the proposed trade-
offs using perturbed weights.

0.95 confidence level, with confidence interval of 15%). We
will use the mean utility of these contracts to describe the
results; meaning that a higher value indicates better perfor-
mance.

The experimental variable in this experiment is the cor-
rectness of the weights used for the opponent (as used in
equation 6). In the first scenario, the agent has perfect
knowledge (scenario full). The second scenario involves a
small perturbation of the opponent’s real weight vector to
evaluate the effect of a small error in the prediction of the
weights. This perturbation is chosen uniformly out of the
domain [-0.05, 0.05] (scenario 6 = 0.05) and [-0.1, 0.1] (sce-
nario 6 = 0.1). For reference purposes, the results of two
benchmark situations are added. First, to check what hap-
pens if the prediction is completely arbitrary, a randomized
weight vector (satisfying), = 1) is used in the scenario
ran. In the second situation, we do not use any prediction
about the opponent at all, but just choose a child randomly
in each step of the trade-off algorithm to recurse into (no
stm). This gives us a means of comparing our results to the
case in which similarity criteria are not used at all.

Since the change of the bid for the opponent depends on
multiple unknown variables (as can be seen in equation 3),
we cannot expect the prediction to be completely precise.
The objective of this experiment is therefore to analyse the
effects of using such inaccurate information. It is important
to note that here, in contrast to Faratin [4], we do not make
the assumption about the preservation of ordinality in the
opponent’s weights. Thus, we will evaluate the following
hypotheses:

HYPOTHESIS 1. A small error in the prediction of the op-
ponent’s weights will not significantly degrade the perfor-
mance when compared with the perfect information case.

HYPOTHESIS 2. The prediction of the weight vector does
not have to be ordinally perfect to improve performance
compared with the case of using no knowledge about the
opponent.

The results of this experiment are presented in figure 2,
where the utilities of the agents are plotted against each

other. The line joining (0,1) to (1,0) is the Pareto-optimal
line, calculated using the weighted method [11]. In this case
an ideal trade-off would be on the Pareto-optimal line. The-
refore, the closer our trade-offs are to this, the better they
are. Since environments A and B are reached using non-
optimal methods, however, we will just look at the order
of the contracts, and not the concrete utility reached. In
more detail, the figure illustrates a part of a negotiation
process. The filled squares are the initial contracts propo-
sed by the buyer in the two environments. As indicated
by the arrows, the counter-offers of the seller are indicated
with the filled circles. After receiving this counter-offer, the
buyer calculates a trade-off response (for the different scena-
rios mentioned above) which are plotted within the different
environment ellipses.

As can be seen, for both environments, the performance
of using weights that are perturbed does not decrease the
performance of the trade-off algorithm. This is tested by
an analysis of variance (ANOVA) extended with a Tukey-
Kramer test as post-hoc test [2], which indeed shows that
in both environments there is no significant difference bet-
ween the proposed contracts® when using full knowledge of
the weights of the opponent or a perturbed weight. This
can be explained by the combination of the KDE-method
with the similarity-based method. Specifically, the resulting
algorithm uses both the prediction of the weights by the
KDE-method and the fuzzy similarity as a basis for compu-
ting trade-offs. This combination leads to a robust overall
performance because errors in the prediction are compensa-
ted for by the fuzzy similarity method, and the fuzzy simi-
larity method is enhanced by better information about the
opponent.

The contracts produced by the control methods are signi-
ficantly worse than the performance of the full knowledge
(as expected). If we look at the no sim case, the contract to
use in the next iteration is selected randomly from the chil-
dren generated which leads to poor performance because no
attempt is made to maximize the opponent’s utility. In the
ran case, the weights of the opponent are randomized which
means that although the algorithm does perform a maximi-
zation, it maximizes the situation in which the weights are
different from their actual values.

Note that given the weight vectors used, the ordinality
of the weights can change in both environments due to the
perturbation. However, in the § = 0.05 scenario, only the
order of the first and fourth issue can change, whereas in
scenario 6 = 0.1 also the third issue can be at different
places in the ordering. In either case, however, the absence
of a significant difference between these scenarios indicates
that this does not make a significant difference.

Overall, these results indicate that both hypotheses can
be accepted. The algorithm is robust enough to achieve
similar performance to the full information setting when the
information is less than perfect. Moreover, this result is
independent of the preservation of ordinality of the weights.
When taken together, these results show that the prediction
by the KDE does not have to be completely accurate to
improve the performance of the trade-off algorithm.

4.1.2 Kernel Density Estimates of Weights

As we have shown that approximate values for negotiation
preferences can be used to produce effective trade-offs, the

4Using a confidence level of 0.05.

g timasx RP
strat20 [[0.1,0.3]%%1 [4,6]°) 65 fixed
strat100 [[0.1,1]%°% [1,10]] 65 fixed
bdl [[0.1,1]°:%0 [1,10]°'] [30,100] fixed
all [[0.1,1]%°* [1,10]°'] [30,100] normal

Table 1: Variable initialisation when learning the
kernel density estimates.

next step is to verify that the KDE-method can indeed give a
prediction that is sufficiently accurate to use in the trade-off
algorithm. Thus, instead of the real weights with a random
perturbation, we now use the prediction of the opponent’s
weights under different levels of knowledge (which are repre-
sented by different kernel density estimates). The key diffe-
rence between these estimates is the information about the
opponent that is known to the agent. Since the opponent’s
bidding strategy is influenced by the deadline of the nego-
tiation, ¢ .y, the reservation prices, RP, and the strategy
parameter 3 (as can be seen in equation 3), these are the
parameters varied in the different scenarios presented below.
By this means we analyse the effect of the amount of know-
ledge, and therefore the precision of the prediction, on the
efficiency of the trade-off algorithm.

It is our belief that the parameter which will be most dif-
ficult to obtain information about in our domain is the stra-
tegy parameter. It is hard to deduce from past experiences
and may change for each individual encounter. Therefore,
we start in the scenarios strat20 and strat100 with the stra-
tegy as a private parameter and the reservation price and
the deadline as public information. In this case, a KDE is
used which has learnt from opponents with varying s, cho-
sen uniformly out of the domain. The difference between
the two is that the size of this domain for strat100 is much
bigger (two times one hundred possible values versus two
times twenty possible values with the same stepsize). This
means the buyer is much less sure about the opponent’s
strategy in strat100 than in strat20. In the next scenario
[B-and-deadline, or bdl, again the strategy parameter is va-
ried, but now the deadlines are uncertain as well. This re-
flects the fact that agents in e-commerce will have deadlines
which change over time, depending on the starting time of
the negotiation. Therefore, a probability distribution based
on past experiences may not be particularly useful and it
will be hard to get. Finally, in all, all the parameters are
uncertain. It should be noted however, that in all cases the
reservation prices are known to be in a normal distribution
(scaled to a lower Tp of 10, an upper Tp of 20, and a stan-
dard deviation of 1.5)°. See Table 1 for the specific values
of all the scenarios. Note that the domains of the uniform
distributions are made discrete and the stepsize, if it is not
equal to one, is stated as a superscript.

Given this, the particular hypotheses we sought to eva-
luate here are as follows:

HypoOTHESIS 3. Using kernel density estimates will re-
sult in a higher utility than not using any knowledge about
the opponent.

5This standard deviation is based on the price-distribution
of products often sold on the internet — like digital
cameras and laptops — on price comparison sites (e.g.
kelkoo: www .kelkoo.co.uk) and auction-sites (e.g. eBay:
www.ebay.co.uk).

0.9+

0.8

0.7

1<
I E
-
5% 061 Yo g
5 Va8
2 osf Lg
8o i
= |
5 o4t \\ !
\
03 @ X (intia) ‘n
® y (counter—proposal) (- |
O trade-off in scenario full vy | !
02| & trade-off in scenario strat20 vy | N
<1 trade-off in scenario strat100 ~ | P
¢ trade-off in scenario bdl \ I
01| A trade-off in scenario all \ |
* trade-off in scenario ran =
0 O _trade-off in scenario no sim . . . L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Utility buyer: uy
Without KDE
T full rand no sim
A: v, 0.206 0.278 0.217 0.047
B: u, 0.309 0.830 0.714 0.750
With KDE
strat20 strat100 bdl all
At u, 0.249 0.205 0.237 0.201
B: u, 0.830 0.799 0.804 0.802

Figure 3: The mean utility of the proposed trade-off
using different knowledge levels.

HYPOTHESIS 4. The more knowledge about the opponent
that is used in the kernel density estimation, the higher
the achieved utility will be.

The first hypothesis captures the expectation that when
using KDE to predict the weights of the opponent, the per-
formance of the proposed trade-offs will improve. If this were
true, it would justify the use of KDE as a learning method
that can be added to the trade-off algorithm. The second hy-
pothesis reflects the expectation that KDE should perform
better when there is more information about the opponent.
In particular, we expect the performance of the trade-off al-
gorithm to improve when the predictions are more precise,
and thus we expect a higher utility when the agent has more
a priori knowledge about its opponent.

The results are presented in figure 3. Since some of the
values lie close to each other, the results are also presented
in the accompanying table. As can be seen, especially in
environment A, all values are close to each other. This can
be explained by the fact that there are fewer contracts on
the iso-curve compared to environment B. Using an ANOVA
shows that the contract reached when using complete know-
ledge is significantly better than the other contracts, while
the contract reached when not using similarity criteria per-
forms far worse than the rest. The analysis further shows
that strat20 and bdl perform better than strat100 and all
and the random strategy performs surprisingly well in this
environment (the results of the ANOVA show that there is
no significant difference between the random strategy and
the KDE-strategies). These results occur because the space
of improvements is small due to the comparatively small
number of points on the iso-curve, and, in turn, the error
when using incorrect information is smaller.

In the second environment, the differences are more vi-
sible. Again, the performance using the correct weights of
the opponents performs best. This time, however, the pre-
diction of the KDE using strat20 is good enough to result
in the absence of a significant difference compared to the
complete knowledge scenario. The no sim situation is, as
before, worse than all the outcomes using a KDE, although
it outperforms the random situation now. We believe the
two most likely scenarios in e-commerce are bdl and all
(where the knowledge about the opponent is minimal) and,
as our results show, in these cases KDE performs well, in-
deed nearly as well as the situation where full information
is assumed. This indicates that the predictions made by the
KDE in such situations are sufficiently precise to use in the
trade-off algorithm.

In general, our results can be explained by the precision
of the prediction of the weights. When this information is
completely correct (as in situation full) the performance is
best. When the knowledge about the opponent degrades,
the prediction gets less accurate, and the performance of
the algorithm gets worse. We show that the kernel density
method performs at least as well as having no knowledge at
all when there are few contracts on the iso-curve. However,
the results are far better when more possible trade-offs are
available. This indicates that hypothesis 3 can be accepted.
Moreover, the amount of information used while learning the
KDE does not necessarily improve the performance (as is the
case in environment A). However using partial information
does affect the performance (as shown in environment B).
This implies hypothesis 4 has to be accepted, although the
similarity basis of the trade-off algorithm ensures the effect
is not as strong as expected (because it makes the trade-off
algorithm more robust to errors in the prediction).

4.1.3 Uniform Weights

Now we have shown that KDE can be used effectively in
combination with the trade-off algorithm, we want to show
that our method outperforms the main method advocated
by Faratin. Following his experiments on the performance of
the similarity-algorithm, he concluded that the best policy
for computing trade-offs is to assign uniform (equal) weights
to all decision variables which can be updated by some lear-
ning rule (which is unspecified) [4]. To this end, we want
to see how this works compared to using a KDE. Note that
when the results are analysed, it must be taken into account
that when the real weight vector of the opponent is close to
uniform, the results of using a uniform weight vector are ob-
viously going to be better than when the weight vector of the
opponent is far from uniform. To account for this, we consi-
der two environments; one with a uniform opponent and one
with a strongly skewed weight vector (i.e. the former uses
w = {0.2,0.3,0.15,0.35} as its weight vector, whereas the
latter uses the weight vector w = {0.85,0.05,0.05,0.05}).
To make a better comparison between these two environ-
ments, we want the utility of the starting contract to be
similar. However, since the weight vectors used for the sel-
ler differ, this results in different contracts.® To achieve this
we set the weight vector for the buyer as before. Since we
showed in the last experiment that the influence of the level
of knowledge is limited, the results will only be compared
between the situations strat100 and all, and to the perfor-

5Note that a different weight vector also results in a different
Pareto-optimal set.

0.9+

0.8

0.7

s

0.6

=] \
& \
S 05f \
> \
= \
D 041
03r 8
A \
\
\
025 initial)
® y (counter—offer)
04 O trade-off in scenario full
*'| < trade-off in scenario strat100
A trade-off in scenario all
0 * trade-off in scenario uniform
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Utility buyer: uy
(a) Non-uniform opponent
1= T
0.9+ T~
08F S
N
N
0.7 L] N
N
N
52 061 N
2 BN
S 05- N
> N
% \
DO 04r \
° \
03t 4 '
\
B \
02 O x (initial) |
® y (counter—offer) \
01| © trade-off in scenario full v
*'| < trade-off in scenario strat100 \
A trade-off in scenario all \
* _trade-off in scenario uniform

o
0 01 02 03 04 05 06 07 08 09 1
Utility buyer: Uy

(b) Uniform opponent

Figure 4: The mean utility of the proposed trade-
off compared to the performance using uniform
weights.

mance when having all knowledge (full). Specifically, we
hypothesize that:

HypPOTHESIS 5. Using kernel density estimation to pre-
dict the weights of the opponent will result in a utility at
least as good as using uniform weights.

The results of the experiment are shown in figure 4. In the
upper graph, the opponent uses the skewed weight vector.
In this case, an analysis of variances shows that the four dif-
ferent groups are significantly different from one another. In
particular, assigning uniform weights performs significantly
worse than using the kernel density estimate for the group
all. This is as expected due to the discrepancy of the real
weight vector and the uniform vector used in the computa-
tions. When the weight vector of the opponent is near uni-
formity, as plotted in figure 4(b), assigning uniform weights
performs as well as using the kernel density. This is as ex-
pected because the real weights and the weight vector used

do not differ from each other by much. Thus hypothesis 5
is accepted.

4.2 Complete Negotiations

Having shown that using KDE in combination with Fara-
tin’s trade-off algorithm improves the performance in the
single-offer case, we will look at the results of using KDEs
in a complete negotiation encounter. Henceforth, we will
use the KDE-method in combination with a meta-strategy
(i.e. a strategy of choosing which offer-generation strategy to
use) which depends extensively on the trade-off algorithm.
Our aim is to determine whether the more efficient indivi-
dual trade-off offers will also result in a better negotiation
outcome over a complete encounter.

The particular meta-strategy we will use is the smart-
strategy [4], which is shown to have a good performance
against a variety of other strategies. The smart-strategy
consists of deploying a trade-off mechanism (as per section
3.3) until the agent observes a deadlock in the closeness of
two offers. Such a deadlock situation is observed when the
similarity between these two offers is smaller than ¢ (set to
0.05 in this experiment). If this occurs, the algorithm starts
looking for a contract with a value of the previous offered
contract Vi(z) reduced by a predetermined amount 7. The
average closeness is measured by the similarity between the
last two bids of the agent. This leads to the following bidding
strategy for agent a:

if (|simp(xe—1) — simy(z)| < 6)

choose (Tt41 : Te+1 € X Aup(xe41) = up(ze) — 1),
else

choose (Tr41 : Te+1 € X Aup(xe41) = up(z4)).

where 7 is the decrease in utility when a deadlock occurs
(also set to 0.05 in this experiment). Note that this method
always uses the trade-off strategy, and therefore makes ex-
tensive use of the prediction of the opponent’s weights by
the KDE-method.

In the experiment, both agents use the above trade-off
strategy, the seller has full knowledge about the opponent,
and the amount of knowledge the buyer has about the seller
is varied (in a similar way to section 4.1).

The performance of the strategy is tested in two ways.
First, the utility of the deal is calculated by taking the pro-
duct of the utilities of the agents, where a higher product
means a better performance. By looking at the product,
we make sure that the deal is symmetric: there is not one
agent performing better at the cost of the other. Second,
we will look at the time at which agreement is reached. In
the domain of e-commerce, it is often desirable to reach an
agreement as soon as possible (e.g. to reduce the communi-
cation load or because the service is required urgently). We
will define this by the number of offers and counter-offers
before an agreement is reached”.

In undertaking this experiment, we expect that more ef-
ficient trade-off offers will lead to a more efficient eventual
negotiation outcome. In the single-offer experiments we sho-
wed that by having more knowledge, the performance in-
creased and we expect this to also be the case for the multi-
offer situation. Furthermore, since the single offers are more
efficient, we expect an agreement to be reached earlier:

"In all cases, an agreement was reached before one of the
agents reached its deadline, so the communication load is
defined in all cases.

06

Utility product

— full
— - strat100
all

01

—- nosim
|-~ Pareto-optimum
30 35 40

Time

Figure 5: Utility of the contract proposed at given
time

30

mean time of agreement

full strat100 all nosim

Figure 6: Mean time of agreement

HyPOTHESIS 6. The more knowledge that is used in the
KDE, the higher the product of the utilities will be over a
complete negotiation.

HYPOTHESIS 7. The more knowledge is used in the KDE,
the lower the communication load will be.

First, we look at the utility. In figure 5, the Pareto-
optimal solution which maximizes the product of utilities
is indicated by the dash-dotted line. As expected, the stra-
tegy performs best when we assume full knowledge of the
opponent, and worst when we do not use any knowledge at
all (the no sim scenario). The performance of strat100 is
not significantly better than the performance of all, implying
that the quality of the prediction of the KDE is comparable
in both situations for the trade-off algorithm. As expected,
the scenario in which the buyer has full knowledge about its
opponent performs significantly better than the scenarios in
which a KDE is used. Most important, however, the per-
formance of the KDE-method is far better than that of not
using any knowledge at all. We therefore accept hypothesis
6.

Second, we look at the mean time on which agreement is
reached in figure 6. This shows, when the knowledge of the
opponent is complete, agreement is reached fastest (mean
time of 21.2 steps). Strat100 does not perform significantly
worse, indicating that the prediction of the KDE-method is
precise enough for the trade-off algorithm. Slightly worse is

all which needs significantly more steps to achieve an agree-
ment. These results can be explained by the lower perfor-
mance of the single offers (as described in section 4.1). Spe-
cifically, these individual offers have a lower utility to the
opponent, therefore they are less likely to be accepted. Not
using the similarity criteria performs, as expected, worst.
Based on this results, we also accept hypothesis 7.

5. CONCLUSIONS AND FUTURE WORK

In this paper we showed that the preferences of a negotiation
opponent in bilateral multi-issue negotiations can be effecti-
vely learnt by using kernel density estimation. Specifically,
by applying it to Faratin’s trade-off model, we showed that
it can make negotiations more efficient (in terms of utility
as well as time of agreement). By choosing kernel density
estimation as the learning paradigm, we did not have to
make any explicit assumptions about the relation between
time, negotiation history and the opponent’s preferences (as
many other learning methods have to). Also, the method
has reasonable computational complexity for the bounded
nature of e-commerce domains.

In more detail, our experiments showed that applying ker-
nel density estimation to a single-offer case improved the
performance of the trade-off algorithm. The resulting algo-
rithm is robust when the prediction of the weights is impre-
cise and is not dependent on the ordinality of the weights
being kept. Moreover, the amount of knowledge used in
the KDEs does not have a major influence on the perfor-
mance, which means it can work effectively in competitive
environments in which minimal information is made avai-
lable. Furthermore, we showed that using the KDE-method
outperformed the uniform weight strategy for the opponent
when it has a skewed weight vector and performed at least
as well when it uses a near uniform weight vector. Finally,
we showed that using the KDE-method in a complete ne-
gotiation encounter which uses the predictions extensively
also leads to a better performance. Specifically, the more
knowledge is used in the KDEs, the higher the utility and
the lower the communication load.

For the future, there are two main ways in which this
research can be extended. Firstly, we would like to consi-
der the performance of our method against additional meta-
strategies. In this work, we only consider an opponent that
uses the smart meta-strategy and other meta-strategies may
also be adopted in practice. Secondly, our method for pre-
dicting the relative weight of the opponent’s preferences for
its various negotiation issues could be applied to a variety
of other negotiation models where it is important to have
approximations of these values. Thus, for example, it could
be used in purely competitive encounters in incomplete in-
formation settings or situations in which an agent engages in
multiple concurrent negotiations in order to procure a par-
ticular service. In both cases, the better the approximation,
the better the deal the agent will be able to make.

6. ACKNOWLEDGMENTS

We would like to acknowledge Dr. Steve Gunn for bringing
the kernel density estimation method to our attention.

7. REFERENCES

(1] H. Bui, S. Venkatesh, and D. Kieronska. An
architecture for negotiating agents that learn.

Technical report, Department of Computer Science,
Curtin University of Technology, Perth, Australia,
July 1995.

[2] P. R. Cohen, editor. Empirical Methods for Artificial
Intelligence. The MIT Press, 1995.

[3] P. Faratin. Automated Service Negotiation Between
Autonomous Computational Agents. PhD thesis,
University of London, Department of Electronic
Engineer Queen Mary & Westfield College, December
2000.

[4] P. Faratin, C. Sierra, and N. R. Jennings. Using
similarity criteria to make issue tradeoffs in
automated negotiations. Artificial Intelligence,
142(2):205-237, 2002.

[5] S. Fatima, M. Wooldridge, and N. R. Jennings.
Optimal agendas for multi-issue negotiation. In
Proceedings of the second international joint
conference on Autonomous agents and multiagent
systems, pages 129-136. ACM Press, 2003.

[6] S. S. Fatima, M. Wooldridge, and N. R. Jennings.
Multi-issue negotiation under time constraints. In
Proceedings of the First International Conference on
Autonomous Agents and Multiagent Systems
(AAMAS-02), pages 143-150, Bologna, Italy, July
2002.

[7] E. Gerding and D. van Bragt. Multi-issue negotiation
processes by evolutionary simulation, validation and
social extensions. Computational Economics,
22(1):39-63, August 2003.

[8] M. He, N. R. Jennings, and H.-F. Leung. On
agent-mediated electronic commerce. [EEE
Transactions on Knowledge and Data Engineering,
15(4):985-1003, july/august 2003.

[9] N. R. Jennings, P. Faratin, A. R. Lomuscio,

S. Parsons, C. Sierra, and M. Wooldridge. Automated
negotiation: prospects, methods and challenges. Int.
J. of Group Decision and Negotiation, 10(2):199-215,
2001.

[10] J. R. Oliver. A machine-learning approach to
automated negotiation and prospects for electronic
commerce. Journal of Management Information
Systems, 13(3):83-112, 1997.

[11] H. Raiffa. The Art and Science of Negotiation.
Harvard University press, Cambridgem USA, 1982.

[12] A. Rubinstein. Perfect equilibrium in a bargaining
model. Econometrica, 50(1):97-109, January 1982.

[13] V.-W. Soo and C.-A. Hung. On-line incremental
learning in bilateral multi-issue negotiation.
AAMAS’ 02, 2002.

[14] K. Sycara. Multi-agent compromise via negotiation. In
L. Gasser and M. Huhns, editors, Distributed Artificial
Intelligence (Vol. 2). Morgan Kaufmann, Los Altos,
CA, September 1989.

[15] M. Wand and M. Jones. Kernel Smoothing. Chapman
& Hall, London, 1995.

[16] D. Zeng and K. Sycara. Bayesian learning in
negotiation. International Journal Human—Computer
Studies, 48:125-141, 1998.

