An Adaptive Bidding Agent for Multiple English
Auctions: A Neuro-Fuzzy Approach

Minghua He, Nicholas R. Jennings and Adam Priigel-Bennett
School of Electronics and Computer Science
The University of Southampton, Southampton, SO17 1BJ, United Kingdom.
E-mail: {mh0Or, nrj, apb}@cs. sot on. ac. uk

Abstract— This paper presents the design, implementation and
evaluation of a novel bidding strategy for obtaining goods in
multiple overlapping English auctions. The strategy uses fuzzy
sets to express trade-offs between multi-attribute goods and
exploits neuro-fuzzy techniques to predict the expected closing
prices of the auctions and to adapt the agent’s bidding strategy
to reflect the type of environment in which it is situated. We
show, through empirical evaluation against a number of methods
proposed in the multiple auction literature, that our strategy
performs effectively and robustly in a wide range of scenarios.

I. INTRODUCTION

Online auctions are increasingly being used for a variety of
e-commerce applications. This wide-spread adoption means
that in many cases there are likely to be multiple auctions
selling the desired good or service. Given this huge search
space, software agents have an important role to play. They
can monitor relevant auctions, compare and make trade-offs
between the offerings, and determine what bids to place in
the chosen auctions in order to obtain the best deals.

Against this background, this paper develops a bidding
strategy for bidding across multiple auctions. We specifically
consider the case of bidding in multiple overlapping English
auctions. An English auction is one in which a single good
is on offer and the auctioneer starts with his reserve price
(minimum acceptable) and solicits successively higher (public)
bids from the bidders and the last bidder remaining in the
auction is the winner [4]. In contrast to the stand-alone English
auction, there is no dominant strategy that can be exploited in
the multiple auction context.

In more detail, we consider a multiple English auction
market, where each auction is given a start and an end time that
may overlap with other auctions. Each auction sells a single
unit of the desired good and this good may be described by
multiple attributes (e.g., in auctions selling flights, the goods
may be described by their dates of departure and return, and
the class of ticket being bought). Bids for these goods must be
at least h(a) larger than the previous price to be valid. If an
agent bids successfully, it becomes the active agent which is
holding the bid. Auctions respond to any bid before they close
and their good is allocated to the active bid holder when the
auction closes. Our auctions have a soft deadline, i.e., they do
not close until a fixed period after the last bid is placed (e.g.,
Yahoo!Auctions and Auction Universe). This means sniping
is not effective and the lack of deadline effects means the
auctions are akin to the standard English one.

Given this context, we aim at developing a bidding agent
that buys a single unit of the good from the available set of
auctions. As the goods are composed of multiple attributes,
the agent may have to make trade-offs between them in its
bidding in order to satisfy the user’s preferences that include:
(i) a valuation v for the good (expressed as a fuzzy set); (ii) the
ratings for different values of the good’s attributes (expressed
as fuzzy sets); and (iii) the weights which balance the valuation
and the other attributes.

To cope with the uncertainty inherent in the multi-auction
context and to make trade-offs between the different variants
of the goods available is a complex decision making problem.
A key component is being able to make predictions about
the likely closing prices of the various auctions so that the
agent can determine whether it should place a bid at the
current moment or whether it should delay because better deals
may subsequently become available. In our previous work,
we successfully used adaptive fuzzy inference methods for
this task in continuous double auctions [5] and the Trading
Agent Competition [3]. However, in both cases, the parameter
adaptation of the fuzzy rules was limited. To rectify this, here
we exploit fuzzy neural networks (FNNs) [6] since these can
do the fuzzy reasoning and, through learning, can adjust the
parameters of the fuzzy terms and consequent output as the
auctions progress. This adaptation enables the agent’s bidding
behaviour to better reflect the current state of its environment.

Our work advances the state of the art in the following ways.
First, we develop an agent bidding strategy for obtaining goods
in multiple overlapping English auctions. A practical algorithm
is described and through empirical evaluation it is shown
to be effective in a wide range of situations. The strategy
adapts to its prevailing circumstances through a mixture of
off-line and on-line learning. Second, by exploiting a fuzzy
set representation of the user’s preferences, the strategy is able
to make trade-offs between the various attributes of the goods
it purchases and cope with the inherent imprecision/flexibility
that often characterises a user’s preferences.

The rest of this paper is structured as follows. Section Il
describes the bidding algorithm and how the FNN operates.
Section 111 gives an example of the FNN strategy in operation
in a flight auction scenario. Section IV provides a systematic
empirical evaluation of the strategy and benchmarks it against
a number of strategies that have been proposed in the literature.
Finally, Section V concludes.

Il. THE FNN BIDDING STRATEGY
This section details the FNN bidding strategy.

A. The FNN Bidding Algorithm

The agent considers bidding if and only if it is not holding
an active bid in an auction or it has not already obtained the
good. Assuming neither of these conditions hold, the agent
must decide which of the available auctions it should bid in.
To do so, it first determines the auction that best satisfies the
user’s preferences (calculation detailed in section 11-D) given
its expectation about the closing prices (calculation detailed
in section 11-B) of each auction. Then, rather than placing a
bid in the selected auction immediately, it uses the intervening
time before this auction closes to see if it can bid in auctions
that close earlier and have an evaluation “close” (a fuzzy
term) to that of the selected auction. The intuition here is that
given the significant degrees of uncertainty that exist, precise
calculations are simply not reliable and an auction that appears
slightly less promising may well turn out to be better. Given
this, the agent should consider bidding in auctions that have
broadly similar expected returns so as to increase its chances
of obtaining the item (by participating in more auctions), while
ensuring the likely return is one of the highest. Thus, if there
are such close auctions, the agent will bid in them in order of
increasing closing time (i.e., bid first in the one that is going
to close first, then in the one that will close next, and so on).
The degree of closeness that is required to trigger bidding is
captured by the parameter \. Then if the difference is within
A, the agent will bid in the auction. In this sense, the choice
of X represents the risk attitude of the user [5].

Given the nature of this decision making task, it is important
that the various parameters of the FNN fit the prevailing
context as accurately as possible. This is achieved via off-
line and on-line learning. In the former case, a number of
simulated games are used to set the initial parameters of the
FNN. After this, the agent can be used in an operational setting
to actually purchase goods. In the latter case, the agent keeps
track of the various auctions and when changes occur (e.g.,
when an auction has closed or the ask prices change) they are
fed into the FNN as new training samples. These samples are
weighted more highly than older ones and so enable the agent
to better reflect prevailing circumstances.

In more detail, the decision making algorithm for the FNN
is given in figure 1. In this algorithm, data is the database
for storing the collected data required for learning in the
FNN and new_data is the data generated since the agent last
monitored the auctions. The variable holding is true when
the agent has an active bid on hold. An explanation of the
algorithm’s key functions are as follows. Auction Running
(line 3) returns true if there are still available auctions to bid
in, false otherwise. Update() (line 4) returns changes in the
auctions since they were last monitored. Such changes include
whether the agent is holding an active bid or has obtained the
good, the updated ask price of each auction, the transaction
price for any auctions that recently closed, and the number of
auctions left to bid in. Trim() (line 6) returns a modified
set of data in which the oldest information is removed.

PROCEDURE F'N Nrun()

1: data «— {}

2: holding < false

3: while holding = false or AuctionRunning() do
4: new_data — Update()

5. data < {data,new_data}

6: data — Trim()
7
8

FN Ntrain(data)
: if Success() then
9: Return
10: end if
11: if Hold() = false then
12: [@best, Sbest] — F'N Npredict()
13: L — RunningAuctions()
14: for all @ € L do
15: if (BEvaluate(a) > Spest) OF (Svest — Bvaluate(a) < N)
then
16: Bid(a)
17: break
18: end if
19: end for
20: end if
21: end while
Fig. 1. The FNN bidding algorithm.

FNNtrain(data) (line 7) trains the FNN on the set of data
which involves adjusting the parameters to better reflect the
prevailing circumstances (see section 11-B). Success() (line
8) returns true if a bid has succeeded in winning the good,
false otherwise. Hold() (line 11) returns true if the agent has
an active bid in an auction, false otherwise. F'N Npredict()
(line 12) returns the FNN’s current prediction about the best
auction (apes¢) to bid in and the degree to which this satisfies
the user’s preferences (syes¢) given the predicted prices of all
the auctions. To reason about the expected closing price of
each auction, the FNN considers a per auction reference price
(prey), the number of auctions left (ngyction), and the order
in which the auctions are due to close (0guction). Here the
reference price represents a likely value at which the auction
will close for that particular variant of the good. It is computed
by considering the current price in that auction, the transaction
prices of auctions that have previously sold the specified good,
and the average transaction price in the history records for the
specified good. RunningAuctions() (line 13) returns a list
L of all the running auctions in ascending order of end times.
Evaluate(a) (line 15) returns the evaluation of the auction
a given its current ask price. This evaluation balances both
price and the other attributes of the goods in consideration
(see section 1I-D). Bid(a) (line 16) places a bid in auction a.

To realise this algorithm, a fuzzy neural network needs to
be set up (section 11-B), the FNN’s learning algorithm needs
to be defined (section 11-C), and an evaluation method needs
to be provided for ranking the various auctions (section 11-D).

B. The FNN Architecture

As noted above, the FNN takes three inputs (pres, Nauction,
Oauction) @nd has one output (the expected auction closing
price peiose). To realise this we developed a FNN with 5 layers.

TABLE |
THE FNN RULE BASE.

Ry: If Doy 1S lOW and oguyction 1S €arly then pejose is low.
Ra: If prey is low and oguction IS late then peoqe is very_low.
R3: If prey is medium and oguyction iS €arly then pejqse is high.
Ry: If prey is medium and ngyction is sSmall
and oguction 1S late then pejose is medium.
Rs: If Doy is medium and ngyction IS big
and oguction 1S late then pejose is low.
Rs: If prey is high and ngyction is small
and ogyction 1S €arly then pgj,se is very_high.
R7: If prey is high and ngyction is big
and oguction 1S €arly then pgjose is high.
Rs: If Dy is high and oguction i late then peose is medium.
Ry: If prey is very_high and ogyction is €arly
then peiose IS very_high.
Rio If pros is very_high and oguction iS late then peose is high.

Layer 1: each node in this layer generates the member-
ship degrees of a linguistic label for each input variable
(e.g., reference price is low or there are a big number
of auctions left). Specifically, the ith node performs the
following (fuzzification) operation:

(@—c)?

O =pa@)=e 7+, M
where O™ is the output of layer 1, z is the input to the
ith node, and A; is the linguistic value (small, medium,
big, etc.) associated with this node. The set of parameters
(c;, 0;) determines the shape of the membership function.
These parameters can be adapted by learning. ~ is a very

small number to avoid the output in layer 1 being 0.
Layer 2: each node calculates the firing strength of each
rule (table 1) via the multiplication operation:

@)

where Si(l) is the set of nodes in layer 1 which feed into
node ¢ in layer 2, and w; is the output of this node (i.e,

the strength of the corresponding rule).
Layer 3: the sth node calculates the ratio of the sth rule’s
firing strength to the sum of all rules’ firing strengths:

O =wi=T_ {ua,},

_ Wi
ZjeS(Q) w;’
where S@) s the set of nodes in layer 2. This ratio

indicates the relative importance of each rule.
Layer 4. the ith output of the node is calculated by:

02(4) =r; Z w;,

o a(3)
]651

053) =w; =

®

4

where j € S,@ is the set of nodes in layer 3 that feed into
node i. The output of this layer combines all the outputs

of the rules that have the same consequent output.
Layer 5: the single node in this layer aggregates the
overall output of the FNN (i.e, peiose) @s the summation
of all incoming signals:

0= Y

i€s(4)

/
T4 E 'lU] 5

jes®

®)

where j € S™ is the set of nodes in layer 4.

C. FNN Learning

As discussed in section I, the FNN involves two types of
learning: off-line and on-line. In either case, however, the
same basic method is used. Specifically, the learning rule
of the FNN agent is based on gradient descent optimisation
[8]. Given the training data x; (i = 1,2,3), the desired
output value Y, and the fuzzy logic rules, the parameters of
the membership functions for the FNN’s input variables are
adjusted by supervised learning. Here the goal is to minimise
the error (£) function for all the training patterns:

1
E=3 5(Y;—0) 6)
J

where Y; is the actual closing price of pattern j and 0% is
the predicted closing price of the FNN for pattern ;. For each
set of training data, starting at the input nodes, a forward pass
is used to compute the activity levels of all the nodes in the
network. Then starting at the output nodes, a backward pass is
used to compute g—g for all the hidden nodes. Assuming that
« is the adjustable parameter in a node, the general learning
rule for adapting the FNN used is [6]:

OFE
alt+) =a(t)+n (52). (7)
where 7 is the learning rate (n € [0.001,0.01]).

The FNN agent’s parameters that get adjusted during learn-
ing are the consequent output of each rule (r; in layer 4) and
the centre and width of the Gaussian membership functions
for each of the fuzzy terms (c¢; and §; in layer 1). All of these
parameters are adapted based on (7). Specifically, the adaptive

rule of ¢; in layer 1 is as follows (where S(_Qi) means the set
of nodes in layer 2 that are connected with node 7 in layer 1):

OE 3 OE 005 o0
dei d0® 90" Oci
mes®? m i
D> (OF ao,@) 902 a0
= = . , (8
(@) 5 (2) &) .
mes® \ kes® 00;™ 00m 00; 9ei
where
OE) .
80}23) - (01 - Y)Tkv (9)
D W — Wi . _
a0 _ 7&;%)2 if k=m, (10)
002 ﬁz—k wﬂ::) otherwise;
(2)
Dot =)
a0} o}
90" L (g —)
e =e i 53 (12
So the adaptive rule of ¢; is:
ci(t+1)=c(t) — ngg (13)
Similarly, from (9), (10), and (11) the adaptive rule of 9, is
derived as:
OE 20 o0

=2

meS (fg

>

es®
kes®)

(3)
OE dE 00} W
i a0y 90) 90N 96

where " (2
00, *7”_5% Ty — C4 2
o =¢ o) = L (15)
Hence the adaptive rule of ¢; becomes:
OF

8i(t+1) =6;(t)

~ 5. (16)

The learning rule for adjusting r; in layer 4 and (c;, 4;) in
layer 1 is:

OF

®) goW
0B 90 90" _ 61 _y T u,

i~ 900 g0 or; : (1)
i jes®
Hence r; is updated by:
ri(t+1) =ri(t) —n(0® —Y) > w). (19)

jes®
D. Evaluating the Auctions

Given the expected auction closing prices, the agent needs to
make a decision about which auctions to bid in. For ease of
expression, we present this evaluation function for the case
where only price and one other attribute of the good are
considered. Given the user’s preference on price and other
attributes, the evaluations of the various factors need to be
integrated. In fuzzy theory, the process of combining such
individual ratings for an alternative into an overall rating is
referred to as aggregation [9]. Let w, and w, be, respectively,
the weight of price and the other attribute that the agent is
concerned with, and w, be the evaluation with respect to
price and u, the evaluation with respect to the other attribute.
Intuitively, the role of the aggregation operator is to balance
u, and u, and obtain an overall evaluation u, , somewhere
between the two values. There are three main aggregation
operators that are commonly used and each of them has
different semantics (conforming to different user objectives):

« Weighted average operator:

(19)

Up,q = UpWp + UgWyq,

using this operator, even if one of the evaluations is very

low, the overall output can still be reasonably high.
« Weighted Einstein operator [7]:

Lo Up X Ya U
max{wp,wq} P max{wp,wq} ¢

(20)
satisfies the characteristics of T-norms operators. Thus, if
one evaluation is not satisfied (i.e., u, = 0 or u,=0), the
overall evaluation is 0. Intuitively, this corresponds to the
situation where both evaluations must be satisfied.

o Uninorm operator [10]:

Up,qg =

(1 —7)upug
Up g = , 21
PS = T nupug +r(l—up)(1 —ug) D
where 7 € (0,1) is the threshold of this operator.
Thus, if both the evaluations are above the threshold,
the overall evaluation is enhanced; if both are less than

the threshold, the overall evaluation is weakened by each

other; otherwise, the evaluation is a compromise if there
is a conflict between the two evaluations.

Since these operators are all plausible means of aggregating
price and the other attributes, and no one is necessarily
superior in all cases, we need to empirically evaluate the
impact of these operators on the performance of the agents.
This we do in section 1V-B.2.

I11. FLIGHT AUCTION SCENARIO

The scenario in this section provides an illustration of the
operation of the FNN strategy and is the experimental domain
for the evaluations reported in section IV. Here we consider
how to model the user’s preferences as fuzzy sets, outline the
environmental setting for realising the scenario, and present
the training results for the FNN agent.

In more detail, there are a number of airlines selling flight
tickets through auctions. Each auction is selling a flight on
a particular day. Each customer has an agent acting on their
behalf and they are informed of the customer’s preferences
about price and travel date. The aim of the agent is to obtain
the good that maximises the user’s satisfaction degree.

A. Users Preference Settings

We describe the valuation v of the agent for the flight ticket
as a trapezoid shape fuzzy number. In this case, the higher the
price of the good, the lower the satisfaction degree. When the
price increases to the valuation of the agent, the satisfaction
degree is 0. The travel date ¢ is represented as a triangular
fuzzy number. By way of illustration, suppose a customer’s
valuation about the ticket is about 300 pounds and she wants
to travel on about the 15th of December. These preferences
are expressed as fuzzy sets by the respective membership
functions pp and pg given as follows.

1 if x <200,

pp(z) =4 2902 if 200 < z < 300, (22)
0 if x> 300.
=12 jf 12 <y < 15,

ne(y) =q ¥ if15<y <18, (23)
0 if y<12ory > 18.

B. Experimental Settings

The experiments aim to cover a broad range of scenarios.
All the parameters about the environment are assigned at the
beginning of the game. Here we suppose that all auctions
start at a price of 0 and all have a bid increment of 10
pounds. A day in the game equals 30 seconds of real time.
An auction 7’s starting time and end time are randomly chosen
from uniformly distributed ranges. Auction :’s flight date and
a customer’s preferred travel date ¢; are chosen randomly from
(11,19) and (12, 18) respectively. The valuation of the goods
are randomly chosen from range (170, 370).

C. The Learning Algorithm

As discussed in section 1I-C, the agent engages in a period
of off-line learning in order to provide initial parameters for
the FNN. Figure 2 shows the curve of the root mean square
error with respect to the number of epochs. After 200 training
epochs, it can be seen that the error between the target output
and the actual output reaches its lowest point and so the

Root mean square error
vooN NN

TABLE 11
EXPERIMENTAL RESULTS FOR VARYING AGENT POPULATIONS. EACH
TABLE CELL GIVES A MEASURE OF HOW THE AGENT PERFORMS IN THAT
SETTING AND THE PERCENTAGE OF THAT AGENT IS IN THE POPULATION.

session Agent Strategies

a0 180

100
Epochs

Fig. 2. Learning curve: root mean square error versus time.

(a) Antecedent MFs for reference price (p,)

Membership
o
&
T

= L =
10 15 N pie 2 20 %

(b) Antecedent MFs for number of auctions left (n_ .)
aucl\‘un

Membership

;

Number 3 4 5

(c) Antecedent MFs for auction closing order (o,
T

auction
T T T T

Membership

Order

Fig. 3. Comparing antecedent membership functions (MFs) before (solid
line) and after (dashed line) off-line learning.

parameters settings of this point are those used when the
agent is made operational. Specifically, figures 3 shows the
comparison of the FNN parameters before and after training.
As can be seen, the parameters for each of the three inputs
are adjusted from the original settings.

1V. EMPIRICAL EVALUATION

This section evaluates the FNN agent by comparing it in a
variety of environments, with other agents that use bidding
strategies proposed in the literature.

A. Benchmarking Strategies

Since most of the extant multi-auction bidding strategies are
concerned solely with price, we had to extend them to deal
with bidding for goods that are characterised by multiple
attributes. Thus, in all cases, the agents used the aggregation
operators specified in section I1-D in order to make trade-
offs between price and travel date. The specific benchmark
strategies we used are:

o Greedy strategy (adapted from [1]): unless the agent is
active in some auction, bid in whichever auction currently
has the highest evaluation (as defined in section 1I-D);

o Fix Threshold strategy (adapted from [2]): randomly as-
sign an evaluation threshold 6 € [0, 1] for the satisfaction
degree. Then bid in a randomly selected auction until the
good is procured or @ is reached. In the latter case, switch
to another random auction until all of them close.

no. Greedy

Fix Auction

Fix Threshold FNN

0.236 (40%)
0.223 (20%)
0.249 (20%)
0.256 (25%)

0.186 (20%)
0.174 (20%)
0.173 (20%)
0.165 (25%)

0.200 (20%) 0.297 (20%)
0.206 (40%) 0.313 (20%)
0.214 (20%) 0.286 (40%)
0.202 (25%) 0.312 (25%)

O WN

0.283 (20%) 0.186 (40%) 0.279 (20%) 0.361 (20%)

« Fix Auction strategy (adapted from [2]): Randomly select
at the beginning of game the auctions in which bids
will be placed and then only bid in these auctions. The
auctions chosen here are those that have the highest
satisfaction degree for date. The agent continues bidding
in this auction until the price valuation is met, then it will
switch to another auction.

B. Results

Three groups of experiments are conducted to evaluate the
performance of each type of agent (sections IV-B.1 to IV-B.3).
In each group of experiments, there are a number of sessions
which correspond to experiments with different settings (as
per section 111-B). For each session, at least 200 games! are

played among the agents.

Since the number of agents in each experiment varies, the
performance px of a particular type K of agent (i.e., Greedy,
Fix Auction, Fix Threshold, and FNN) is calculated as:

ng (%)
prc = i 0, (24)
where ng is the number of type /& agents in the same game
and uz(f,)q is the satisfaction degree for agent <.

1) Varying Agent Populations: This experiment aims to
compare the performance of the different types of agents when
there are varying numbers of the other agent types in the
population (here the population size is fixed to 20). In this
experiment, the weighted average operator is used and the
weight ratio is wy, : wy = 1: 1. Table 1l shows the results when
there are equal numbers of each type of agent, and when one
type dominates numerically. From this, it can be seen that the
FNN agents perform the best in all the situations considered.
This success is due to their ability to be able to select and bid
in a reasonable number of auctions that have a value close to
the auction which has the maximum satisfaction degree. The
Greedy agent is the next most effective. This agent endeavours
to make a transaction whenever it can. Its main shortcoming
is that it only considers ongoing auctions (it ignores those
that have not yet started and so fails to consider the full set
of potential purchasing opportunities when making bidding
decisions). Thus, it sometimes buys a good at the user’s
valuation price, when, if it waited, it may well find subsequent
auctions with lower closing prices. The Fix Auction performs
worst because it only bids in auctions where it knows, a prior,

1A t-test showed that 200 games are sufficient to give a significant ranking
among the agents. A p value of p < 0.05 is reported for all the experiments.

that it can get a high satisfaction on the flight date. This leads
to a poor overall performance because it misses auctions that
have a high evaluation on price but a lower one on date.

It can also be seen from table Il that all the agents, except
Fix Auction, behave best when there are many Fix Auction
agents in the population. This is because the Fix Auction
agents only bid in a small number of auctions. Thus other
auctions have less competition and, consequently, lower prices.
The FNN agent behaves worst when there are many agents like
itself. This is because they tend to have similar predictions
about the expected closing prices of the auctions and agents
with the same preference date will compete strongly with one
another in the same set of auctions.

2) Varying Aggregation Operators: This experiment
studies the impact on the different types of agents of the
different ways of trading-off the price and travel date (figure
4). To do this, we fix the number of auctions to be 10 and
the number of agents to be 25. We also fix the weight of
wp : wg = 1 : 1 for each operator. This time, the numbers
of each agent type in a given game are randomly generated.
Again, the FNN agents behave the best in all cases. In fact,

Perfomance

S 0wl N

‘Aaggregation operator

Fig. 4. Performance using different aggregation operators.

the order of performance of the four kinds of agent does not
change from that reported above (for weighted average and
uninorm operators). But for the weighted Einstein operator,
the Fix Threshold agent is now the worst and the Fix Auction
agent performs better. This is because for the Fix Auction
agent, the evaluation for date is always high. Thus the overall
evaluation of the auction is high; but for the other agents, the
evaluation for date can be small.

3) Varying Preference Weights. This experiment evalu-
ates the performance of the different agents when they use
varying weights for the different attributes. This is an impor-
tant issue to consider because, again, various weightings may
lead to a different ranking of the strategies. Since the uninorm
operator is usually used when w, = w, = 0.5. We do not
consider it here. For weighted average and Einstein operators,
we tested the impact of the weights on the performance of
various strategies. In the experiment, we fix the number of
auctions to be 10 and the number of agents to be 25 and figures
5 and 6 show the performance of the agents with the three
representative weights we consider. In figure 5, the order of
each kind of agent does not change for different weight ratios.
However, the satisfaction degree decreases as w, decreases.
The reason for this is that the auctions’ closing prices are
always in the same broad range. Thus with the decrease of
wq, the evaluation on w, also decreases, as does the overall
satisfaction. Again, in all cases, FNN agents perform the best.

However, the order of the agents does change for different
weight ratios when using an Einstein operator. As shown in

Performance

S| Y Y

Weight G, W)

Using weighted average operator with varying weights.

ol

Weight (w,, : w,)

Using weighted Einstein operator with varying weights.

Fig. 6.

figure 6, the Greedy agent’s performance is worse than in
the weighted average case. This is because the increasing
evaluation for date is ignored since the agent only bids in those
ongoing auctions in which it can make a profit. In contrast, the
Fix Auction agent’s performance is better than in the weighted
average case due to its high evaluation of the date attribute.
Again, in all cases FNN agents are the most successful.

V. CONCLUSIONS

This paper developed a new algorithm that guides an agent’s
bidding behaviour in multiple overlapping English auctions for
a single item characterised by multiple attributes. The FNN
strategy uses neuro-fuzzy techniques to predict the expected
closing prices of the English auctions and to determine which
auction the agent should bid in at what time. The use of a fuzzy
neural network also allows the agent’s decision making criteria
to be adapted to the situation in which it finds itself. Moreover,
we benchmarked our algorithm against a number of common
alternatives available in the literature and showed the superior
performance of our method. Our algorithm can also make
trade-offs between the different attributes that characterise the
desired good in order to maximise the user’s satisfaction.

REFERENCES

[1] A. Byde. A comparison among bidding algorithms for multiple auctions.
Technical report, HP Research Labs, 2001.

[2] A.Byde, C. Preist, and N.R. Jennings. Decision procedures for multiple
auctions. In Proceedings of the first International Joint Conference on
Autonomous Agents and Multi-Agent Systems, pages 613-620, 2002.

[3] M. He and N. R. Jennings. Designing a successful trading agent: A
fuzzy set approach. IEEE Transactions on Fuzzy Systems, 2004.

[4] M. He, N. R. Jennings, and H. F. Leung. On agent-mediated electronic
commerce. |EEE Transactions on Knowledge and Data Engineering,
15(4):985-1003, 2003.

[5] M. He, H. F. Leung, et al. A fuzzy logic based bidding strategy for
autonomous agents in continuous double auctions. IEEE Transactions
on Knowledge and Data Engineering, 15(6):1345-1363, 2003.

[6] J.Jang. ANFIS: adaptive-network-based fuzzy inference systems. IEEE
Transactions on System, Man and Cybernetics, 23(3):665-685, 1993.

[7] X. Luo, C. Zhang, and J. Cai. The weighting issue in fuzzy logic.
Informatica: An International Journal of Computing and Informatics,
21(2):255-262, 1997.

[8] D.E. Rumelhart, G.E. Hinton, et al. Learning internal represenations by
error propagation. Parallel distributed processing, 1:318-362, 1986.

[9]1 R.R. Yager. Aggregation operators and fuzzy systems modeling. Fuzzy
Sets and Systems, 67:129-145, 1994,

[10] R.R. Yager and A. Rybalov. Uninorm aggregation operators. Fuzzy Sets
and Systems, 80:111-120, 1996.

