
A Risk-Based Bidding Strategy for Continuous Double
Auctions

Perukrishnen Vytelingum and Rajdeep K. Dash and Esther David and Nicholas R. Jennings1

Abstract. We develop a novel bidding strategy that software agents
can use to buy and sell goods in Continuous Double Auctions
(CDAs). Our strategy involves the agent forming a bid or ask by as-
sessing the degree of risk involved and making a prediction about
the competitive equilibrium that is likely to be reached in the mar-
ketplace. We benchmark our strategy against two of the most com-
mon strategies for CDAs, namely the Zero-Intelligence and the Zero-
Intelligence Plus strategies, and we show that our agents outperform
these benchmarks. Specifically, our agents win in 100% of the sim-
ulations against the ZI agents and, on average, 75% of the games
against the ZIP agents.

1 Introduction

Software agents that can act autonomously and interact in flexible
ways are increasingly being used in a variety of electronic market-
places. One of the most common forms of these marketplaces is the
Continuous Double Auction (CDA) in which traders submit offers to
buy (bid) and offers to sell (ask) at any time during the trading pe-
riod and in which the market clears.2 continuously. Such CDAs have
emerged as the dominant financial institution for trading securities
and financial instruments and today the major exchanges (like the
NASDAQ and the NYSE) use variants of the CDA institution.

In a centralised CDA where an auctioneer has complete knowledge
of the market (i.e. is aware of all traders’ private information), it is
possible to achieveoptimal market efficiencywhere the total profit of
all the traders is maximised and the transactions are made at the the-
oreticalcompetitive equilibrium(CE) price. However, such complete
information is highly unlikely to occur in practice because traders are
typically selfish profit maximisers.

Against this background, Smith [5] showed in his seminal study
of competitive market behaviour that in experiments with human
traders, the market efficiency achieved in a decentralised3 environ-
ment is close that of the centralised one. More recently, Daset al.
described a set of controlled experiments where human traders inter-
act with software agents. Hence, they found that the agents consis-
tently obtained higher profits than their human counterparts and this
led them to speculate that agent-based strategies may improve to the
point where they can always outperform human opposition [7].

Given this potential, several researchers have developed trading
strategies for software agents. One of the earliest attempts in this
direction was the Zero-Intelligence (ZI) strategy [4]. A ZI agent es-
sentially ignores the state of the market when forming a bid or ask
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2 The market clears as soon as a bid exceeds an ask.
3 Traders’ preferences are private information in a decentralised environment.

and submits a random value drawn from a uniform distribution. Al-
though it is extremely simple, the ensuing market efficiency, if all
agents adopt it, is close to optimal. However, Cliffet al. argue that
this efficiency is a consequence of the intrinsic structure of the CDA,
rather than an indicator of the suitability of the ZI as a profitable
trading strategy [2]. To illustrate this point, they developed the Zero-
Intelligence Plus (ZIP) strategy. In this strategy, the traders maintain
a profit margin (the ratio of the trader’s profit to its valuation of the
good) that determines their bid or ask at any time during the trad-
ing process. Importantly, this profit margin adapts to the prevailing
market conditions through a learning mechanism, so that the trader
can submit bids or asks that remain competitive. Other strategies for
the CDA include the GD strategy [8] which uses a belief function
for price formation and the FL strategy [6] which uses fuzzy logic to
decide on a bid or ask (based on a reference price, which is the me-
dian of the previous transaction prices). In empirical studies, it has
been shown that the ZIP strategy outperforms the GD strategy [3],
but nevertheless, we believe that ZIP is a too simple a bidding strat-
egy. It relies principally on the adaptation of its profit margin to the
prevailing market conditions. Moreover, we believe the FL approach
of making decisions based on a reference price is sound, but that bet-
ter results would be obtained if the reference was based on the CE
price (since this is where prices are likely to stabilise).

Given these insights, we believe that the key to developing a more
effective strategy is to perform some degree of prediction about the
CE price (since it cannot be calculateda priori in decentralised en-
vironments), with bidding decisions based on the notion of risk atti-
tude (adapted to best fit the prevailing market situations). We believe
that risk (here defined as expected utility loss resulting from missing
out on a transaction) is the most appropriate way to characterise the
agent’s willingness to trade, rather than the profit margin used in the
ZIP strategy. To this end, we develop a profit-maximising adaptive
bidding strategy based on risk and CE price prediction. We term our
strategy as Risk-Based (RB) and study its behaviour in both homoge-
neous and heterogeneous agent populations. As the CDA cannot be
analysed from a theoretical perspective, we measure its effectiveness
by empirically benchmarking RB against the ZI and the ZIP strate-
gies (since these are probably the two most common strategies).

This work advances the state of the art in the following ways. First,
we develop a novel strategy based on the concept of risk. Thus, our
agents form a bid or ask depending on how risk-seeking or risk-
averse they are and adapt their risk attitude, based on past experi-
ence, to be more effective in prevailing market conditions. Second,
we demonstrate the effectiveness of this approach to price formation
in CDAs and show that our strategy is in experimental equilibrium
[1] where there is no incentive for an RB agent to deviate to another
strategy in a population of RB agents. The remainder of this paper is



Figure 1. The model of the RB Strategy

structured as follows. We begin, in section 2, by describing our RB
strategy and provide an empirical evaluation of its effectiveness in
section 3. We conclude in section 4 and highlight future work.

2 The Risk-Based Strategy

The trading agent’s preferences are determined by itslimit price,
which is the maximum a buyer is willing to pay and the minimum
a seller will to accept. These preferences are then fed into the agent’s
trading strategy which determines how it responds to the market con-
ditions, with bids and asks. This strategy can be risk-seeking, that is
the trader tries to achieve high profit (but has a correspondingly lower
probability of transacting) or risk-averse, which trades-off (lower)
profit for a higher probability of transacting. The risk-neutral strat-
egy considers a bid or ask that maximises its expected profit. Our RB
strategy is flexible in that it can vary its risk attitude depending on
the prevailing market conditions, to remain competitive.

In more detail, RB is represented by two distinct layers (see figure
1). The first represents thereactivebidding behaviour, where bids or
asks are submitted according to a set of bidding rules (see figure 2).
These rules are influenced byτ , the target price produced by the risk
model. To compute this value, the risk model considers the agent’s
current estimate of the CE price,p∗, which is provided by the equilib-
rium estimator. The second layer represents theadaptivebehaviour
where the trader updates its risk factor, when triggered by a market
event (such as when a transaction occurs or a new bis/ask is submit-
ted). This change causes the agent to be more risk-seeking if it can
transact at higher profit or more risk-averse if it is targeting too high
a profit. Each component is now described in turn.

2.1 The Bidding Layer

At the beginning of a period, the trader hasno informationother than
its limit price. Thus, a buyer,i, simply bidstowardsthe minimum
of its limit price, l ik, and the outstanding ask,oask, (see equation 1)
to maximise its surplus. Similarly, the seller,j, submits an ask to-
wards the maximum of its cost price,cjk, and the outstanding bid,
obid, (see equation 2). The buyer or the seller will agree to a transac-
tion when its bid or ask improvement (on the outstanding bid or ask
respectively) is within an absolute value∆spread which we set to the
minimum indivisible unit of currency (0.01).

askj =

{
oask− (oask - max{cjk, obid})/η if first round

oask− (oask -τ)/η otherwise
(1)

bidi =

{
obid+ (min{l ik, oask} − obid)/η if first round

obid+ (τ - obid)/η otherwise
(2)

whereη ∈ [1,∞) is a constant that determines the decrease rate
of profit margin. A lowη implies a faster rate of convergence of bids
or asks towards a transaction price and, conversely, a highη implies
a more conservative bidding approach and a slow convergence.

A buyer with a low limit price, should maintain its bargaining
power by being able to bid for as long as possible. In contrast, a buyer
with a high valuation, relative to the outstanding ask, should max-
imise its profit byexploring the market and exponentially reducing
the bid-ask spread4. In either case, the behaviour is given in equa-
tion 1 and 2. However, if the outstanding bid (ask) is higher (lower)
than the buyer’s limit price (seller’s cost price), the trader should not
submit any bid (ask) until the beginning of the next round.

After the first transaction, the trader updates its estimate of the
CE price, which it refines after each transaction. Initially, we set the
trader’s risk factor,r, close to 0 (adopting a risk-neutral attitude);
−1 ≤ r < 0 means that it is risk-averse and0 < r ≤ 1 that it is
risk-seeking. The risk model then uses the CE price estimation and
the risk factor to calculate the new target price. Based on the latter
and the set of bidding rules, the trader submits a bid or ask towards
the target price in a similar way as in the first round.

Bidding Rules for Seller:
if (bid-ask spread≤∆spread) accept obid
else if (limit price≥ oask) submit no ask
else

if (no information)submit ask given by Equation 1
else

if (obid≥ τ ) accept obid
elsesubmit ask given by Equation 1

Bidding Rules for Buyer:
if (bid-ask spread≤∆spread) accept oask
else if (limit price≤ obid) submit no bid
else

if (no information)submit bid given by Equation 2
else

if (obid≤ τ ) accept oask
elsesubmit bid given by Equation 2

Figure 2. Bidding Rules

If the target price is higher (lower) than the outstanding ask (bid)
at any time during the bidding process, the buyer (seller) accepts the
outstanding ask (bid). When the outstanding bid (ask) exceeds (falls
below) our target price, rather than not submitting a further bid (ask),
we move the target price (to still be able to submit a profitable bid or
ask) using a learning mechanism which we describe next.

2.2 The Adaptive Layer

In the adaptive layer, the trader uses a set of learning rules, sum-
marised in figure 3, to update its risk factor to better fit prevailing
market conditions. Specifically, a learning algorithm is used to in-
crease or decrease the risk factor.

We adapt the trader’s risk attitude by gradually changing its risk
factor to adesired risk factor, δ(t), which depends onriskshout (the
risk factor that corresponds to the last bid, if the agent is a buyer or
to the last ask, if a seller). To decrease its risk factor, the trader sets
the desired risk factor to slightly lower thanriskshout (λ = −0.05)
and when the trader is increasing its risk factor, it sets the desired risk
factor to slightly higher thanriskshout (λ = 0.05) when decreasing

4 The bid-ask spread is the difference betweenoaskandobid.



the risk factor. The algorithm enacts a continuous-space learning pro-
cess that backprojects the error between the desired risk factor,δ(t),
and the current risk factor,r(t), onto the current risk factor.λ was
chosen, based on simulation results. Specifically,

r(t+1) = r(t) + β(δ(t)− r(t)) (3)

δ(t) = (1 + λ)riskshout, λ = {−0.05, 0.05}

whereβ ∈ (0, 1) is the learning rate of the algorithm and influ-
ences the moving rate of the target price. Next we consider our risk
model from which we determine our target price,τ .

Learning Rules for Seller:
if (transaction atq)

if (τ ≤ q) seller must increase its risk factor
elseseller must decrease its risk factor

else if (aska submitted)
if (τ ≥ a) seller must decrease its risk factor

Learning Rules for Buyer:
if (transaction atq)

if (τ ≥ q) buyer must increase its risk factor

elsebuyer must decrease its risk factor
else if (bidb submitted)

if (τ ≤ b) buyer must decrease its risk factor

Figure 3. Learning Rules

2.3 The Risk Model

The role of the risk model is to generate the target price given the
trader’s risk attitude, which is defined by its risk factor. A target
price equal to the estimated CE price implies that the trader is risk-
neutral. When a trader adopts a risk-seeking attitude, it considers a
target price that is below the CE (for buyer) or above the CE price
(for seller), in order to obtain a higher profit margin. Conversely, a
risk-averse attitude implies that the trader targets bids above (ask be-
low) the CE, which improves the probability of its bid (ask) being
accepted (but decreases its profit margin). Now, because the CE can-
not be knowna priori in the decentralised environment, we need to
estimate the CE price based on the history of transactions (which we
describe in sub-section 2.4). We model the risk differently for the
different types of agents because they may react differently to the
market conditions. Generally, agents can be of two types; namely,
intra-marginal and extra-marginal.

A buyer (seller) is intra-marginal if its limit price (cost price) is
higher (lower) than the CE price and is expected to transact in the
market. In contrast, the extra-marginal buyer has too low valuation
of the good while the the extra-marginal seller, too high cost, to be
likely to transact.

First, we consider the intra-marginal trader. We identified the
following constraints that our risk model should satisfy, given the
trader’s different risk attitudes (e.g. when the buyer is completely
risk-averse, it targets a bid at its limit price while when it is
completely risk-seeking, it targets a bid at 0). Therefore, the risk
function must be continuous and pass through three specified values
at risk factor -1, 0 and 1. It should also give symmetric behaviour
for risk-aversion and risk-seeking and finally, the ask must be within
an arbitrary maximum (MAX). Given these constraints, there is
an infinite solution space for such a function and so, we chose a

Figure 4. Risk for the intra-marginal trader for differentθ

parameterised function (see figure 4) within the solution space with
θ determining the behaviour of the function (i.e. its rate of change
with respect to risk factor). Whenθ is high, the absolute gradient
tends to 0 at the CE and increases asθ tends to -1. Experimental
results suggest that the behaviour of our bidding strategy depends on
the valueθ and we study its implications in our empirical evaluation.
Our function imposes a constraint onθ ∈ [−1,∞) to limit the
maximum absolute gradient and avoid the target price updating
excessively with respect to change in the risk factor. In more detail,
the intra-marginal buyer’s and seller’s model is as follows:

For a buyer,

τ =

{
p∗ × (1− r eθ(r−1)) if r ∈ (0, 1)

(lik − p∗) (1− (r + 1) erθ−) + p∗ if r ∈ (−1, 0)

where θ− = (p∗ × e−θ)/ (lik − p∗)− 1 (4)

For a seller,

τ =

{
p∗ + (MAX− p∗) re(r−1)θ if r ∈ (0, 1)

p∗ + (p∗ − cjk) r e(r+1)θ− if r ∈ (−1, 0)

where θ− = log [(MAX− p∗)/(p∗ − cjk)]− θ (5)

We next consider the case where the trader is extra-marginal. In
this case, the trader modifies its risk function (shown in figure 4) to
that of figure 5. This reflects the fact that the extra-marginal trader
cannot be risk-averse and its risk factor has to be greater than 0 if it
is to have any chance of transacting with a profit. Note that equations
4 and 5 also apply to the extra-marginal trader, withp∗ replaced by
the limit price.

2.4 The Equilibrium Estimator

We use themoving averagemethod for estimating the CE price,p∗,
based on the history of transactions. We make this choice because
it is an objective analytical tool that gives the average value over a
time frame spanning from the last transaction. Moreover, it is sensi-
tive to price changes over a short time frame, but over a longer time
span, is less sensitive and filters out the high-frequency components
of the signal within the frame. Moving averages are commonly used
to emphasize the direction of a trend and smooth out price fluctua-
tions that can misinform the trader. Based on our assumption that the
transaction prices converge to equilibrium, we introduce the notion



Figure 5. Risk for the extra-marginal traders for differentθ

of recencyin the Moving Average by giving more weight to the more
recent transaction prices. In so doing, it emphasises any convergence
pattern in the history, improving our estimation.

3 Empirical Evaluation

We describe the experimental setup of our CDA market and evaluate
the RB strategy in both homogeneous and heterogeneous environ-
ments (that is with similar and different strategies respectively).

3.1 Experimental Setup

Our CDA market consists of a setI of buyers and a setJ of sellers
(we use a population of 10 buyers and 10 sellers). At the beginning
of each trading period, each buyeri ∈ I is given a set ofM limit
prices,~Li (ordered from highest to lowest), for the goods it wants to
buy. Similarly, each sellerj ∈ J is given a set ofN cost prices,~Cj

(ordered from lowest to highest) for goods to sell:

~Li = {li1, ..., liM} ∀i ∈ I (6)
~Cj = {cj1, ..., cjN} ∀j ∈ J (7)

We assume that the trading agents have fixed roles (that is agents
are either buyers or sellers) to conform to previous studies on CDAs
[2, 5] and that agents do not have any information about the compe-
tition. A trading period is deemed finished after a specified period of
inactivity which typically implies that the highest limit price of the
buy side is lower than the lowest cost price of the sell side. We sim-
ulate a real-time CDA through the random activation of agents from
a pool of active traders (traders that are still willing to trade) at each
time step. The limit prices and cost prices are drawn from the same
normal distribution and we set the constantη at 8.

Our simulations were conducted over 100 periods, with buyers and
sellers receiving an allocation of limit and cost prices at the beginning
of each period. We enforce a no-order queuing market rule where
there is a unique outstanding bid and a unique outstanding ask at
any time and the NYSE spread-improvement rule which states that
any new bid and ask must improve upon the outstanding bid and
ask respectively. Whenever the outstanding bid and outstanding ask
match (bid is equal or greater than ask), a transaction is executed.

We first consider the performance of a strategy in a homogeneous
environment where all agents use the same strategy. Here the met-
ric is allocative efficiency which is the ratio of total profit from all

trades to the maximum surplus (i.e. the total profit if allocation were
optimal in a centralised environment). We then consider heteroge-
neous populations in which agents have varying strategies. Specifi-
cally, we consider a balanced population in which there are two dif-
ferent strategies and where each trader has a counterpart (using the
other strategy). Each trader and its counterpart receive the same allo-
cation of limit prices (for an unbiased comparison) and we compare
the total profit from all traders using one strategy to that of traders
using the other strategy.

3.2 Homogeneous Populations

Each buyer,i was given a set,~Li of 10 limit prices l ik,∀k ∈
{1, 2, ..., 10} and each seller,j, a set ~Cj of 10 goods at different
cost prices,cjk,∀k ∈ {1, 2, ..., 10}. All allocations were normally
distributed between 1.50 and 4.50. The risk factor of the trader is ini-
tially arbitrarily distributed between -0.2 and 0.2 in order to ensure
that agents start trading with a risk neutral attitude.

Figure 6. Transactions in a homogeneous ZIP, ZI and RB environment

In a typical experiment, using the above configuration, the theo-
retical CE price was 3.56 and the optimal allocation was 60. The
result, in figure 6, clearly shows the transaction prices converging to
the theoretical equilibrium within several rounds for the RB (θ = 1)
and ZIP strategies. We observe a non-converging fluctuating pattern
(aboutp∗) with the ZI strategy. It can be seen that our strategy avoids
the initial fluctuations of transaction prices which are observed with
the ZIP strategy. Our agents trade very cautiously on the first round,
with their decision-making based only on their private information
and the bid-ask spread. After this, the RB agent adapts its risk fac-
tor much faster than the ZIP agent adapts its profit margin, which
explains its faster convergence.

The performance of the different strategies, including the RB strat-
egy for different values ofθ, is shown in table 1. Usingθ = −1 in our
RB strategy gives the best allocative efficiency with the fastest con-
vergence towards the theoretical competitive equilibrium price. Gen-
erally, whenθ is high, our RB agent exhibits a smooth and slow con-
vergence. This contrasts with a rapid convergence and high-variance
whenθ is low. On average (overθ), our strategy has an allocative
efficiency close to that of the ZIP strategy, but it exhibits a faster
convergence.

3.3 Heterogeneous Populations

In these experiments, we compare RB with ZI. In this case, we mea-
sure performance by considering the strategy with the highest surplus



Strategy Allocative Efficiency

ZI 97.47%
ZIP 99.69%

RB (θ = 2) 99.29%
RB (θ = 1) 99.29%
RB (θ = 0) 99.09%

RB (θ = −1) 99.63%

Table 1. Behaviour of a homogeneous population

in each period and the surplus difference is the margin by which one
strategy outperforms the other.

θ RB vs ZI Surplus RB vs ZIP Surplus
wins Difference wins Difference

2.0 100-0 12.20% 71-29 3.98%
1.0 100-0 14.08% 80-20 5.15%
0.5 100-0 9.81% 73-27 3.63%
0 100-0 9.38% 72-28 2.52%

-0.5 100-0 7.53% 69-31 3.68%
-1 100-0 6.60% 73-27 4.03%

Table 2. Behaviour of a heterogeneous population

As can be seen in table 2, the RB strategy dominates the ZI strat-
egy by a very high margin and consistently outperforms the ZIP strat-
egy (with a maximum of 5.15% surplus difference and winning in a
maximum of 80 out of 100 periods, whenθ = 1). We observe a com-
parative drop in performance whenθ = 2, which suggests that when
the gradient tends to 0 at risk factor 0, the RB agent is not adapting
its risk behaviour fast enough to remain competitive in the market.
We also observe that there is no correlation betweenθ and perfor-
mance, and we can only state that the RB strategy is very effective in
a heterogeneous environment whenθ = 1.

Moreover, it was observed RB strategy performs differently at dif-
ferent stages of the trading process. At the beginning of the period,
when the trader needs to test the market,θ ≤ 0 allows the trader to
adapt at a faster rate to market changes. However, when the transac-
tion prices converge towards the theoretical CE price,θ ≥ 1 gives
the best performance with less fluctuations in the target price. By
constrainingθ to a fixed value, we have an aggregate behaviour that
is only effective at certain stages during the trading period, and is not
necessarily the best behaviour.

3.4 Experimental Equilibrium

This set of experiments aim to determine whether there is any in-
centive for an agent to change from its current strategy to another
one. When there is no such incentive for an agent to deviate from the
strategy adopted by the population, as the chosen strategy provides
the agent with the highest utility, then we describe this strategy as
in experimental equilibrium5 [1]. In these experiments, we put one
agent of a particular strategy in an otherwise homogeneous popula-
tion where agents use a different strategy. We then measured perfor-
mance by how much more surplus the single agent obtains than its
counterpart.

The results of table 3 show that in a ZIP or ZI population, a single
RB agent performed considerably better than its counterpart which
shows that there is an incentive for the ZIP or ZI agent todefect(i.e.
use the RB strategy for higher profit). Conversely, the RB strategy

5 An experimental equilibrium refers to an equilibrium which is measured
experimentally with respect to a given set of strategies.

Strategy Many Many RB Many RB Many RB Many
ZIP (θ=1) (θ=0) (θ=−1) ZI

1 ZIP - -20.1% -16.2% -14.3% -6.0%
1 RB(θ=1) 22.9% - - - 9.5%
1 RB(θ=0) 16.5% - - - 2.9%

1 RB(θ=−1) 13.3% - - - 10.6%
1 ZI 7.8% -21.3% -24.6% -21.8% -

Table 3. Single agent in a homogeneous population of a different strategy

was less vulnerable to defection to other strategies as the single ZI
or ZIP agent was outperformed by its RB counterpart. We conclude,
therefore, that experimental equilibrium can only be achieved if all
agents adopt the RB strategy.

4 Conclusions and Future Work

In this paper, we describe an adaptive bidding strategy, and where an
agent can assess the risk associated with a bid or ask under current
market conditions and bid accordingly. Specifically, the RB agent
avoids making any initialrandombid or ask (in contrast to the ZIP
strategy) considering that there is no information other than its limit
price. We demonstrated that our strategy outperforms two important
benchmarks, namely the ZI and ZIP strategies, in a balanced het-
erogeneous population and that it performs well in a homogeneous
environment. We also showed that there are incentives for an agent
to defect from the ZI or ZIP strategy to the RB strategy, while it is
not profitable to defect in a market populated by RB agents.

Further work includes the detailed study of the impact of theθ-
parameter. In our current implementation,θ is fixed and we believe
that by adapting it over the trading period the agent could better ex-
plore and exploit the market. In particular, we believe that a trader
should have a lowθ at the beginning of the trading period to attempt
to increase its profit margin, and an increasingθ as the transaction
prices converge to the competitive equilibrium.
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