
An Operational Semantics for StAC, a Language for
Modelling Long-running Business Transactions

Michael Butler1 and Carla Ferreira2

1 School of Electronics and Computer Science
University of Southampton

Highfield, Southampton SO17 1BJ, United Kingdom
mjb@ecs.soton.ac.uk

2 Department of Computer Science
Technical University of Lisbon

Av. Rovisco Pais, 1049-001 Lisbon, Portugal
carla.ferreira@dei.ist.utl.pt

Abstract. This paper presents the StAC language and its operational semantics. StAC
(Structured Activity Compensation) is a business process modelling language and a distinc-
tive feature of the language is its support for compensation. A compensation is an action
taken to recover from error or cope with a change of plan, especially when rollback of a
process is not possible. StAC is similar to a process algebraic language such as Hoare’s CSP
or Milner’s CCS but has additional operators dealing with compensation and with exception
handling. We have developed an operational semantics for the language which is presented
in this paper.

1 Introduction

The StAC language (Structured Activity Compensation) was introduced in [3] as a business pro-
cess modelling language and includes constructs for modelling compensation in business processes.
In the context of business transactions, Gray [11] defines a compensation as the action taken to
recover from error or cope with a change of plan. Compensation is a useful feature when mod-
elling long running business transactions where rollback is not always possible because parts of a
transaction will have been committed or because parts of a transaction (e.g., communications with
external agents) are inherently impossible to undo. Consider the following example: a client buys
some books in an on-line bookstore and the bookstore debits the client’s account as the payment
for the book order. The bookstore later realises that one of the books in the client’s order is out
of print. To compensate the client for this problem, the bookstore can credit the account with the
amount wrongfully debited and send a letter apologising for their mistake. This example shows
that compensation is more general than traditional rollback in database transactions. Compensa-
tion is important when a system cannot control everything, such as when interaction with humans
is involved.

StAC gives a precise interpretation to the mechanics of compensation, including the combi-
nation of compensation with parallel execution, hierarchy and exceptions. StAC was inspired by
the BPBeans framework [6] that allows an application to be built by a nested hierarchy of busi-
ness processes. Like BPBeans, StAC provides ways to coordinate basic acivities by supporting
sequential and concurrent processes, as well as compensation and exceptions. Similar coordination
mechanisms are found in the BizTalk [15] and BPEL4WS [7] business coordination languages.

2 The StAC Language

StAC has taken inspiration from other process algebras, especially Milner’s Calculus for Commu-
nicating Systems (CCS) [16] and Hoare’s Communicating Sequential Processes (CSP) [12]. Both
CCS and CSP model processes in terms of the atomic events in which they can engage. The

languages provide operators for defining structured processes such as sequencing, choice, parallel
composition, communication and hiding. StAC provides a similar process term language along
with operators for compensation and exceptions. A StAC process has global data state associated
with it and this state is changed by atomic events (or activities). Typically the data states of a
StAC process are represented using state variables and the effect of atomic activities is represented
using assignment to variables.

Formally a system is described by a set of equations of the form

Ni = Pi,

where each Ni is a process name and Pi is a StAC process expression. The syntax of StAC processes
is presented in Table 1. Note that recursion is allowed since a process Pi may contain a call to a
process named Nj .

The specification of a system is not complete with the StAC equations alone, as we might
also want to specify the effect of the basic activities on the information structures. Instead of
extending StAC to include variables and expressions we use existing state-based formal notations
to define the state variables and activities. Possible notations are Z [19], VDM [13], B [1] and the
guarded command language [8]. Any formal notation where it is possible to define a state, and
where operations are partial relations on that state may be used to complement StAC. Examples
of the use of the B notation [1] to specify the data states of a StAC process and the effect of
activities on the variables may be found in [3, 9, 10].

Process ::= A (activity label)
| skip (skip)
| b & P (condition)
| call(N) (call named process)
| P \ S (hiding)
| P ; Q (sequence)
| P ‖

X

Q (parallel)

| P [] Q (external choice)
| P u Q (internal choice)
| P{Q}R (attempt block)
| � (early termination of attempt)
| P ÷ Q (compensation pair)
| � (reverse)
| 2X (accept)
| [P] (compensation scoping)

Table 1. StAC Syntax

2.1 StAC Operators

The StAC language allows sequential and parallel composition of processes, and the usual process
combinators. Besides these, it has specific combinators to deal with compensation. An overview
of the language is given in this section.

Each activity label A (in StAC) has an associated activity A→ representing an atomic change
in the state: if Σ is the set of all possible states, then A→ is a relation on Σ.

The process skip does nothing and immediately terminates successfully. This process has a
similar interpretation to the CSP skip that describes successful termination. The process call
call(N) calls the process named N returning if and when N terminates successfully.

Hiding is identical to the CSP hiding operator. With hiding one can make the execution of
activities invisible to the environment.

Sequential and Parallel Operators. The sequential construct combines two processes, P ;Q.
In process P ;Q, P is executed first, and only when P terminates successfully can Q be executed.

In parallel process P ‖
X

Q, the execution of the activities of P and Q is synchronised over

the activities in X, while the execution of the remaining activities of P and Q is interleaved.
Synchronisation can introduce deadlock, e.g., process P may be waiting to synchronise with Q
over an activity A and that activity will never occur in Q. If set X is empty (no synchronisation)
we will represent the parallel process as P ‖ Q.

Condition. In the conditional operator, process P is guarded by a boolean function b. This
boolean function can consult the state, i.e., b : Σ → BOOL. Process b & P behaves as P if b
evaluates to true in the current state. Conversely, if b is false, the conditional process will block.

Choice. The external choice P [] Q selects whichever of P or Q is enabled (i.e., not blocked). If
both P and Q are enabled, the choice is made by the environment and it is resolved at the first
activity. The environment could be a user selecting one of the options in a menu, for example.
Notice that the [] operator causes nondeterminism in some cases. Consider the following example:

(A;B) [] (A;C).

When activity A occurs it is not possible to determine which one of the two behaviours A;B or
A;C will be chosen. In this case, the choice is made internally by the system rather than by the
environment. Internal nondeterminism may be specified directly using the internal choice operator
(u).

The parallel and choice operators may be extended to generalised versions over (possibly infi-
nite) sets of indexed processes. For example, a process that allows a user to choose a book could
be described in StAC as:

[] b ∈ BOOK • ChooseBook.b

Details of the generalised versions of the operators may be found in [9]

Attempt Block and Early Termination. An important feature in business processing is the
possibility of terminating processes before they have concluded their main tasks. Early termination
might arise if an exception occurs or a customer decides to abandon a transaction. It might also
arise in the case of speculative parallelism, where several tasks, representing alternative ways of
achieving a goal, are commenced in parallel and when one completes, the remaining tasks may be
abandoned. We have included in StAC what we term an attempt block. An attempt block P{Q}R
first executes Q, and if Q terminates successfully it then continues with P . If an early termination
operation (�) is executed within Q, the block continues with R. For example, the process

C{A;�;B}D

will first execute A, then the early termination will cause B to be skipped over and D to be exe-
cuted. Any behaviour sequentially following the execution of early termination within an attempt
block will be skipped. So an attempt block P{Q}R can be viewed as an exception construct,
with early termination representing the raising of an exception and R representing the exception
handler.

The effect of the early termination is limited to the attempt block so in the following process,
the early termination in the attempt block has no effect on the process S running in parallel with
the block:

{(P ;�;Q)} ‖ S

(We write {Q} as short for skip{Q}skip.)

In the case of parallel processes within an attempt block, a termination instruction within one
of the parallel process also affects the other processes. For example, in the process

{ (P ;�;Q) ‖ R }

the early termination after P allows R to terminate early. Our use of the term ‘allows’ is deliberate
here. R is not required to terminate immediately. It may continue for several more steps before
terminating early, it may continue to completion or it may execute forever if it is a non-terminating
process. In any case, if and when the main body of an attempt block terminates and at least one
of its constituent process has executed an early termination, then the whole of the main body is
deemed to have terminated early.

Compensation Operators. The next few StAC operators are related to compensation. In the
compensation pair P ÷Q, P is the primary process and Q is the compensation process. When a
compensation pair runs, it runs the primary task, and once the primary process has successfully
completed, the compensation process is remembered (installed) for possible later invocation.

The reverse operation (�) causes the currently installed compensation handlers to be invoked.
For example

(A÷A′);�

will execute A, install A′ and then the reverse operation will cause A′ to be executed. The overall
behaviour is A;A′.

In the case of activities composed using sequential composition, the compensation process is
constructed in the reverse order to the primary process execution. Consider the following process:

(A÷A′); (B ÷B′).

This process behaves as A;B and has the compensation task B′;A′. A sequential compensation
task can be viewed as a stack where compensation processes are pushed on to the top of the stack.
The process

(A÷A′); (B ÷B′);�

behaves as A;B, and then the � operator causes the compensation task to be executed, so the
overall behaviour is (A;B); (B′;A′) (which we write as A;B;B′;A′).

In the case of parallel processes, execution of compensations is also performed in parallel. The
parallel process

(A÷A′) ‖ (B ÷B′)

executes A and B concurrently and the resulting compensation process is A′ ‖ B′.
The accept operation (2X) indicates that currently installed compensations should be cleared,

meaning that after an accept the compensation task is set to skip. The process

(A÷A′); (B ÷B′);2X;�

executes A and B, when the � operation is called the compensation task B′;A′ has already been
cleared by the 2X operator so B′;A′ will not be executed.

Next we will consider the combination of compensation with choice. The process

(A÷A′) [] (B ÷B′)

behaves as either A or B, the choice between A and B is made by the environment. The compen-
sation task in the case that A is chosen is A′ and in the other case is B′.

If the primary process terminates early, the compensation process will not be installed. For
example, in the process:

(A;�;B)÷ C

compensation C would not be installed because of the early termination in the primary process.

In the case that a compensation pair is running in parallel with a process that executes an early
termination, this early termination cannot affect the compensation pair while the compensation
pair is executing. So the compensation pair will either not get executed at all or will be expected
to execute to completion, including installation of the compensation handler. For example, the
process

{ (A÷B) ‖ � }

will either behave as skip or as (A÷B).
The StAC language permits nested compensation pairs, meaning that compensation can itself

be compensated. The following process has two levels of compensation:

A÷ (B ÷ C).

Initially the above process behaves as A and the compensation task B ÷ C is remembered as the
compensation for A. When the reverse operator is appended to the previous process

(A÷ (B ÷ C));�

after the execution of activity A the reversal will cause compensation pair B ÷C to be executed,
by executing B and adding C to the compensation. Activity C can be invoked later by a reversal
to compensate for activity B. The nested compensation pair states that A is compensated by B,
and B is compensated by C.

Scoping of Compensation. The compensation scoping brackets [· · ·] provide nested compensa-
tion scoping are used to delimit the scope of the acceptance and reversal operators. All StAC pro-
cesses have an implicit outer compensation scope. The start of scope creates a new compensation
task, and invoking a reversal instruction within that scope will only execute those compensation
activities that have been remembered since the start of the scope. In the process

(A÷A′); [(B ÷B′);�],

the overall process would behave as A;B;B′. Compensation A′ is not invoked because its outside
the scope of the reversal instruction. An acceptance instruction, within a scope, will only clear
the compensation activities that have been recorded since the start of the scope. For example, the
process:

(A÷A′); [(B ÷B′);2X]; (C ÷ C ′)

after A, B and C have been executed, has C ′;A′ as compensation. Since the acceptance instruction
is within the compensation scope, it just clears the compensation process B′ that is within the
brackets. Another feature of compensation scoping is that compensation is remembered beyond a
scope if a reversal instruction is not performed, as in the example:

(A÷A′); [(B ÷B′)]; (C ÷ C ′).

Here, after executing A;B;C the compensation process is C ′;B′;A′, which includes the compen-
sation process B′ of the inner scope. B′ is retained because there is no acceptance instruction
within the brackets.

2.2 Example: Order Fulfillment

To illustrate the use of StAC we present the order fulfillment example described in [4] and [5].
ACME Ltd distributes goods which have a relatively high value to its customers. When the
company receives an order from a customer, the first step is to verify whether the stock is available.
If not available the customer is informed that his/her order can not be accepted. Otherwise, the
warehouse starts preparing the order for shipment, and a courier is booked to deliver the goods
to the customer. Simultaneously with the warehouse preparing the order, the company does a

credit check on the customer to verify that the customer can pay for the order. The credit check
is performed in parallel because it normally succeeds, and in this normal case the company does
not wish to delay the order unnecessarily. If the credit check fails the preparation of the order is
stopped. Here we present a very simple representation of the order acceptance and focus on the
order fulfillment part in more detail.

Before presenting the ACME process, we introduce the following syntactic sugar:

TRY P THEN Q ELSE R = Q{P}R
IF G THEN P ELSE Q = G&P [] ¬G&Q

At the top level the application is defined as a sequence as follows:

ACME = AcceptOrder÷RestockOrder;
TRY FulfillOrder THEN 2X ELSE �

The first step in the ACME process is a compensation pair. The primary action of this pair is to
accept the order and deduct the order quantity from the inventory database. The compensation
action is simply to add the order quantity back to the total in the inventory database. Following
the compensation pair, the FulfillOrder process is invoked. If the order has been fulfilled correctly
(FulfillOrder terminates sucessfully), the order is accepted, otherwise (FulfillOrder terminates
early) the order is reversed.

Notice that some processes are written with a bold font, e.g., AcceptOrder, this means that
those processes are activity labels, so they are not further decomposed.

The order is fulfilled by packaging the order at the warehouse while concurrently doing a credit
check on the customer. If the credit check fails, the FulfillOrder process is terminated early:

FulfillOrder = WarehousePackaging
‖ (CreditCheck; IF ¬okCreditCheck THEN � ELSE skip)

(IF B THEN P ELSE Q is short for (B & P) [] (¬B & Q).) Because WarehousePackaging is
within the scope of the early termination, a failed credit check allows WarehousePackaging to
terminate early, possible before all the items in the order have been packed.

The WarehousePackaging process consists of a compensation pair in parallel with the PackOrder
process:

WarehousePackaging = (BookCourier÷CancelCourier) ‖ PackOrder

The compensation pair books the courier, with the compensation action being to cancel the courier
booking. CancelCourier might result in a second message being sent to the courier rather than
reversing the send of the message which booked the courier. The PackOrder process packs each
of the items in the order in parallel. Each PackItem activity is reversed by a corresponding
UnpackItem:

PackOrder = ‖ i ∈ order • (PackItem(i)÷UnpackItem(i))

In the case that a credit check fails, the FulfillOrder process terminates early with the courier
possibly having been booked and possibly some of the items having being packed. The reversal
instruction will then be invoked and will result in the appropriate compensation activity being
invoked for those activities that did take place.

3 Semantics

In this section we will present the operational semantics for StAC. To do this we introduce a vari-
ant of the language called StACi to which we give an operational semantics. We refer to StACi

as the semantic language. In StACi, a process can have several simultaneous compensation tasks

associated with it. A process decides which task to attach the compensation activities to, and
each individual compensation task can be reversed or accepted. This contrasts with the language
presented in Section 2, where scoping of compensation is hierarchical and each scope has a single
implicit compensation task. To distinguish different compensation tasks, the operators that deal
with compensation, i.e., compensation pair, acceptance and reversal, are indexed by the compen-
sation task index to which they apply. The syntax of StACi is presented in Table 2. Later we
define a translation from StAC to StACi.

Process ::= A (activity label)
| skip (skip)
| b & P (conditional)
| call(N) (named process call)
| P \ S (hiding)
| P ; Q (sequence)
| P ‖

X

Q (parallel)

| P u Q (internal choice)
| P [] Q (external choice)
| � (early termination of attempt)
| P{Q}vR (attempt block)
| early (prematurely terminated process)
| |P |v (protection block)
| new(i).Pi (create new compensation task)
| �i (indexed reverse)
| 2Xi (indexed accept)
| ↑iP (push)
| J � i (merge)

Table 2. StACi Syntax ([P] and P ÷ Q are derived operators)

3.1 Semantic Language

Several of the StACi operators are retained from StAC without any alterations. The changes
concern operators that deal with compensation and early termination (indicated with bold font
in Table 2).

After an early termination, the process within an attempt block may continue to execute for
several steps before terminating. To deal with this we have added a boolean flag v to the attempt
block representing the following two possibilities:

P{Q}false R – Process Q can continue its execution since no early termination instruction has
been invoked within Q.

P{Q}true R – An early termination instruction has previously been invoked within the attempt
block and process Q may terminate prematurely.

The term early represents a process that has terminated early. It is used to distinguish a
process that has terminated early from a process that has terminated successfully (skip).

In some case we require that a process that has already commenced execution, e.g., a com-
pensation pair, be protected from early termination caused by another process within an attempt
block. This is achieved using the protection block |P |v. The boolean flag v will initially be false,
and once the protected process executes its first visible activity the flag will be changed to true
and P will then be protected from an early termination originating from outside the protection
block. A protection block may still be terminated by an early termination invocation within the
protection block.

In our semantics, the compensation information of a process is maintained by a compensation
function that maps each compensation task index to a compensation process. The accept and
reverse operators are subscripted with the index of the compensation process to which they should
be applied. In the StACi language we introduce the push operator that stores a compensation
process in a compensation task, i.e., ↑i Q will store Q on top of compensation task i, where i is
an index. A compensation pair P ÷i Q can be defined in terms of the push operator as follows:

| P ; ↑i Q |false.

Here, P will be executed first and after it has concluded its execution the process push will store
Q in task i. The protection block ensures that, once the process P ; ↑i Q has commenced, it is not
affected by early termination emanating from outside the protection block.

An important operator in StACi is the merge operator. The expression J � i, where J is a
set of indices, merges all compensation tasks belonging to J into the compensation task i. All
compensation tasks in J are put in parallel, the result is added to the compensation task i and all
compensation tasks J are cleared. For example, in the process

(A÷i A′); (B ÷j B′); {i, j}� k

the merge operator will compose in parallel the compensation task i (A′) with compensation
task j (B′), and add parallel process A′ ‖ B′ to compensation task k. Compensation tasks i and
j will be removed.

Consider the following process that uses three individual compensation tasks:

(A÷i A′); (B ÷j B′); (C ÷k C ′); {i, j}� k.

Initially it executes A, B and C and then merges compensation tasks i and j into compensation
task k. Joining compensation tasks i and j results in the parallel process A′ ‖ B′, that will be put
in front of the compensation task k, giving (A′ ‖ B′);C ′ as the resulting compensation for task k.

The new(i).Pi construct in StACi creates a new compensation task identified by bound vari-
able i. This can be used to model the compensation scope of StAC. For example, the StAC process

(A÷A′); [(B ÷B′);�; (C ÷ C ′)]

can be represented in StACi as

(A÷i A′);new(j).((B ÷j B′);�j ; (C ÷j C ′); {j}� i)

When the reversal instruction is invoked on compensation task j it will only execute B′. Com-
pensation process A′ that in StAC was outside the scope, in StACi is in a different compensation
task, and does not get invoked. The merge is used to preserve any compensations not reversed
within the scoping brackets.

3.2 Operational Semantics for Compensation

This section presents the operational semantics for the StACi operators excluding termination
operators. The semantics of termination is described in Section 3.3. Plotkin [18] describes how
to use transition systems to define an operational semantics; here a system is defined in terms of
transition rules between configurations. For the operational semantics of StACi, a configuration is
a tuple:

(P,C, σ) ∈ Process× (I → Process)×Σ

In the above tuple, C is a function that returns the compensation process C(i), for each compen-
sation index i. If C(i) =⊥, then the compensation is not in use. Σ represents the data state and Σ
is included in our model of StAC processes since we want to model the ability of a basic activity
to change the data state. The labelled transition

(P, C, σ) A−→ (P ′, C, σ′) (1)

denotes that the execution of a basic activity A may cause a configuration transition from (P, C, σ)
to (P ′, C, σ′). Notice that the execution of a basic activity does not alter the compensation function.
Instead, only the compensation operators may alter the compensation function.

In the configuration transition (1) we used an activity as the transition label, but two other
labels may be used, they are τ and �. The set B of all possible transition labels is defined as:

B = A ∪ {τ, �}

where A represents the set of all activity labels. The label τ is a special label that represents an
operation not visible to the external environment. In the transition rules we consider that label
B ∈ B, while A ∈ A.

Activity. We assume that an activity is a relation from states to states, and write σ
A→ σ′ when

σ is related to σ′ by A→. The execution of an activity imposes a change in the state, leaving the
compensation function unchanged:

σ
A→ σ′

(A, C, σ) A−→ (skip, C, σ′)

Conditional. In the conditional process b & P the execution of P is guarded by a boolean function
b. If the boolean function b is true in the current state σ, then P may be executed:

(P, C, σ) B−→ (P ′, C ′, σ′) ∧ b(σ) = true

(b & P, C, σ) B−→ (P ′, C ′, σ′)

Notice that when B is an activity, the guard is evaluated in the state to which the activity B
is applied, ensuring that b holds when the activity is executed. Since there is no transition rule
dealing with a false guard, a false guard causes the process to block.

Name Process Call. The call of a process N (where N = P is an equation) will substitute call(N)
by the process on the left-side of the equation:

N = P

(call(N), C, σ) τ−→ (P, C, σ)

Hiding. The rule on the left below says that the hiding operator makes the occurrence of an
activity labelled from set S invisible to the environment. The rule on the right states that the
occurrence of an activity not labelled from S is visible:

(P, C, σ) A−→ (P ′, C ′, σ′) ∧ A ∈ S

(P \ S, C, σ) τ−→ (P ′ \ S, C ′, σ′)

(P, C, σ) B−→ (P ′, C ′, σ′) ∧ B /∈ S

(P \ S, C, σ) B−→ (P ′ \ S, C ′, σ′)

Hiding events in skip is the same as skip:

(skip \ S, C, σ) τ−→ (skip, C, σ)

Sequence. The next rule shows the execution of activities within the first process of a sequential
composition:

(P, C, σ) B−→ (P ′, C ′, σ′)

(P ; Q, C, σ) B−→ (P ′; Q, C ′, σ′)

If the first process in the sequence has terminated successfully, then the second process can be
executed immediately:

(skip; Q, C, σ) τ−→ (Q, C, σ)

Parallel. The rule below shows that the occurrence of activity A ∈ X requires processes P and Q
to synchronise in P ‖

X

Q:

A ∈ X ∧ (P, C, σ) A−→ (P ′, C, σ′) ∧ (Q, C, σ) A−→ (Q′, C, σ′)

(P ‖
X

Q, C, σ) A−→ (P ′ ‖
X

Q′, C, σ′)

Notice that both processes refer to the same basic activity which updates the state from σ to σ′.
This is because the state is intended to be global and the parallel processes do not have their own
local state.

The following two rules specify that parallel processes can evolve independently for B 6∈ X:

B 6∈ X ∧ (P, C, σ) B−→ (P ′, C ′, σ′)

(P ‖
X

Q, C, σ) B−→ (P ′ ‖
X

Q, C ′, σ′)

B 6∈ X ∧ (P, C, σ) B−→ (P ′, C ′, σ′)

(Q ‖
X

P, C, σ) B−→ (Q ‖
X

P ′, C ′, σ′)

The rule below states that the parallel process P ‖
X

Q terminates (i.e., reduces to skip) when both

P and Q terminate:

(skip ‖
X

skip, C, σ) τ−→ (skip, C, σ)

Internal Choice. Internal choice decides nondeterministically which process P or Q will occur:

(P uQ, C, σ) τ−→ (P, C, σ) (P uQ, C, σ) τ−→ (Q, C, σ)

External Choice. The next two rules state that in P []Q only one of the processes P or Q is
executed:

(P, C, σ) B−→ (P ′, C ′, σ′) ∧ B 6= τ

(P []Q, C, σ) B−→ (P ′, C ′, σ′)

(P, C, σ) B−→ (P ′, C ′, σ′) ∧ B 6= τ

(Q []P, C, σ) B−→ (P ′, C ′, σ′)

The following rules state that the occurrence of internal actions will not resolve the choice between
P and Q:

(P, C, σ) τ−→ (P ′, C ′, σ′)

(P []Q, C, σ) τ−→ (P ′ []Q, C ′, σ′)

(Q, C, σ) τ−→ (Q′, C ′, σ′)

(P []Q, C, σ) τ−→ (P []Q′, C ′, σ′)

Create Compensation Task. The rule for the new construct selects an index for a compensation
task that is not in use and sets that task to skip:

C(k) =⊥
(new(i).Pi, C, σ) τ−→ (Pk, C[k := skip], σ)

C[k := skip] denotes that compensation task k is set to skip

Push. The rule for the push operator adds the compensation process Q to the compensation
function C:

(↑i Q, C, σ) τ−→ (skip, C[i := (Q;C(i))], σ)

C[i := Q;C(i)] denotes that compensation task i is set to Q in sequence with the previous
compensation for task i. In this manner, the compensation process is built in the reverse order of
the execution of the primary processes.

Reverse. In the next rule, the operator �i causes the compensation task i to be executed, and
also resets that compensation task to skip:

(�i, C, σ) τ−→ (C(i), C[i := skip], σ)

Note that compensation tasks do not store any state with them: if the state changes between the
compensation being stored and executed, the current state is used.

Accept. The operator 2Xi clears the compensation task i to skip without executing it:

(2Xi, C, σ) τ−→ (skip, C[i := skip], σ)

Merge. The operator J � i merges all compensation tasks of set J in parallel on to the front of
compensation task i:

(J � i, C, σ) τ−→ (skip, C[i := (||j ∈ J . C(j));C(i), J :=⊥], σ)

In the above rule the expression J :=⊥ denotes attributing to all tasks of set J the value ⊥
meaning these tasks are no longer in use. Set J must be disjoint from i.

3.3 Operational Semantics for Termination

This section concludes the presentation of StACi semantics by defining the operational rules related
to early termination.

Protected Block. This rule states that the occurrence of a basic activity within a protected process
P will place the label true on the protection block. It is not necessary to distinguish whether the
value v is initially true or false, in both cases the final label will be true:

(P, C, σ) B−→ (P ′, C ′, σ′) ∧ B 6= τ ∧ v ∈ BOOL

(|P |v , C, σ) B−→ (|P ′|true , C ′, σ′)

Note that occurrence of a τ is not regarded as commencing a protection block so the above rule
does not apply to τ . The following rule deals with τ :

(P, C, σ) τ−→ (P ′, C ′, σ′) ∧ v ∈ BOOL

(|P |v , C, σ) τ−→ (|P ′|v , C ′, σ′)

A terminated protection block becomes skip:

(|skip|v , C, σ) τ−→ (skip , C, σ)

Early Termination. Invocation of the early termination operation causes a process to execute a
visible �-event and then become the early process:

(�, C, σ) �−→ (early, C, σ)

Later, when the rules for the attempt block are presented, it will be seen that this early termination
event will cause the enclosing attempt block to commence early termination and that the event
will be contained within the enclosing attempt block and will not be visible outside it.

In a sequential process if the first process has terminated early, the overall sequential process
is interrupted and terminates early:

(early; P, C, σ) τ−→ (terminate(P); early, C, σ)

The terminate function terminates all constituents of P except for compensation merge operations
and protected blocks that have commenced execution. The early process is added to ensure that
the indication of early termination is maintained. Allowing the merge to be executed is important
because merging of compensations will typically be required before exiting an attempt block. The
terminate function is defined later in this section.

A consequence of the previous rule is that if in a compensation pair the primary process
terminates early, the overall process terminates early and the compensation process Q will not be
installed.

Hiding or protection of an early terminated process gives an early terminated process:

(early \ S , C, σ) τ−→ (early , C, σ) (|early|v , C, σ) τ−→ (early , C, σ)

In a parallel process if both have terminated early, or one has terminated early and the other
has terminated early, the overall process will terminate early:

(early ‖
X

early, C, σ) τ−→ (early, C, σ)

(early ‖
X

skip, C, σ) τ−→ (early, C, σ) (skip ‖
X

early, C, σ) τ−→ (early, C, σ)

Attempt Block. If the main body of an attempt block can engage in an early termination event,
then its termination flag is set to true and the early termination event is made invisible:

(Q, C, σ) �−→ (Q′, C, σ)

(P{Q }v R, C, σ) τ−→ (P{Q′ }true R, C, σ)

When the main body of an attempt block terminates successfully, the left hand continuation
process will be executed:

(P{skip}v R, C, σ) τ−→ (P, C, σ)

(The flag v will always be false whenever an attempt block body evolves to skip.)
When the main body of an attempt block terminates prematurely, the right hand continuation

process will be executed:

(P{early}v R, C, σ) τ−→ (R, C, σ)

An attempt block may also evolve by executing events of the main body other than�, regardless
of the value of the flag v:

(Q, C, σ) B−→ (Q′, C ′, σ′) ∧ B 6= �

(P{Q}v R, C, σ) B−→ (P{Q′}v R, C ′, σ′)

When the termination flag has been set to true, the main body of an attempt block may
terminate early. However, all protected blocks that have started their execution are made to
complete their execution. This is provided for in as follows:

(P{Q}true R, C, σ) τ−→ (P{terminate(Q)}false R, C, σ)

Note that setting the termination flag back to false in this rule prevents terminate being applied
infinitely which would otherwise cause an infinite cycle of τ events.

Function terminate. The terminate function clears all processes that no longer should continue
and keeps the protected blocks that have already started. The first three definitions below show
processes that may continue running, as they may contain protected blocks. The fourth rule
says that a merge of compensation tasks is allowed to execute. The fifth rule shows that early
termination is propagated by terminate:

terminate(P ; Q) = terminate(P); terminate(Q)
terminate(P ‖X Q) = terminate(P) ‖X terminate(Q)
terminate(P{Q}vR) = {terminate(Q)}v

terminate(J � i) = J � i
terminate(early) = early

The next rule shows that a protected block that has not started its execution (its flag is false)
is terminated immediately. The rule following that states that a protected block that has started
its execution (its flag is true) can continue until it has finished:

terminate(|P |false) = skip
terminate(|P |true) = |P |true

The final rule applies to any process not matching the previous rules for terminate. Such processes
are made to finish immediately:

terminate(P) = skip

It is easy to show that terminate is idempotent.

3.4 Translation from StAC to StACi

We define a semantics for the StAC language by defining a translation of StAC processes into
StACi processes. This way the interpretation of a StAC process is given in terms of a StACi

process.
For each process definition of the form N = P , we construct an indexed process definition:

Ni = T(P, i)

where T translates a process written in the syntax of StAC to a process in the syntax of StACi

in the context of compensation index i. The translation function T is shown in Table 3. For the
translation to work correctly, the root StAC process definition should be of the form N = [P],
ensuring that the outermost compensation task is properly created.

The first three rules of the translation function T show that basic activities, skip and � have
the same representation in StAC and StACi. The next rule shows that a call to process named N
in the context of index i becomes a call to process Ni.

The StACi representation for the compensation operators accept, reverse, and compensation
pair, is obtained by adding a compensation task index to each of them.

The remaining rules (except the last two), show how to translate composite constructs. The
translation rules are defined on the constituents of the constructor.

Because the order of execution of P ‖
X

Q is not known, their compensation should not have a

predefined order of execution. So each parallel process will have a new compensation task. This
way their compensation processes will also be a parallel process: the parallel composition of the
new compensation tasks. In the translation rule for P ‖ Q, two new compensations tasks j and
k are created and processes P and Q are translated using j and k. The resulting processes will
be composed in parallel. Lastly, the new compensation tasks j and k are merged into the initial
task i, which means that the compensations of the parallel processes are retained (unless they
have been explicitly committed). Notice that compensation tasks are merged in parallel, so the
outcome of the merge is process C(j) ‖ C(k), that will be pushed on top of C(i).

The compensation scoping brackets [P] are translated to a new compensation task j and process
P is translated using index j. Then the compensation task j is merged into the initial index i, so
all the compensation information that was not reversed or accepted can be preserved by adding
it to compensation task i.

T(A, i) = A
T(skip, i) = skip
T(�, i) = �
T(call(N), i) = call(Ni)

T(�, i) = �i

T(2X, i) = 2Xi

T(P ÷ Q, i) = |T(P, i) ÷i T(Q, i)|false

T(b & P, i) = b & T(P, i)
T(P \ S, i) = T(P, i) \ S
T(P ; Q, i) = T(P, i) ; T(Q, i)
T(P [] Q, i) = T(P, i) [] T(Q, i)
T(P u Q, i) = T(P, i) u T(Q, i)
T(P{Q}R, i) = T(P, i){T(Q, i)}T(R, i)
T([P], i) = new(j).(T(P, j); {j} � i)
T(P ‖

X

Q, i) = new(j, k).((T(P, j) ‖
X

T(Q, k)); {j, k} � i)

Table 3. Translation Rules

4 Conclusions

The semantic definition of StAC is somewhat complicated, in particular the use of indexed com-
pensation tasks. An alternative approach would be to embed the installed compensations within
the process terms, for example, by representing a scope in the form [P,Q] where P is the remain-
ing process to be executed within the scope and Q represents the compensation installed so far
for this scope. However the interaction between early termination and compensation means that
installed compensations must be preserved whenever a scope terminates early. Because scopes can
be nested, this requires that the installed compensations for the nested scopes need to be accumu-
lated before a process terminates. We found it easier to describe this by separating the installed
compensations from the process terms which in turn required the use of indexed compensation.

In [5] we have used indexed compensation to explore generalisations of the modelling language
in which processes may have multiple compensation ’threads’. It is not clear how useful this is
in its full generality, but two idioms do appear to be useful: selective compensation, where some
activities are compensated and others are not (yet) compensated, and alternative compensation,
where activities can have several alternative compensations and the compensation to be selected
may depend on the nature of the exception.

The use of indexed compensation should also make it possible to model the style of compen-
sation used in BPEL4WS [7]. BPEL4WS supports similar operators to StAC, such as compensa-
tion, concurrency, and sequencing. In BPEL4WS, reversal is invoked through exception handlers,
while acceptance is implicit in scoping. Reversal (called compensate in BPEL4WS) can identify
particular sub-processes which should be compensated and this can be modelled using indexed
compensation. BPEL4WS is layered on top of XML (its processes and data are specified in the
BPEL dialect of XML), and at the moment BPEL4WS does not have a formal semantics. We plan
to investigate further the use of StAC to give a semantics to BPEL4WS.

In [14], a compensation is formalised in terms of the properties it has to guarantee. However,
[14] does not provide a modelling language as StAC does, rather it provides a characterisation
of properties of compensation. Bocchi et al [2] define a language πt-calculus for modelling long-
running transactions based on Milner’s π-calculus [17]. The πt-calculus includes a transaction
construct that contains a compensation handler and a fault manager. ConTracts [20] attempt
to provide a structured approach to compensation. In ConTracts the invocation of a particular
compensation has to be made explicitly within a conditional instruction (if the outcome of a step
is false, then a specific task is executed to compensate for this). ConTracts do not have the notion
of installing a compensation handler nor acceptance nor reversal found in StAC.

Acknowledgments

We would like to thank Peter Henderson, Mandy Chessell, David Vines and Catherine Griffin for
helping us to understand compensation. Thanks to Tony Hoare and Viorel Preoteasa for useful
comments on the language and its semantics. Thanks to the anonymous referees of COORD04 for
many useful suggestions.

References

1. J.R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.
2. L. Bocchi, C. Laneve, and G. Zavattaro. A calulus for long-running transactions. In FMOODS’03,

volume LNCS, to appear. Springer-Verlag, 2003.
3. M. Butler and C. Ferreira. A process compensation language. In Integrated Formal Meth-

ods(IFM’2000), volume 1945 of LNCS, pages 61 – 76. Springer-Verlag, 2000.
4. M. Chessell, D. Vines, and C. Griffin. An introduction to compensation with business process beans.

Technical report, Transaction Processing Design and New Technology Development Group, IBM UK
Laboratories, August 2001.

5. M. Chessell, D. Vines, C. Griffin, M. Butler, C. Ferreira, and P. Henderson. Extending the concept
of transaction compensation. IBM Systems Journal, 41(4):743–758, 2002.

6. M. Chessell, D. Vines, C. Griffin, V. Green, and K. Warr. Business process beans: System design
and architecture document. Technical report, Transaction Processing Design and New Technology
Development Group, IBM UK Laboratories, January 2001.

7. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weerawarana. Business
process execution language for web services, version 1.1. http://www-106.ibm.com/developerworks/
library/ws-bpel/, 2003.

8. E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
9. C. Ferreira. Precise Modelling of Business Processes with Compensation. PhD thesis, University of

Southampton, 2002.
10. C. Ferreira and M. Butler. Using B Refinement to Analyse Compensating Business Processes. In

Third International ZB Conference (ZB’2003), volume 2651 of LNCS. Springer-Verlag, 2003.
11. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann Pub-

lishers, 1993.
12. C.A.R Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
13. C. Jones. Systematic Software Development Using VDM. Prentice-Hall, 1986.
14. H. Korth, E. Levy, and A. Silberschatz. A formal approach to recovery by compensating transactions.

In 16th VLDB Conference, Brisbane, Australia, 1990.
15. B. Metha, M. Levy, G. Meredith, T. Andrews, B. Beckman, J. Klein, and A. Mital. BizTalk Server

2000 Business Process Orchestration. IEEE Data Engineering Bulletin, 24(1):35–39, 2001.
16. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
17. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II. Inform. and Comput.,

100(1):1–40,41–77, 1992.
18. G. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19, Aarhus

University, Computer Science Department, September 1981.
19. J. Spivey. The Z Notation. Prentice Hall, New York, 1989.
20. H. Wachter and A. Reuter. The ConTract model. In A. Elmagarmid, editor, Database Transaction

Models for Advanced Applications. Morgan Kaufmann Publishers, 1992.

