Sparsity vs. Large Margins for Linear Classifiers: A Small Sample Size Study
Sparsity vs. Large Margins for Linear Classifiers: A Small Sample Size Study
304-308
Graepel, Thore
f01fa538-c0f8-4e36-bbcc-698366e73f39
Herbrich, Ralf
3024ba7e-f3a1-4187-8655-b7f163c7c733
Shawe-Taylor, John
b1931d97-fdd0-4bc1-89bc-ec01648e928b
2000
Graepel, Thore
f01fa538-c0f8-4e36-bbcc-698366e73f39
Herbrich, Ralf
3024ba7e-f3a1-4187-8655-b7f163c7c733
Shawe-Taylor, John
b1931d97-fdd0-4bc1-89bc-ec01648e928b
Graepel, Thore, Herbrich, Ralf and Shawe-Taylor, John
(2000)
Sparsity vs. Large Margins for Linear Classifiers: A Small Sample Size Study.
In Proceedings of Computational Learning Theory Conference, COLT'2K.
Morgan Kaufmann.
.
Record type:
Conference or Workshop Item
(Paper)
This record has no associated files available for download.
More information
Published date: 2000
Organisations:
Electronics & Computer Science
Identifiers
Local EPrints ID: 259641
URI: http://eprints.soton.ac.uk/id/eprint/259641
PURE UUID: b90e094b-fd6e-4120-9555-70ee4053e375
Catalogue record
Date deposited: 03 Aug 2004
Last modified: 10 Dec 2021 21:05
Export record
Contributors
Author:
Thore Graepel
Author:
Ralf Herbrich
Author:
John Shawe-Taylor
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics