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Abstract

In this paper we address the problem of mea-
suring the degree of agreement between a ker-
nel and a learning task. The quantity that
we use to capture this notion is alignment
(Cristianini et al., 2001a). We motivate its
theoretical properties, and derive a series of
algorithms for adapting a kernel in two im-
portant machine learning problems: regres-
sion and classification with uneven datasets.
We also propose a novel inductive algorithm
within the framework of kernel alignment
that can be used for kernel combination and
kernel selection. The algorithms presented
have been tested on both artificial and real-
world datasets.

1. Introduction

Kernel-based learning methods (Cristianini & Shawe-
Taylor, 2000) are based around the notion of a “ker-
nel matrix” or Gram matrix, that can informally be
regarded as a pairwise similarity matrix between all
pairs of points in a dataset. It is necessary to de-
fine a notion of similarity, and kernel methods use the
inner product between two points in a suitable fea-
ture space, information that can often be obtained
with little computational cost even in very high di-
mensional spaces. The resulting matrix is symmetric
and positive semi-definite (its eigenvalues are always
non-negative reals) and consequently can always be
written as K = ), A\ju;v; where v; and A\; > 0 are the
eigenvectors and eigenvalues of K.

All the information needed by the learning machine,
both coming from the data and coming from the sim-
ilarity measure, is contained in the Gram matrix. Its
properties reflect the relative positions of the points in
the feature space. For example, it is obvious that a ker-

nel matrix K = I, where [ is the identity, would cor-
respond to having all points orthogonal to each other
in the feature space, and hence there would be no use-
ful notion of similarity (since every point is similar to
every other point in the same way). Any split of the
data would be as good as another, and there would be
no clear way to assign a new point to a given class.

For classification problems, as those considered in
(Cristianini et al., 2001a), if one already knew a pri-
ori the specific classification target function to be
learned y(z), the optimal kernel function would be
Ki;j = (y(x;),y(z;)). If the labels vector is denoted
by y, the corresponding kernel matrix is K = yy’ and
has rank 1. The alignment between this ‘ideal’ ma-
trix and the kernel matrix is used to guide the adap-
tation of the kernel. The structure of this paper is
as follows, in section 2 we give a formal definition of
alignment. This paper is concerned with extending
the notion of alignment to regression (section 3) and
datasets in which the labels vector contains an uneven
number of positive and negative examples (section 4)
that are commonplace in many real world applications,
for example text processing. Section 5 presents a novel
induction algorithm that can be used for kernel target
alignment. Experimental results, using both artificial
and publicly available datasets, are presented in sec-
tion 6.

2. Kernel Alignment

By measuring the similarity of the kernel (K;;) with
the kernel at hand on the training set, one can assess
the degree of fitness. The measure of similarity that we
propose is referred to as kernel alignment (Cristianini
et al., 2001a).

Definition 1 Alignment The (empirical) alignment
of a kernel ki with a kernel ko with respect to the sam-



ple S is the quantity
(K1, Ks)p
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where K; is the kernel matriz for the sample S using
kernel k;.

A(S k1, ko) =

This can also be viewed as the cosine of the angle be-
tween two bi-dimensional vectors K; and K, repre-
senting the Gram matrices. If we consider Ky = yy/,
where y is the vector of outputs for the sample, then

<K7 ?J?J'>F _ ley (1)
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A(S,K,yy') =

The alignment has been shown to possess several con-
venient properties. It can be efficiently computed be-
fore any training of the kernel machine takes place,
and based only on training data information; it is
sharply concentrated around its expected value, and
hence its empirical value is stable with respect to dif-
ferent splits of the data; and importantly, if the ker-
nel is very aligned with the target information, then
there exists a separation of the data with a low bound
on the generalization error. All these observations to-
gether mean that it is possible to measure and opti-
mize this quantity based on training set information,
and achieve better generalization performance on the
test set in a transductive setting (Cristianini et al.,
2001a).

We defined the parameterized class of kernels deter-
mined by this equation:

K= Zaivivg (2)
i

and consider the optimization problem of finding the
optimal «, that is the parameters that maximize the
alignment of the combined kernel with the available
labels based on an eigenvalue decomposition of the un-
transformed kernel. Given K = ), ajv;vj, the align-
ment can be written as

(K, yy")
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From the orthonormality of the w; and
(vv',uu') = (v,u)? we can write:
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Hence we have the following optimization problem:
maximize
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and hence a; o< (v;,y)2. This gives the overall align-

ment:
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A transductive algorithm can be designed to take ad-
vantage of this, by optimizing alignment with the la-
beled part of the dataset, and in doing so it will adapt
the Gram matrix also for the unlabeled part. This al-
gorithm is summarized by the following pseudo-code:

Data : Construct kernel matrix (K), and yy’
[V,D] = eigendecomp(K);
for mazimum number of runs do
Split data into training (I) and test set (J);
for n = I:length of Kernel do
T=V(,n) V(n);
a(n) = (V(I,n)' - y(1))*/(V(I,n)" - V(I,n))*
G=G+a(n) T;
endfor
Compute alignment for K and G;
Train SVM & Parzen windows with K and G;

endfor

Algorithm 1: A Transductive Alignment Algorithm

The complete eigendecomposition of the kernel ma-
trix is an expensive computational step, and should
be avoided for large kernel matrices. In a companion
paper (Kandola et al., 2002), we present an approxi-
mation strategy to the full eigenvalue decomposition,
based on the Gram-Schmidt decomposition. A simi-
lar approach to unsupervised learning is described by
(Smola, 1998), and has also been used by (Bach & Jor-
dan, 2001)for kernel independent components analysis

(k-ICA).

Section 3 extends the theory of alignment to the case
of regression providing a definition of alignment for
this case together with a novel justification for why
improving alignment will lead to better performance
in the regression case.

Section 4 considers the case of uneven datasets as a
natural extension of the classification case considered
in (Cristianini et al., 2001a). Section 5 presents a novel
induction algorithm that can be used for kernel target
alignment, while Section 6 presents experimental re-
sults for all of the methods presented. We finish with
a discussion and conclusions.

3. Kernel Alignment for Regression

The problem of regression is to approximate an un-
known function from the observation of a limited se-



quence of (typically) noise corrupted input/output
data pairs. More formally, consider a dataset D =
{(x4,¥i)}i~,, drawn from an unknown probability dis-
tribution, where x; € R™ represents a set of inputs,
y; € R represents a single output, and m represents
the number of training examples. The empirical mod-
elling problem is to discover an underlying mapping
x — y that is consistent with the dataset D. The re-
gression function is learnt from a training set, and its
performance can be measured using an independent
test set (Poggio & Girosi, 1997).

The first algorithm we give is a method to improve
the alignment between a kernel and a fixed set target
variables by acting on its eigenvalues. This algorithm
performs transduction, and provides a nonparametric
way to perform kernel selection, that does not require
us to specify a family of kernel functions, but directly
acts on the entries of the kernel matrix. To apply
this transductive algorithm for the case of regression,
the rank 1 matrix yy' needs to be modified using the
following transformation,

Yi =Yi—y (7)
where g represents the mean over the training set of
the target values.

For the case of classification the use of alignment was
motivated using two facts. Firstly, that the alignment
measure is concentrated around its expected value.
This suggests that if we optimize its value on the train-
ing set, we can expect to see corresponding increases
in the testing set alignment. This expectation was ver-
ified for the classification case. The proof of concen-
tration made no special use of the fact that the labels
were binary, and so the regression alignment is also
concentrated provided the range of the output values
is bounded (proof omitted).

The second observation for the case of classification
was that if the value of the alignment is high, then
a Parzen window estimator will give good generalisa-
tion. This justified why adapting a kernel to improve
its alignment with the target on the training set should
result in better generalisation performance. This ar-
gument cannot be applied in the regression case. We
will therefore now present a more complex analysis
suggesting why improving the alignment for regression
will improve generalisation.

The key result will be that optimizing the alignment of
a 1-dimensional linear projection of the data is equiv-
alent to performing ridge regression, where the value
of the alignment corresponds to the objective of the
ridge regression optimization. Furthermore the align-

ment of the kernel matrix provides a lower bound for
the projected alignment. Hence, optimizing the align-
ment of the kernel decreases the upper bound for the
ridge regression objective,
m
. 2

min L(w) = Mw,w) + Y ((w,xi) = y;)*, (8)

Y i=1
that forms the adaptable part of an upper bound on
the generalisation error (Cristianini and Shawe-Taylor,
2000).

Theorem 2 Let X be a feature/example matriz ex-
pressed in a possibly kernel-defined feature space. The
solution of the optimization

Argmax,, |, | <1 4 (S, X'ww' X, yy’)

gives the weight vector that solves the Ridge Regression
problem (8) with the regularization parameter A = 0.

Proof': First observe that

argmax,,, |, <1 4(S, X'ww' X, yy’)
(X'ww' X, yy")
m|| X ww' X||p

1 (w'X y)2

= —argmax,————

m TR T Y
where we have implicitly observed the invariance un-
der rescaling of w. If we now consider optimizing the
square root of the numerator with the denominator

constrained to a fixed value and then introduce La-
grange multipliers we obtain the problem,

= argmax,

argmax, w' Xy — p(w' X X'w — C).

Varying p will correspond to obtaining different values
for the constrained denominator. For every such (C, i)
pair the optimization minimises w' Xy and hence also
(w' Xy)2. Hence, since the result is invariant to rescal-
ing w we can choose y = 1, giving

argmax,w' Xy —w' X X'w,

which is just the negative of the Ridge Regression op-
timization (8) for A =0.m

The next step is to show that the projected alignment
is lower bounded by the alignment of the whole matrix.

Theorem 3 Let X be a feature/ezample matriz ez-
pressed in a possibly kernel-defined feature space. The
solution of the optimization

Wi = Argmax,, |, <1 A(S; X ww' X, yy")
satisfies

A(S, X'w.w, X, yy") > A(S, X' X, yy').



Proof: Without loss of generality we can take w, ly-
ing in the space spanned by the columns of X. First
consider creating an orthonormal basis of the space
spanned by the columns of X,

Wy = W1, W2y ..., Wy,

We can now write

m
_ Loy
I= E w;wy,
i=1

where I is the perpendicular projection matrix onto
the space spanned by the columns of X. Now observe
that

yX'Xy = yX'IXy

m

= Z y' X w;wi Xy
i—1
m

— Z(lelwi)2
i=1
Similarly,

IX'X|[7 = [X'IX|%
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i j .
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Taking 8 = mA(S, X'w,w! X,yy"), we have

(' X'w;)? < Ow X X'w;

for all 7. Hence,

m m
Yy X'Xy = Z(y'X’wi)2 SQngXX'wi
i=1 i=1
= OIX'X||F
giving

'X'Xy 0
AS,X'X,yy) = 2=2¥ <2
( ) 7yy) mHXIXHF = m

= A(S, X'w.w,X,yy"),
as required. m

4. Kernel Alignment for Uneven
Datasets

Uneven datasets, i.e. datasets that have an unequal
number of class labels, are commonplace in many real

world applications including text processing and ma-
chine vision. Consider the problem of document clas-
sification based on a particular query. It is not unrea-
sonable to expect that a large number of documents
do not match a particular query. In the justification
of kernel alignment in its relation to the performance
of a Parzen windows estimator, there was an implicit
assumption that there are an equal number of positive
and negative class labels as equal weights are given to
positive and negative examples. Hence, to apply the
Parzen window argument to uneven datasets the rank
1 matrix yy' needs to be modified using the following
transformation:

i, if 7 is positive 9
Yi = b otherwise 9)

where ny and n_ represents the number of positive
and negative labels in the dataset respectively. This
gives a slightly modified definition of alignment. The
proof of concentration will still hold provided that
the number of positive and negative examples remains
O(m), while the generalisation bound will now be for
the standard Parzen window estimator with unequal
weights for positive and negative examples.

5. Inductive Kernel Alignment

An inductive algorithm for kernel alignment can also
be considered. The transductive algorithms considered
in (Cristianini et al., 2001a) and for this paper have
relied upon the eigenvalue decomposition of the full
kernel matrix constructed from training and test data
points. When reassembled a complete kernel matrix
for the entire set of data is obtained. We now describe
how we can implement an analogous inductive proce-
dure.

The dataset needs to be randomly split into a training
and test set and the kernel matrix constructed using
the training data only. An eigenvalue decomposition
of this kernel matrix can be written as: K = VAV',
where A is a diagonal matrix. The effect of this de-
composition is to find the sequence of subspaces of the
feature space that capture the greatest variance of the
data. We now reweight those directions to optimism
the alignment of the training set kernel matrix to the
labels using the same method described in Section 2
and detailed in Algorithm 1. The difference is that we
now project new data into the subspace of the feature
space spanned by the eigenvectors using the principal
axes as a coordinate system. We then rescale each
coordinate using the scaling obtained in Algorithm 1
before using the resulting feature vector to compute in-
ner products in the transformed space. Pseudo-Matlab



code for this procedure is given in Algorithm 2.

Data : Construct kernel matrix (K), and yy’
for mazimum number of runs do
Split data into training (I) and test set (J);
[V,R] = eigendecomp(K(I));
Threshold small eigenvalues;
for n = I:number of eigenvalues do

| alm) = (V) - y(D)/(VGm) - Vm)
endfor
G(I,I) =V -diag(a) - V';
G(I,J)=V - R ! -diag(a)-V'-K(I,J);
G(J,J) = K(J,I)-V-diag(a)-R~2-V'-K(I, J);
Compute alignment for K and G;
Train SVM & Parzen window with K and G;

endfor

Algorithm 2: An Inductive Alignment Algorithm

As was the case for the transductive algorithm, the
complete eigendecomposition of the kernel matrix is
an expensive computational step. In a companion pa-
per (Kandola et al., 2002), an inductive approximation
strategy based on the Gram-Schmidt decomposition is
presented.

6. Experiments

To demonstrate the performance of the transduc-
tive alignment algorithm for regression and uneven
datasets, a range of artificial and publicly available
datasets were considered. Two different learning algo-
rithms were implemented for the uneven datasets. A
Parzen window estimator and a support vector clas-
sifier (SVC). In the regression case we implemented
Ridge Regression (RR) as motivated by the analysis
of Section 3. A 10-fold procedure was used to find the
optimal value for the capacity control parameter "C’.
The SVC was trained ten times using a range of val-
ues of ’C’; and the value which gave the lowest mean
error (and associated standard deviation) on the test
set was chosen as the optimal value. Having selected
the optimal ’C’ parameter, the SVC was re-trained ten
times using ten random data splits.

A similar procedure was used to select the Ridge Re-
gression parameter A. The inductive alignment algo-
rithm was also tested on artificial and publicly avail-
able datasets. The alignment algorithm for uneven
datasets was tested on two datasets. The first of these
was an artifically generated dataset consisting of 10
input variables and 100 datapoints where the inputs
were drawn randomly from a Gaussian distribution
with zero mean and unit variance, and a single output

that consisted of an uneven number of target labels (65
positive labels and 35 negative labels). A linear ker-
nel was used for training. The results are presented
in table 1. The K matrices are before adaption, while
the G matrices are after optimization using the trans-
ductive alignment algorithm. The index represents the
percentage of training points.

The second dataset considered was the Medlinel033
dataset commonly used in text processing (Cristianini
et al., 2001b). This dataset contains 1033 documents
and 30 queries obtained from the national library of
medicine. In this work we focus on query20. A Bag of
Words kernel was used (Joachims, 1998). Stop words
and punctuation were removed from the documents
and the Porter stemmer was applied to the words. The
terms in the documents were weighted according to a
variant of the ¢ fidf scheme. It is given by log(1+¢f)
log(m/df), where tf represents the term frequency, df
is used for the document frequency and m is the total
number of documents.

The results are presented in table 2. The K matrices
are before adaption, while the G matrices are after op-
timization using the transductive alignment algorithm.
The index represents the percentage of training points.

From tables 1 and 2 it is apparent that the training
alignment increases for the matrix G across all data
partitions. A similar affect is observed for the testset
alignment. There is also a reduction in the SVC mean
generalisation error, and the PW error for all of the
training sets. It is interesting to note that in all cases
the performance of the SVC algorithm exceeds that of
the PW method. Both tables 1 and 2 also quote “F1”
error values. The F1 measure is a popular statistic
used in the information retrieval community for com-
paring performance of algorithms typically on uneven
data. A detailed definition can be found in (Baeza-
Yates & Ribeiro-Neto, 2001). This value is bounded
between 0 and 1, where 1 represents optimal algorithm
performance. For both datasets the F1 value increases
across all data partions. Overall, these results indicate
that the optimization of the alignment on the train-
ing set increases its value by more than the sum of
the standard deviations. From the concentration of
the alignment (see (Cristianini et al., 2001a)) this im-
provement is maintained in the alignment measured
on the test set using both a linear and Bag of Words
kernel.

In order to test the performance of the alignment al-
gorithm for regression two datasets were considered.
The first of these was the an artificial dataset - the sinc
function dataset which was modelled using a Gaussian
kernel.



Table 1. Uneven: Toy dataset - alignment values, SVC and PW test error together with F1 values (obtained from SVC)

for a linear kernel over 10 runs.

TRAIN ALIGN | TEST ALIGN SVC ERROR PW ERROR 1 (SVQC)
Kso || 0.009 (0.006) | 0.080 (0.072) | 0.567 (0.176) | 0.617 (0.153) | 0.696 (0.021)
[ Gso ]| 0.085 (0.005) | 0.218 (0.072) | 0.450 (0.087) [ 0.600 (0.101) | 0.720 (0.008) |
[Kso || 0.027 (0.035) | 0.022 (0.027) | 0.493 (0.153) | 0.613 (0.064) | 0.587 (0.068) ]
[Gso || 0.104 (0.037) | 0.104 (0.022) | 0.460 (0.080) | 0.593 (0.046) | 0.605 (0.005) ]
K20 || 0.062 (0.067) | 0.007 (0.003) | 0.546 (0.142) | 0.642 (0.026) | 0.756 (0.012) ]
[ G20 ]| 0.187 (0.066) | 0.074 (0.029) | 0.533 (0.138) | 0.638 (0.025) | 0.759 (0.026) |

Table 2. Uneven: Medline dataset - alignment values, SVC and PW test error together with F1 values (obtained from

SVC) for a Bag of Words Kernel over 10 runs.

TRAIN ALIGN | TEST ALIGN SVC ERROR PW ERROR 1 (SVC)
Kso || 0.103 (0.008) | 0.096 (0.020) | 0.357 (0.109) | 0.963 (0.014) | 0.472 (0.001)
[Gso ]| 0.141 (0.009) | 0.110 (0.015) | 0.183 (0.078) | 0.916 (0.012) | 0.481 (0.001) |
[ Kso ]| 0.112 (0.023) ] 0.089 (0.021) | 0.381 (0.208) | 0.964 (0.010) | 0.603 (0.014) |
[Gso ]| 0.175 (0.028) | 0.094 (0.020) | 0.139 (0.032) | 0.956 (0.009) | 0.615 (0.012) |
[ K2 ]| 0.099 (0.012) | 0.093 (0.003) | 0.404 (0.228) | 0.962 (0.003) | 0.427 (0.177) |
[ G20 ]| 0.105 (0.014) | 0.100 (0.004) | 0.358 (0.222) | 0.957 (0.007) | 0.441 (0.019) |

Table 3. Regression: Sinc function dataset - alignment val-
ues (with asccociated standard deviations) and RR error
for a Gaussian kernel over 10 runs.

Table 4. Regression: AMPG dataset - alignment values
and SVM error for a linear kernel over 10 runs.

TRAIN ALIGN TEST ALIGN RR ERrRROR

Kgo || 0.531 (0.015) | 0.521 (0.062) | 18.23 (3.19)
[ Gso ]| 0.574 (0.013) | 0.560 (0.049) | 7.89 (1.18) |
[ Kso ]| 0.534 (0.055) | 0.524 (0.056) | 16.58 (2.35) |
[ Gso ]| 0.590 (0.054) | 0.539 (0.055) | 7.55 0 69) |
[ Koo ]| 0.491 (0.026) | 0.538 (0.006) | 18.57 (4.35) |
[ G20 ]| 0.490 (0.045) | 0.466 (0.009) | 9.12 (3.12) |

TRAIN ALIGN TEST ALIGN RR ErRROR

Kgo || 0.002 (0.001) | 0.039 (0.013) | 0.163 (0.121)
[ Gso ]| 0.253 (0.020) | 0.191 (0.083) | 0.119 (0.051) |
[ Ks0 ]| 0.011 (0.016) | 0.007 (0.006) | 0.166 (0.063) |
[ Gso [l 0.274 (0.052) ] 0.141 (0.030) [ 0.123 (0.017) ]
[ K20 ]| 0.002 (0.001) ] 0.008 (0.006) | 0.196 (0.074) |
[ G20 ]| 0.368 (0.021) | 0.086 (0.034) | 0.136 (0.009) |

Table 3 represents the alignment for the training and
test datasets and the associated RR generalisation er-
ror for the artificial sinc function dataset. The second
dataset to be considered was the automobile miles per
gallon (AMPG) dataset that contains the miles trav-
eled, per gallon of fuel consumed, for various cars.
The input variables measure six characteristics of a
car; the number of cylinders (discrete), displacement,
horsepower, weight, acceleration and model year (dis-
crete). The goal is to discover a relationship between
the AMPG and the cars’ characteristics. After remov-
ing a small number of entries with missing values from
the original dataset 353 datapoints remain.



Table 4 represents the alignment for the training and
test datasets and the associated SVC generalisation er-
ror for the AMPG dataset. From table 3 it is apparent
that the training alignment increases for the matrix G
across all data partitions. A similar affect is observed
for the test alignment. There is also a reduction in
the RR mean generalisation error for all of the train-
ing sets. These results indicate that the optimization
of the alignment on the training set increases its value
by more than the sum of the standard deviations. For
the AMPG dataset a similar trend is observed. Overall
for both datasets there is a significant decrease in the
RR errors for both datasets. Future work will assess
the performance of the regression algorithm on high
noise datasets.

The inductive algorithm was tested on the artificial
uneven dataset and the Medline dataset both of which
where described earlier.

Tables 5 and 6 present the results from the inductive
alignment algorithm. From both tables 5 and 6 it is
apparent that the training alignment increases for the
matrix G across all data partitions. A similar affect is
observed for the testset alignment. There is also a re-
duction in the SVC mean generalisation error for all of
the training sets. From the concentration of the align-
ment this improvement is maintained in the alignment
measured on the test set using both a linear and Bag
of Words kernel. Comparing the results obtained from
applying the transduction alignment algorithm to the
artificial and medline datasets (see tables 1 and 2) we
can note very similar behaviour of the two algorithms.
There is consistent improvement in the train and test-
set alignment, together with improved SVC, PW and
F1 error measures. The error values obtained from ap-
plying both the inductive and the transductive are as
expected similar and can be be considered to show the
merits of the methods discussed.

7. Discussion & Conclusions

The problem of assessing the quality of a kernel is
central to the theory of kernel-machines, and deeply
related to the problem of model/feature selection as
a whole. Being able to quantify this property is an
important step towards effective algorithms for kernel
selection, combination and adaptation. In this paper
we addressed the problem of measuring the degree of
agreement between a kernel and two learning tasks.
We extended the notion of kernel alignment originally
presented in (Cristianini et al., 2001a). Alignment
for regression analysis and classification with uneven
datasets was motivated and demonstrated. A novel
inductive algorithm within the framework of kernel

alignment that can be used for kernel combination and
kernel selection was also presented. All of the algo-
rithms were tested on artificial and publicly available
datasets with good performance.

From the tables of results presented in section 6,
the alignment increases on the training and the test
datasets. There is also an associated performance in-
crease as denoted by measures such as RR error and
PW error. For the case of uneven datasets, the F1
statistic, that is used extensively in the information
retrieval processing community, was used as a perfor-
mance measure. For the datasets considered, there
was an associated increase in F1 values for the aligned
matrix G.

The computational cost of performing an eigenvalue
decomposition on a kernel matrix can be prohibitive
for large kernel matrices. The examples considered
in this paper were of small to moderate size and as
such computational cost was kept to a minimum. For
larger kernel matrices, that arise typically with many
real world datasets, this method would be prohibitive.
In a companion paper we have proposed a faster ap-
proach based on performing Gram-Schmidt optimiza-
tion in the kernel defined feature space (Kandola et al.,
2002) and it would be interesting to compare the per-
formance of this approach. The performance of the al-
gorithms will also be evaluated on high noise datasets.
These tasks are left for future work. Recent work by
(Lanckriet et al., 2002) has also used semi-definate pro-
gramming to learn the kernel matrix from a set of data.
It would be interesting to compare the performance of
this approach with that of kernel alignment presented
here and in (Cristianini et al., 2001a).

Theoretically, we should explore the connections be-
tween high alignment and good generalization in larger
classes of learning machines, and its relations with the
luckiness framework (Shawe-Taylor et al., 1998), and
the notion of stability. More general quality measures
can be designed (basically any kernel between Gram
matrices could be used), so some work will be devoted
to exploring some possible options. Other forms of ker-
nel combination and adaptation will be studied with
the tool of alignment maximization.
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Table 5. Toy dataset: alignment values, SVC and PW test error and F1 values (obtained from SVC) for a linear kernel
over 10 runs using the inductive algorithm.

TRAIN ALIGN | TEST ALIGN SVC ERROR PW ERROR F1 (SVQ)
Kso || 0.006 (0.003) | 0.062 (0.076) | 0.565 (0.170) | 0.665 (0.097) | 0.556 (0.012)
[Gso || 0.198 (0.004) | 0.102 (0.024) | 0.535 (0.001) | 0.540 (0.091) | 0.750 (0.001) ]
[Kso || 0.011 (0.005) | 0.012 (0.005) | 0.564 (0.155) | 0.656 (0.038) | 0.629 (0.063) ]
[Gso || 0.249 (0.004) | 0.044 (0.004) | 0.522 (0.050) | 0.524 (0.046) | 0.681 (0.010) ]
[Kzo ]| 0.091 (0.073) | 0.008 (0.003) | 0.496 (0.138) | 0.644 (0.001) | 0.658 (0.012) |
[Gao || 0.375 (0.072) | 0.027 (0.004) | 0.491 (0.056) | 0.519 (0.040) | 0.714 (0.101) ]

Table 6. Medline dataset: alignment values and SVC error for a Bag of Words kernel over 10 runs using the inductive

algorithm.
TRAIN ALIGN | TEST ALIGN SVC ERROR PW ERROR F1
Kso || 0.098 (0.006) | 0.109 (0.015) | 0.342 (0.081) | 0.960 (0.010) | 0.442 (0.018)

[Gso ][ 0.157 (0.006) | 0.153 (0.013) | 0.248 (0.042) | 0.251 (0.045) | 0.564 (0.005) |

[ Kso ]| 0.104 (0.012) ] 0.093 (0.011) | 0.394 (0.150) | 0.964 (0.006) | 0.448 (0.021) |

[Gso ][ 0.161 (0.011) ] 0.129 (0.012) | 0.266 (0.039) | 0.269 (0.039) | 0.529 (0.010) |

[ Kx [ 0.110 (0.028) | 0.097 (0.096) | 0.428 (0.296) | 0.963 (0.004) | 0.427 (0.052) |

[Gao ]| 0.148 (0.025) | 0.129 (0.010) | 0.309 (0.074) | 0.337 (0.079) | 0.444 (0.012) |
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