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Abstract

Alignment has recently been proposed as a
method for measuring the degree of agree-
ment between a kernel and a learning task
(Cristianini et al., 2001). Previous ap-
proaches to optimizing kernel alignment have
required the eigendecomposition of the kernel
matrix which can be computationally pro-
hibitive especially for large kernel matrices.
In this paper we propose a general method
for optimizing alignment over a linear com-
bination of kernels. We apply the approach
to give both transductive and inductive al-
gorithms based on the Incomplete Cholesky
factorization of the kernel matrix. The In-
complete Cholesky factorization is equivalent
to performing a Gram-Schmidt orthogonal-
ization of the training points in the feature
space. The alignment optimization method
adapts the feature space to increase its train-
ing set alignment. Regularization is required
to ensure this alignment is also retained for
the test set. Both theoretical and experimen-
tal evidence is given to show that improving
the alignment leads to a reduction in gener-
alization error of standard classifiers.

1. Introduction

Kernel-based learning methods (Cristianini & Shawe-
Taylor, 2000) are based around the notion of a “ker-
nel matrix” or Gram matrix, that can informally be
regarded as a pairwise similarity matrix between all
pairs of points in the dataset. Of course it is necessary
to define a notion of similarity, and kernel methods
use the inner product between two points in a suitable
feature space, information that can often be obtained
with little computational cost even for very high di-
mensional spaces. The resulting matrix is symmetric

and positive semi-definite (its eigenvalues are always
non-negative reals) and consequently can always be
written as K = ), A\;u;v; where v; and A; > 0 are the
eigenvectors and eigenvalues of K.

All the information needed by the learning machine,
both coming from the data and coming from the sim-
ilarity measure, is contained in the Gram matrix. Its
properties reflect the relative positions of the points in
the feature space. For example, it is obvious that a ker-
nel matrix K = I, where [ is the identity, would cor-
respond to having all points orthogonal to each other
in the feature space, and hence there would be no use-
ful notion of similarity (every point is similar to every
other point in the same way). Any split of the data
would be as good as another, and there would be no
clear way to assign a new point to a given class.

For classification problems, as those considered in
(Cristianini et. al., 2001), if one already knew a
priori the specific classification target function to be
learned y(z), the optimal kernel function would be
K;; = (y(x;),y(z;)). If the labels vector is denoted
by y, the corresponding kernel matrix is K = yy’
and has rank 1. The structure of the paper is as
follows. In section 2 we give a formal definition of
alignment. Section 3 studies the properties of positive
semi-definite matrices and introduces a novel charac-
terisation of kernels. It further develops a general al-
gorithm for optimizing the alignment over linear com-
binations of kernels. This paper then applies these
techniques to develop new alignment optimisation al-
gorithms based on the Gram-Schmidt orthogonaliza-
tion procedure for transduction and induction in Sec-
tion 4. Section 5 presents results that show, optimiz-
ing the alignment of the projection of the data into
a 1-dimensional subspace is equivalent to performing
Ridge Regression (RR). Furthermore, the alignment
of the full kernel matrix lower bounds its projected
value. Together these results show that optimising



the alignment followed by a Ridge Regression opti-
mization gives a well founded model selection strat-
egy. Experimental results are presented in section 6.
The approach adopted in this paper is closely related
to that presented by (Lanckriet et al., 2002). Here we
optimize the alignment, and subsequently its projec-
tion in a ridge regression style algorithm. (Lanckriet
et al., 2002) however consider an alternative optimiza-
tion approach based on optimizing the margin using
semi-definite programming (SDP).

2. Kernel Alignment

By measuring the similarity of this kernel with the
kernel at hand - on the training set - one can assess
the degree of fitness. The measure of similarity that
we propose is referred to as kernel alignment.

Definition 1 Alignment The (empirical) alignment
of a kernel ki with a kernel ko with respect to the sam-
ple S is the quantity

(K1, Ko)p

A(S k1, ko) = )
(5, kv k) V(K1 K1) r (K2, Ko)

where K; is the kernel matriz for the sample S using
kernel k;.

This can also be viewed as the cosine of the angle be-
tween two bi-dimensional vectors K; and Ks, repre-
senting the Gram matrices. If we consider Ky = yy/,
where y is the vector of outputs for the sample, then

(K,yy')F
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A(S,K,yy') = (1)

The alignment has several convenient properties (Cris-
tianini et al., 2001). It can be efficiently computed be-
fore any training of the kernel machine takes place, and
based only on training data information; it is sharply
concentrated around its expected value, and hence its
empirical value is stable with respect to different splits
of the data; and importantly, it has been shown that if
the kernel is very aligned with the target information,
then there exists a separation of the data with a low
bound on the generalization error. All these observa-
tions together mean that it is possible to measure and
optimize this quantity based on training set informa-
tion, and achieve better generalization performance on
the test set in a transductive setting.

In (Cristianini et al., 2001) the parameterized class of
kernels determined by the equation

K = Zaivivg (2)
i

were considered, where v; are the eigenvectors of the
matrix K and the optimization problem was solved for
finding the optimal «, that is the parameters that max-
imize the alignment of the combined kernel with the
available labels. Given K = )", a;v;v}, the alignment
is optimized by choosing

a; o< (v;, ?J>2 (3)

giving an overall alignment of

A= Zi(viay>4
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A transductive algorithm can be designed to take ad-
vantage of this, by optimizing alignment with part of
the dataset, and in doing so it will adapt the Gram
matrix also for the unlabeled part.

Data : Construct kernel matrix (K), and yy’
[V, D] = eigendecomp(K);
for mazimum number of runs do
Split data into training (I) and test set (J);
for n = I:length of Kernel do
T=V(,n) V(n);
a(n) = (V(I,n)' - y(1)*/(V(I,n)" - V(I,n))*
G=G+a(n) T;
endfor
Compute alignment for K and G;
Train SVM & Parzen windows with K and G;

endfor

Algorithm 1: A Transductive Alignment Algorithm

3. Properties of Positive Definite
Matrices

Positive definite matrices are characterized by the fol-
lowing well-known proposition. We include a proof for
completeness.

Proposition 2 Let K be a symmetric matriz. Then
K is positive semi-definite if and only if

<K7 G)F Z 07
for all positive semi-definite matrices G.

Proof: Let K = Z:L Aiv;v) be the eigenvalue decom-
position of K and G = Z;n:l pjuju that of a general
G. We have

<K, G>F Z)\iuj(vivg,uju;-)p
ij

= > Nipy(vjuy)* >0,
i



if A;, 5 > 0. Conversely, if A\; < 0 for some ¢, choose
u;=v;,4=1,...,m,and u; =0, for j #i, u; = 1. It
follows that (K,G)r < 0. m

Hence, positive semi-definite matrices form a cone of
bi-dimensional vectors. The proposition also indi-
cates an alternative characterization of positive semi-
definiteness.

We now consider a general linear combination of ker-
nels

T
K(a) = ZakKk,
k=1

and study the problem of choosing « to optimism the
alignment of K (a) to some given target vector y. De-
fine A(a) as
Ala) = A(S,K(a),yy)
>rY' Ky
m/> o cweu(Ki, Ki)p

Hence, to maximize the alignment we maximize A(q)
subject to the constraint a; > 0. This constraint can
be weakened in some cases if we are prepared to solve a
semi-definite program (Lanckriet et al., 2002). For the
purposes of this paper we will see that it will be suf-
ficient to restrict ourselves to the case a; > 0. Hence,
we must solve

Aa)
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[

subject to
which is equivalent to
!
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subject to

Applying the Lagrange multiplier method, we obtain,

mgx Zaky'Kky—)\ (Zakal(Kk,Kl)F -C
k kil
subject to «a; > 0.

Varying C' leads to different values of u. Since the
alignment is invariant to rescaling «, we can choose
1 = 1, fixing some value for the denominator and min-
imizing the numerator. Hence, we obtain the opti-
mization problem

max > any'Kry = > agon(Ky, Ki)yp
k Kl
subject to a; > 0.

The second problem that arises is that if we do not
constrain |||, the kernel can overfit its alignment to
the training set, making its ‘generalization’ alignment
on the test set poor. Hence, in exactly the same way as
constraining the norm in for example Ridge Regression
prevents overfitting, constraining ||| prevents over-
aligning. Including this and using the Lagrange mul-
tiplier method again, we obtain

mgx Zakleky — Zakal(Kk,Kl>F — )\Zai
k kl k

= Zaky'Kky - Z aroq ((Kr, K1) r + Aogr)
k kl
subj to «; > 0.

The resulting optimization has a very similar form to
that of the Support Vector Machine optimization prob-
lem. The first linear term is a sum of positive factors
of the ay, that is y'Kyy > 0, in place of the values
1 in the SVM case. The second part is a quadratic
function, which as in the SVM case, is convex since

> upw((Ki, Kiyr -+
Kl

AOg1)

<Z ukKk,ZulKl> + Zukuk
k 14 k

= 1> w7 + llul® > 0.
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Note also that by Proposition 2 the entries in the Hes-
sian are all positive. Hence, we can solve for a using
the standard quadratic programming methods used in
the SVM optimization. Furthermore, we can expect
the a vector to be sparse, that is that only a subset
of the kernels will be included in the optimal combi-
nation. In the next section we apply the approach
to a particular combination obtained by performing a
Gram-Schmidt orthogonalization in the feature space.

4. Gram-Schmidt Optimization

In kernel based methods, large datasets pose signifi-
cant problems since the number of basis functions re-
quired for an optimal solution can equal the number of
data samples (Smola & Scholkopf, 2000). A number of
methods have been proposed for obtaining a low rank
matrices such that the Frobenius norm is minimized
(Smola & Scholkopf, 2000; Fine & Scheinberg, 2000;
Williams & Seeger, 2000).

A number of sparse greedy approximation methods
have been proposed to construct a reduced represen-
tation of the kernel matrix. Smola and Scholkopf
(2000) argue that if many irrelevant basis functions



are eliminated the solution on the subset of basis func-
tions may be close to optimal. Fine and Scheinberg
(2000) consider an alternative approach, based on the
product form Cholesky factorization, that constructs
a low rank matrix approximation to the kernel matrix.
(Williams & Seeger, 2000) show that an approximation
to the eigendecomposition of the Gram matrix can be
computed by the Nystrom method. This is achieved
by carrying out an eigendecomposition on a smaller
dataset and then expanding the results back up to the
full dataset size.

In this work, an approximation strategy, based on the
Gram-Schmidt decomposition in the feature space is
considered. This algorithm is equivalent to the in-
complete Cholesky decomposition of the kernel matrix
used by (Bach & Jordan, 2001) for kernel ICA. The
projection is built up as the span of a subset of (the
projections of) a set of k training examples. These
are selected by performing a Gram-Schmidt orthogo-
nalization of the training vectors in the feature space.
Hence, once a vector is selected the remaining train-
ing points are transformed to become orthogonal to
it. The next vector selected is the one with the largest
residual norm. The whole transformation is performed
in the feature space using the kernel mapping to repre-
sent the vectors obtained. The method is parametrised
by the number of dimensions 7" selected.

Figure 1 shows the pseudo-code for the Gram-
Schmidt/incomplete Cholesky factorization algorithm.
If we now create the vectors vy, k = 1,...,T, by set-

Require: A kernel k, training set
{(d1,v1),-..,(dn,yn)} and number T
for i =1ton do
normli] = k(d;, d;);
end for
for j=1to T do
i; = argmax;(norm[il);
index[j] = i;;
size[j] = \/normli;];
fori=1tondo i
feat, ) = Lt o),
norm[i] = norm[i] — feat[i, j] * feat[i, j];
end for

end for
return feat[i, j] as the j-th feature of input 4;

Figure 1. The Gram-Schmidt Algorithm

ting
feat[i, k]
Vki = - 2
arty., featli’, ]

then we can express the approximate reconstruction of

K as

K =~ E dkvk’l};c,
k=1

where d;, = ", featl[i’, k]?, since

T

Q

T
Z featli, k] feat[], k]
k=1

T
= kaivkj Zfeat[i',k]2.
k=1 i

Hence, the Gram-Schmidt decomposition of K returns
the matrix V and a diagonal matrix D with diagonal
entries dy.

This approximation is constructed by choosing a se-
quence of exemplar training examples that most com-
pletely span the space and projecting the data into
those directions. It therefore suggests that we explore
the linear combination of kernels,

T
K(a) = Z QARVRV)
k=1

and apply the methods of optimization developed in
the previous section.

Note that while in combining a general set of kernels it
may happen that a combination with negative coeffi-
cients is still positive semi-definite, we show that here
for K(a) to be positive semi-definite we must have
ap > 0 for all k. This follows from the fact that if
the order in which the vectors are orthogonalized is
given by 41,42, ...,i7, then the entries vg;, = 0, for
¢ < k and wvg;, # 0 (assuming the k-th feature vector
has non-zero residual). Hence, the matrix V' with the
vectors v as rows has rank 7'. Now assume aj < 0.
Since V has full row rank, there is a vector u such that
Vu = e, the k-th unit vector. Now

u'K(a)u = Zaku'vkv;ﬁu =ag <0.
k

Hence, we obtain the optimally aligned linear combi-
nation by solving the optimization,

max Zak(y'vk)2 — Zakal ((U;c’l}l)2 + A(Skl)
k kl
subj to «; > 0.

We refer to this optimization as gramkernel (return-
ing the « in the variable X) in the description of the
overall procedure given in Algorithm 2.



Data : Construct kernel matrix (K), and yy’
Perform Gram-Schmidt decomposition on K to ob-
tain the matrix V' and diagonal matrix D;

Set A to a constant value;

for mazimum number of runs do

Split data into training (I) and test set (J);
M =\ Id;

b= (V(L,:) + y(I))*

M =M+ (V(L) - V(I,)%

[nsv, X] = gramkernel (M, b);

G=V - diag(X)-V';

Compute alignment for K and Gj

Train SVM & Parzen windows with K and G;

endfor

Algorithm 2: Optimization of Alignment using Gram-
Schmidt

An inductive alignment algorithm similar to that
based on a complete eigenvalue decomposition (see
companion paper (Kandola et al., 2002)) can also be
developed by modifying the Gram-Schmidt procedure.
We first apply the Gram-Schmidt optimization routine
to the training data only and then use the following
iteration to compute the features of a new point d: for
j=1,...,T,

~ (K(ddiy) = SI2] 11 VX - featlig 1)
flil = ;

size[j]

where K denotes the kernel matrix and v X the square
root of the diagonal matrix X obtained from the Gram
kernel optimization routine.

5. Non-margin based Gram-Schmidt
Optimization

In a companion paper (Kandola et al., 2002) we prove

the following two theorems that relate the optimiza-

tion of the projected alignment to the Ridge Regres-
sion optimization:

m

min L(w) = Mw,w) + Y ((w,x;) —y;)° . (5)

w .
=1

Theorem 3 Let X be a feature/ezample matriz ex-
pressed in a possibly kernel-defined feature space. The
solution of the optimization

argma‘xwszHglA(Sa Xlwlea yyl)

gives the weight vector that solves the Ridge Regression
problem (5) with the regularization parameter A = 0.

Theorem 4 Let X be a feature/example matriz ex-
pressed in a possibly kernel-defined feature space. The
solution of the optimization

Wy = Argmax,, |, <1 A(S; X ww' X, yy')
satisfies

A(S, X'w.w, X, yy") > A(S, X' X, yy').

Together the theorems show that optimizing the align-
ment decreases a lower bound on the objective of the
Ridge Regression optimization. This suggests that op-
timizing the alignment will lead to better generaliza-
tion performance of two norm error bound classifiers.
We report experiments in the next section with Parzen
windows estimators (that were proven to have good
performance if the alignment is high in (Cristianini
et al., 2001), Ridge Regression and standard Support
Vector Machines.

6. Experiments

To demonstrate the performance of the algorithms pre-
sented we have used two binary classification datasets.
The ionosphere dataset! which contains 34 inputs, a
single binary output and 351 datapoints. The Wis-
consin breast cancer dataset was obtained from the
University of Wisconsin hospitals. It contains nine in-
teger valued inputs, a single binary output (benign or
malignant tumours) and 699 datapoints.

Three learning algorithms were implemented. A
Parzen window estimator, a support vector classifier
(SVC) and a kernel ridge regressor (treating the binary
labels +1, —1 as real targets). A 10-fold procedure was
used to find the optimal values for the capacity con-
trol parameters 'C’. The SVC was trained ten times
using a range of values of 'C’, and the value that gave
the lowest mean error (and associated standard devi-
ation) on the test dataset was chosen as the optimal
value. Having selected the optimal value of 'C’, the
SVC was re-trained ten times using ten random data
splits. A similar procedure was used to find the op-
timal Ridge Regression parameter A. A linear kernel
was used for training for both of the datasets. The K
matrices are before adaption, while the G matrices are
after optimization using the transductive and induc-
tive alignment algorithms. The index represents the
percentage of training points.

Tables 1 and 2 present the results of applying the
transduction and inductive alignment algorithms to
the ionosphere dataset. It is apparent that the train-
ing alignment increases for the matrix G across all data

!available from the UCI data repository



Table 1. Ionosphere dataset - alignment values, SVC, Parzen window (PW) and Ridge Regression (RR) error for a linear
kernel over 10 runs using transductive Gram-Schmidst.

TRAIN ALIGN TEST ALIGN SVC ERROR PW ERROR RR ERrRROR

Kgo || 0.244 (0.012) | 0.258 (0.046) | 0.320 (0.052) | 0.279 (0.042) | 0.240 (0.048)
[ Gso ]| 0.342 (0.012) | 0.350 (0.089) | 0.214 (0.030) | 0.206 (0.024) | 0.207 (0.039) |
| Kso ]| 0.224 (0.029) | 0.272 (0.036) | 0.297 (0.036) | 0.262 (0.033) | 0.244 (0.039) |
[ Gso ]| 0.360 (0.028) | 0.309 (0.034) | 0.209 (0.016) | 0.205 (0.017) | 0.203 (0.015) |
[ K» ]| 0.254 (0.032) | 0.245 (0.008) | 0.310 (0.013) | 0.281 (0.020) | 0.279 (0.016) |
[[G2o ]| 0.316 (0.031) | 0.286 (0.016) | 0.231 (0.021) | 0.223 (0.024) | 0.222 (0.020) |

Table 2. Ionosphere dataset - alignment values, SVC and Parzen window (PW) and Ridge Regression (RR) error for a

linear kernel over 10 runs using inductive Gram-Schmidt.

TRAIN ALIGN TEST ALIGN SVC ERROR PW ERROR RR ERrRROR

Kgo || 0.243 (0.013) | 0.261 (0.053) | 0.323 (0.047) | 0.281 (0.037) | 0.253 (0.033)
[ Gso ]| 0.311 (0.013) | 0.285 (0.052) | 0.251 (0.053) | 0.230 (0.046) | 0.230 (0.040) |
[ Kso0 ]| 0.227 (0.033) | 0.270 (0.040) [ 0.295 (0.034) | 0.259 (0.032) [ 0.248 (0.034) |
[ Gso ]| 0.303 (0.040) | 0.260 (0.039) | 0.239 (0.041) | 0.223 (0.044) | 0.204 (0.031) |
[ Kx ]| 0.266 (0.066) | 0.243 (0.016) | 0.314 (0.017) | 0.286 (0.014) | 0.275 (0.035) |
[ G20 ]| 0.375 (0.064) | 0.109 (0.017) | 0.259 (0.058) | 0.260 (0.055) | 0.243 (0.066) |

partitions. A similar affect is observed for the testset
alignment. There is also a reduction in the SVC, PW
and RR mean generalization error over ten runs for
all of data partitions considered using the transduc-
tive Gram-Schmidt algorithm. Overall, these results
indicate that the optimization of the alignment on the
training set increases its value by more than the sum
of the standard deviations. From the concentration of
the alignment (see (Cristianini et al., 2001)) this im-
provement is maintained in the alignment measured
on the test dataset using a linear kernel.

Table 2 presents the results from the inductive align-
ment algorithm. It is apparent that the training align-
ment increases for the matrix G across all data parti-
tions, although the increase is not as large as that for
the transductive results presented in table 1. A simi-
lar affect is observed for the testset alignment, where
again the alignment on the testset does not increase as
much as for the transductive algorithm. These obser-
vations are entirely in accordance with the inductive
algorithm. Whilst the SVC mean generalisation error
for the K matrices (all partitions) are similar in value
to their transductive counterparts (see table 1) the
SVC error for the G matrices (all partions) is higher
than the transductive values. This implies that the in-
ductive algorithm when using a SVC gives worse per-

formance. From the observation that the alignment
values (for the G) matrix and the motivation for the
inductive Gram-Schmidt (see earlier) this is expected.
A similar effect is also observed for the PW and RR
mean generalization errors. Overall, these results in-
dicate that the optimization of the alignment on the
training set increases its value by more than the sum
of the standard deviations. From the concentration of
the alignment (see (Cristianini et al., 2001)) this im-
provement is maintained in the alignment measured
on the test dataset using a linear kernel.

Tables 3 and 4 present the results of applying the
transduction and inductive alignment algorithms to
the ionosphere dataset. It is apparent that the train-
ing alignment increases for the matrix G across all data
partitions. A similar affect is observed for the testset
alignment. There is also a reduction in the SVC, PW
and RR mean generalization error over ten runs for
all of data partitions considered using the transduc-
tive Gram-Schmidt algorithm. Overall, these results
indicate that the optimization of the alignment on the
training set increases its value by more than the sum
of the standard deviations. From the concentration of
the alignment (see (Cristianini et al., 2001)) this im-
provement is maintained in the alignment measured
on the test dataset using a linear kernel.



Table 3. Breast dataset - alignment values, SVC and Parzen Window (PW) and Ridge Regression (RR) error for a linear
kernel over 10 runs using transductive Gram-Schmidst.

TRAIN ALIGN TEST ALIGN SVC ERROR PW ERROR RR ERrRROR

Kgo || 0.112 (0.007) | 0.137 (0.031) | 0.336 (0.024) | 0.222 (0.034) | 0.336 (0.023)
[ Gso ]| 0.251 (0.006) | 0.294 (0.037) | 0.247 (0.030) | 0.131 (0.032) | 0.244 (0.032) |
| Kso ]| 0.120 (0.019) | 0.115 (0.020) | 0.353 (0.017) | 0.250 (0.021) | 0.356 (0.017) |
[ Gso ]| 0.269 (0.019) | 0.245 (0.023) | 0.262 (0.021) | 0.139 (0.019) | 0.259 (0.021) |
[ K» ]| 0.116 (0.040) | 0.117 (0.010) | 0.349 (0.008) | 0.242 (0.012) | 0.349 (0.008) |
[ G20 ]| 0.259 (0.039) | 0.242 (0.010) | 0.267 (0.022) | 0.146 (0.009) | 0.266 (0.021) |

Table 4. Breast dataset - alignment values, SVC and Parzen Window (PW) and Ridge Regression (RR) error for a linear

kernel over 10 runs using inductive Gram-Schmidt.

TRAIN ALIGN TEST ALIGN SVC ERROR PW ERROR RR ERrRROR

Kgo || 0.079 (0.008) | 0.080 (0.034) | 0.239 (0.107) | 0.653 (0.045) | 0.355 (0.027)
[ Gso ]| 0.311 (0.008) | 0.321 (0.031) | 0.115 (0.023) | 0.133 (0.027) | 0.167 (0.039) |
[ Ks0 ]| 0.089 (0.018) ] 0.070 (0.016) [ 0.240 (0.156) | 0.663 (0.021) [ 0.361 (0.018) |
[ Gso ]| 0.312 (0.017) | 0.308 (0.016) | 0.115 (0.009) | 0.134 (0.013) | 0.204 (0.058) |
[ K ]| 0.081 (0.035) | 0.079 (0.010) | 0.188 (0.087) | 0.649 (0.011) | 0.347 (0.008) |
[ G20 ]| 0.328 (0.034) | 0.295 (0.009) | 0.139 (0.014) | 0.142 (0.012) | 0.254 (0.069) |

Table 4 presents the results from the inductive align-
ment algorithm. It is apparent that the training align-
ment increases for the matrix G across all data parti-
tions, although the increase is not as large as that for
the transductive results presented in table 3. A simi-
lar affect is observed for the testset alignment, where
again the alignment on the testset does not increase
as much as for the transductive algorithm. These ob-
servations are entirely in accordance with the induc-
tive algorithm. Whilst the SVC mean generalisation
error for the K matrices (all partitions) are similar
in value to their transductive counterparts (see ta-
ble 1) the SVC error for the G matrices (all partions)
is higher than the transductive values. This implies
that the inductive algorithm when using a SVC gives
worse performance. This effect is in contrast to that
observed for the ionosphere dataset. This observation
will be investigated in future work using a range of
kernel functions. Overall, these results indicate that
the optimization of the alignment on the training set
increases its value by more than the sum of the stan-
dard deviations. From the concentration of the align-
ment (see (Cristianini et al., 2001)) this improvement
is maintained in the alignment measured on the test
dataset using a linear kernel.

7. Discussion & Conclusions

The problem of assessing the quality of a kernel is
central to the theory of kernel-machines, and deeply
related to the problem of model/feature selection as
a whole. Being able to quantify this property is an
important step towards effective algorithms for ker-
nel selection, combination and adaptation. Previous
approaches to optimizing kernel alignment have re-
quired the full eigendecomposition of the kernel matrix
which can be computationally prohibitive especially
for large kernel matrices. In this paper we demon-
strated a general method for optimizing alignment
over a linear combination of kernels. The approach
we developed has been extended to give both trans-
ductive and inductive algorithms based on the Incom-
plete Cholesky factorization of the kernel matrix. The
method is based upon the incomplete Cholesky factor-
ization, which as we argue in the paper is equivalent to
performing a Gram-Schmidt orthogonalization of the
training points in the feature space. The alignment
optimization method adapts the feature space to in-
crease its training set alignment. Regularization is re-
quired to ensure this alignment is also retained for the
test set, and ensures that a sparse solution is obtained.
In this paper we provided both theoretical and experi-
mental evidence to show that improving the alignment



leads to a reduction in generalization error of standard
classifiers. From the tables of results presented in sec-
tion 6, the alignment increases on the training and the
test datasets. There is also an associated performance
increase as denoted by measures such as SVC error,
RR error and PW error.

The computational cost of performing an eigenvalue
decomposition on a kernel matrix can be prohibitive
for large kernel matrices. The examples considered in
this paper were of moderate size and as such computa-
tional cost was kept to a minimum, however there is no
reason why larger datasets cannot be considered. The
performance of the algorithms will also be evaluated
on high noise datasets. These tasks are left for future
work. In a companion paper (Kandola et al., 2002) we
extended the notion of kernel alignment to two other
learning problems: regression and classification with
uneven datatsets. This work used a complete eigen-
value decomposition of the kernel matrix, as such the
method proposed in this paper will be tested (mak-
ing the appropriate modifications to the rank 1 matrix
(see ((Kandola et al., 2002)) for regression and uneven
datasets. Recent work by (Lanckriet et al., 2002) has
also used semi-definate programming to learn the ker-
nel matrix from a set of data. It would be interesting
to compare the performance of this approach with that
of kernel alignment presented here and in (Cristianini
et al., 2001).

Theoretically, we should explore the connections be-
tween high alignment and good generalization in larger
classes of learning machines, and its relations with the
luckiness framework (Shawe-Taylor et al., 1998), and
the notion of stability. More general quality measures
can be designed (basically any kernel between Gram
matrices could be used), so some work will be devoted
to exploring some possible options. Other forms of ker-
nel combination and adaptation will be studied with
the tool of alignment maximization.
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