Robust Bounds on Generalization
from the Margin Distribution

John Shawe-Taylor
Royal Holloway, University of London
j.shawe-taylor@dcs.rhbnc.ac.uk

Nello Cristianini
University of Bristol
nello.cristianini@®bristol.ac.uk

NeuroCOLT?2 Technical Report Series
NC2-TR-1998-029

October, 1998}

Produced as part of the ESPRIT Working Group
in Neural and Computational Learning I,
NeuroCOLT?2 27150

For more information see the NeuroCOLT website
http://www.neurocolt.com
or email neurocolt@neurocolt.com



IReceived 29-OCT-1998



Abstract

A number of results have bounded generalization of a classifier in terms
of its margin on the training points. There has been some debate about
whether the minimum margin is the best measure of the distribution of
training set margin values with which to estimate the generalization. Fre-
und and Schapire [8] have shown how a different function of the margin
distribution can be used to bound the number of mistakes of an on-line
learning algorithm for a perceptron, as well as an expected error bound.
We show that a slight generalization of their construction can be used to
give a pac style bound on the tail of the distribution of the generalization
errors that arise from a given sample size. Algorithms arising from the
approach are related to those of Cortes and Vapnik [5]. We generalise
the basic result to function classes with bounded fat-shattering dimension
and the 1-norm of the slack variables which gives rise to Vapnik’s box
constraint algorithm. We also extend the results to the regression case
and obtain bounds on the probability that a randomly chosen test point
will have error greater than a given value. The bounds apply to the e-
insensitive loss function proposed by Vapnik for Support Vector Machine
regression. A special case of this bound gives a bound on the probabilities
in terms of the least squares error on the training set showing a quadratic
decline in probability with margin.
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Introduction

For classification by thresholding a real valued function the margin of a training
point is the amount by which its output is on the right side of the threshold or,
if misclassified, minus the amount by which it fails to be correctly classified. In
the case of linear hyperplanes with unit weight vectors, this value can also be
seen as the distance of the input point from the hyperplane. The margin of a
classifier is the minimum margin over the training set.

The idea that a large margin classifier might be expected to give good gen-
eralization is certainly not new [7, 19]. Despite this insight it was not until
comparatively recently [12] that such a conjecture has been placed on a firm
footing in the probably approximately correct (pac) model of learning. Learn-
ing in this model entails giving a bound on the generalization error which will
hold with high confidence over randomly drawn training sets. In this sense it
can be said to ensure reliable learning, something that cannot be guaranteed
by bounds on the expected error of a classifier.

Despite successes in extending this style of analysis to the agnostic case [2]
and applying it to neural networks [2], boosting algorithms [11], perceptron
decision trees [13] and Bayesian algorithms [6], there has been concern that
the measure of the distribution of margin values attained by the training set is
largely ignored in a bound that depends only on its minimal value. Intuitively,
there appeared to be something lost with a bound that depended so critically
on the positions of possibly a small proportion of the training set, ignoring
the margin attained by the majority of the points. Attempts to address this
problem have been made in for example [11], but they treat points that fail
to meet the larger margin as errors and fall back on agnostic bounds for the
generalization error. In contrast our results apply to the case where there are
training set errors, but have the form of bounds with no training set errors.

The question of how to handle the situation of non linearly separable data has
received a lot of attention (see [4] for a review of some of the methods suggested).
The problem is that minimising the number of training errors is NP-complete
and so the various methods adopted are inherently heuristic relative to the best
bounds previously available for bounding the generalization error. By showing
that the generalization error can be bounded in terms of a quantity that can
be optimized by a polynomial time algorithm, we provide a solution to a long-
standing conundrum of perceptron learning.

The analysis is based on work of Freund and Schapire [8] (a similar technique
was employed by Klasner and Simon [10] for rendering a real valued function
learning algorithm noise tolerant), who developed a measure of the margin dis-
tribution which they showed could be used to bound the expected generalization
error more tightly than the minimal margin. In this paper we show that the
same measure can be used to obtain a pac style bound for linear functions. This
result provides a formal justification for the soft margin heuristic introduced by
Vapnik to render Support Vector machines noise-tolerant [18]. The same theo-
retical approach is then applied to more general non-linear classes of functions
with bounded fat-shattering dimension.
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Algorithms arising from the approach are related to those of Cortes and Vap-
nik [5] and directly justify the original proposal made to minimise the 2-norm
of the slack variables. We generalise the basic result to function classes with
bounded fat-shattering dimension and the 1-norm of the slack variables which
gives rise to Vapnik’s box constraint algorithm. Finally, application to regres-
sion is considered, which includes results for standard least squares as a special
case.

The paper is structured as follows. In the next section we will summarise the
results in O notation to give a flavour of what the paper aims to achieve. In
Section 3 relevant background material and definitions are introduced. This
is followed by a section describing the results for classification using linear
functions. This is the simplest case considered and provides insight into the
basic techniques employed. Section 5 describes the algorithm consequences of
these results for Support Vector Machine classification algorithms. We then
proceed to generalize the results to non-linear function spaces in Section 6.
The penultimate section considers the problem of regression and shows how the
results obtained for classification readily generalize to this case.

Summary of Results

The results in this section will be given in the O notation indicating asymptotics
ignoring log factors. The aim is to give the flavour of the results obtained which
might otherwise be obscured by the detailed technicalities of the proofs and
precise bounds obtained.

The first case considered is that of classification using linear function classes
that include the use of kernel functions such as those used in the Support Vector
Machine. For this case consider a margin v about the separating hyperplane
and set (d(7)(z,y)) (x,y)es) to be the vector for training set S to be the vector
of the amounts by which the training points fail to achieve the margin v. We
bound the probability € of misclassification of a randomly chosen test point by

(see Theorem 4.3)
5 ((B+ ||d||2)2)
e<o (VEEIGR),
N |5]v?
where R is the radius of a ball about the origin which contains the support of

the input probability distribution.

The results are generalized to non-linear function classes using a characterisa-
tion of their capacity at scale v known as the fat shattering dimension fat(y).
In this case the bound obtained has the form (see Theorem 6.13)

~ (fat(y/16) + ||d||3/~*
€<0 ( 5] ) ’

This result is generalized to obtain a bound in terms of the 1-norm of the vector
d (see Corollary 6.14)

 (fat(7/16) + |ld]l,/*
= O( 5] ) ’
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which could of course also be applied to the linear case using a bound on the
fat shattering dimension for this case.

Finally, the problem of estimating errors of regressors is addressed with the
techniques developed. We bound the probability € that for a randomly chosen
test point the absolute error is greater than a given value #. In this case we
define a vector (8(x,y))(x,y)es of amounts by which the error on the training
examples exceeds § — 7. Note that ||0(6)||3 is simply the least squares error on
the training set. We then bound the probability € by (see Theorem 7.2)

- (fat(v/16) + [|0(7)]|3/7*
e<O ( ] ) .

These results can be used for Support Vector Regression and give a way of
choosing the optimal size § — v of the tube for the insensitive loss function.
In addition they can be applied to standard least square regression by setting
v = 6 to obtain the bound (see Corollary 7.4)

 (£at(0/16) + 0(0)|[3/6”
= O( 5] ) |

3 Background Results

We consider learning from examples, initially of a binary classification. We

denote the domain of the problem by X and a sequence of inputs by x =
(z1,...,2m) € X™. A training sequence is typically denoted by z = ((1,1), - - -+ (T, Ym)) €
(X x{—1,1})™ and the set of training examples by S. By Er,(h) we denote the

number of classification errors of the function & on the sequence z. As we will

typically be classifying by thresholding real valued functions we introduce the

notation Typ(f) to denote the function giving output 1 if f has output greater

than or equal to # and —1 otherwise. For a class H the class Ty(H) is the set

of derived classification functions.

We first give some necessary definitions.

Definition 8.1 Let H be a set of binary valued functions. We say that a set of
points X 1is shattered by H if for all binary vectors b indexed by X, there is a
function f, € H realising b on X. The Vapnik-Chervonenkis (VC) dimension,
VCdim(H), of the set H is the size of the largest shattered set, if this is finite
or infinity otherwise.

The following theorem is well known in a number of different forms. We quote
the result here as a bound on the generalization error rather than as a required
sample size for given generalization.

Theorem 3.2 [12] Let H;, i = 1,2,... be a sequence of hypothesis classes map-
ping X to{0,1} such that VCdim (H;) = ¢, and let P be a probability distribution
on X. Let pg be any set of positive numbers satisfying > 5>, pa = 1. With prob-
ability 1 — 6 over m independent examples drawn according to P, for any d for
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which a learner finds a consistent hypothesis h in Hy, the generalization error
of h is bounded from above by

e(m, d, ) = % (dm (Qilm) +ln (pid) +ln (%)) ,

provided d < m.

We now introduce the generalization of the VC dimension which makes it pos-
sible to generalize Theorem 3.2 to large margin classification.

Definition 8.3 Let H be a set of real valued functions. We say that a set of
points X is y-shattered by ‘H if there are real numbers r, indexed by v € X such
that for all binary vectors b indexed by X, there is a function f, € H satisfying

<r,—7 otherwise.

The fat shattering dimension faty of the set H is a function from the positive
real numbers to the integers which maps a value v to the size of the largest
~v-shattered set, if this is finite or infinity otherwise.

We will make critical use of the following result contained in Shawe-Taylor et
al [12] which involves the fat shattering dimension of the space of functions.

Theorem 3.4 Consider a real valued function class H having fat shattering
function bounded above by the function afat : ® — AN which is continuous from
the right. Fiz 8 € R. Then with probability at least 1 — 6 a learner who correctly
classifies m independently generated examples z with h = Ty(f) € To(H) such
that ery(h) = 0 and v = min | f(z;) — 8| will have error of h bounded from above

by
2
e(m,k,8) = - (k10g2 (&Tm) log,(32m) + log, (STm)) ,

where k = afat(y/8) < em.

Note how the fat shattering dimension at scale /8 plays the role of the VC
dimension in this bound. This result motivates the use of the term effective
VC dimension for this value. In order to make use of this theorem, we must
have a bound on the fat shattering dimension and then calculate the margin of
the classifier. We begin by considering bounds on the fat shattering dimension.
The first bound on the fat shattering dimension of bounded linear functions in
a finite dimensional space was obtained by Shawe-Taylor et al. [12]. Gurvits [9]
generalised this to infinite dimensional Banach spaces. We will quote an im-
proved version of this bound for Hilbert spaces which is contained in [3] (slightly
adapted here for an arbitrary bound on the linear operators).
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Theorem 3.5 [38] Consider a Hilbert space and the class of linear functions L
of norm less than or equal to B restricted to the sphere of radius R about the
origin. Then the fat shattering dimension of L can be bounded by

Faty (7) < (?)2.

In order to apply Theorems 3.4 and 3.5 we need to bound the radius of the
sphere containing the points and the norm of the linear functionals involved.
Clearly, scaling by these quantities will give the margin appropriate for appli-
cation of the theorem.

4 Linear Function Classes

Let X be a Hilbert space. We define the following Hilbert space derived from
X.

Definition 4.1 Let L;(X) be the set of real valued functions f on X with
support supp(f) finite, that is functions in L¢(X) are non-zero only for finitely
many points. We define the inner product of two functions f,g € L;(X), by

(f-oy=" > [fl@)gla).

f
v€SUpPP(f)

Note that the sum which defines the inner product is well-defined since the
functions have finite support. Clearly the space is closed under addition and
multiplication by scalars.

Now for any fixed A > 0 we define an embedding of X into the Hilbert space
X x L¢(X) as follows.
At @ = XA = (2, Ady),

where 6, € L#(X) is defined by

5x(y):{ 1; ify=u;

0; otherwise.

We begin by considering the case where A is fixed. In practice we wish to
choose this parameter in response to the data. In order to obtain a bound over
different values of A it will be necessary to apply the following theorem several
times.

For a linear classifier u on X and threshold b € R we define

d((xv y)7 (u7 b)77) = maX{077 - y((u ) $> - b)}

This quantity is the amount by which u fails to reach the margin v on the point
(x,y) or 0 if its margin is larger than +. Similarly for a training set S, we define

D(S, (u,0),7) = Z d((z,y), (u,b),7)

(z,y)€S
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Theorem 4.2 Fiz A > 0, b € R. Consider a fived but unknown probability
distribution on the input space X with support in the ball of radius R about the
origin. Then with probability 1 — § over randomly drawn training sets S of size
m for all v > 0 the generalization of a linear classifier u on X with ||u|| = 1,

thresholded at b is bounded by

8 720m 1 1 R?/A?
(k10g2 (%) log,(32m) + log, ( m logy ;_ mR/ ))) 5

b {64-5(1?2 + A%)([[ull* + D(S, (u, b)m)z/Az)J
2 ’

provided m > 2/¢, k < em and there is no discrete probability on misclassified

e(m,k,8) =

2
m

where

training points.

Proof: Consider the fixed mapping 7o and the augmented linear functional
over the space X x L¢(X),

R 1
= u,Z Z d((z,y), (u,b),v)ydx
(z,y)€S

We claim that
1. forz ¢ S, {u-z)=(a-7a(x)), and
2. the margin of @ with threshold b on the training set 74 (S) is 7.

Hence, the off training set behaviour of the linear classifier (u,b) can be char-
acterised by the behaviour of (u,b), while (a,b) is a large margin classifier
in the space X X Ly(X). Since for 2 € S, ||7(2)|> < R* + A% and ||4* =
||ul|> + D(S, (u,b),v)?/A?, the result will then follow from an application of
Theorems 3.4 and 3.5 provided that there are no misclassified training points
with discrete probability. Since Theorem 3.4 can only be applied for a fixed
space of functions we must apply the two theorems for a discrete set of values for
the bound B on the norm of the linear functions. This corresponds to choosing
a discrete set of values for the product (BR)? of Theorem 3.5. We will choose
the arithmetic series o' (R24-A2), fori = 1,...,£ = 90log, (1+mR?/A?%), where
« is chosen so that of(R? + A?%) = (R?* + A?)(1+ mR?/A?) which is an upper
bound on the product ||7(z)||?||@]|?, since D? < mR?. Hence, a = 2'/%° and
it is readily verified that 64.005 x « < 64.5. This implies that if we replace
the constant 64 of Theorem 3.4 by 64.005 to ensure the continuity from the
right, then for the observed value of ||7(z)||%||u]|? there is an application of the
theorem for a value of (BR)? within a factor « of this value and the required
bound holds. Note that for each application of the theorem we must replace
the § of Theorem 3.4 by 8’ = §/( in order to ensure that all applications hold
uniformly with probability 1 — é.
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1. The first claim follows immediately from the observation that for z ¢ S,

< Z d((xvy)v (uvb)77)y5x‘5z> =0
(

z,y)ES

2. For (2,y') € S, we have

y((a,7a(2")y —=b) = y'({(u,a’) - b) —|—y< Z d((z,y), (u,0),7) Y6z -
(=

Y)ES
v —d((@',y'), (w,0),7y) +d((z",¢), (0, 0),7) = 7.

v

The theorem follows. m

We now apply this theorem several times to allow a choice of A which approxi-
mately minimises the expression for k. Note that the minimum of the expression
(ignoring the constant and suppressing the denominator v?) is (R+D)? attained

when A =+RD .

Theorem 4.3 Fiz b € R. Consider a fized but unknown probability distribution
on the input space X with support in the ball of radius R about the origin. Then
with probability 1 — § over randomly drawn training sets S of size m for all
v > 0 such that d((x,y), (u,b),vy) = 0, for some (z,y) € S, the generalization
of a linear classifier u on X satisfying ||u|| < 1 is bounded by

2
€(m, k,0) = % (k log, (&Tm) log,(32m) + log, (180m(21 —ElogZ(m)) )) ;

where

b 65[(R+ D)? + 2.25RD)]
= 2 ,
for D = D(S, (u,b),7), and provided m > max{2/¢,6}, k < em and there is no
discrete probability on misclassified training points.

Proof: Consider a fixed set of values for A, Ay = R[2m%?® — 1|, Aj1y =
A;/2, for i = 2,...,t, where t satisfies, R/32 > A; > R/64. Hence, t <
log,(128m%2%) = 0.25(28 4 log,(m)). We apply Theorem 4.2 for each of these
values of A, using 8’ = 46/t in each application. Note that we have also
loosely upper bounded the expression (28 + log,(m))log,(1 + mR?/A?) by
(21 +1log,(m))? in each application. For a given value of ¥ and D = D(S,u,7),
it is easy to check that the value of k is minimal for A = v/RD and is mono-
tonically decreasing for smaller values of A and monotonically increasing for
larger values. Note that vRD < R+v/2y/m — 1, as the largest absolute differ-
ence in the values of the linear function on two training points is 2R and since
d((z,y), (u,b),v) = 0, for some (x,y) € S, we must have d((2',y'), (u,b),v) <
2R, for all (2/,y') € S. Hence, as 2m®? —1 > v/2(m — 1)%?° for m > 6, we can

;
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find a value of A; satisfying vV RD/2 < A; < v/RD, provided vRD > R/32.

The value of the expression
(R* + A%)(1+ D(S,u,7)*/A%)

at the value A; will be upper bounded by its value at A =V RD/2. A routine
calculation confirms that for this value of A, the expression is equal to (R +
D)? 4+ 2.25RD. Now suppose VRD < R/32. In this case we will show that
2 2 2 /A2 130 2
(R*+ A})(1+ D*/A}) < 59 (R+ D)*+2.25RD},

so that the application of Theorem 4.2 with A = A; covers this case once the
constant 64.5 is replaced by 65. Recall that R/32 > A; > R/64 and note that
vD/R < 1/32. We therefore have

(R?+ A (1+ D?*/A}) < R*(1+41/32%)(1+ 64°D*/R?)
< rir 2V (14 o+
= 1024 324
1

(AN
=
[\™]
TN
=
+
—
5|~
g
PN N g
TN
=
+
3
ot
[=>)
N—

< —/R —

as required. The result follows. m

5 Algorithmics

The theory developed in the previous section provides a principled answer to a
long standing question: what is the ”best” linear separation of a set of points
that are not linearly separable? Many heuristics have been proposed (see [4]
for a review), mainly aimed at reducing the empirical risk, but most of them
suffer from computational problems. The question is a practically interesting
one, expecially after the revival of perceptron-like systems due to the success of
Support Vector Machines [5, 18]. The inability of the original Support Vector
Machines to deal with noise (and tolerate outliers) is a serious practical lim-
itation, expecially because - when combined with the use of kernels - it can
easily lead to overfitting. The solution developed for Support Vector machines
is a heuristic known as the ”Soft Margin”, which will be described below. The
bound proven in the previous section implies the following algorithm: minimize
D(S, (u,b),~) for a given fixed value of v, and subsequently minimize the bound
over different choices of . This would ensure that the hyperplane coincides with
the minimum of the upper bound on the generalization error. Moreover, as we
will see, it can be found in polynomial time. The approach taken by Vapnik
[18, Section 5.5.1] for his Soft Margin Classifer is similar, albeit with totally
different motivations: in order to minimize the training error of the output hy-
pothesis (an NP-complete task) he approximates it with the quantity Z;n:l 7,
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which tends to the training error for ¢ — 0. This gives rise to the following
algorithm: for non-negative variables d; > 0, minimize the function

m
_ o
=S a,
=1

subject to the constraints:

yil{u-x;) — 0]
(u-u)

which can be solved in polynomial time for ¢ = 1 or ¢ = 2. This constrained

1—d;, j=1,...,m (1)

>
< c 2)

optimization problem is then solved by minimizing the following quantity (prob-

lem (1)):

m

for different, fixed, values of a. A suitable value of « is then usually chosen
by means of a validation set. Once translated into dual variables, this problem
turns out to be a quadratic programming problem for each fixed value of «a,
and can be solved efficiently using standard methods.

The algorithm which follows from the theory presented in the previous section
can, in contrast, be described as follows (problem (2)): minimize

m
2 _ 2
) =>"d;
J=1
subject to constraints

yil{u-x;) =0] > 1—d;; j=1,....m (3)
(u-uy = C (4)

which corresponds exactly to minimizing D(S, (u,b), ), where v = % This
follows from considering the hyperplane (u’,%) = (u/v/C,b//C) which has

norm 1 and classifies the point (z;,y;) such that
d((xjv yj)? (ulv b/)v v) = dj/\/av

so that D(S, (u',V),v) = /F2(d)/C. Once translated into dual variables,

problem (2) gives rise to a convex maximization problem [14]

F(Xo, A :——Z/\2+Z/\ —KZM]M] X; - X;) — AoC,

,3=1
which must be solved subject to the constraints, A; > 0, 7 = 0,...,m, and
Z;n:l Ajy; = 0 for each value of v = %, giving the optimal (according to

our bound) hyperplane of fixed norm ||w|| = % Its solution can be found in
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polynomial time by applying a gradient based path algorithm following grad(F)
with an appropriate learning rate 7, but this convex optimization problem is
more difficult than a standard quadratic programming one. The best v is then
chosen again using the bound derived in the previous section, namely:

R+D)2

w* = argmin, min (
v

?lhwll=1/4
We will now show that the same result can be obtained by solving the (simpler)
quadratic problem used by Vapnik, with ¢ = 2 and « is optimised with respect
to our bound. The idea is that the class of functions defined by problem (1) for
« € R is identical to the class of functions defined by problem (2) for v € R™.
The optimal function according to our bound is hence the same in both classes.
First we need to prove a technical lemma, and state some definitions.

Lemma 5.1 The hyperplane implicitly defined by the optimization problem (1)
depends continuously on the parameter .

Proof: This follows from the fact that the dual function equivalent to problem
(1) (once maximized in the positive quadrant for each value of ) [5]

W(X) = Z A — %Zyiyj/\,’/\]f{(wi, acj) — éz /\,2 + Ao Z AiYi
%7

is continuous both in A and in «, and is strictly convex in A for any fixed value
of a.. Strict convexity follows from the fact that its Hessian

OF; ) 1
H;j = o, Uiy K (i, 25;) — —

= H]ulm] Z 17
[8%

is negative definite. m

Definition 5.2 We define W, to be the set of the solutions of problem (1) for
all values of a, and W, to be the set of the solutions of problem (2) for all
values of v. Formally:

Z’” 1
k : )
Wa = {u € R*[Fa € RT, u = argminga — dj+ 5(u w)}
]:
. R+D\?
W, = {ueR*Fy e Rt u= ar gmin|u|j=1/~ (%) )

Theorem 5.3 The sets of functions W, and W, defined above are equivalent.

Proof: let w, be the solution of the problem (1) for a fixed value of . Then,
[|lwall = 0if @ = 0, and ||wa|| — o0 if @ — co. By lemma 5.1 we know that
the function ||w(«)|| is continuous in «, and hence the norm of the solutions
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of problem (1) ranges through all possible positive values for suitably chosen
values of a. Since ||w|| = %, considering the solution for value of « in problem
(1) is equivalent solving problem (2) with C' = ||wq||. This implies that for
each function w, € W, there exists a value of v such that the corresponding

wy €W, and wy = wy. ®

An obvious, but important, consequence of this theorem is the following corol-
lary:

Corollary 5.4 The minima of the bound on W, and W, coincide:

o (52 = min e, (52
Mg, €W, 5 = MM, €W, 5

This means that the optimal separating hyperplane (according to our bound)
can be found by solving the quadratic optimization problem (2) with ¢ = 2
for different values of «, and choosing the value of a which minimizes the
bound itself. This analysis provides a theoretical justification to the Soft Margin
heuristics (using the 2-norm of the vector d described in the appendix of [5]),
as well as a theoretically sound way to choose the optimal value of « in that
case. In the next sections we will generalize the theoretical results given so far,
and this will lead to a further description of soft-margin heuristics for Support
Vector Machines as well as non-linear function classes.

6 Non-linear Function Spaces

6.1

Further Background Results

Before we can quote the next lemma, we need another definition.

Definition 6.1 Let (X, d) be a (pseudo-) metric space, let A be a subset of X
and € > 0. A set B C X is an e-cover for A if, for every a € A, there erists
b € B such that d(a,b) < €. The ecovering number of A, Ny(e, A), is the
minimal cardinality of an e-cover for A (if there is no such finite cover then it
is defined to be oo). We will say the cover is proper if B C A.

Note that we have used less than or equal to in the definition of a cover. This
is somewhat unconventional, but will not change the bounds we use. It does,
however, prove technically useful in the proofs. The idea is that B should be
finite but approximate all of A with respect to the pseudometric d. we will use
the [*° distance over a finite sample x = (z1,..., %) for the pseudo-metric in
the space of functions,

dx(f,9) = max |f(z:) = g(z)].

We write N (e, F,x) = Ny, (¢, F) We will consider the covers to be chosen from
the set of all functions with the same domain as F and range the reals.
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We now quote a lemma from [12] which follows immediately from a result of
Alon et al. [1].

Corollary 6.2 [12] Let F be a class of functions X — [a,b] and P a distribu-
tion over X. Choose 0 < € < 1 and let d = fatr(e/4). Then

sup N(e, F,x) <2

4m(b _ a)2 dlog,(2em(b—a)/(de))
XEXT™ ( ) ‘

€2

We define a clipping function ..

0 ifa>40
my(a) =< 6—-201y ifa<f—-201y
«@ otherwise,

and let 7, (F) = {7y (f): f € F}. The choice of the threshold @ is arbitrary but
will be fixed before any analysis is made. If the value of # needs to be included
explicitly we will denote the clipping function by ﬂ'g.

For a monotonic function f(vy) we define

f(y7) = lim f(y - a),
a—0t
that is the left limit of f at 7. Note that the minimal cardinality of an e-cover
is a monotonically decreasing function of €, as is the fat shattering dimension
as a function of ~.

Definition 6.3 We say that a class of functions F is sturdy its images under
the evaluation maps
i F— R, zr:fe— fx)

are compact subsets of ® for all x € X.

Note that this definition differs slightly from that introduced in [15]. The
current definition is more general, but at the same time simplifies the proof of
the required properties.

Lemma 6.4 Let F be a sturdy class of functions. Then for each N € N and
any fized sequence x € X™, the infimum vy = inf{y|N(y,F,x) = N}, is
attained.

Proof: The straightforward proof follows exactly the proof of Lemma 2.6
of [15]. m

Corollary 6.5 Let F be a sturdy class of functions. Then for each N € N and
any fized sequence x € X™, the infimum vy = inf{y|N (v, 74(F),x) = N}, is
attained.
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Proof: Suppose that the assertion does not hold for some x € X™ and NV € N,
Let N' = N (vn, ®yp (F),x) > N. Consider the following supremum

N = sup{y|N (7, Ty (F), x) = N'}.

Since the assertion does not hold we have 'yN/ > vn. By the lemma we must
have vV' > vy, since otherwise the infimum of the 4 required for the next size of
cover will not be attained. Hence, there exists v/ > vy with N'(y/, 7\ (F), x) =
N'. Let v = (' + vn)/2. Note that N'(y,7,(F),x) < N. Let B be a minimal
cover in this case. Claim that B is also a 4/ cover for 7, (F) in the dx metric.
To show this consider f € F and let f; € B be within v of 7, (f) in the dy
metric. Hence, for all z € x, |f;(z) — 7, (f)(2)] < 7. But this implies that

|fi(@) =y (F) (@) < v+ (v =)

= 7.
Hence, we have NV (v/, 7, (F),x) < N, a contradiction. m

We will make use of the following lemma, which in the form below is due to
Vapnik [17, page 168].

Lemma 6.6 Let X be a set and S a system of sets on X, and P a probability
measure on X. Forx € X™ and A € S, define vx(A) := |xNA|/m. If m > 2/e,
then

P {xisup () = P > ef < 22 fyisup ) -y ()] > 2

The following two theorems are essentially quoted from [12] but they have been
reformulated here in terms of the covering numbers involved. The difference will
be apparent if Theorem 6.8 is compared with Theorem 3.4 quoted in Section 3.

Lemma 6.7 Suppose F is a sturdy set of functions that map from X to R.
Then for any distribution P on X, and any k € N and any 6§ ¢ R

p2m {xy: dfe F,r= m]ax{f(acj)}, 2y < 0 — 1, [logy (N (v, 7y (F), xy))] = ki

= {01 () > 0}] > e(om, . 5) } <5

where e(m, k,8) = L (k +log, 3).

Proof: We have omitted the detailed proof since it is essentially the same as
the corresponding proof in [12] with the simplification that Corollary 6.2 is not
required and the property of sturdiness ensures by Corollary 6.5 that we can
find a v cover where

Tk = inf{7|N(77ﬂ-’Y(‘7:)7XY) = 2k}

which can be used for all v satisfying [log, (N (v, 74(F),xy))] = k. Note also
that an inequality is required 2y < 6 — r, as we have coverings using closed
rather than open balls. m
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Theorem 6.8 Consider a sturdy real valued function class F having a uniform
bound on the covering numbers

N('V_vﬂ-v—(j:)vx) < B(¢,7),

for all x € X*, for all 0. Fiz § € R. If a learner correctly classifies m inde-
pendently generated examples z with h = Ty(f) € Tp(F) such that ery(h) =0
and v = min | f(z;) — 0|, then with confidence 1 — § the expected error of h is
bounded from above by

e(mvkv(s) = % (k + log, (877”)) )

where k = [log, B(2m,~v/2)].

Proof: Making use of lemma 6.6 we will move to the double sample and stratify
by k. By the union bound, it thus suffices to show that > ;7 P?™(Ji) < §/2,
where

Jy={xy : Fh=Ty(f) € To(F),Erx(h) = 0,k = [log, B(2m,~v/2)],
v = min |f(z;) — 0|, Ery(h) > me(m, k,5)/2}.

(The largest value of k we need consider is 2m, since for larger values the bound
will in any case be trivial). It is sufficient if P?™(J;) < £& = &'. We will in
fact work with the set

Je(Y)={xy : Fh=Ty(f) € Ty(F),Erx(h) =0,k = [logzN(P)/l/27777//2(?)7Xy)—|7
v < min | f(z;) — 6], Ery (h) > me(m, k,8)/2}.

We will show that for any 7' < v, we have P?™(Ji(v')) < §'. Hence, considering
the limit v/ — v from below, the result will follow.

Consider F = Fy. The probability distribution on X = X x {0,1} is given
by P on X with the second component determined by the target value of the
first component. Note that for a point y € y to be misclassified, it must have
f(§) > 0 > max{f(2):& € X} + 7, so that

Te() € {35 € (Xx 0.1} : 3f € Fr=max{f(2):4 €%).7/ <01,

k= [log N (7//2,my2(F), x3)1, {5 € 3: £(9) > 8}] > me(m. k,6)/2 |

Replacing v by +'/2 in Lemma 6.7 and appealing to Lemma 6.6 we obtain
P (J(3)) < &, for

e(m, k,8) = = (k +1og(2/8")),

2
m

as required. Note that the condition of Lemma 6.6 are satisfied by € and m. n
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6.2 Margin distribution and fat shattering

In this section we will generalise the results of Section 4 to function classes for
which a bound on their fat-shattering dimension is known. The basic trick is to
bound the covering numbers of the sum of two function classes in terms of the
covering numbers of the individual classes. If F and G a real valued function
classes defined on a domain X we denote by F + G the function class

F+G={f+yglfeF,geg}.

Lemma 6.9 Let F and G be two real valued function classes both defined on a
domain X . Suppose G has range [a,b]. Then we can bound the cardinality of a
minimal v cover of F + G by

N(77 777(-7:+ g),X) S N(7/27 7734__((15_(1)/2(‘7:)7X)N(7/27gvx)‘

Proof: Fix n € (0,v) and let B (respectively C') be a minimal 7 (respectively

v — 1) cover of ﬂz_l__‘('b_a)/z(]:) (respectively G) in the dx metric. Consider the

set of functions B + C. For any f+¢g € F 4 G, there is an f; € B within 7

of ﬂg_l__‘('b_a)/z(f) in the dyx metric and a ¢g; € C within v — 5 of ¢ in the same
metric. For & € x we claim

|7 (f + 9)(2) — 7y (fi + g5) ()] < v (5)
Hence, 7, (B + C) forms a v cover of 7, (F 4+ G). Since
|B + C| S N(nv 7734__((15_(,)/2(‘7:)7 X)N(7 -1, g7 X)7
the result follows by setting n = v/2. To justify the claim, assume first that
6 —2v < (f+g)(xz) <. This implies that
0—-2y-0<0-2y-g(x) < fla) <0-g(x) <O—a.
Hence, in this case using the fact that 7 only reduces distances,

(4 9) (@) = (it )@ < 1(F+9)(@) = (fi 4+ 9) ()]

= |50 o )+ 9) (@) = (fi 0 ()]
705 (@) = Fi(@)] + 9(@) — g;()]
< n+vy—n=v.

If on the other hand (f+g)(z) > 0, we need only show that (f;+¢;)(z) > 0—~
in order for (5) to be satisfied. But we have f;(z) > min{f(z),0—a} — 7, while

gj(x) > g(z) — (v —n). Hence,
(fi +9;)(x) > min{(f+g)(2),9(x)+8—a}—7
> 0 —n.

VAN VAN

Finally, if (f + ¢)(z) < 0 — 2y, we must show that (f; + ¢;)(z) < 6 — v to

satisfy equation (5). In this case f;(z) < max{f(z),0 — 2y — b} + 5, while

g;(z) < g(x)+ (v —n). Hence,

(fi+gi)(z) < max{(f+g)(x),g9(x)+60—-2y-b}+7
< 0 —n.

as required. m
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Before proceeding we need a further technical lemma to show that the property
of sturdiness is preserved under the addition operator.

Lemma 6.10 Let F and G be sturdy real valued function classes. Then F 4+ G
is also sturdy.

Proof: Consider € X. Zx(F) is a compact subset of R as is Zg(G). Note
that

irig(F+G) =3r(F)+ ig(9),

where the addition of two sets A and B of real numbers is defined
A+ B={a+blae A be B}.

Since, Zx(F) X &g(G) is a compact set of £% and + is a continuous function
from R? to R, we have that #x(F) + #¢(G) being the image of a compact set
under + is also compact. m

Definition 6.11 Fiz a threshold 8 € R. For a function f on X we define

d((xv y)7 5 7) = maX{077 - y(f($) - 0)}

This quantity is the amount by which f fails to reach the margin v on the point
(z,y) or 0 if its margin is larger than . Let g5 € L{(X) be the function

gr= Y d(,y), f,7)y5

(z,y)€S

Proposition 6.12 Fiz 8 € R. Let F be a sturdy class of real-valued functions
with range [a,b] C R having a uniform bound on the covering numbers

N(y= w2 (F)x) < B(ly, A),

for all x € X*, for all (. Let G be a sturdy subset of L;(X) with the uniform
bound on the covering numbers,

N(7,6,x) < AL, 7),

for x € A, where A = {§,|x € X}. Consider a fired but unknown probability
distribution on the input space X. Then with probability 1 — & over randomly
drawn training sets S of size m for all v > 0 the generalization of a function
f € F thresholded at 0 satisfying g5 € G is bounded by

e(mvkv(s) = % (k + log, (877”)) )

k= “OgZ B(2m7 7/47 A) + 10g2 A(2m7 7/4)1 j

where A > sup{{g,d,)|g € G,z € X}, provided m > 2/¢ and there is no discrete
probability on misclassified training points.

where
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Proof: Consider the fixed mapping 7. We extend the function class F to act
on the space X X L;(X) by its action on X. We similarly extend the function
class G by composing with a projection. We claim that

L for & ¢ S, f(z) = (f +g7)(x), and

2. the margin of f 4 ¢g; with threshold @ on the training set 7 (5) is 7.

Hence, the off training set behaviour of the classifier f can be characterised by
the behaviour of f4 ¢y, while f+g; is a large margin classifier in the space X X
L¢(X). In order to bound the generalization error we will apply Theorem 6.8
for 7+ G which gives a bound in terms of the covering numbers. These we will
bound using Lemma 6.9. The space F+ G is sturdy by Lemma 6.10, since both
F and G are. Note that the range of G is contained in [—A, A] on the input
domain. In this case we obtain the following bound on the covering numbers,

Jim logy (M((v = a)/2,7(ya)p(F 4+ 6G),x)) < lim log, (N(( — @) /4,7 oy a(F). X))
+ lim,log, (V((5 — 0)/4.6,%))
S 10g2 (B(2m7 7/47 A)) + logz(A(va 7/4))7

as required.

1. The first claim follows immediately from the observation that for z ¢ S,

< Z d((%@/%fﬁ)y@- (Sz> =
(

z,y)ES

2. For (2/,y) € S, we have

y((f+gp)@)=0) = Y(f@')-0)+v < d((z,y), f,7)y'0 - 5x/>
(xy)€S

€
Y= d(($/7y/)7f7 7) + d(($/7y/)7f7 7) =7

v

The theorem follows. m

For a training set S, we define

D(S, f,v)= | Y d((z,y), f7)*

(xy)€S

Theorem 6.13 Let F be a sturdy class of real-valued functions with range [a, b]
and fat shattering dimension bounded by fatr(y). Fiz 6 € R and a scaling of
the output range n € R. Consider a fized but unknown probability distribution
on the input space X. Then with probability 1 — & over randomly drawn training
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sets S of size m for allb— a > v > 0 the generalization of a function f € F
thresholded at 0 is bounded by

e(m, b, 5) = % (k10g2 (65m (1+ [))2) log, (9em (14 D)) +log, (w)) ,

on

where
k= {fatf('y_/m) + 641:)2} and D =2(D(S, f,7)+1) /7,

provided m > 2/e and there is no discrete probability on misclassified training
points.

Proof: We define a sequence of function classes G; C Lf(X) to be the linear
functionals with norm at most B; on the space L;(X). We will apply Propo-
sition 6.12 for each class G;. Note that the range of G; is [-Bj, B;] on the
input domain. Note also that the image of G; under the evaluation map is
a closed bounded subset of the reals and hence is compact. It follows that
G; is sturdy. We choose B; = jn, for j = 1,...,0 = \/m(b — a)/n. Hence,
By = /m(b—a) > D(S, f,v), for all f € F and all v < b — a. Hence,
for any value of D = D(S, f,7) obtained there is a value of B; satisfying
D < B; < D+ 7. Substituting the upper bound D + 7 for this B; will give the
result, when we use ' = 6/¢ and bound the covering numbers of the component
function classes using Corollary 6.2 and Theorem 3.5. In this case we obtain
the following bounds on the covering numbers,

_ ; 260m (/2 + B;)?
lim log, (N(('y—a)/4,7rztff|_3j(.7:),x)) < 1—|—d110g2( (742 ;) )

a—0*t
log, (18677”&(7/2 + B]‘))
diy
=: 10g2(3(2m7 7/47 B]))

where d; = fatz(y~/16), and

‘ 260m B2 18emB;
i Togy (M((7 — )/4,G;,%)) < 1+ dylog, (Tz ’)1%( )
=: logz (A(2m7 7/4))

where dy = (16B;/7v)?. Hence, in this case we can bound [log, B(2m, v/4, B;) +
log, A(2m,v/4)] by

“OgZ B(2m7 7/47 B]) + 10g2 A(2m7 7/4)1 S 3 +

16Bj) ?

fatr(y~/16) + (
log, 65m (1 4 2B;/v)*logy 9em(1 + 2B, /)

giving the result where the 3 contributes a factor of 8 into the argument of the
final log term. m
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The theorem can of course be applied for linear function classes, using the bound
on the fat shattering dimension given in Theorem 3.5. The bound obtained is
very comparable, though a lot less clean than Theorem 4.3.

For a training set S, we define

D'(S, fiy)= Y d((z,y), f,7)-

(z,y)€S

This is the [y sum of the slack variables which is optimised in Vapnik’s box con-
straint maximal margin hyperplane algorithm. The following Corollary shows
that optimising this quantity does indeed lead to good generalization.

Corollary 6.14 Let F be a sturdy class of real-valued functions with range
[a,b] and fat shattering dimension bounded by fatr(v). Fiz 6 € R and a scaling
of the output range n € R. Consider a fived but unknown probability distribution
on the input space X. Then with probability 1 — & over randomly drawn training
sets S of size m for allb— a > v > 0 the generalization of a function f € F
thresholded at 0 is bounded by

e(m,k,8) = % (k10g2 (65m (1 + ﬁ)z) log, (Qem (1 + f))) + log, (
where

k= {fatf(’y_/16) n 64[)2] and D =2(/D'(S, f.7)(b—a) +n) /7,

on

provided m > 2/e and there is no discrete probability on misclassified training
points.

Proof: The corollary follows by observing that

D(S, fv) = > d((x,y), £,7)?

(z,y)€S
(b - a) Z d(($7 y)7 f7 7)
(z,y)€S
= VDS, f,7)(b—a)
and applying the theorem. m

IA

If we choose the hyperplane to minimise D'(S, f,v) and apply the Corollary, we
will necessarily obtain a weaker bound than we would if we minimised D(S, f, )
and then applied the Theorem. In the case of linear function classes, better
bounds for the generalization in terms of D and D’ should be obtained using re-
cent results which bound the covering numbers for different norms directly [21].

It is worth noting that we can apply Corollary 6.14 to the case of linear functions
with norm 1 and recover a result similar to Theorem 4.3. The bound would
involve an expression R? + D? rather than (R+ D)?, which appears preferable.
The constants, however, are significantly worse so that overall the bound will
not be as tight.

64m!>(b —
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7 Regression

In order to apply the results of the last section to the regression case we for-
mulate the error estimation as a classification problem. Consider a real-valued
function class F and a target real-valued function ¢(z). For f € F we define
the function e(f) and the class e(F),

e(f)(z) = [f(z)—t(z)];
e(F) = {e(NHlf e F}.

For a training point (z,y) € X x R we define
(), f,7) = max{0, | f(x) — y[ — (0 —7)}.

This quantity is the amount by which f exceeds the error margin  — ~ on the
point (z,y) or 0 if f is within # — v of the target value. Hence, this is the €
insensitive loss measure considered by Vapnik with € = 8 — . Let g5 € L#(X)
be the function

gr ==Y 0((x,9), ;)b

(z,y)€S

Proposition 7.1 Fiz § € R, § > 0. Let F be a sturdy class of real-valued
functions with range [a, b] C R having a uniform bound on the covering numbers

Ny~ F,x) < B(m,v),

for allx € X™. Let G be a sturdy subset of L;(X) with the uniform bound on
the covering numbers,

N(7,6,x) < A(m,v),

for x € A" where A = {é,|x € X}. Consider a fixed but unknown probability
distribution on the input space X. Then with probability 1 — & over randomly
drawn training sets S of size m for all v > 0 the probability that a function
f € F has error greater than 6 with respect to target function t on a randomly
chosen input is bounded by

e(mvkv(s) = % (k + log, (877”)) )

k = [logy B(2m, v/4) + logy A(2m, v/4)1,

where A > sup{{g,0,)|g € G,z € X}, provided m > 2/e, there is no discrete
probability on training points with error greater than 6 and g.(y) € G

where

Proof: The result follows from an application of Proposition 6.12 to the func-
tion class e(F), noting that we treat all training examples as negative, and
hence correct classification corresponds to having error less than €. Finally, we
can bound the covering numbers

N (v, 7 24 (e(F)), x) S Ny, Frx) < B(m, 7).

The result follows. n
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For a training set S, we define

DS, fiv)= | Y. 0(x,y), f,)*

(z,y)€S

The above result can be used to obtain a bound in terms of the observed value
of D(S, f,7v) and the fat shattering dimension of the function class.

Theorem 7.2 Let F be a sturdy class of real-valued functions with range [a, b]
and fat shattering dimension bounded by fatr(y). Fiz 6 € R, § > 0 and a
scaling of the output range n € R. Consider a fized but unknown probability
distribution on the input space X. Then with probability 1 — & over randomly
drawn training sets S of size m for all v with 8 > ~v > 0 the probability that a
function f € F has error larger than 6 on a randomly chosen input is bounded

by

e(m, b, 5) = % (k log, (65m (b_T“) 2) log, (Qem (Z’_T“)) F log, (%ﬁ’_“))) ,

where
k= {fatf('y_/m) + 64752} and D =2(D(S, f,7)+n)/7,

provided m > 2/e and there is no discrete probability on misclassified training
points.

Proof: The proof follows the same pattern as that of Theorem 6.13, with the
exception that the bounds on the covering numbers must use the full range of
the function class F in the log factors. m

Corollary 7.3 Let F be a the set of linear functions with norm 1 restricted to
inputs in a ball of radius R about the origin. Fix 8 € R, 6 > 0 and a scaling of
the output range n € R. Consider a fized but unknown probability distribution
on the input space X. Then with probability 1 — & over randomly drawn training
sets S of size m for all v, with 8 > v > 0 the probability that a function f € F
has error larger than 6 on a randomly chosen input is bounded by

2 2 12 1.5
e(m, k, 0) = m (k log, (260m (g) ) log, (186m§) + log, (S?TR)) :

where

k= {2561%2/72 + 64752} and D =2(D(S, f,7)+ /7,

provided m > 2/e and there is no discrete probability on misclassified training
points.

Proof: The range of linear functions with unit weight vectors when restricted
to the unit ball is [-R, R]. Their fat shattering dimension is bounded by The-
orem 3.5. The result follows. n
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Note that we obtain a generalization bound for standard least squares regression
by taking v = # in Theorem 7.2. In this case D(S, f, ) is the least squares error
on the training set, while the bound gives the probability of a randomly chosen
input having error greater than 6. This is summarised in the following corollary.

Corollary 7.4 Let F be a sturdy class of real-valued functions with range [a, b]
and fat shattering dimension bounded by fatr(y). Fiz 6 € R, § > 0 and a
scaling of the output range n € R. Consider a fized but unknown probability
distribution on the input space X. Then with probability 1 — & over randomly
drawn training sets S of size m the probability that o function f € F has error
larger than 0 on a randomly chosen input is bounded by

)= 2 (s, (o3 (157) Yo (s (1)) 10 (25020)),

where

VE waes (@) =)+
0 b

k= |fatz(87/16) + 64D and D=2

provided m > 2/e and there is no discrete probability on misclassified training
points.

As mentioned in the section dealing with classification we could bound the
generalization in terms of other norms of the vector of slack variables

(8(($7 y)7 f7 7))(x,y)€5 .

The aim of this paper, however, is not to list all possible results, it is rather to
illustrate how such results can be obtained.

Another application of these results is to choose the best ¢ for the € insensitive
loss function for Support Vector Regression. This problem has usually been
solved by using a validation set, but Corollary 7.3 could be used by choose the
value of € which gives the best bound on the generalization. We assume here
that a target accuracy 6 has been set and we wish to minimise the probability
that the error exceeds this value. The optimum will be the € which minimises

R2+D(S, f.,0 — €)?
(6 —¢)? ’

where f. is the solution obtained when using the e-insensitive loss function.

8 Conclusions

We have shown how an approach developed by Freund and Schapire [8] for
mistake bounded learning can be adapted to give pac style bounds which de-
pend on the margin distribution rather than the margin of the closest point to
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the hyperplane. The bounds obtained can be significantly better than previ-
ously obtained bounds, particularly when some of the points are misclassified
and agnostic bounds would need to be applied were a classical analysis to be
adopted in which the square root of the sample size replaces the sample size
in the denominator. The bound is also more robust that that derived for the
maximal margin hyperplane where a single point can have a dramatic effect on
the hyperplane produced.

We have gone on to show how optimizing the measure of the margin distribution
that appears in the bound corresponds to an algorithm proposed by Cortes and
Vapnik [5]. This formulation also allows the problem to be solved in kernel
spaces such as those used with the Support Vector Machine.

We believe that this paper presents the first pac style bound for a margin distri-
bution measure that is neither critically dependent on the nearest points to the
hyperplane nor is an agnostic version of that approach. In addition, we believe
it is the first paper to give a provably optimal algorithm for optimizing the
generalization performance of agnostic learning with hyperplanes, by showing
that the criterion to be minimised should not be the number of training errors,
but rather a more flexible criterion which could be termed a ‘soft margin’. The
problem of finding a more informative and theoretically well-founded measure
of the margin distribution has been an open problem for some time. This paper
suggests one candidate for such a measure which has the advantage of being ro-
bust in the sense that it is not critically sensitive to the behaviour of individual
training points.

The results have been further generalized to non-linear function classes with
bounded fat-shattering dimensions, other norms on the vector of shortfalls of
individual training points and to the regression case. For regression one byprod-
uct is a bound in terms of the least square error on the training set of the prob-
ability that a randomly drawn test point will have error greater than a given
value.

References

[1] Noga Alon, Shai Ben-David, Nicolo Cesa-Bianchi and David Haussler,
“Scale-sensitive Dimensions, Uniform Convergence, and Learnability,”
Journal of the ACM 44(4), 615-631, (1997)

[2] Peter L. Bartlett, “The Sample Complexity of Pattern Classification with
Neural Networks: The Size of the Weights is More Important than the Size
of the Network,” IEEE Trans. Inf. Theory, 44(2), 525-536, (1998).

[3] Peter Bartlett and John Shawe-Taylor, Generalization Performance of Sup-
port Vector Machines and Other Pattern Classifiers, In ‘Advances in Kernel
Methods - Support Vector Learning’, Bernhard Scholkopf, Christopher J.
C. Burges, and Alexander J. Smola (eds.), MIT Press, Cambridge, USA,
1998.



REFERENCES 26

[4] C. Campbell, Constructive Learning Techniques for Designing Neural Net-
work Systems, in (ed CT Leondes) Neural Network Systems Technologies
and Applications. San Diego: Academic Press. 1997.

[5] C. Cortes and V. Vapnik, Support-Vector Networks, Machine Learning,
20(3):273-297, September 1995

[6] Nello Cristianini, John Shawe-Taylor, and Peter Sykacek, Bayesian Classi-
fiers are Large Margin Hyperplanes in a Hilbert Space, in Shavlik, J., ed.,
Machine Learning: Proceedings of the Fifteenth International Conference,
Morgan Kaufmann Publishers, San Francisco, CA.

[7] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis, New
York: Wiley, 1973.

[8] Yoav Freund and Robert E. Schapire, Large Margin Classification Using
the Perceptron Algorithm, Proceedings of the Eleventh Annual Conference
on Computational Learning Theory, 1998.

[9] Leonid Gurvits, A note on a scale-sensitive dimension of linear bounded

functionals in Banach spaces. In Proceedings of Algorithm Learning Theory,
ALT-97, and as NECI Technical Report, 1997.

[10] Norbert Klasner and Hans Ulrich Simon, From Noise-Free to Noise-
Tolerant and from On-line to Batch Learning, Proceedings of the FEighth
Annual Conference on Computational Learning Theory, COLT’95, 1995,
pp- 250-257.

[11] R. Schapire, Y. Freund, P. Bartlett, W. Sun Lee, Boosting the Margin: A
New Explanation for the Effectiveness of Voting Methods. In D.H. Fisher,
Jr., editor, Proceedings of International Conference on Machine Learning,
ICML 97, pages 322-330, Nashville, Tennessee, July 1997. Morgan Kauf-
mann Publishers.

[12] John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, Martin An-
thony, Structural Risk Minimization over Data-Dependent Hierarchies,
IEEFE Trans. on Inf. Theory, 44(5), 1926-1940, (1998), and NeuroCOLT
Technical Report NC-TR-96-053, 1996.
(ftp://ftp.dcs.rhbnc.ac.uk/pub/neurocolt/tech reports).

[13] John Shawe-Taylor and Nello Cristianini, Data Dependent Structural Risk
Minimization for Perceptron Decision Trees, Proceedings of the Eleventh
Conference on Neural Information Processing Systems, NIPS’97. Advances
in Neural Information Processing Systems 10 Michael 1. Jordan, Michael
J. Kearns, and Sara A. Solla (eds.) Cambridge, MA: MIT Press (1998),
pp- 336-342.

[14] John Shawe-Taylor and Nello Cristianini, Margin Distribution Bounds on
Generalization, Submitted to EuroCOLT 99, 1998.



REFERENCES 27

[15] John Shawe-Taylor and Robert C. Williamson, Generalization Performance
of Classifiers in Terms of Observed Covering Numbers, Submitted to Eu-

roCOLT’99, 1998.

[16] University of California, Irvine - Machine Learning Repository,
http://www.ics.uci.edu/ mlearn/MLRepository.html

[17] Vladimir N. Vapnik, Estimation of Dependences Based on Empirical Data,
Springer-Verlag, New York, 1982.

[18] Vladimir N. Vapnik, The Nature of Statistical Learning Theory, Springer-
Verlag, New York, 1995.

[19] Vladimir N. Vapnik, Estimation of Dependences Based on Empirical Data,
Springer-Verlag, New York, 1982.

[20] Vladimir N. Vapnik, Esther Levin and Yann Le Cunn, Measuring the VC-
dimension of a learning machine, Neural Computation, 6:851-876, 1994.

[21] Robert C. Williamson, Alex J. Smola and Bernhard Schélkopf, “Entropy
Numbers, Operators and Support Vector Kernels,” submitted to Euro-
COLT’99. See also “Generalization Performance of Regularization Net-
works
and Support Vector Machines via Entropy Numbers of Compact Oper-
ators,” http://spigot.anu.edu.au/people/williams/papers/P100.ps
submitted to IFEE Transactions on Information Theory, July 1998.



