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Abstract

A number of results have bounded generalization of a classi�er in terms
of its margin on the training points� There has been some debate about
whether the minimum margin is the best measure of the distribution of
training set margin values with which to estimate the generalization� Fre�
und and Schapire ��� have shown how a di	erent function of the margin
distribution can be used to bound the number of mistakes of an on�line
learning algorithm for a perceptron
 as well as an expected error bound�
We show that a slight generalization of their construction can be used to
give a pac style bound on the tail of the distribution of the generalization
errors that arise from a given sample size� Algorithms arising from the
approach are related to those of Cortes and Vapnik ���� We generalise
the basic result to function classes with bounded fat�shattering dimension
and the ��norm of the slack variables which gives rise to Vapnik�s box
constraint algorithm� We also extend the results to the regression case
and obtain bounds on the probability that a randomly chosen test point
will have error greater than a given value� The bounds apply to the ��
insensitive loss function proposed by Vapnik for Support Vector Machine
regression� A special case of this bound gives a bound on the probabilities
in terms of the least squares error on the training set showing a quadratic
decline in probability with margin�
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� Introduction

For classi�cation by thresholding a real valued function the margin of a training
point is the amount by which its output is on the right side of the threshold or�
if misclassi�ed� minus the amount by which it fails to be correctly classi�ed� In
the case of linear hyperplanes with unit weight vectors� this value can also be
seen as the distance of the input point from the hyperplane� The margin of a
classi�er is the minimum margin over the training set�

The idea that a large margin classi�er might be expected to give good gen�
eralization is certainly not new ��� ���� Despite this insight it was not until
comparatively recently ��	� that such a conjecture has been placed on a �rm
footing in the probably approximately correct 
pac� model of learning� Learn�
ing in this model entails giving a bound on the generalization error which will
hold with high con�dence over randomly drawn training sets� In this sense it
can be said to ensure reliable learning� something that cannot be guaranteed
by bounds on the expected error of a classi�er�

Despite successes in extending this style of analysis to the agnostic case �	�
and applying it to neural networks �	�� boosting algorithms ����� perceptron
decision trees ���� and Bayesian algorithms �
�� there has been concern that
the measure of the distribution of margin values attained by the training set is
largely ignored in a bound that depends only on its minimal value� Intuitively�
there appeared to be something lost with a bound that depended so critically
on the positions of possibly a small proportion of the training set� ignoring
the margin attained by the majority of the points� Attempts to address this
problem have been made in for example ����� but they treat points that fail
to meet the larger margin as errors and fall back on agnostic bounds for the
generalization error� In contrast our results apply to the case where there are
training set errors� but have the form of bounds with no training set errors�

The question of how to handle the situation of non linearly separable data has
received a lot of attention 
see ��� for a review of some of the methods suggested��
The problem is that minimising the number of training errors is NP�complete
and so the various methods adopted are inherently heuristic relative to the best
bounds previously available for bounding the generalization error� By showing
that the generalization error can be bounded in terms of a quantity that can
be optimized by a polynomial time algorithm� we provide a solution to a long�
standing conundrum of perceptron learning�

The analysis is based on work of Freund and Schapire ��� 
a similar technique
was employed by Klasner and Simon ���� for rendering a real valued function
learning algorithm noise tolerant�� who developed a measure of the margin dis�
tribution which they showed could be used to bound the expected generalization
error more tightly than the minimal margin� In this paper we show that the
same measure can be used to obtain a pac style bound for linear functions� This
result provides a formal justi�cation for the soft margin heuristic introduced by
Vapnik to render Support Vector machines noise�tolerant ����� The same theo�
retical approach is then applied to more general non�linear classes of functions
with bounded fat�shattering dimension�
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Algorithms arising from the approach are related to those of Cortes and Vap�
nik ��� and directly justify the original proposal made to minimise the 	�norm
of the slack variables� We generalise the basic result to function classes with
bounded fat�shattering dimension and the ��norm of the slack variables which
gives rise to Vapnik�s box constraint algorithm� Finally� application to regres�
sion is considered� which includes results for standard least squares as a special
case�

The paper is structured as follows� In the next section we will summarise the
results in O notation to give a �avour of what the paper aims to achieve� In
Section � relevant background material and de�nitions are introduced� This
is followed by a section describing the results for classi�cation using linear
functions� This is the simplest case considered and provides insight into the
basic techniques employed� Section � describes the algorithm consequences of
these results for Support Vector Machine classi�cation algorithms� We then
proceed to generalize the results to non�linear function spaces in Section 
�
The penultimate section considers the problem of regression and shows how the
results obtained for classi�cation readily generalize to this case�

� Summary of Results

The results in this section will be given in the �O notation indicating asymptotics
ignoring log factors� The aim is to give the �avour of the results obtained which
might otherwise be obscured by the detailed technicalities of the proofs and
precise bounds obtained�

The �rst case considered is that of classi�cation using linear function classes
that include the use of kernel functions such as those used in the Support Vector
Machine� For this case consider a margin � about the separating hyperplane
and set 
d
���x�y���x�y��S� to be the vector for training set S to be the vector
of the amounts by which the training points fail to achieve the margin �� We
bound the probability � of misclassi�cation of a randomly chosen test point by

see Theorem ����

� � �O

�

R� kdk���

jSj��
�
�

where R is the radius of a ball about the origin which contains the support of
the input probability distribution�

The results are generalized to non�linear function classes using a characterisa�
tion of their capacity at scale � known as the fat shattering dimension fat
���
In this case the bound obtained has the form 
see Theorem 
����

� � �O

�
fat
���
�� kdk�����

jSj
�
�

This result is generalized to obtain a bound in terms of the ��norm of the vector
d 
see Corollary 
����

� � �O

�
fat
���
�� kdk����

jSj
�
�
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which could of course also be applied to the linear case using a bound on the
fat shattering dimension for this case�

Finally� the problem of estimating errors of regressors is addressed with the
techniques developed� We bound the probability � that for a randomly chosen
test point the absolute error is greater than a given value �� In this case we
de�ne a vector 
��x�y���x�y��S of amounts by which the error on the training
examples exceeds � � �� Note that k�
��k�� is simply the least squares error on
the training set� We then bound the probability � by 
see Theorem ��	�

� � �O

�
fat
���
�� k�
��k�����

jSj
�
�

These results can be used for Support Vector Regression and give a way of
choosing the optimal size � � � of the tube for the insensitive loss function�
In addition they can be applied to standard least square regression by setting
� � � to obtain the bound 
see Corollary ����

� � �O

�
fat
���
� � k�
��k�����

jSj
�
�

� Background Results

We consider learning from examples� initially of a binary classi�cation� We
denote the domain of the problem by X and a sequence of inputs by x �

x�� � � � � xm� � Xm� A training sequence is typically denoted by z � 

x�� y��� � � � � 
xm� ym�� �

X�f��� �g�m and the set of training examples by S� By Erz
h� we denote the
number of classi�cation errors of the function h on the sequence z� As we will
typically be classifying by thresholding real valued functions we introduce the
notation T�
f� to denote the function giving output � if f has output greater
than or equal to � and �� otherwise� For a class H the class T�
H� is the set
of derived classi�cation functions�

We �rst give some necessary de�nitions�

De�nition ��� Let H be a set of binary valued functions� We say that a set of
points X is shattered by H if for all binary vectors b indexed by X� there is a
function fb � H realising b on X� The Vapnik�Chervonenkis 
VC� dimension�
VCdim
H�� of the set H is the size of the largest shattered set� if this is �nite
or in�nity otherwise�

The following theorem is well known in a number of di�erent forms� We quote
the result here as a bound on the generalization error rather than as a required
sample size for given generalization�

Theorem ��� ���� Let Hi� i � �� 	� � � � be a sequence of hypothesis classes map�
ping X to f�� �g such that VCdim
Hi� � i� and let P be a probability distribution
on X� Let pd be any set of positive numbers satisfying

P�
d�� pd � �� With prob�

ability �� � over m independent examples drawn according to P � for any d for
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which a learner �nds a consistent hypothesis h in Hd� the generalization error
of h is bounded from above by

�
m� d� �� �
�

m

�
d ln

�
	em

d

�
� ln

�
�

pd

�
� ln

�
�

�

��
�

provided d � m�

We now introduce the generalization of the VC dimension which makes it pos�
sible to generalize Theorem ��	 to large margin classi�cation�

De�nition ��� Let H be a set of real valued functions� We say that a set of
points X is ��shattered by H if there are real numbers rx indexed by x � X such
that for all binary vectors b indexed by X� there is a function fb � H satisfying

fb
x�

� � rx � � if bx � �
� rx � � otherwise�

The fat shattering dimension fatH of the set H is a function from the positive
real numbers to the integers which maps a value � to the size of the largest
��shattered set� if this is �nite or in�nity otherwise�

We will make critical use of the following result contained in Shawe�Taylor et
al ��	� which involves the fat shattering dimension of the space of functions�

Theorem ��� Consider a real valued function class H having fat shattering
function bounded above by the function afat � � � N which is continuous from
the right� Fix � � �� Then with probability at least ��� a learner who correctly
classi�es m independently generated examples z with h � T�
f� � T�
H� such
that erz
h� � � and � � min jf
xi�� �j will have error of h bounded from above
by

�
m� k� �� �
	

m

�
k log�

�
�em

k

�
log�
�	m� � log�

�
�m

�

��
�

where k � afat
���� � em�

Note how the fat shattering dimension at scale ��� plays the role of the VC
dimension in this bound� This result motivates the use of the term e�ective
VC dimension for this value� In order to make use of this theorem� we must
have a bound on the fat shattering dimension and then calculate the margin of
the classi�er� We begin by considering bounds on the fat shattering dimension�
The �rst bound on the fat shattering dimension of bounded linear functions in
a �nite dimensional space was obtained by Shawe�Taylor et al� ��	�� Gurvits ���
generalised this to in�nite dimensional Banach spaces� We will quote an im�
proved version of this bound for Hilbert spaces which is contained in ��� 
slightly
adapted here for an arbitrary bound on the linear operators��
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Theorem ��� ��� Consider a Hilbert space and the class of linear functions L
of norm less than or equal to B restricted to the sphere of radius R about the
origin� Then the fat shattering dimension of L can be bounded by

fatL
�� �
�
BR

�

��

�

In order to apply Theorems ��� and ��� we need to bound the radius of the
sphere containing the points and the norm of the linear functionals involved�
Clearly� scaling by these quantities will give the margin appropriate for appli�
cation of the theorem�

� Linear Function Classes

Let X be a Hilbert space� We de�ne the following Hilbert space derived from
X �

De�nition ��� Let Lf 
X� be the set of real valued functions f on X with
support supp
f� �nite� that is functions in Lf 
X� are non�zero only for �nitely
many points� We de�ne the inner product of two functions f� g � Lf
X�� by

hf � gi �
X

x�supp�f�
f
x�g
x��

Note that the sum which de�nes the inner product is well�de�ned since the
functions have �nite support� Clearly the space is closed under addition and
multiplication by scalars�

Now for any �xed � � � we de�ne an embedding of X into the Hilbert space
X � Lf
X� as follows�

	� � x �� X� � 
x���x��

where �x � Lf 
X� is de�ned by

�x
y� �

�
�� if y � x�
�� otherwise�

We begin by considering the case where � is �xed� In practice we wish to
choose this parameter in response to the data� In order to obtain a bound over
di�erent values of � it will be necessary to apply the following theorem several
times�

For a linear classi�er u on X and threshold b � � we de�ne

d

x� y�� 
u� b�� �� � maxf�� � � y
hu � xi � b�g�
This quantity is the amount by which u fails to reach the margin � on the point

x� y� or � if its margin is larger than �� Similarly for a training set S� we de�ne

D
S� 
u� b�� �� �

s X
�x�y��S

d

x� y�� 
u� b�� ����
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Theorem ��� Fix � � �� b � �� Consider a �xed but unknown probability
distribution on the input space X with support in the ball of radius R about the
origin� Then with probability �� � over randomly drawn training sets S of size
m for all � � � the generalization of a linear classi�er u on X with kuk � ��
thresholded at b is bounded by

�
m� k� �� �
	

m

�
k log�

�
�em

k

�
log�
�	m� � log�

�
�	�m log�
� �mR�����

�

��
�

where

k �

�

���
R�����
kuk� �D
S� 
u� b�� �������

��

�
�

provided m � 	��� k � em and there is no discrete probability on misclassi�ed
training points�

Proof � Consider the �xed mapping 	� and the augmented linear functional
over the space X � Lf
X��

�u �

�
�u� �

�

X
�x�y��S

d

x� y�� 
u� b�� ��y�x

�
A �

We claim that

�� for x 	� S� hu � xi � h�u � 	�
x�i� and
	� the margin of �u with threshold b on the training set 	�
S� is ��

Hence� the o� training set behaviour of the linear classi�er 
u� b� can be char�
acterised by the behaviour of 
�u� b�� while 
�u� b� is a large margin classi�er
in the space X � Lf
X�� Since for x � S� k	
x�k� � R� � �� and k�uk� �
kuk� � D
S� 
u� b�� ������� the result will then follow from an application of
Theorems ��� and ��� provided that there are no misclassi�ed training points
with discrete probability� Since Theorem ��� can only be applied for a �xed
space of functions we must apply the two theorems for a discrete set of values for
the bound B on the norm of the linear functions� This corresponds to choosing
a discrete set of values for the product 
BR�� of Theorem ���� We will choose
the arithmetic series 
i
R������ for i � �� � � � � � � �� log�
��mR������ where

 is chosen so that 
�
R� ���� � 
R� ����
� �mR����� which is an upper
bound on the product k	
x�k�k�uk�� since D� � mR�� Hence� 
 � 	���� and
it is readily veri�ed that 
����� � 
 � 
���� This implies that if we replace
the constant 
� of Theorem ��� by 
����� to ensure the continuity from the
right� then for the observed value of k	
x�k�k�uk� there is an application of the
theorem for a value of 
BR�� within a factor 
 of this value and the required
bound holds� Note that for each application of the theorem we must replace
the � of Theorem ��� by �� � ��� in order to ensure that all applications hold
uniformly with probability �� ��
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�� The �rst claim follows immediately from the observation that for z 	� S�� X
�x�y��S

d

x� y�� 
u� b�� ��y�x � �z
	

� ��

	� For 
x�� y�� � S� we have

y�
h�u� 	�
x��i � b� � y�
hu� x�i � b� � y�
� X
�x�y��S

d

x� y�� 
u� b�� ��y��x � �x�
	

� � � d

x�� y��� 
u� b�� ��� d

x�� y��� 
u� b�� �� � ��

The theorem follows�

We now apply this theorem several times to allow a choice of � which approxi�
mately minimises the expression for k� Note that the minimum of the expression

ignoring the constant and suppressing the denominator ��� is 
R�D�� attained
when � �

p
RD �

Theorem ��� Fix b � �� Consider a �xed but unknown probability distribution
on the input space X with support in the ball of radius R about the origin� Then
with probability � � � over randomly drawn training sets S of size m for all
� � � such that d

x� y�� 
u� b�� �� � �� for some 
x� y� � S� the generalization
of a linear classi�er u on X satisfying kuk � � is bounded by

�
m� k� �� �
	

m

�
k log�

�
�em

k

�
log�
�	m� � log�

�
���m
	� � log�
m���

�

��
�

where

k �

�

��
R�D�� � 	�	�RD�

��

�
�

for D � D
S� 
u� b�� ��� and provided m � maxf	��� 
g� k � em and there is no
discrete probability on misclassi�ed training points�

Proof � Consider a �xed set of values for �� �� � Rb	m���� � �c� �i	� �
�i�	� for i � 	� � � � � t� where t satis�es� R��	 � �t � R�
�� Hence� t �
log�
�	�m

����� � ��	�
	� � log�
m��� We apply Theorem ��	 for each of these
values of �� using �� � ��t in each application� Note that we have also
loosely upper bounded the expression 
	� � log�
m�� log�
� � mR����� by

	�� log�
m��� in each application� For a given value of � and D � D
S�u� ���
it is easy to check that the value of k is minimal for � �

p
RD and is mono�

tonically decreasing for smaller values of � and monotonically increasing for
larger values� Note that

p
RD � R

p
	
p
m� �� as the largest absolute di�er�

ence in the values of the linear function on two training points is 	R and since
d

x� y�� 
u� b�� �� � �� for some 
x� y� � S� we must have d

x�� y��� 
u� b�� �� �
	R� for all 
x�� y�� � S� Hence� as 	m����� � �

p
	
m� ������ for m � 
� we can



Algorithmics �	

�nd a value of �i satisfying
p
RD�	 � �i �

p
RD� provided

p
RD � R��	�

The value of the expression


R� � ���
� �D
S�u� �������

at the value �i will be upper bounded by its value at � �
p
RD�	� A routine

calculation con�rms that for this value of �� the expression is equal to 
R �
D�� � 	�	�RD� Now suppose

p
RD � R��	� In this case we will show that


R� � ��
t �
� �D����

t � �
���

�	�




R�D�� � 	�	�RD

�
�

so that the application of Theorem ��	 with � � �t covers this case once the
constant 
��� is replaced by 
�� Recall that R��	 � �t � R�
� and note thatp
D�R � ���	� We therefore have


R� ���
t �
� �D����

t � � R�
� � ���	��
� � 
��D��R��

� R�

�
� �

�

��	�

��
� �


��

�	


�

� R�

�
� �

�

��	�

��
� �

�

	�


�

�
���

�	�
R� � ���

�	�




R�D�� � 	�	�RD

�
as required� The result follows�

� Algorithmics

The theory developed in the previous section provides a principled answer to a
long standing question� what is the �best� linear separation of a set of points
that are not linearly separable� Many heuristics have been proposed 
see ���
for a review�� mainly aimed at reducing the empirical risk� but most of them
su�er from computational problems� The question is a practically interesting
one� expecially after the revival of perceptron�like systems due to the success of
Support Vector Machines ��� ���� The inability of the original Support Vector
Machines to deal with noise 
and tolerate outliers� is a serious practical lim�
itation� expecially because � when combined with the use of kernels � it can
easily lead to over�tting� The solution developed for Support Vector machines
is a heuristic known as the �Soft Margin�� which will be described below� The
bound proven in the previous section implies the following algorithm� minimize
D
S� 
u� b�� �� for a given �xed value of �� and subsequently minimize the bound
over di�erent choices of �� This would ensure that the hyperplane coincides with
the minimum of the upper bound on the generalization error� Moreover� as we
will see� it can be found in polynomial time� The approach taken by Vapnik
���� Section ������ for his Soft Margin Classifer is similar� albeit with totally
di�erent motivations� in order to minimize the training error of the output hy�
pothesis 
an NP�complete task� he approximates it with the quantity

Pm
j�� d

�
j �
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which tends to the training error for 
 � �� This gives rise to the following
algorithm� for non�negative variables di � �� minimize the function

F�
d� �
mX
j��

d�j �

subject to the constraints�

yj �hu � xji � b� � �� dj � j � �� � � � � m 
��

hu � ui � C� 
	�

which can be solved in polynomial time for 
 � � or 
 � 	� This constrained
optimization problem is then solved by minimizing the following quantity 
prob�
lem 
����




mX
j��

d�j �
�

	
hu � ui

for di�erent� �xed� values of 
� A suitable value of 
 is then usually chosen
by means of a validation set� Once translated into dual variables� this problem
turns out to be a quadratic programming problem for each �xed value of 
�
and can be solved e�ciently using standard methods�

The algorithm which follows from the theory presented in the previous section
can� in contrast� be described as follows 
problem 
	��� minimize

kdk� �
mX
j��

d�j

subject to constraints

yj �hu � xji � b� � �� dj � j � �� � � � � m 
��

hu � ui � C 
��

which corresponds exactly to minimizing D
S� 
u� b�� ��� where � � �p
C
� This

follows from considering the hyperplane 
u�� b�� � 
u�
p
C� b�

p
C� which has

norm � and classi�es the point 
xj � yj� such that

d

xj� yj�� 
u
�� b��� �� � dj�

p
C�

so that D
S� 
u�� b��� �� �
p
F�
d��C� Once translated into dual variables�

problem 
	� gives rise to a convex maximization problem ����

F 
��� �� � ��

�

mX
j��

��j �
mX
j��

�j � �

��C

mX
i�j��

�i�jyiyjhxi � xji � ��C�

which must be solved subject to the constraints� �j � �� j � �� � � � � m� andPm
j�� �jyj � � for each value of � � �p

C
� giving the optimal 
according to

our bound� hyperplane of �xed norm jjwjj � �
� � Its solution can be found in
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polynomial time by applying a gradient based path algorithm following grad
F �
with an appropriate learning rate �� but this convex optimization problem is
more di�cult than a standard quadratic programming one� The best � is then
chosen again using the bound derived in the previous section� namely�

w� � argmin� min
kwk����

�
R�D

�

��

We will now show that the same result can be obtained by solving the 
simpler�
quadratic problem used by Vapnik� with 
 � 	 and 
 is optimised with respect
to our bound� The idea is that the class of functions de�ned by problem 
�� for

 � �	 is identical to the class of functions de�ned by problem 
	� for � � �	�
The optimal function according to our bound is hence the same in both classes�
First we need to prove a technical lemma� and state some de�nitions�

Lemma ��� The hyperplane implicitly de�ned by the optimization problem 	�

depends continuously on the parameter 
�

Proof � This follows from the fact that the dual function equivalent to problem

�� 
once maximized in the positive quadrant for each value of 
� ���

W
�� �
X

�i � �

	

X
i�j

yiyj�i�jK
xi� xj�� �




X
��i � �C

X
�iyi

is continuous both in � and in 
� and is strictly convex in � for any �xed value
of 
� Strict convexity follows from the fact that its Hessian

Hij �
�Fi
��jj

� yjiyjjK
xji � xjj��
�



� Hji� i� j � ��

is negative de�nite�

De�nition ��� We de�ne W� to be the set of the solutions of problem 	�
 for
all values of 
� and W� to be the set of the solutions of problem 	�
 for all
values of �� Formally�

W� � fu � �kj

 � �	�u � argmin�


mX
j��

d�j �
�

	
hu�uig

W� � fu � �kj
� � �	�u � argminjjujj����

�
R�D

�

��

g

Theorem ��� The sets of functions W� and W� de�ned above are equivalent�

Proof � let w� be the solution of the problem 
�� for a �xed value of 
� Then�
jjw�jj � � if 
 � �� and jjw�jj � � if 
 � �� By lemma ��� we know that
the function jjw

�jj is continuous in 
� and hence the norm of the solutions
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of problem 
�� ranges through all possible positive values for suitably chosen
values of 
� Since jjwjj � �p

C
� considering the solution for value of 
 in problem


�� is equivalent solving problem 
	� with C � kw�k� This implies that for
each function w� � W� there exists a value of � such that the corresponding
w� � W� � and w� � w� �

An obvious� but important� consequence of this theorem is the following corol�
lary�

Corollary ��� The minima of the bound on W� and W� coincide�

minw��W�

�
R�D

�

��

�minw��W�

�
R�D

�

��

This means that the optimal separating hyperplane 
according to our bound�
can be found by solving the quadratic optimization problem 
	� with 
 � 	
for di�erent values of 
� and choosing the value of 
 which minimizes the
bound itself� This analysis provides a theoretical justi�cation to the Soft Margin
heuristics 
using the 	�norm of the vector d described in the appendix of �����
as well as a theoretically sound way to choose the optimal value of 
 in that
case� In the next sections we will generalize the theoretical results given so far�
and this will lead to a further description of soft�margin heuristics for Support
Vector Machines as well as non�linear function classes�

� Non�linear Function Spaces

��� Further Background Results

Before we can quote the next lemma� we need another de�nition�

De�nition ��� Let 
X� d� be a 	pseudo�
 metric space� let A be a subset of X
and � � �� A set B � X is an ��cover for A if� for every a � A� there exists
b � B such that d
a� b� � �� The ��covering number of A� Nd
�� A�� is the
minimal cardinality of an ��cover for A 	if there is no such �nite cover then it
is de�ned to be �
� We will say the cover is proper if B � A�

Note that we have used less than or equal to in the de�nition of a cover� This
is somewhat unconventional� but will not change the bounds we use� It does�
however� prove technically useful in the proofs� The idea is that B should be
�nite but approximate all of A with respect to the pseudometric d� we will use
the l� distance over a �nite sample x � 
x�� � � � � xm� for the pseudo�metric in
the space of functions�

dx
f� g� � max
i
jf
xi�� g
xi�j�

We write N 
��F �x� � Ndx
��F� We will consider the covers to be chosen from
the set of all functions with the same domain as F and range the reals�
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We now quote a lemma from ��	� which follows immediately from a result of
Alon et al� ����

Corollary ��� ���� Let F be a class of functions X � �a� b� and P a distribu�
tion over X� Choose � � � � � and let d � fatF 
����� Then

sup
x�Xm

N 
��F �x�� 	

�
�m
b� a��

��

�d log���em�b�a���d���
�

We de�ne a clipping function �� �

��

� ��

�

�

� if 
 � �
� � 	���� if 
 � � � 	����

 otherwise�

and let ��
F� � f��
f�� f � Fg� The choice of the threshold � is arbitrary but
will be �xed before any analysis is made� If the value of � needs to be included
explicitly we will denote the clipping function by ��� �

For a monotonic function f
�� we de�ne

f
��� � lim
����

f
� � 
��

that is the left limit of f at �� Note that the minimal cardinality of an ��cover
is a monotonically decreasing function of �� as is the fat shattering dimension
as a function of ��

De�nition ��� We say that a class of functions F is sturdy its images under
the evaluation maps

�xF �F �� �� �xF � f �� f
x�

are compact subsets of � for all x � X�

Note that this de�nition di�ers slightly from that introduced in ����� The
current de�nition is more general� but at the same time simpli�es the proof of
the required properties�

Lemma ��� Let F be a sturdy class of functions� Then for each N � N and
any �xed sequence x � Xm� the in�mum �N � inff�jN 
��F �x� � Ng� is
attained�

Proof � The straightforward proof follows exactly the proof of Lemma 	�

of �����

Corollary ��� Let F be a sturdy class of functions� Then for each N � N and
any �xed sequence x � Xm� the in�mum �N � inff�jN 
�� ��
F��x� � Ng� is
attained�
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Proof � Suppose that the assertion does not hold for some x � Xm and N � N�
Let N � � N 
�N � ��N 
F��x�� N � Consider the following supremum

�N
�

� supf�jN 
�� ��N
F��x� � N �g�
Since the assertion does not hold we have �N

� � �N � By the lemma we must
have �N

�

� �N � since otherwise the in�mum of the � required for the next size of
cover will not be attained� Hence� there exists �� � �N with N 
��� ��N 
F��x� �
N �� Let � � 
�� � �N��	� Note that N 
�� ��
F��x�� N � Let B be a minimal
cover in this case� Claim that B is also a �� cover for ��N 
F� in the dx metric�
To show this consider f � F and let fi � B be within � of ��
f� in the dx
metric� Hence� for all x � x� jfi
x�� ��
f�
x�j � �� But this implies that

jfi
x�� ��N 
f�
x�j � � � 
� � �N�

� ���

Hence� we have N 
��� ��N 
F��x�� N � a contradiction�

We will make use of the following lemma� which in the form below is due to
Vapnik ���� page �
���

Lemma ��� Let X be a set and S a system of sets on X� and P a probability
measure on X� For x � Xm and A � S� de�ne �x
A� �� jx
Aj�m� If m � 	���
then

Pm

�
x� sup

A�S
j�x
A�� P 
A�j � �

�
� 	P �m

�
xy� sup

A�S
j�x
A�� �y
A�j � ��	

�
�

The following two theorems are essentially quoted from ��	� but they have been
reformulated here in terms of the covering numbers involved� The di�erence will
be apparent if Theorem 
�� is compared with Theorem ��� quoted in Section ��

Lemma ��� Suppose F is a sturdy set of functions that map from X to ��
Then for any distribution P on X� and any k � N and any � � �

P �m

�
xy� 
f � F � r � max

j
ff
xj�g� 	� � � � r� dlog�
N 
�� ��
F��xy��e� k�

�

m
jfijf
yi� � �gj � �
m� k� ��

�
� ��

where �
m� k� �� � �
m
k � log�

�
	 ��

Proof � We have omitted the detailed proof since it is essentially the same as
the corresponding proof in ��	� with the simpli�cation that Corollary 
�	 is not
required and the property of sturdiness ensures by Corollary 
�� that we can
�nd a �k cover where

�k � inff�jN 
�� ��
F��xy� � 	kg
which can be used for all � satisfying dlog�
N 
�� ��
F��xy��e � k� Note also
that an inequality is required 	� � � � r� as we have coverings using closed
rather than open balls�
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Theorem ��	 Consider a sturdy real valued function class F having a uniform
bound on the covering numbers

N 
��� ���
F��x�� B
�� ���

for all x � X�� for all �� Fix � � �� If a learner correctly classi�es m inde�
pendently generated examples z with h � T�
f� � T�
F� such that erz
h� � �
and � � min jf
xi� � �j� then with con�dence � � � the expected error of h is
bounded from above by

�
m� k� �� �
	

m

�
k � log�

�
�m

�

��
�

where k � dlog�B
	m� ��	�e�

Proof � Making use of lemma 
�
 we will move to the double sample and stratify
by k� By the union bound� it thus su�ces to show that

P�m
k�� P

�m
Jk� � ��	�
where

Jk � fxy � 
h � T�
f� � T�
F��Erx
h� � �� k � dlog�B
	m� ��	�e�
� � min jf
xi�� �j�Ery
h� � m�
m� k� ���	g�


The largest value of k we need consider is 	m� since for larger values the bound
will in any case be trivial�� It is su�cient if P �m
Jk� � 	


m � ��� We will in
fact work with the set

Jk
�
�� � fxy � 
h � T�
f� � T�
F��Erx
h� � �� k � dlog�N 
���	� �����
F��xy�e�

�� � min jf
xi�� �j�Ery
h� � m�
m� k� ���	g�

We will show that for any �� � �� we have P �m
Jk
�
��� � ��� Hence� considering

the limit ��� � from below� the result will follow�

Consider �F � �F�� The probability distribution on �X � X � f�� �g is given
by P on X with the second component determined by the target value of the
�rst component� Note that for a point y � y to be misclassi�ed� it must have
�f
�y� � � � maxf �f
�x�� �x � �xg� �� so that

Jk
�
�� �

n
�x�y � 
X � f�� �g��m � 
 �f � �F � r � maxf �f
�x�� �x � �xg� �� � � � r�

k � dlogN 
���	� �����
F��xy�e�
���f�y � �y� �f
�y� � �g

��� � m�
m� k� ���	
o

Replacing � by ���	 in Lemma 
�� and appealing to Lemma 
�
 we obtain
P �m
Jk
�

��� � ��� for

�
m� k� �� �
	

m

�
k � log
	����

�
�

as required� Note that the condition of Lemma 
�
 are satis�ed by � and m�



Non
linear Function Spaces ��

��� Margin distribution and fat shattering

In this section we will generalise the results of Section � to function classes for
which a bound on their fat�shattering dimension is known� The basic trick is to
bound the covering numbers of the sum of two function classes in terms of the
covering numbers of the individual classes� If F and G a real valued function
classes de�ned on a domain X we denote by F � G the function class

F � G � ff � gjf � F � g � Gg�
Lemma ��
 Let F and G be two real valued function classes both de�ned on a
domain X� Suppose G has range �a� b�� Then we can bound the cardinality of a
minimal � cover of F � G by

N 
�� ��
F � G��x� � N 
��	� ���a�	�b�a���
F��x�N 
��	�G�x��
Proof � Fix � � 
�� �� and let B 
respectively C� be a minimal � 
respectively
� � �� cover of ���a�	�b�a���
F� 
respectively G� in the dx metric� Consider the
set of functions B � C� For any f � g � F � G� there is an fi � B within �

of ���a�	�b�a���
f� in the dx metric and a gj � C within � � � of g in the same
metric� For x � x we claim

j��
f � g�
x�� ��
fi � gj�
x�j � �� 
��

Hence� ��
B � C� forms a � cover of ��
F � G�� Since
jB � Cj � N 
�� ���a

�	�b�a���
F��x�N 
�� ��G�x��
the result follows by setting � � ��	� To justify the claim� assume �rst that
� � 	� � 
f � g�
x� � �� This implies that

� � 	� � b � � � 	� � g
x� � f
x� � � � g
x� � � � a�

Hence� in this case using the fact that �� only reduces distances�

j��
f � g�
x�� ��
fi � gj�
x�j � j
f � g�
x�� 
fi � gj�
x�j
� j
���a

�	�b�a���
f� � g�
x�� 
fi � gj�
x�j
� j���a�	�b�a���
f�
x�� fi
x�j� jg
x�� gj
x�j
� � � � � � � ��

If on the other hand 
f �g�
x� � �� we need only show that 
fi�gj�
x� � ���
in order for 
�� to be satis�ed� But we have fi
x� � minff
x�� ��ag� �� while
gj
x� � g
x�� 
� � ��� Hence�


fi � gj�
x� � minf
f � g�
x�� g
x�� � � ag � �

� � � ��

Finally� if 
f � g�
x� � � � 	�� we must show that 
fi � gj�
x� � � � � to
satisfy equation 
��� In this case fi
x� � maxff
x�� � � 	� � bg � �� while
gj
x� � g
x� � 
� � ��� Hence�


fi � gj�
x� � maxf
f � g�
x�� g
x�� � � 	� � bg� �

� � � ��

as required�
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Before proceeding we need a further technical lemma to show that the property
of sturdiness is preserved under the addition operator�

Lemma ���� Let F and G be sturdy real valued function classes� Then F � G
is also sturdy�

Proof � Consider x � X � �xF
F� is a compact subset of � as is �xG
G�� Note
that

�xF	G
F � G� � �xF 
F� � �xG
G��
where the addition of two sets A and B of real numbers is de�ned

A�B � fa� bja � A� b � Bg�
Since� �xF 
F�� �xG
G� is a compact set of �� and � is a continuous function
from �� to �� we have that �xF 
F� � �xG
G� being the image of a compact set
under � is also compact�

De�nition ���� Fix a threshold � � �� For a function f on X we de�ne

d

x� y�� f� �� � maxf�� � � y
f
x�� ��g�
This quantity is the amount by which f fails to reach the margin � on the point

x� y� or � if its margin is larger than �� Let gf � Lf 
X� be the function

gf �
X

�x�y��S
d

x� y�� f� ��y�x�

Proposition ���� Fix � � �� Let F be a sturdy class of real�valued functions
with range �a� b� � � having a uniform bound on the covering numbers

N 
��� ��	A���	A
F��x�� B
�� �� A��

for all x � X�� for all �� Let G be a sturdy subset of Lf
X� with the uniform
bound on the covering numbers�

N 
���G�x�� A
�� ���
for x � ��� where � � f�xjx � Xg� Consider a �xed but unknown probability
distribution on the input space X� Then with probability � � � over randomly
drawn training sets S of size m for all � � � the generalization of a function
f � F thresholded at � satisfying gf � G is bounded by

�
m� k� �� �
	

m

�
k � log�

�
�m

�

��
�

where
k � dlog� B
	m� ���� A�� log�A
	m� ����e �

where A � supfhg� �xijg � G� x � Xg� provided m � 	�� and there is no discrete
probability on misclassi�ed training points�
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Proof � Consider the �xed mapping 	�� We extend the function class F to act
on the space X � Lf 
X� by its action on X � We similarly extend the function
class G by composing with a projection� We claim that

�� for x 	� S� f
x� � 
f � gf �
x�� and

	� the margin of f � gf with threshold � on the training set 	�
S� is ��

Hence� the o� training set behaviour of the classi�er f can be characterised by
the behaviour of f�gf � while f�gf is a large margin classi�er in the space X�
Lf 
X�� In order to bound the generalization error we will apply Theorem 
��
for F �G which gives a bound in terms of the covering numbers� These we will
bound using Lemma 
��� The space F�G is sturdy by Lemma 
���� since both
F and G are� Note that the range of G is contained in ��A�A� on the input
domain� In this case we obtain the following bound on the covering numbers�

lim
����

log�
�N 

� � 
��	� ��������
F � G��x�� � lim

����
log�

�
N 

� � 
���� ��	A�������	A
F��x�

�
� lim

����
log� 
N 

� � 
����G�x��

� log�
B
	m� ����A��� log�
A
	m� ������

as required�

�� The �rst claim follows immediately from the observation that for z 	� S�� X
�x�y��S

d

x� y�� f� ��y�x � �z
	

� ��

	� For 
x�� y�� � S� we have

y�

f � gf �
x
��� �� � y�
f
x��� �� � y�

� X
�x�y��S

d

x� y�� f� ��y��x � �x�
	

� � � d

x�� y��� f� �� � d

x�� y��� f� �� � ��

The theorem follows�

For a training set S� we de�ne

D
S� f� �� �

s X
�x�y��S

d

x� y�� f� ����

Theorem ���� Let F be a sturdy class of real�valued functions with range �a� b�
and fat shattering dimension bounded by fatF
��� Fix � � � and a scaling of
the output range � � �� Consider a �xed but unknown probability distribution
on the input space X� Then with probability ��� over randomly drawn training
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sets S of size m for all b � a � � � � the generalization of a function f � F
thresholded at � is bounded by

�
m� k� �� �
	

m

�
k log�

�

�m

�
� � �D

���
log�

�
�em

�
� � �D

��
� log�

�

�m���
b� a�

��

��
�

where

k �
h
fatF 
����
� � 
� �D�

i
and �D � 	
D
S� f� ��� �����

provided m � 	�� and there is no discrete probability on misclassi�ed training
points�

Proof � We de�ne a sequence of function classes Gj � Lf 
X� to be the linear
functionals with norm at most Bj on the space Lf
X�� We will apply Propo�
sition 
��	 for each class Gj � Note that the range of Gj is ��Bj � Bj � on the
input domain� Note also that the image of Gj under the evaluation map is
a closed bounded subset of the reals and hence is compact� It follows that
Gj is sturdy� We choose Bj � j�� for j � �� � � � � � �

p
m
b � a���� Hence�

B� �
p
m
b � a� � D
S� f� ��� for all f � F and all � � b � a� Hence�

for any value of D � D
S� f� �� obtained there is a value of Bj satisfying
D � Bj � D� �� Substituting the upper bound D� � for this Bj will give the
result� when we use �� � ��� and bound the covering numbers of the component
function classes using Corollary 
�	 and Theorem ���� In this case we obtain
the following bounds on the covering numbers�

lim
����

log�

�
N 

� � 
���� �

�	Bj
���	Bj
F��x�

�
� � � d� log�

�
	
�m
��	�Bj�

�

��

�

log�

�
��em
��	�Bj�

d��

�
�� log�
B
	m� ����Bj��

where d� � fatF
����
�� and

lim
����

log� 
N 

� � 
����Gj�x�� � � � d� log�

�
	
�mB�

j

��

�
log�

�
��emBj

d��

�
�� log�
A
	m� �����

where d� � 
�
Bj���
�� Hence� in this case we can bound dlog�B
	m� ����Bj��

log�A
	m� ����e by

dlog�B
	m� ���� Bj� � log�A
	m� ����e � � �

�
fatF 
����
� �

�
�
Bj

�

��
�

log� 
�m
� � 	Bj���
� log� �em
� � 	Bj���

giving the result where the � contributes a factor of � into the argument of the
�nal log term�
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The theorem can of course be applied for linear function classes� using the bound
on the fat shattering dimension given in Theorem ���� The bound obtained is
very comparable� though a lot less clean than Theorem ����

For a training set S� we de�ne

D�
S� f� �� �
X

�x�y��S
d

x� y�� f� ���

This is the l� sum of the slack variables which is optimised in Vapnik�s box con�
straint maximal margin hyperplane algorithm� The following Corollary shows
that optimising this quantity does indeed lead to good generalization�

Corollary ���� Let F be a sturdy class of real�valued functions with range
�a� b� and fat shattering dimension bounded by fatF 
��� Fix � � � and a scaling
of the output range � � �� Consider a �xed but unknown probability distribution
on the input space X� Then with probability ��� over randomly drawn training
sets S of size m for all b � a � � � � the generalization of a function f � F
thresholded at � is bounded by

�
m� k� �� �
	

m

�
k log�

�

�m

�
� � �D

���
log�

�
�em

�
� � �D

��
� log�

�

�m���
b� a�

��

��
�

where

k �
h
fatF 
����
� � 
� �D�

i
and �D � 	


p
D�
S� f� ��
b� a� � �����

provided m � 	�� and there is no discrete probability on misclassi�ed training
points�

Proof � The corollary follows by observing that

D
S� f� �� �

s X
�x�y��S

d

x� y�� f� ���

�
s

b� a�

X
�x�y��S

d

x� y�� f� ��

�
p
D�
S� f� ��
b� a�

and applying the theorem�

If we choose the hyperplane to minimise D�
S� f� �� and apply the Corollary� we
will necessarily obtain a weaker bound than we would if we minimised D
S� f� ��
and then applied the Theorem� In the case of linear function classes� better
bounds for the generalization in terms ofD and D� should be obtained using re�
cent results which bound the covering numbers for di�erent norms directly �	���

It is worth noting that we can apply Corollary 
��� to the case of linear functions
with norm � and recover a result similar to Theorem ���� The bound would
involve an expression R��D� rather than 
R�D��� which appears preferable�
The constants� however� are signi�cantly worse so that overall the bound will
not be as tight�
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� Regression

In order to apply the results of the last section to the regression case we for�
mulate the error estimation as a classi�cation problem� Consider a real�valued
function class F and a target real�valued function t
x�� For f � F we de�ne
the function e
f� and the class e
F��

e
f�
x� � jf
x�� t
x�j�
e
F� � fe
f�jf � Fg�

For a training point 
x� y� � X � � we de�ne

�

x� y�� f� �� � maxf�� jf
x�� yj � 
� � ��g�
This quantity is the amount by which f exceeds the error margin � � � on the
point 
x� y� or � if f is within � � � of the target value� Hence� this is the �
insensitive loss measure considered by Vapnik with � � � � �� Let gf � Lf
X�
be the function

gf � �
X

�x�y��S
�

x� y�� f� ���x�

Proposition ��� Fix � � �� � � �� Let F be a sturdy class of real�valued
functions with range �a� b� � � having a uniform bound on the covering numbers

N 
���F �x�� B
m� ���

for all x � Xm� Let G be a sturdy subset of Lf 
X� with the uniform bound on
the covering numbers�

N 
���G�x�� A
m� ���

for x � �m� where � � f�xjx � Xg� Consider a �xed but unknown probability
distribution on the input space X� Then with probability � � � over randomly
drawn training sets S of size m for all � � � the probability that a function
f � F has error greater than � with respect to target function t on a randomly
chosen input is bounded by

�
m� k� �� �
	

m

�
k � log�

�
�m

�

��
�

where
k � dlog� B
	m� ����� log�A
	m� ����e �

where A � supfhg� �xijg � G� x � Xg� provided m � 	��� there is no discrete
probability on training points with error greater than � and ge�f� � G

Proof � The result follows from an application of Proposition 
��	 to the func�
tion class e
F�� noting that we treat all training examples as negative� and
hence correct classi�cation corresponds to having error less than �� Finally� we
can bound the covering numbers

N 
�� ��	A��	A
e
F���x�� N 
��F �x�� B
m� ���

The result follows�
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For a training set S� we de�ne

D
S� f� �� �
s X

�x�y��S
�

x� y�� f� ����

The above result can be used to obtain a bound in terms of the observed value
of D
S� f� �� and the fat shattering dimension of the function class�

Theorem ��� Let F be a sturdy class of real�valued functions with range �a� b�
and fat shattering dimension bounded by fatF 
��� Fix � � �� � � � and a
scaling of the output range � � �� Consider a �xed but unknown probability
distribution on the input space X� Then with probability � � � over randomly
drawn training sets S of size m for all � with � � � � � the probability that a
function f � F has error larger than � on a randomly chosen input is bounded
by

�
m� k� �� �
	

m

�
k log�

�

�m

�
b� a

�

��
�
log�

�
�em

�
b� a

�

��
� log�

�

�m���
b� a�

��

��
�

where

k �
h
fatF
����
� � 
� �D�

i
and �D � 	
D
S� f� ��� �����

provided m � 	�� and there is no discrete probability on misclassi�ed training
points�

Proof � The proof follows the same pattern as that of Theorem 
���� with the
exception that the bounds on the covering numbers must use the full range of
the function class F in the log factors�

Corollary ��� Let F be a the set of linear functions with norm � restricted to
inputs in a ball of radius R about the origin� Fix � � �� � � � and a scaling of
the output range � � �� Consider a �xed but unknown probability distribution
on the input space X� Then with probability ��� over randomly drawn training
sets S of size m for all �� with � � � � � the probability that a function f � F
has error larger than � on a randomly chosen input is bounded by

�
m� k� �� �
	

m

�
k log�

�
	
�m

�
R

�

��
�
log�

�
��em

R

�

�
� log�

�
�	�m���R

��

��
�

where
k �

h
	�
R����� 
� �D�

i
and �D � 	
D
S� f� ��� �����

provided m � 	�� and there is no discrete probability on misclassi�ed training
points�

Proof � The range of linear functions with unit weight vectors when restricted
to the unit ball is ��R�R�� Their fat shattering dimension is bounded by The�
orem ���� The result follows�
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Note that we obtain a generalization bound for standard least squares regression
by taking � � � in Theorem ��	� In this case D
S� f� �� is the least squares error
on the training set� while the bound gives the probability of a randomly chosen
input having error greater than �� This is summarised in the following corollary�

Corollary ��� Let F be a sturdy class of real�valued functions with range �a� b�
and fat shattering dimension bounded by fatF 
��� Fix � � �� � � � and a
scaling of the output range � � �� Consider a �xed but unknown probability
distribution on the input space X� Then with probability � � � over randomly
drawn training sets S of size m the probability that a function f � F has error
larger than � on a randomly chosen input is bounded by

�
m� k� �� �
	

m

�
k log�

�

�m

�
b� a

�

��
�
log�

�
�em

�
b� a

�

��
� log�

�

�m���
b� a�

��

��
�

where

k �
h
fatF
����
� � 
� �D�

i
and �D � 	

qP
�x�y��S
f
x�� y�� � �

�
�

provided m � 	�� and there is no discrete probability on misclassi�ed training
points�

As mentioned in the section dealing with classi�cation we could bound the
generalization in terms of other norms of the vector of slack variables


�

x� y�� f� ����x�y��S �

The aim of this paper� however� is not to list all possible results� it is rather to
illustrate how such results can be obtained�

Another application of these results is to choose the best � for the � insensitive
loss function for Support Vector Regression� This problem has usually been
solved by using a validation set� but Corollary ��� could be used by choose the
value of � which gives the best bound on the generalization� We assume here
that a target accuracy � has been set and we wish to minimise the probability
that the error exceeds this value� The optimum will be the � which minimises

R� �D
S� f�� � � ���


� � ���
�

where f� is the solution obtained when using the ��insensitive loss function�

	 Conclusions

We have shown how an approach developed by Freund and Schapire ��� for
mistake bounded learning can be adapted to give pac style bounds which de�
pend on the margin distribution rather than the margin of the closest point to
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the hyperplane� The bounds obtained can be signi�cantly better than previ�
ously obtained bounds� particularly when some of the points are misclassi�ed
and agnostic bounds would need to be applied were a classical analysis to be
adopted in which the square root of the sample size replaces the sample size
in the denominator� The bound is also more robust that that derived for the
maximal margin hyperplane where a single point can have a dramatic e�ect on
the hyperplane produced�

We have gone on to show how optimizing the measure of the margin distribution
that appears in the bound corresponds to an algorithm proposed by Cortes and
Vapnik ���� This formulation also allows the problem to be solved in kernel
spaces such as those used with the Support Vector Machine�

We believe that this paper presents the �rst pac style bound for a margin distri�
bution measure that is neither critically dependent on the nearest points to the
hyperplane nor is an agnostic version of that approach� In addition� we believe
it is the �rst paper to give a provably optimal algorithm for optimizing the
generalization performance of agnostic learning with hyperplanes� by showing
that the criterion to be minimised should not be the number of training errors�
but rather a more �exible criterion which could be termed a �soft margin�� The
problem of �nding a more informative and theoretically well�founded measure
of the margin distribution has been an open problem for some time� This paper
suggests one candidate for such a measure which has the advantage of being ro�
bust in the sense that it is not critically sensitive to the behaviour of individual
training points�

The results have been further generalized to non�linear function classes with
bounded fat�shattering dimensions� other norms on the vector of shortfalls of
individual training points and to the regression case� For regression one byprod�
uct is a bound in terms of the least square error on the training set of the prob�
ability that a randomly drawn test point will have error greater than a given
value�
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