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Abstract—In this paper we analyze the relationships between as latent semantic indexing, again with kernel defined feature
the eigenvalues of them x m Gram matrix K for a kernel  gpaces [3].

k(-,-) corresponding to a samplexi,...,x,, drawn from a . .
density p(x) and the eigenvalues of the corresponding continuous urthermore eigenvectors have been used in the HITS [4] and

eigenproblem. We bound the differences between the two spectra Google’s PageRank [5] algorithms. In both cases the entries
and provide a performance bound on kernel PCA showing that in the eigenvector corresponding to the maximal eigenvalue

we can expect good performance even in very high dimensional gre interpreted as authority weightings for individual articles
feature spaces provided the sample eigenvalues fall sufficiently or web pages

uickly.

e The use of these techniques raises the question of how reliably
these quantities can be estimated from a random sample of
data, or phrased differently, how much data is required to

obtain an accurate empirical estimate with high confidence.

Over recent years there has been a considerable amount of¥g-€t al- [6] have undertaken a study of the sensitivity of
terest in kernel methods such as Support Vector Machines []¢ estimate of the first eigenvector to perturbations of the
Gaussian Processetc in the machine learning area. In thes€onnection matrix. They have also highlighted the potential
methods theSram matrixplays an importantale. Them x m !nstablllty that can arise \_/vhen two eigenvalues are very close
Gram matrixK has entries:(x;,x;), i,j = 1,...,m, where I yalug, SO tha}t. their eigenspaces become very difficult to
{x;,:i=1,...,m} is a given dataset and(-,-) is a kernel distinguish empirically.

function. For Mercer kernel$( is symmetric positive semi- Other authors have studied the concentration of linear func-
definite. We denote its eigenvalués > M\y...> )\, >0 tionals of the spectral measure or single eigenvalues of random
and write its eigendecomposition @ = VAV’ where A matrices generated through distributions defined over their
is a diagonal matrix of the eigenvalues aid denotes the entries, see for example Guionnet and Zeitouni [7] and Alon
transpose of matriX/. The eigenvalues are also referred tet al. [8].

as the spectrum of the Gram matrix, while the correspondifg this paper we shift the emphasis towards studying the
columns ofV" are their eigenvectors. concentration of sums of eigenvalues of a Gram matrix gained
A number of learning algorithms rely on estimating spectréitom a finite sample of vectors, so that the distribution over the
data on a sample of training points and using this data as inpoatrices is defined implicitly by a distribution over vectors. In
to further analyses. For example in Principal Component Anglarticular if we perform (kernel-) PCA on a random sample
ysis (PCA) the subspace spanned by the firetgenvectors is and project new data into the-dimensional space spanned
used to give & dimensional model of the data with minimalby the first & eigenvectors, how much of the data will be
residual, hence forming a low dimensional representation ediptured or in other words how large will the residuals be. It
the data for analysis or clustering. Recently the approach Heagns out that this accuracy is not sensitive to the eigenvalue
been applied in kernel defined feature spaces in what rsgparation, while at the same time being the quantity that is
become known as kernel-PCA [2]. This representation hegevant in a practical application of dimensionality reduction
also been related to an Information Retrieval algorithm knowssing kernel PCA. The result shows that we can expect good
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performance even in very high dimensional feature spaces
provided that the sample eigenvalues fall sufficiently quickly.

In this sense the results give a dimension independent bound -10f
on the performance of kernel PCA.

The second question that motivated the research reported in 2_20,
this paper is the relation between the eigenvalues of the Gram E
matrix and those of the underlying process. For a given kernel
function and density(x) on a spaceY, we can also write
down the eigenfunction problem

[ s p0001x) dx = N ) ® i
X (a)
Note that the eigenfunctions are orthonormal with respect to 6x10°
p(x), i.e.

| 6:m000, 0 = 5. E

X §4—
Let the eigenvalues of the underlying process be ordered so H
that Ay > X\ > .... This continuous eigenproblem can be K
approximated in the following way. Lefx;: ¢ = 1,...,m} o,
be a sample drawn according j¢x). Then 5

1 & .
| e ()0 (x)x = TP ILCECANNC 0 o |

As pointed out in [9], the standard numerical method (see, (b)

e.g., [10], chapter 3) for approximating the eigenfunctions arfi. 1. (a) A plot of the log eigenvalue against the index of the eigenvalue.

; ; ; ; i~Lhe straight line is the theoretical relationship. The centre point (marked with
elgenvalues of equation (l) is to use a numerical appmx'm@star) in the error bar is the log of the average valugof The upper and

tion such as equation (2) to estimate the integral, and then pfiblger ends of the error bars are the 97.5% and 2.5% centiles lofg®fiy, )

iny = X; for j=1,...,mto obtain a matrix eigenproblem respectively taken over 1000 repetitions. (b) A plot of the difference between
the average op_%_, p; and}"%_; X; againsti.

D rxn, %) i (xk) = Nidhi(x;).
k=1
dof 1o . ' . Koltchinskii and Gine [12] discuss a number of results in-
Thus we see that; = -1 )\; is an obvious estimator for thecluding rates of convergence of thespectrum to the\-
ith eigenvalue of the continuous problem. The theory of thgectrum. The measure they use compares the whole spectrum
numerical solution of eigenvalue problems ([10], Theorem 3.father than individual eigenvalues or subsets of eigenvalues.
shows that for a fixed, ;. will converge to); in the limit  They also do not deal with the estimation problem for PCA

asm — oo. residuals.

For the case that’ is one dimensional anl(z) is Gaussian Johnstone [13] studies the distribution of the largest eigenvalue
and k(z,y) = exp —b(z — y)? (the RBF kernel with length- of the Gram matrix of a set of vectors whose components
scaleb~1/2), there are analytic results for the eigenvalues argle independent Gaussians, though his is also an asymptotic
eigenfunctions of equation (1) as given in section 4 of [11]. Tanalysis as the dimension of the feature space and the number
compare the process eigenvalues with empirical eigenvalugis/ectors tends to infinity at a fixed ratio greater than 1.

1000 samples of size: = 100 were used, with parameters|y o earlier version of this paper, [14] discussed the con-

b= 3 andp(z) ~ N(0,1/4). The 1000 repetitions were usedoniration of spectral properties of Gram matrices and of the
to characterize the variability of the empirical eigenvalues. FRkqiquals of fixed projections. However, these results gave

this case we can therefore compare the values; ofith the  ye\iation bounds on the sampling variability afwith respect
corresponding\;, as shown in Figure 1(a). Figure 1(b) plotg, gy,,1 but did not address the relationship of to \; or

the difference between the average (over 1000 samples) of {1 estimation problem of the residual of PCA on new data.
partial sum of the first empirical eigenvalues against the same . . .
partial sum of the process eigenvalues. These two plots Shl(gw)rder to state our main results con5|der_a general probability
that for: = 1 the average empirical eigenvalue overestimaté?aceX and a measurable feature mappg

A1, but that fori > 1 the converse is true. Figure 1(b) also YixEX—p(x)€F

shows that the empirical partial sum initially overestimates

the process partial sum, but that this gradually declines. Otwea real Hilbert spacé’. We assume a probability measyre

of the results of this paper will be bounds on the degree oh the spacet. Note that this implies a distribution of via

overestimation for these partial sums in a fully general settinifpe measurable feature majfp. We will assume throughout



that the support of this distribution is bounded in a ball diVe can now state the three main results of this paper. The first
radiusR in F'. We draw an i.i.d. samplé& of m points is concerned with the residual projections and the sum of the
last eigenvalues.

Theorem 1:If we perform PCA in the feature space defined
from X according top and form the Gram matri¥ (S) of by @ kernels(x, z) then with probability greater thah — ¢

S=(X1,..,Xm)

their projections intaF’ over randomm-sampless, forall 1 < k < m, if we project
new data onto the spadg,, the expected squared residual is
K(8)ij = ((x:), ¥(x;)) - bounded by

We refer to the composition of the inner product with the
projections as the kernel function

H(Xv Z) = <¢(X)a '(,D(Z» ) Ak

< E[IPL wx)?]
and similarly to the matrix’(S) as the kernel matrix. It is m
often convenient to specify the kerneland define the feature < min i;\>4(5) + 1+ \/Z\J 2 Z K(x;, ;)2
space implicitly by this choice. Such a feature space will exist oIk [m Vvm m =
provided the kernel is symmetric and has the property that
all finite kernel matrices are positive semi-definite (see [15] 1 R2 ﬁln <2m>
for details). We refer to the eigenvalugs(S) > Aq(S) > m d
o> An(S) of K(S) as the empirical eigenvalues dropping
the dependency of if this is clear from the context.
There is a corresponding self-adjoint operator in the inner
product spacd.;(X) defined by where the support of the distribution is in a ball of radRi$n
the feature space and and\; are the process and empirical
K(f)(x) =/ fF(x)R(x, x")dp(x'). eigenvalues respectively.
X

) ] The theorem states that when projecting into the empirical
We refer to the eigenvalues of this operator as the proce§gen-subspace spanned by the fitseigenvectors the ex-

eigenvalues and denote them By > Ay > --- > Ai > ---. pected squared residual of a randomly drawn test point can
Given a sequence of numbers > v, > --- > v,,,, wherem  with high probability be bounded by a minimum ovex &
may be infinity, we use the notations of the sum of all but the first empirical eigenvalues plus a
. L complexity term that scales lik¢/¢/m.
ok — Z v; and v=F = Zyi The last term on the right hand side represents the usual
i—ht 1 i—1 dependency on the confidence parameteiThe expression

) o . inside the minimisation involves two terms. The first term is
to denote the tail and initial sums respectively. the empirical estimate of the squared residual, which decreases
We must introduce a further definition before quoting the maigs ¢ increases. The second term is the complexity penalty that
results of the paper. This is concerned with the procedugeows with increasing. The expression will reach a minimum
known as Principal Components Analysis that projects multit a valuel, approximately where the two expressions have
dimensional data in the feature spaeonto the subspack. equal values. Hence, the overall bound decreasksraseases
Spanned by the first eigenvectors of the correlation matrix up to Lo and remains constant from that point onwards. In

m practice we expect that the left hand side will continue to
C(S) = izw(xi)¢(xi)l~ decline slowly beyond this point as further dimensions are
mi4 included. This effect is indeed evident in the experiments

Note that we do not restrict the spaéeto be finite dimen- reported in the final section.

sional. However, for any finite set of points,...,x,,, the For applications of kernel PCA the theorem suggests that good
feature vectorgp(xy), ..., (x») span a finite dimensional capture of the data can be expected provided the empirical
subspace ofF. Hence, by choosing a basis that spans th@igenvalues decay befotg//m grows too big. Indeed this can
subspace and extending to a basis of the whole space, the Bgrused as a criterion for deciding whether subspace projection

relation matrixC'(S) becomes effectively finite dimensional. iS justified based on the available training data.

We denote projection onto a subspaceby Py (1(x)). We The second theorem considers the sum of the firsigenval-
denote the projection onto the orthogonal complement of Ues and the projections into the space spanned by thekfirst
by Pi-(w(x)). If V is a one dimensional subspace witha ~€genvectors.

non-zero element of’, we will also write P, in place of P,,. Theorem 2:If we perform PCA in the feature space defined
The norm of the orthogonal projection is also referred to &y a kernelx(x,z) then with probability greater thah — §
the residual since it corresponds to the distance between tiver randomm-samplesS, for all 1 < k& < m, if we project
original point and its projection. new data onto the spadé,, the sum of the largest process



eigenvalues is bounded by then for alle > 0,

AE = B[Py (p00)]?] PU K100 X) B (X ) > ) < o (5

i=1"1

1oy 1+VE | 2 &
SR P (5) - Jm \lm Z K(%i,%i)?|  Theorem B:Let Xy, ..., X, be independent random variables
=1 taking values in a sefl, and assume that : A™ — R, for
1 2 1 1<1<n
_RQ\/ 91“( e )>
m sup|f(z1, .., )= f(@1, o Ti1, o, Tig 1, -+, Tn)| <,

where the support of the distribution is in a ball of radfaign TLyee@n, i
the feature space angd and\; are the process and empiricakhen for alle > 0,
eigenvalues respectively.

: . . , . —2¢2
This result is perhaps more interesting from the perspectit® f(X1,..., X,)—Ef(X1,...,X,) > €} <exp (,LGQ)
of the relation between process and empirical eigenvalues. In 2 G

particular, it implies a good fit between the partial sums of thge il also make use of the following theorem characteris-
Iarge§t eigenvalues with mdme&sfor wf_nch Vk/m |s.small. ing the eigenvectors of a self-adjoint completely continuous
The final result concerns the projections of data into the gperator in a Hilbert space. This theorem is usually referred
dimensional subspace determined by a single eigenvectortdras the Courant Fischer Weyl theorem in its matrix version.
this case it is not possible to obtain a relationship with thg/e quote it here in the more general form [21].

process eigenvalues, but th_e ‘generalisation’ of the empiricgloqrem ¢ [Courant-Fischer-Weyl Minimax Theorem]1f is
projection obeys an even tighter bound than for the larggrse st agjoint completely continuous operator on a real Hilbert

subspaces. space, then fok = 1,2, ...,

Theorem 3:If we perform PCA in the feature space defined

by a kernek(x, z) then with probability greater than-4 over M(T) = max min {Iv,v)
randomm-samplesS, for all 1 < k£ < m, if we project new dim(V)=k 0£vEV (V,V)

data onto the one dimensional subspégespanned by thé- _ min max ALV V)
th eigenvector ofC(S), the expected value of the projection dim(T)=m—k+10£veT (v,v)

of new data satisfies . . . .
with the extrema achieved by the corresponding eigenvector.

1+ 2 2 The approach we adopt in the first stage of the analysis is to
E ||| P: 2 > Me(S) — —= .| = i X )2 : ; :
H W)l } - k(9) vm'\| m “ rl(xis i) relate the eigenvalues to the sums of squares of residuals. This
is well-known particularly in the case of matrices, following
—RQ\/lgln (2(m+ 1)) from consideration of the singular value decomposition. We

sketch the analysis in the more general operator form since
we require this for the process eigenvalues mentioned above.

where the support of the distribution is in a ball of radils . . ) .
) - . : The matrix form is a simple consequence of this general result.
in the feature space and are the empirical eigenvalues.

Recall the operator of the form

The paper is organised as follows. In Section 2 we give the
background results and develop the basic techniques that are f , , ,
required to develop the necessary framework in sections 3 Kq(f) () = /X F)n(x, x)dg(x),
and 4. Section 5 then gives the main results of the paper. We

provide experimental verification of the theoretical findings il the spacel,(X), whereg is some distribution overy.
Section 6, before drawing our conclusions. Furthermore consider the self-adjoint operator

Il. BACKGROUND AND TECHNIQUES Cq('):/XW(X),'W(X)dQ(X)

We will make use of the following results that can be traced . : . . .
back to the work of Hoeffding [16] and Azuma [17]. W%Cet(zg(zé)A_t)ij(r;;a %a(;lrl:l;ir:jc;lro&eegs:]\;/alue pair o, that is
guote versions given by McDiarmid [18]. Results of this type™ o '

bounding the deviation of a random variable from its expected B B

value are often referred to as concentration inequalities. More u=fy(v) = /X v(x)p(x)dg(x) € F.

advanced results of this type due to Boucherinal. and

Talagrand can be found in [19] and [20]. We have

Theorem A:Let X, ..., X,, be independent random variables C,(u)
taking values in a sefl, and assume that : A" — R, and

that there existf; : A"~! — R for 1 < i < n satisfying _ /\/ ()% (x)dg(x)
X

Il
T
—

il

»

N
=1
S
&
S
pox
L)
g
%

sup |f(z1,.. @) —fil®1, oo Tim1, Tty Tn)| < _
bR R % - u.



It follows that f,(v), A is an eigenvector, eigenvalue pair fowe have

C,. Furthermore, we have
)\1(qu) — max <C(I(V)7v>
) 0#veF  (v,V)
[fa@II* = . Xv(X)v(Z)ﬂ(x,Z)dq(X)dq(Z) 1 5
= [ v(data) = Aol - g o 0¥
x v = max, By [Py ()]

in the norm determined by the distributign Similarly it is = E, [||¢(x)||2] — min_E, [||Pj‘(¢(x))||2] ,
easily verified that ifu, A is an eigenvector, eigenvalue pair O#VER
for C, the function where E, denotes expectation with respect tg since

(W)() = ((-), u) [P)? = [Pe(¥(x)]* + || Py (¥(x))]*. It follows that

g o ’ the first eigenvector is characterised as the direction for which

the expected square of the residual is minimal.

is an eigenfunction folC, with eigenvalue\ and
Applying the same line of reasoning to the first equality of

|\g(u)||(2] = Mul. Theorem C, delivers the following equality
— : 2

Furthermore, we have that Me(Ky) = L . Eq [IP-(w(x)[°] . (3)

9(fa(v)) = Kq(v) and  fy(g(w)) = Cy(w). Notice that this characterisation implies thatif is the k-th
It follows from this analysis that the two operators have th%lgenvector oLy, then
same non-zero elgenvalges qnd there is a .1-1 corre_spond.ence Mo(Ky) = E, [”Puk (¢(X))||2] 7 (4)
between the corresponding eigenvectors, eigenfunctions given
by the functionsf andg. which in turn implies that ifV/;, is the space spanned by the

If we consider the case whetgis the empirical distribution, first £ eigenvectors, then

that is the uniform distribution on a fixeth-sampleS, we .

will see that this analysis forms the basis of kernel PCA. If 2

. S . . i = E,|||Py,

we choosey to be the empirical distribution uniform on a fixed ; (Kq) o 1P (s ()]
sampleS, we will denote the operatois, andC, by Cy and B 21 1 2
K respectively. Eq [l ()I%] = Eq [I1Pg;, ((x)II°] .(5)
If u;, \; are thei-th normalised eigenvector, eigenvalue pailt readily follows by induction over the dimension &f that
of the operatoCg in the feature space, this corresponds to thge can equally characterise the sum of the firsand last

i-th eigenvector of the correlation matrix m — k eigenvalues by
1 «— , k
C(s) = — ;wxnw(x» : ;wcq) = max B [Py ()]
The PCA projection of an input ontou; is given by =E, [l9))°] - dimﬁ(l‘i})l:qu (15 ((x))[1°X6)
. _ 4_1/2 ) oo k
<¢(X)auz> )\z <17[)(X);nfq(%)> Z /\7(Kq) — Eq [H,‘p(X)HQ] _ Z/\L(]Cq) (7)
= /\;1/2m_1 vi(x5)6(x5,X), =kt =t
; o = min B (IPFGOOIE. ®)

where v;(-), \; are the corresponding eigenfunction, €igenence as for the case whén= 1, the subspace spanned by

value pair of the operatak’,. This equation forms the basisy,e first 1. eigenvalues is characterised as that for which the
of kernel PCA, since it implies that the projection of a new . of the squares of the residuals is minimal.

point into the space spanned by thh eigenvector can be

computed as In the case thay is the empirical distribution the results

correspond to the matrix form of the residual result, namely
m that projecting into the eigenspaces corresponding to the
Pa. ((x)) = (;\;1/2ZVUH(X7XJ‘)) u;, largest eigenvalues minimises the average squared residual.
j=1 If we takeq to be the data generating distributipnthe result
describes the fact that the eigenvectors of the oper@gor
where (v;;)7L,, \; are thei-th eigenvector and eigenvalue ofcharacterise the subspacesFotapturing the largest expected
the kernel matrixk’(.9). squared residual:

Now consider the first eigenvalue of the operai@yfor gen- _ . 2
eral distributiong. By Theorem C and the above observations Aw(K) = din?}%ﬁik o;r\l,lng[HPV(w(X))” ) ©)



whereV is a linear subspace of the feature sp&tand we and
usekE to denote expectation with respectgoSimilarly,

k
k E [l Py, (¥ Z (P (13)
ZM’C) = max E[[|Py ()]’ i=1 { }

dim(V)=k
_ . n 9 Our strategy will be to show that the right hand side of
=K [W(X)” ] - di H(lxl/r)i E [Py (¥ ())II"(10) inequality (12) and the left hand side of inequality (13) are

0o close in value making the two inequalities approximately a
Z M) = E[ly(x Z)\ chain of inequalities. We then bound the difference between
ikl the first and last entries in the chain.
= min [HPV( x)[”] - (11) First, however, in the next section we will examine averages
dim(V)=k

_ _ _ _ _ over randomm samples. We will use the notatidh,,|-] to
One of the aims of this paper is to elucidate the relationshienote this type of average though we could equivalently write
between these two projections, demonstrating conditions wh@m[.] in the sense that this is simply the expectation with

the quality of the empirical projection matches that of thgspect to then-fold product distribution.
‘ideal’ process projection.

We are now in a position to motivate the main results of m
the paper. We consider the general case of a kernel defined
feature space with input spac® and probability density

p(x). We fix a sample sizen and a draw ofm examples The sample correlation matrix i€(S) = LXX’ with

S = {x1,x%2,...,X,} according top. We fix the feature eigenvaluesi; > us... > pq. (If x is a zero-mean random
space determined by the kernel as given by the mappiwgriable then this is also the covariance matrix.) In the notation
1. We can therefore view the eigenvectors of correlatioof the section llu; = (1/m)A;. The corresponding population
matrices corresponding to finite Gram matrices as lying gorrelation matrix has eigenvalues > X.... > \; and
this space. Further we fix a feature dimensibnlLet Vj,, eigenvectorsus,...,u;. Again by the observations above
be the space spanned by the fifsteigenvectors of the these are the process eigenvalues.

correlation matrix corresponding to the sample kernel matriatisticians have been interested in the sampling distribution

. AVERAGING OVER SAMPLES AND POPULATION
EIGENVALUES

K(S) with corresponding eigenvaluel;, A, ..., Ax, While of the eigenvalues of?(S) for some time. There are two
Vi, is the space spanned by the fifstprocess eigenvectorsmain approaches to studying this problem, as discussed in
with corresponding eigenvalues, Ao, ..., A,. Similarly, let section 6 of [22]. In the case thathas a multivariate normal
E[f(x)] denote the expectation with respect to the sample @stribution, the exact sampling distribution pf, . . . , 4 can
the empirical mean: be given [23]. Alternatively, the “delta method” can be used,
m expanding the sample roots about the population roots. For
= > fxa), normal populations this has been carried out in [24] (if there

_ _ _ are no repeated roots of the population covariance) and [25]
while as beforéE[-] denotes expectation with respectjto (for the general case), and extended in [26] to the non-

We are interested in the relationships between the followifgaussian case.

guantities:
The following proposition describes hai,[11] is related to
E [||ka_ (¢(x))||2} = = Z 1Py, (4 (x))I? A1 and Ry, [pa] is related tody. It requires no assumption of
Gaussianity.
R Proposition A:[Anderson, 1963, pp 145-14@,,[u1] > M\
= E Z Aq and Em[ﬂd] < A\g.
. =1 Proof: By the results of the previous section we have
E 1Py, G)IP] = D o1
i—1 I %17?3} EHPc(Xi)”Z

B[P, (G)I?| and B [Py, ()] ) o 2
Bounding the difference between the first and second will 2 Ez 1Py (xa)I* = B [[1 Py (<) %]

relate the process eigenvalues to the sample eigenvalues, while = _ .

the difference between the first and third will bound th¥/e now apply the expectation operai®y, to both sides. On
expected performance of the space identified by kernel Pti2¢ RHS we get

when used on new data. -
: . : . EnE [[|Pa, (x)[?] = E [[|Pa, (®)[*] = X
Our first two observations follow simply from equation (10),
& by equation (11), which completes the proof. Correspondingly
1 2 (12) Ha is characterized by, = ming.c E [||Pe(x;)|[?] (minor
— P X c c\&g
[” ( } m 2:: ‘ v ()l components analysid).



Interpreting this result, we see that, 1] overestimates\y, IV. CONCENTRATION OF EIGENVALUES

while Erp[114] underestimates.. Section Il outlined the relatively well-known perspective that

Proposition A can be generalized to give th_e following resulte now apply to obtain the concentration results for the
where we have also allowed for a kernel defined feature spaggenvalues of positive semi-definite matrices. The key to the
of dimensionNp < oc. results is the characterisation in terms of the sums of residuals
Proposition 4: Using the above notation, for any, 1 given in equations (3) and (8).

<
k k m >
k<om, Epd oyl = 200 A and En[327 0y il < Theorem 6:Let k(x,z) be a positive semi-definite kernel

Zf\fkﬂ Ai function on a spaceX, and letp be a probability density
Proof: Let V;, be the space spanned by the fiksprocess function onX. Fix natural numbersn and1 < k < m and
eigenvectors. Then from the derivations above we have let S = (xi,...,x,) € X" be a sample ofn. points drawn

according top. Then for alle > 0,
) E A 3 Q _ 9.2
Dow=, s BRI 2 EIPA@OIT: P{|3u(8) ~ B | 23005)| |2 of <200 (T )

V: dimV=k
Again, applying the expectation operatBy, to both sides Whte_re)}?(g) |s_the -th e'ge”&"’}‘%";e_"f the matrik((S) with
of this equation and taking equation (11) into account, tHa' c> (8)i = K(xs;%;) aNd R = maxyex £(x,X).
first inequality follows. To prove the second we tunmx Proof: The result follows from an application of Theorem A
into min, P into P and reverse the inequality. Again takingrovided
expectations of both sides proves the second part.

Furthermore, [26] (equation 2) gives the asymptotic relation-

ship Let S = S\ {x;} and letV (V) be the k dimensional

1 subspace spanned by the firsteigenvectors ofCs (Cg).

Enluwi] =N+ — Z +0(m™?), (14) Letx correspond to the feature mappimg Using m times
M4 equation (3) for the empirical distribution we have

sup [ L34(5) ~ LAu( (x| < 72

i) + K5,
Ai —

wherex, is the bivariate cumulant of order 4 of the marginal\,(S) > min ) ||P,(3(x;))|?
distribution of¢; and¢; (assumed finite). veV i

Remark 5:Proposition 4 also implies that > minz |1 Py (2 (%)) || = Ai(S)
veV T
Np N o . J#i ,
B, Zm] S5 (8 = min IR
i=1 i=1 J#i
if we sampleNy points. > Héi‘r/lz 1P, (1 (x;))||* = R? = A\i(S) — R%. O
v =

We can tighten this relation and obtain another relationship

from the trace of the matrix when the supportjokatisfies surprisingly a very similar result holds when we consider the
k(x,x) = C, a constant. For example if the kernel isym of the lastn — k eigenvalues or the first eigenvalues.

stationary, this holds since(x, x) = r(x —x) = 5(0) = C.  p05r0m 7:Let r(x,z) be a positive semi-definite kernel

Thus m function on a spaceX, and letp be a probability density
trace (1[() — = Zur function on X. Fix natural numbersn and1 < k<m and
m = let S = (x1,...,xm) € X™ be a sample ofn points drawn

according top. Then for alle > 0,
Also we have for the continuous eigenproblem {

1 1 - —9¢2
Jy E(x,x)p(x)dx = C. Using the feature expansion?’ —\7F(8) =R, {mY’V(S)” > e} < 2exp (};m> ,
representation of the kernel(x,y) = Zf\fl Xidi(x)9i(y)
and the orthonormality of the eigenfunctions we obtain tnd )
following result A<k 1.cp —2¢e*m
P — AT _Em — AT Z - S 2 5
N . { m/\ (S) {m/\ (S)H 6} exp( 7
domi=) where A<F(S) (\>*(S9)) is the sum of (all but) the largest
i=1 i=1

k eigenvalues of the matri¥{(S) with entries K(S);; =

- 2 _
Applying the results obtained in this section, it followsﬂ<x“xj) and % = maxxe x #(,X).

that E,,,[11] will overestimate);, and the cumulative sum Proqf: The result follows from an application of Theorem A
S E,[u] will overestimate>"F | A;. This behaviour is Provided

illustrated in Figure 1(b). At the other end, clearly &3 > 1oog 1ok 9

k > m, ur = 0 is an underestimate of,.m Sup —ATHS) = AT S\ {xi})| < RY/m.



Let $ = S\ {x;} and letV (V) be the k dimensional probability
subspace spanned by the firsteigenvectors ofCs (Cg).

k
Let x correspond to the feature mapping Using m times [ ||| p. 2| = 1 N~ Ep |E ||| P ((x))]?
equation (8) for the empirical distribution we have | Vi @G } m ; [ {” V"'( Gl H

=

~ Ui 1 )
) < IR < T IR Wo I + - =52
j= J#i -
i ) k
= \KS R2
b &+r and E [Py, (¥ (x))]2] = " A
MHE) < 3P ; -
i ~ B[Py )P (15)
_ Z”PV NI? = 1P (p(x:)) ]| < A7F(S). where we have used Theorem 7 to obtain the first approximate

equality and Theorem 9 witlv = V. to obtain the second
approximate equality.

This gives the sought relationship to create an approximate
chain of inequalities

k
RG] = 3 2A

"
E [| P ()] = D A

A similar derivation proves the second inequality.

Corollary 8: Consider a feature spade defined by a kernel
k(x,2) in a spaceX with a distribution density(x). Further-
more let);, i = 1,...,m be the empirical eigenvalues. With .
probability 1 — ¢ over the selection of a random samplerof [”
points drawn according tp(x)

=
=
5

1+ 1. 1. 2 ~
—ASF(S) —E,, [A<k(8)] < R*\/—In% P
m m )
Our next result concerns the concentration of the residuals > E {HPVk (d’(x))HQ} . (16)

with respect to a fixed subspac,t(?. ) ) Notice that using Proposition 4 we also obtain the following
Theorem 9:Let p be a probability density function oiX. diagram of approximate relationships

Fix natural numbersn and a subspacd and let S =

(x1,...,%Xm) € X™ be a sample ofn points drawn according ) {HPVk (w(x))HQ} > E[||Py (¥(x)]?]
to a probability density functiop. Then for alle > 0, ~ ~
N PR
P{IE[IIPy (¥ (x)[*] — E [|Pv((x)[?] | > e} < En L XA = B[P @)
2 exp <—€2m> Hence, the approximate chain could have been obtained in two
2R* / ways. It remains to bound the difference between the first and
Proof: Since we have that last entries in this chain. This together with the concentration
. ) ) results of this section will deliver the required bounds on the
Em [E 1Py (3 ()l H =E [Py ()], differences between empirical and process eigenvalues, as well

the result follows from an application of Theorem B providea‘S providing a performance bound on kernel PCA.

sup (Es [|1Pv (¥(x))[1?] — Es\ (i juiss} [||PV(¢(X))||2H < V. LEARNING A PROJECTION MATRIX

S,&:
R?/m This section will work up to a proof of the three main results
given in the introduction. The key observation that enables the
Clearly the largest change will occur if one of the poitttsc;) ~ analysis bounding the difference between
and(x;) lies in the subspac® and the other does not. In 1
this case the change will be at madst/m. 0 [|| (( } — Z

We apply the theorem to the subspdgespanned by the first i=1

k process eigenvalues to obtain the following corollary. and E {HPV (¢(X))H2} is that we can view the projection
k

Corollar_y 10: Consider_a featu_re _spa_dédefinepl by a kernel 0. |y, ((x))|? as a linear function of pairs of features
k(x,2z) in a spaceX with a distribution densityp(x). Fur- from the feature spacg

thermore letV}, be the subspace df spanned by the first . N i
Proposition 11: Let V' be the subspace spanned by some fixed

process eigenvectors. With probability- 6 over the selection ) . o
of a random sample of: points drawn according tp(x) subset! of k& eigenvectors of the kernel matrix. The projection
norm || Py (¢(x))||? is a linear functionf in a feature space

. 1.2 F for which the kernel function is given by
B [Py (#GIF] —E [IIPv (9() 7] | < B2/ —In3

k(x,2) = K(x,2)%

The concentration results of this section are very tight. In .
the notation of the earlier sections they show that with higiurthermore the 2-norm of the functiohis v/k.



Proof: Let X = UXV’ be the singular value decompositiorplexity of F is
of the sample matrixX in the feature space. The projection

. . ) 2
norm is then given by R (F) =Eg [Rm(f)] =Eg, sup . § o f (x;) ] .
€ i=1

£ 2 I ’

1) = 1Py (DI = $ () UNUI) (), Note that we denote the input space within the theorem,
whereU(I) is the matrix containing thé columns of U in  so that in the case of supervised learning we would Have
the setl. Hence we can write Y x X. The following theorem follows closely the proof of

Np Np Theorem 8 in Bartlett and Mendelson [28], the small changes
X 2 _ . , o D) allow us to obtain slightly tighter bounds for our special case.
1Py (I = Z Wi (x)ip(x); = Z wi (i, We omit the details just noting that bounding in terms of the

empirical Rademacher complexity follows from one further
where ) is the projection mapping into the feature spage application of Theorem B.

consisting of all pairs of” features andv;; = (U(1)U(I)')i;- Theorem D: (Bartlett and Mendelson, 2002) L& be a class

sup

ij=1 ij=1

The standard polynomial construction gives of functions mapping fron¥ to [0, 1] and letS = (z;);~, be
Np 2 drawn independently according to a probability distribution
- _ 2 _ ‘ ‘ and fix 6 € (0,1). Then with probability at least — ¢ over
Ao 2) rlx.2) (;d)(x)ﬂp(z)l) samples of lengthn every f € F satisfies
Np
S SLERIERTORE) Bolfe] = Elf]+ A+ 2
i,j=1
Np A . 18In(2/4)
< E[f(z)]+ BRn(F — . (17
= Y @x)b(x),)(w (2)iap(z);) = UG+ EnlF) m 40
mfl . Given a training setS the class of functions that we will
= <¢(X),¢(Z)>f- primarily be considering are linear functions with bounded

norm
It remains to show that the norm of the linear functiorkis

) ) . m
The norm satisfies (note thit| » denotes the Frobenius norm J | Z aik(xi,x): o’ Ka < B2 S C
andu; the columns ofl) =1

o w 2 {x— (w,6(x)): |wl| < B} = g,
= 2 = \UU(T)
11l MZ::1 ai; = IUDUUI) |5 where ¢ is the feature mapping corresponding to the kernel
’ k(-,-). Note that although the choice of functions appears to
= Zuiu;’zuju; - Z (Wu,)? =k depgnd onS,_ the definition of 7z does not depend on the
el Vel p el particular training set. Bartlett and Mendelson [28] bound the

empirical Rademacher complexity of this function class.

as requiredd . N ) Theorem E: (Bartlett and Mendelson, 2002) #f: X x X —
We are now in a position to apply a learning theory boung ;s g kernel, andS = {xi,...,x,,} is a sample of points

where we consider a regression problem for which the targgym, X, then the empirical Rademacher complexity of the
output is the square of the norm of the sample piftx)||°. classFp satisfies

We restrict the linear function in the spadeto have norm
\/E; The loss function is then the shortfall between the output .
of f and the squared norm. R,(FB) <

The approach we adopt here makes use of the Rademacher
variables and the measure is therefore known as tl?

Rademacher complexity. We refer the reader to Ledoux agg
Talagrand [27] as a core reference, though we will only qF

using the results and approach described in [28].

m

Zﬁ(xi,xi) _2B tr (K)

m

5[5

i=1

e final ingredient that will be required to apply the technique
e the properties of the Rademacher complexity that allow
to be bounded in terms of large classes. The following
standard theorem summarises the properties of the empirical
Definition 12: Given a sampleS = {xi,...,xn} generated Rademacher complexity that we require.

by a distributionD on a setX and a real-valued function classTheorem E: Let 7 and’M be classes of real functions. Then
F with domain X, the empirical Rademacher complexity of ' '

F is the random variable 1) If F CH, then Rm(}') < Rm(ﬂ).
o m 2) For everyc € R, Ry, (cF) = |¢| R (F)
Ry(F) =E, [SUP m Z oif (x:)|| X1, . 7Xm] ; The proofs of these results are immediate consequences of the
1er =1 definition of empirical Rademacher complexity. We can now
whereo = {01,...,0,,} are independent uniforffi—1, +1}- apply these results to the approximation of the norm of the

valued (Rademacher) random variables. The Rademacher c¥afiable by a linear function of bounded norm.
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Theorem 13:If we perform PCA on a randomly drawn train-so that f;(1(x)) > 0 as required. We can therefore apply
ing setS of sizem in the feature space defined by a kernéfheorem 11. First note that for the functigi the left hand
r(x,z) and project new data onto the spaespanned by side of the expression is equal to

a subset! of k eigenvectors, with probability greater than 1

1—6 over the generation of the samethe expected squared Rk 1P (g (x)II7]

residual is bounded by .
whereV is the space spanned by thesigenvectors in the set

E [||Pé‘(¢(x))||2] < 1 Zj\i(s) I. Hence, to obtain the result it remains to evaluate the two
moar expressions on the right hand side of equation (17). The first

il 5 is a scaling of the empirical squared residual when projecting
L+ 2, p2 |18 into the spacé’, that is

— irXi R*y/—In{ <], p ,
* vm \lm;m(x,x) + mn(5> 1.

= E [IIPF (v (x))II”] =
where the support of the distribution is in a ball of radids R v mR? il

in the feature space.

Proof. As indicated in Proposition 11 we consider the function ) )
1 and 2 can be bounded " . Next we
classF ; with respect to the kernel u b2k fm) Xt w

apply Theorem E to obtain

The second expression E,,L( ) which by Theorem F parts

k(x,2) = k(x,2)?,

with corresponding feature mapping. Note that the weight R, <ﬁi/7> < 2 b+ vk \/
vectors considered satisfy the special condition that they are btk
positive semi-definite, that is that k: + \[\J m

(1+£795)
Zn (xi,%;)?
i=1

ZwiﬂZ’(X)
ij f
. 1 2 &
for all x. Furthermore the function corresponds to the norm + = Z K(xX,%)2
squared of a projection mapping. We will denote the subset mi3

of functions satisfying this condition by?. We augment
the corresponding primal weight vectors with one furthe Assemblmg all the components and multiplying through by

ives the result.m
dimension while augmenting the corresponding input vectors 9
with a feature We can apply the boundn times to obtain a proof of

Theorem 1.
[p(x)[[?E~"% = K(x, x)k™0% = k702 /R (x,%) Proof of Theorem 1. We apply Theorem 13 taking =
= [lb(x))||k02® {1,...,k},fork =1,...,m, in each case replacirigoy §/m.

Th|s ensures that W|th probablhty 6 the assertion holds

that is the norm squared in the original feature space dividggd 5| ., applications. The second inequality of Theorem 1
by the fourth root oft. We now apply Theorem D to the classq|ows from the observation that fde >0

Fo= {fe @060, 19)IE>) E[IPE @e))I?] < E[IPE @)

= (||1/’(X))|| - f(¢(x)))R_2 | fe ﬁ@ﬁp} while the first inequality follows from the last inequality of
C RF : equation (16).m
ViVE A similar argument applies for Theorem 2.
where we have restricted the inputs to images of points in thgoof of Theorem 2. We apply Theorem 13 taking =
input space as indicated. The squared norm of the image of the ..k}, for k = 1,...,m, in each case replacing by
input x under this feature mapping igx, x)(1+%~%%). The 5/(m+1) This ensures that with probability-§ the assertion

theorem is applied to the functiofa wheref is the projection holds for allm applications together with the assertion that
function of Theorem 11. We must first verify that the range

of the function class on the restricted inputs[is1]. Since ’IE [IWJ(X)M B {W(X)HQH < R ihl?(er 1).
we have restricted ourselves to positive semi-definite weight - m )
vectors f(1(x)) > 0, so that This final inequality follows from a straightforward application
9 of McDiarmid’s inequality. The second inequality of Theo-
ff( (x)) < W’ xR < 1. rem 2 follows from the observations above together with the

Furthermore, since we have restrictédto only contain func- fact that A A o 1.
tions that correspond to taking the norm squared of projection a)\ﬁk =E [||d)(x)|| } - E)\M’

mappings in the original feature space we have that ] o ) ) ) ]
while the first inequality again follows from the last inequality

FEh(x) < b)), of equation (16).m



Finally we give the proof of Theorem 3.

Proof of Theorem 3. Consider applying Theorem 13 taking
I = {k}, and replacing by §/(m+1). This ensures that with
probability 1 — 0 the assertion holds for al» applications
together with the assertion that

11

0.4

0.35

— - (i) Training set empirical captured
(i) Expected process captured
— (iii) Expected empirical captured

. 1. 2(m+1)
2] _ 2l <« p24/ — ) 03
E[lelI?] — B [lweol] | < £/ =
This final inequality follows from a straightforward applicatior £o2s
of McDiarmid’'s inequality. The inequality of Theorem 3*
follows from the observations above together with the fa
that

tion captured

0.2
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VI. EXPERIMENTS

— éaseline
(i) - (i)
— - (iii) - (ii)

To illustrate the results described in this paper experimer
were carried out with the Breast cancer data set [29] whi
contains 683 data points. This dataset is available from t
UCI data repository. A normalised cubic polynomial kerne
was chosen,

<X’i7xj>3
V(i xi)3(x;,%5)°
from a range of other kernels, based on the empirical obs
vation that the process eigenspectrum did not decay too fa

(18)

K/NC<Xiaxj> =

fference of partial Sums

We compare three quantities i

D
iN

0 B[Py (we)?] = £ T A i |
(ORI ACIEN RIED SHEPY . |
(i) E [Py, ($()[2)]- S

30 70 80 90 100

Projection Dimensionality

From inequality (13) we have (ii} (iii) and from Proposition
2 we have (i)> (i) in the expectatiori,, with respect to the (b)

product distribution. Fig. 2. (a) Plot of the projected squared norm plotted against the projection
We randomly selected 50% of the data as a ‘training’ set. THinension. The plot shows three curves, (i) expected squared norm for training
process eigenspectrum was obtained by performing an eigf4hen Paeced o empical egenspace averaged ovr 20 andom spts
value decomposition of the kernel matrix constructed frolpected squared norm for empirical eigenspace again averaged over 20
the entire dataset. Similarly the spectryh;} was obtained random splits. (b) Zooms in on plot (a) by displaying the differences between
from an eigendecomposition of the appropriate submatrix. THE2d (i) and between (i) and ().

computation of|| Py, (¢(x))||* is carried out as explained in

[15].

Figure 2(a) shows the projected squared norm plotted agai¥§f level off and remain constant and this effect can be
k for these three quantities. Curves (i) and (iii) have bedpserved in Figure 2(b).

averaged over 20 random choices of the training set. The error
bars give one standard deviation. Notice the close agreement
between the curves (i) and (iii), indicating that the subspace
identified as optimal for the training set is indeed capturing€ Paper has shown that the eigenvalues of a positive semi-
almost the same amount of information for all data points. Tfinite matrix generated from a random sample is concen-
very tight error bars show clearly the very tight concentratioi@ted. Furthermore the sum of the last— & eigenvalues

of the sums of tail of eigenvalues as predicted by Theoremi$, similarly concentrated as is the residual when the data is
In order to amplify the information depicted in Figure 2(a)Projected into a fixed subspace.

Figure 2(b) plots the differences (i)-(ii) and (iii)-(ii). As Furthermore, we have shown that estimating the projection
expected we see that (i)-(iy 0 and (iii)-(ii) < 0. For larger subspace on a random sample can give a good model for future
projection dimensions the theory predicts that the accuradsta provided the number of examples is much larger than the

VII. CONCLUSIONS



dimension of the subspace that captures most of the trainjng
data. The results provide a basis for performing PCA or kernel-
PCA from a randomly generated sample, as they confirm that
the subspace identified by the sample will indeed ‘generaliges)
in the sense that it will capture most of the information in a test

sample provided that the dimension is small compared to the
sample size and that the subspace captures most of the varigrgex. Azuma, “Weighted sums of certain dependent random variables,”
in the training data. The result is somewhat counter-intuitive ~ Tohoku Math J.vol. 19, pp. 357-367, 1967.

: ; . 8
in that the dimension of the feature space does not app&a
explicitly. The critical quantity is the ratio of the empirical[19]
or ‘effective’ dimension of the sample data to the number of

examples it comprises.

Experiments are presented that confirm the theoretical predizc-
tions on a real world data-set for small projection dimension[s.

[20]

For larger projection dimensions the theory predicts that the

accuracy will level off and remain constant. In practice there js _ _
. Ly . L . . 22] M. L. Eaton and D. E. Tyler, “On Wielandt's Inequality and Its
a slow attenuation with increasing projection dimension. This

is not inconsistent with the theory and accords with intuitive

expectations.

(23]
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