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Abstract— In this paper we analyze the relationships between
the eigenvalues of them × m Gram matrix K for a kernel
κ(·, ·) corresponding to a sample x1, . . . ,xm drawn from a
density p(x) and the eigenvalues of the corresponding continuous
eigenproblem. We bound the differences between the two spectra
and provide a performance bound on kernel PCA showing that
we can expect good performance even in very high dimensional
feature spaces provided the sample eigenvalues fall sufficiently
quickly.

I. I NTRODUCTION

Over recent years there has been a considerable amount of in-
terest in kernel methods such as Support Vector Machines [1],
Gaussian Processesetc in the machine learning area. In these
methods theGram matrixplays an important r̂ole. Them×m
Gram matrixK has entriesκ(xi,xj), i, j = 1, . . . , m, where
{xi : i = 1, . . . ,m} is a given dataset andκ(·, ·) is a kernel
function. For Mercer kernelsK is symmetric positive semi-
definite. We denote its eigenvaluesλ̂1 ≥ λ̂2 . . . ≥ λ̂m ≥ 0
and write its eigendecomposition asK = V Λ̂V ′ where Λ̂
is a diagonal matrix of the eigenvalues andV ′ denotes the
transpose of matrixV . The eigenvalues are also referred to
as the spectrum of the Gram matrix, while the corresponding
columns ofV are their eigenvectors.

A number of learning algorithms rely on estimating spectral
data on a sample of training points and using this data as input
to further analyses. For example in Principal Component Anal-
ysis (PCA) the subspace spanned by the firstk eigenvectors is
used to give ak dimensional model of the data with minimal
residual, hence forming a low dimensional representation of
the data for analysis or clustering. Recently the approach has
been applied in kernel defined feature spaces in what has
become known as kernel-PCA [2]. This representation has
also been related to an Information Retrieval algorithm known

as latent semantic indexing, again with kernel defined feature
spaces [3].

Furthermore eigenvectors have been used in the HITS [4] and
Google’s PageRank [5] algorithms. In both cases the entries
in the eigenvector corresponding to the maximal eigenvalue
are interpreted as authority weightings for individual articles
or web pages.

The use of these techniques raises the question of how reliably
these quantities can be estimated from a random sample of
data, or phrased differently, how much data is required to
obtain an accurate empirical estimate with high confidence.
Ng et al. [6] have undertaken a study of the sensitivity of
the estimate of the first eigenvector to perturbations of the
connection matrix. They have also highlighted the potential
instability that can arise when two eigenvalues are very close
in value, so that their eigenspaces become very difficult to
distinguish empirically.

Other authors have studied the concentration of linear func-
tionals of the spectral measure or single eigenvalues of random
matrices generated through distributions defined over their
entries, see for example Guionnet and Zeitouni [7] and Alon
et al. [8].

In this paper we shift the emphasis towards studying the
concentration of sums of eigenvalues of a Gram matrix gained
from a finite sample of vectors, so that the distribution over the
matrices is defined implicitly by a distribution over vectors. In
particular if we perform (kernel-) PCA on a random sample
and project new data into thek-dimensional space spanned
by the first k eigenvectors, how much of the data will be
captured or in other words how large will the residuals be. It
turns out that this accuracy is not sensitive to the eigenvalue
separation, while at the same time being the quantity that is
relevant in a practical application of dimensionality reduction
using kernel PCA. The result shows that we can expect good
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performance even in very high dimensional feature spaces
provided that the sample eigenvalues fall sufficiently quickly.
In this sense the results give a dimension independent bound
on the performance of kernel PCA.

The second question that motivated the research reported in
this paper is the relation between the eigenvalues of the Gram
matrix and those of the underlying process. For a given kernel
function and densityp(x) on a spaceX , we can also write
down the eigenfunction problem

∫

X
κ(x,y)p(x)φi(x) dx = λiφi(y). (1)

Note that the eigenfunctions are orthonormal with respect to
p(x), i.e. ∫

X
φi(x)p(x)φj(x)dx = δij .

Let the eigenvalues of the underlying process be ordered so
that λ1 ≥ λ2 ≥ . . .. This continuous eigenproblem can be
approximated in the following way. Let{xi : i = 1, . . . , m}
be a sample drawn according top(x). Then

∫

X
κ(x,y)p(x)φi(x)dx ' 1

m

m∑

k=1

κ(xk,y)φi(xk) (2)

As pointed out in [9], the standard numerical method (see,
e.g., [10], chapter 3) for approximating the eigenfunctions and
eigenvalues of equation (1) is to use a numerical approxima-
tion such as equation (2) to estimate the integral, and then plug
in y = xj for j = 1, . . . , m to obtain a matrix eigenproblem

m∑

k=1

κ(xk,xj)φi(xk) = λ̂iφi(xj).

Thus we see thatµi
def
= 1

m λ̂i is an obvious estimator for the
ith eigenvalue of the continuous problem. The theory of the
numerical solution of eigenvalue problems ([10], Theorem 3.4)
shows that for a fixedk, µk will converge toλk in the limit
asm →∞.

For the case thatX is one dimensional andp(x) is Gaussian
and κ(x, y) = exp−b(x − y)2 (the RBF kernel with length-
scaleb−1/2), there are analytic results for the eigenvalues and
eigenfunctions of equation (1) as given in section 4 of [11]. To
compare the process eigenvalues with empirical eigenvalues
1000 samples of sizem = 100 were used, with parameters
b = 3 andp(x) ∼ N (0, 1/4). The 1000 repetitions were used
to characterize the variability of the empirical eigenvalues. For
this case we can therefore compare the values ofµi with the
correspondingλi, as shown in Figure 1(a). Figure 1(b) plots
the difference between the average (over 1000 samples) of the
partial sum of the firsti empirical eigenvalues against the same
partial sum of the process eigenvalues. These two plots show
that for i = 1 the average empirical eigenvalue overestimates
λ1, but that fori > 1 the converse is true. Figure 1(b) also
shows that the empirical partial sum initially overestimates
the process partial sum, but that this gradually declines. One
of the results of this paper will be bounds on the degree of
overestimation for these partial sums in a fully general setting.
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Fig. 1. (a) A plot of the log eigenvalue against the index of the eigenvalue.
The straight line is the theoretical relationship. The centre point (marked with
a star) in the error bar is the log of the average value ofµk. The upper and
lower ends of the error bars are the 97.5% and 2.5% centiles of oflog(µk)
respectively taken over 1000 repetitions. (b) A plot of the difference between
the average of

∑i
j=1 µj and

∑i
j=1 λj againsti.

Koltchinskii and Gine [12] discuss a number of results in-
cluding rates of convergence of theµ-spectrum to theλ-
spectrum. The measure they use compares the whole spectrum
rather than individual eigenvalues or subsets of eigenvalues.
They also do not deal with the estimation problem for PCA
residuals.

Johnstone [13] studies the distribution of the largest eigenvalue
of the Gram matrix of a set of vectors whose components
are independent Gaussians, though his is also an asymptotic
analysis as the dimension of the feature space and the number
of vectors tends to infinity at a fixed ratio greater than 1.

In an earlier version of this paper, [14] discussed the con-
centration of spectral properties of Gram matrices and of the
residuals of fixed projections. However, these results gave
deviation bounds on the sampling variability ofµi with respect
to E[µi], but did not address the relationship ofµi to λi or
the estimation problem of the residual of PCA on new data.

In order to state our main results consider a general probability
spaceX and a measurable feature mappingψ

ψ : x ∈ X 7−→ ψ(x) ∈ F

to a real Hilbert spaceF . We assume a probability measurep
on the spaceX . Note that this implies a distribution onF via
the measurable feature mapψ. We will assume throughout
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that the support of this distribution is bounded in a ball of
radiusR in F . We draw an i.i.d. sampleS of m points

S = (x1, . . . ,xm)

from X according top and form the Gram matrixK(S) of
their projections intoF

K(S)ij = 〈ψ(xi), ψ(xj)〉 .
We refer to the composition of the inner product with the
projections as the kernel functionκ:

κ(x, z) = 〈ψ(x), ψ(z)〉 ,
and similarly to the matrixK(S) as the kernel matrix. It is
often convenient to specify the kernelκ and define the feature
space implicitly by this choice. Such a feature space will exist
provided the kernel is symmetric and has the property that
all finite kernel matrices are positive semi-definite (see [15]
for details). We refer to the eigenvaluesλ̂1(S) ≥ λ̂2(S) ≥
· · · ≥ λ̂m(S) of K(S) as the empirical eigenvalues dropping
the dependency onS if this is clear from the context.

There is a corresponding self-adjoint operator in the inner
product spaceL2

p(X ) defined by

K(f)(x) =
∫

X
f(x′)κ(x,x′)dp(x′).

We refer to the eigenvalues of this operator as the process
eigenvalues and denote them byλ1 ≥ λ2 ≥ · · · ≥ λi ≥ · · · .
Given a sequence of numbersν1 ≥ ν2 ≥ · · · ≥ νm, wherem
may be infinity, we use the notations

ν>k =
m∑

i=k+1

νi and ν≤k =
k∑

i=1

νi

to denote the tail and initial sums respectively.

We must introduce a further definition before quoting the main
results of the paper. This is concerned with the procedure
known as Principal Components Analysis that projects multi-
dimensional data in the feature spaceF onto the subspacêVk

spanned by the firstk eigenvectors of the correlation matrix

C(S) =
1
m

m∑

i=1

ψ(xi)ψ(xi)′.

Note that we do not restrict the spaceF to be finite dimen-
sional. However, for any finite set of pointsx1, . . . ,xm, the
feature vectorsψ(x1), . . . , ψ(xm) span a finite dimensional
subspace ofF . Hence, by choosing a basis that spans this
subspace and extending to a basis of the whole space, the cor-
relation matrixC(S) becomes effectively finite dimensional.

We denote projection onto a subspaceV by PV (ψ(x)). We
denote the projection onto the orthogonal complement ofV
by P⊥V (ψ(x)). If V is a one dimensional subspace withv a
non-zero element ofV , we will also writePv in place ofPV .
The norm of the orthogonal projection is also referred to as
the residual since it corresponds to the distance between the
original point and its projection.

We can now state the three main results of this paper. The first
is concerned with the residual projections and the sum of the
last eigenvalues.

Theorem 1:If we perform PCA in the feature space defined
by a kernelκ(x, z) then with probability greater than1 − δ
over randomm-samplesS, for all 1 ≤ k ≤ m, if we project
new data onto the spacêVk, the expected squared residual is
bounded by

λ>k ≤ E
[
‖P⊥

V̂k
(ψ(x))‖2

]

≤ min
1≤`≤k


 1

m
λ̂>`(S) +

1 +
√

`√
m

√√√√ 2
m

m∑

i=1

κ(xi,xi)2




+R2

√
18
m

ln
(

2m

δ

)

where the support of the distribution is in a ball of radiusR in
the feature space andλi and λ̂i are the process and empirical
eigenvalues respectively.

The theorem states that when projecting into the empirical
eigen-subspace spanned by the firstk eigenvectors the ex-
pected squared residual of a randomly drawn test point can
with high probability be bounded by a minimum over` ≤ k
of the sum of all but the first̀ empirical eigenvalues plus a
complexity term that scales like

√
`/m.

The last term on the right hand side represents the usual
dependency on the confidence parameterδ. The expression
inside the minimisation involves two terms. The first term is
the empirical estimate of the squared residual, which decreases
as` increases. The second term is the complexity penalty that
grows with increasing̀. The expression will reach a minimum
at a value`0 approximately where the two expressions have
equal values. Hence, the overall bound decreases ask increases
up to `0 and remains constant from that point onwards. In
practice we expect that the left hand side will continue to
decline slowly beyond this point as further dimensions are
included. This effect is indeed evident in the experiments
reported in the final section.

For applications of kernel PCA the theorem suggests that good
capture of the data can be expected provided the empirical
eigenvalues decay before

√
`/m grows too big. Indeed this can

be used as a criterion for deciding whether subspace projection
is justified based on the available training data.

The second theorem considers the sum of the firstk eigenval-
ues and the projections into the space spanned by the firstk
eigenvectors.

Theorem 2:If we perform PCA in the feature space defined
by a kernelκ(x, z) then with probability greater than1 − δ
over randomm-samplesS, for all 1 ≤ k ≤ m, if we project
new data onto the spacêVk, the sum of the largestk process
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eigenvalues is bounded by

λ≤k ≥ E
[
‖PV̂k

(ψ(x))‖2
]

≥ max
1≤`≤k


 1

m
λ̂≤`(S)− 1 +

√
`√

m

√√√√ 2
m

m∑

i=1

κ(xi,xi)2




−R2

√
19
m

ln
(

2(m + 1)
δ

)

where the support of the distribution is in a ball of radiusR in
the feature space andλi and λ̂i are the process and empirical
eigenvalues respectively.

This result is perhaps more interesting from the perspective
of the relation between process and empirical eigenvalues. In
particular, it implies a good fit between the partial sums of the
largest eigenvalues with indicesk for which

√
k/m is small.

The final result concerns the projections of data into the 1-
dimensional subspace determined by a single eigenvector. In
this case it is not possible to obtain a relationship with the
process eigenvalues, but the ‘generalisation’ of the empirical
projection obeys an even tighter bound than for the larger
subspaces.

Theorem 3:If we perform PCA in the feature space defined
by a kernelκ(x, z) then with probability greater than1−δ over
randomm-samplesS, for all 1 ≤ k ≤ m, if we project new
data onto the one dimensional subspaceÛk spanned by thek-
th eigenvector ofC(S), the expected value of the projection
of new data satisfies

E
[
‖PÛk

(ψ(x))‖2
]

≥ 1
m

λ̂k(S)− 2√
m

√√√√ 2
m

m∑

i=1

κ(xi,xi)2

−R2

√
19
m

ln
(

2(m + 1)
δ

)

where the support of the distribution is in a ball of radiusR
in the feature space and̂λi are the empirical eigenvalues.

The paper is organised as follows. In Section 2 we give the
background results and develop the basic techniques that are
required to develop the necessary framework in sections 3
and 4. Section 5 then gives the main results of the paper. We
provide experimental verification of the theoretical findings in
Section 6, before drawing our conclusions.

II. BACKGROUND AND TECHNIQUES

We will make use of the following results that can be traced
back to the work of Hoeffding [16] and Azuma [17]. We
quote versions given by McDiarmid [18]. Results of this type
bounding the deviation of a random variable from its expected
value are often referred to as concentration inequalities. More
advanced results of this type due to Boucheronet al. and
Talagrand can be found in [19] and [20].

Theorem A :Let X1, . . . , Xn be independent random variables
taking values in a setA, and assume thatf : An → R, and
that there existfi : An−1 → R for 1 ≤ i ≤ n satisfying

sup
x1,...,xn

|f(x1, . . . , xn)−fi(x1, . . . , xi−1, xi+1, . . . , xn)| ≤ ci,

then for all ε > 0,

P{f(X1, . . . , Xn)−Ef(X1, . . . , Xn) > ε} ≤ exp
( −2ε2∑n

i=1 c2
i

)

Theorem B :Let X1, . . . , Xn be independent random variables
taking values in a setA, and assume thatf : An → R, for
1 ≤ i ≤ n

sup
x1,...,xn,x̂i

|f(x1, . . . , xn)−f(x1, . . . , xi−1, x̂i, xi+1, . . . , xn)| ≤ ci,

then for all ε > 0,

P{f(X1, . . . , Xn)−Ef(X1, . . . , Xn) > ε} ≤ exp
( −2ε2∑n

i=1 c2
i

)

We will also make use of the following theorem characteris-
ing the eigenvectors of a self-adjoint completely continuous
operator in a Hilbert space. This theorem is usually referred
to as the Courant Fischer Weyl theorem in its matrix version.
We quote it here in the more general form [21].

Theorem C :[Courant-Fischer-Weyl Minimax Theorem] IfT is
a self-adjoint completely continuous operator on a real Hilbert
space, then fork = 1, 2, . . . ,

λk(T ) = max
dim(V )=k

min
0 6=v∈V

〈Tv,v〉
〈v,v〉

= min
dim(T )=m−k+1

max
0 6=v∈T

〈Tv,v〉
〈v,v〉 ,

with the extrema achieved by the corresponding eigenvector.

The approach we adopt in the first stage of the analysis is to
relate the eigenvalues to the sums of squares of residuals. This
is well-known particularly in the case of matrices, following
from consideration of the singular value decomposition. We
sketch the analysis in the more general operator form since
we require this for the process eigenvalues mentioned above.
The matrix form is a simple consequence of this general result.

Recall the operator of the form

Kq(f)(x) =
∫

X
f(x′)κ(x,x′)dq(x′),

in the spaceL2
q(X ), where q is some distribution overX .

Furthermore consider the self-adjoint operator

Cq(·) =
∫

X
〈ψ(x), ·〉ψ(x)dq(x).

Let v(·), λ be an eigenfunction, eigenvalue pair forKq, that is
Kq(v)(x) = λv(x). Consider the point

u = fq(v) =
∫

X
v(x)ψ(x)dq(x) ∈ F.

We have

Cq(u) =
∫

X

∫

X
κ(x, z)v(z)dq(z)ψ(x)dq(x)

= λ

∫

X
v(x)ψ(x)dq(x)

= λu.
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It follows that fq(v), λ is an eigenvector, eigenvalue pair for
Cq. Furthermore, we have

‖fq(v)‖2 =
∫

X

∫

X
v(x)v(z)κ(x, z)dq(x)dq(z)

= λ

∫

X
v(z)2dq(z) = λ‖v‖2q,

in the norm determined by the distributionq. Similarly it is
easily verified that ifu, λ is an eigenvector, eigenvalue pair
for Cq the function

g(u)(·) = 〈ψ(·),u〉

is an eigenfunction forKq with eigenvalueλ and

‖g(u)‖2q = λ‖u‖2.

Furthermore, we have that

g(fq(v)) = Kq(v) and fq(g(u)) = Cq(u).

It follows from this analysis that the two operators have the
same non-zero eigenvalues and there is a 1-1 correspondence
between the corresponding eigenvectors, eigenfunctions given
by the functionsf andg.

If we consider the case whereq is the empirical distribution,
that is the uniform distribution on a fixedm-sampleS, we
will see that this analysis forms the basis of kernel PCA. If
we chooseq to be the empirical distribution uniform on a fixed
sampleS, we will denote the operatorsCq andKq by CS and
KS respectively.

If ui, λi are thei-th normalised eigenvector, eigenvalue pair
of the operatorCS in the feature space, this corresponds to the
i-th eigenvector of the correlation matrix

C(S) =
1
m

m∑

i=1

ψ(xi)ψ(xi)′.

The PCA projection of an inputx onto ui is given by

〈ψ(x),ui〉 = λ
−1/2
i 〈ψ(x), fq(vi)〉

= λ
−1/2
i m−1

m∑

j=1

vi(xj)κ(xj ,x),

where vi(·), λi are the corresponding eigenfunction, eigen-
value pair of the operatorKq. This equation forms the basis
of kernel PCA, since it implies that the projection of a new
point into the space spanned by thei-th eigenvector can be
computed as

Pui(ψ(x)) =


λ̂

−1/2
i

m∑

j=1

vijκ(x,xj)


ui,

where(vij)m
j=1, λ̂i are thei-th eigenvector and eigenvalue of

the kernel matrixK(S).
Now consider the first eigenvalue of the operatorKq for gen-
eral distributionq. By Theorem C and the above observations

we have

λ1(Kq) = max
0 6=v∈F

〈Cq(v),v〉
〈v,v〉

= max
0 6=v∈F

1
‖v‖2

∫

X
〈ψ(x),v〉2dq(x)

= max
0 6=v∈F

Eq

[‖Pv(ψ(x))‖2]

= Eq

[‖ψ(x)‖2]− min
0 6=v∈F

Eq

[‖P⊥v (ψ(x))‖2] ,

where Eq denotes expectation with respect toq, since
‖ψ(x)‖2 = ‖Pv(ψ(x))‖2 + ‖P⊥v (ψ(x))‖2. It follows that
the first eigenvector is characterised as the direction for which
the expected square of the residual is minimal.

Applying the same line of reasoning to the first equality of
Theorem C, delivers the following equality

λk(Kq) = max
dim(V )=k,V⊆F

min
0 6=v∈V

Eq

[‖Pv(ψ(x))‖2] . (3)

Notice that this characterisation implies that ifuk is thek-th
eigenvector ofCq, then

λk(Kq) = Eq

[‖Puk
(ψ(x))‖2] , (4)

which in turn implies that ifVk is the space spanned by the
first k eigenvectors, then

k∑

i=1

λi(Kq) = Eq

[‖PVk
(ψ(x))‖2]

= Eq

[‖ψ(x)‖2]− Eq

[‖P⊥Vk
(ψ(x))‖2] .(5)

It readily follows by induction over the dimension ofV that
we can equally characterise the sum of the firstk and last
m− k eigenvalues by

k∑

i=1

λi(Kq) = max
dim(V )=k

Eq

[‖PV (ψ(x))‖2]

= Eq

[‖ψ(x)‖2]− min
dim(V )=k

Eq

[‖P⊥V (ψ(x))‖2] ,(6)

∞∑

i=k+1

λi(Kq) = Eq

[‖ψ(x)‖2]−
k∑

i=1

λi(Kq) (7)

= min
dim(V )=k

Eq

[‖P⊥V (ψ(x))‖2] . (8)

Hence, as for the case whenk = 1, the subspace spanned by
the first k eigenvalues is characterised as that for which the
sum of the squares of the residuals is minimal.

In the case thatq is the empirical distribution the results
correspond to the matrix form of the residual result, namely
that projecting into the eigenspaces corresponding to the
largest eigenvalues minimises the average squared residual.
If we takeq to be the data generating distributionp, the result
describes the fact that the eigenvectors of the operatorCp

characterise the subspaces ofF capturing the largest expected
squared residual:

λk(K) = max
dim(V )=k

min
0 6=v∈V

E[‖Pv(ψ(x))‖2], (9)
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whereV is a linear subspace of the feature spaceF and we
useE to denote expectation with respect top. Similarly,

k∑

i=1

λi(K) = max
dim(V )=k

E
[‖PV (ψ(x))‖2]

= E
[‖ψ(x)‖2]− min

dim(V )=k
E

[‖P⊥V (ψ(x))‖2](10)

∞∑

i=k+1

λi(K) = E
[‖ψ(x)‖2]−

k∑

i=1

λi(K)

= min
dim(V )=k

E
[‖P⊥V (ψ(x))‖2] . (11)

One of the aims of this paper is to elucidate the relationship
between these two projections, demonstrating conditions when
the quality of the empirical projection matches that of the
‘ideal’ process projection.

We are now in a position to motivate the main results of
the paper. We consider the general case of a kernel defined
feature space with input spaceX and probability density
p(x). We fix a sample sizem and a draw ofm examples
S = {x1,x2, . . . ,xm} according top. We fix the feature
space determined by the kernel as given by the mapping
ψ. We can therefore view the eigenvectors of correlation
matrices corresponding to finite Gram matrices as lying in
this space. Further we fix a feature dimensionk. Let V̂k

be the space spanned by the firstk eigenvectors of the
correlation matrix corresponding to the sample kernel matrix
K(S) with corresponding eigenvalueŝλ1, λ̂2, . . . , λ̂k, while
Vk is the space spanned by the firstk process eigenvectors
with corresponding eigenvaluesλ1, λ2, . . . , λk. Similarly, let
Ê[f(x)] denote the expectation with respect to the sample or
the empirical mean:

Ê[f(x)] =
1
m

m∑

i=1

f(xi),

while as beforeE[·] denotes expectation with respect top.

We are interested in the relationships between the following
quantities:

Ê
[
‖PV̂k

(ψ(x))‖2
]

=
1
m

m∑

j=1

‖PV̂k
(ψ(x))‖2

=
1
m

k∑

i=1

λ̂i

E
[‖PVk

(ψ(x))‖2] =
k∑

i=1

λi

E
[
‖PV̂k

(ψ(x))‖2
]

and Ê
[‖PVk

(ψ(x))‖2] .

Bounding the difference between the first and second will
relate the process eigenvalues to the sample eigenvalues, while
the difference between the first and third will bound the
expected performance of the space identified by kernel PCA
when used on new data.

Our first two observations follow simply from equation (10),

Ê
[
‖PV̂k

(ψ(x))‖2
]

=
1
m

k∑

i=1

λ̂i ≥ Ê
[‖PVk

(ψ(x))‖2] (12)

and

E
[‖PVk

(ψ(x))‖2] =
k∑

i=1

λi ≥ E
[
‖PV̂k

(ψ(x))‖2
]

(13)

Our strategy will be to show that the right hand side of
inequality (12) and the left hand side of inequality (13) are
close in value making the two inequalities approximately a
chain of inequalities. We then bound the difference between
the first and last entries in the chain.

First, however, in the next section we will examine averages
over randomm samples. We will use the notationEm[·] to
denote this type of average though we could equivalently write
Em[·] in the sense that this is simply the expectation with
respect to them-fold product distribution.

III. AVERAGING OVER SAMPLES AND POPULATION

EIGENVALUES

The sample correlation matrix isC(S) = 1
mXX ′ with

eigenvaluesµ1 ≥ µ2 . . . ≥ µd. (If x is a zero-mean random
variable then this is also the covariance matrix.) In the notation
of the section IIµi = (1/m)λ̂i. The corresponding population
correlation matrix has eigenvaluesλ1 ≥ λ2 . . . ≥ λd and
eigenvectorsu1, . . . ,ud. Again by the observations above
these are the process eigenvalues.

Statisticians have been interested in the sampling distribution
of the eigenvalues ofC(S) for some time. There are two
main approaches to studying this problem, as discussed in
section 6 of [22]. In the case thatx has a multivariate normal
distribution, the exact sampling distribution ofµ1, . . . , µd can
be given [23]. Alternatively, the “delta method” can be used,
expanding the sample roots about the population roots. For
normal populations this has been carried out in [24] (if there
are no repeated roots of the population covariance) and [25]
(for the general case), and extended in [26] to the non-
Gaussian case.

The following proposition describes howEm[µ1] is related to
λ1 andEm[µd] is related toλd. It requires no assumption of
Gaussianity.

Proposition A : [Anderson, 1963, pp 145-146]Em[µ1] ≥ λ1

andEm[µd] ≤ λd.

Proof : By the results of the previous section we have

µ1 = max
0 6=c

m∑

i=1

1
m
‖Pc(xi)‖2

≥ 1
m

m∑

i=1

‖Pu1(xi)‖2 = Ê
[‖Pu1(x)‖2] .

We now apply the expectation operatorEm to both sides. On
the RHS we get

EmÊ
[‖Pu1(x)‖2] = E

[‖Pu1(x)‖2] = λ1

by equation (11), which completes the proof. Correspondingly
µd is characterized byµd = min0 6=c Ê

[‖Pc(xi)‖2
]

(minor
components analysis).
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Interpreting this result, we see thatEm[µ1] overestimatesλ1,
while Em[µd] underestimatesλd.

Proposition A can be generalized to give the following result
where we have also allowed for a kernel defined feature space
of dimensionNF ≤ ∞.

Proposition 4: Using the above notation, for anyk, 1 ≤
k ≤ m, Em[

∑k
i=1 µi] ≥

∑k
i=1 λi and Em[

∑m
i=k+1 µi] ≤∑NF

i=k+1 λi.

Proof : Let Vk be the space spanned by the firstk process
eigenvectors. Then from the derivations above we have

k∑

i=1

µi = max
V : dim V =k

Ê
[‖PV (ψ(x))‖2] ≥ Ê [‖PVk

(ψ(x))‖2] .

Again, applying the expectation operatorEm to both sides
of this equation and taking equation (11) into account, the
first inequality follows. To prove the second we turnmax
into min, P into P⊥ and reverse the inequality. Again taking
expectations of both sides proves the second part.

Furthermore, [26] (equation 2) gives the asymptotic relation-
ship

Em[µi] = λi +
1
m

∑

j=1,j 6=i

λiλj + κij
22

λi − λj
+ O(m−2), (14)

whereκij
22 is the bivariate cumulant of order 4 of the marginal

distribution ofφi andφj (assumed finite).

Remark 5:Proposition 4 also implies that

ENF

[
NF∑

i=1

µi

]
=

NF∑

i=1

λi

if we sampleNF points.

We can tighten this relation and obtain another relationship
from the trace of the matrix when the support ofp satisfies
κ(x,x) = C, a constant. For example if the kernel is
stationary, this holds sinceκ(x,x) = κ(x − x) = κ(0) = C.
Thus

trace
(

1
m

K

)
= C =

m∑

i=1

µi.

Also we have for the continuous eigenproblem∫
X κ(x,x)p(x)dx = C. Using the feature expansion

representation of the kernelκ(x,y) =
∑NF

i=1 λiφi(x)φi(y)
and the orthonormality of the eigenfunctions we obtain the
following result

m∑

i=1

µi =
NF∑

i=1

λi.

Applying the results obtained in this section, it follows
that Em[µ1] will overestimateλ1, and the cumulative sum∑k

i=1 Em[µi] will overestimate
∑k

i=1 λi. This behaviour is
illustrated in Figure 1(b). At the other end, clearly forNF ≥
k > m, µk ≡ 0 is an underestimate ofλk.

IV. CONCENTRATION OF EIGENVALUES

Section II outlined the relatively well-known perspective that
we now apply to obtain the concentration results for the
eigenvalues of positive semi-definite matrices. The key to the
results is the characterisation in terms of the sums of residuals
given in equations (3) and (8).

Theorem 6:Let κ(x, z) be a positive semi-definite kernel
function on a spaceX, and let p be a probability density
function onX. Fix natural numbersm and 1 ≤ k < m and
let S = (x1, . . . ,xm) ∈ Xm be a sample ofm points drawn
according top. Then for allε > 0,

P

{∣∣∣∣
1
m

λ̂k(S)− Em

[
1
m

λ̂k(S)
]∣∣∣∣ ≥ ε

}
≤ 2 exp

(−2ε2m

R4

)
,

whereλ̂k(S) is thek-th eigenvalue of the matrixK(S) with
entriesK(S)ij = κ(xi,xj) andR2 = maxx∈X κ(x,x).
Proof : The result follows from an application of Theorem A
provided

sup
S

∣∣∣∣
1
m

λ̂k(S)− 1
m

λ̂k(S \ {xi})
∣∣∣∣ ≤ R2/m.

Let Ŝ = S \ {xi} and let V (V̂ ) be the k dimensional
subspace spanned by the firstk eigenvectors ofCS (CŜ).
Let κ correspond to the feature mappingψ. Using m times
equation (3) for the empirical distribution we have

λ̂k(S) ≥ min
v∈V̂

m∑

j=1

‖Pv(ψ(xj))‖2

≥ min
v∈V̂

∑

j 6=i

‖Pv(ψ(xj))‖2 = λ̂k(Ŝ)

λ̂k(Ŝ) ≥ min
v∈V

∑

j 6=i

‖Pv(ψ(xj))‖2

≥ min
v∈V

m∑

j=1

‖Pv(ψ(xj))‖2 −R2 = λ̂k(S)−R2.

Surprisingly a very similar result holds when we consider the
sum of the lastm− k eigenvalues or the firstk eigenvalues.

Theorem 7:Let κ(x, z) be a positive semi-definite kernel
function on a spaceX, and let p be a probability density
function onX. Fix natural numbersm and 1 ≤ k < m and
let S = (x1, . . . ,xm) ∈ Xm be a sample ofm points drawn
according top. Then for allε > 0,

P

{∣∣∣∣
1
m

λ̂>k(S)− Em

[
1
m

λ̂>k(S)
]∣∣∣∣ ≥ ε

}
≤ 2 exp

(−2ε2m

R4

)
,

and

P

{∣∣∣∣
1
m

λ̂≤k(S)− Em

[
1
m

λ̂≤k(S)
]∣∣∣∣ ≥ ε

}
≤ 2 exp

(−2ε2m

R4

)
,

where λ̂≤k(S) (λ̂>k(S)) is the sum of (all but) the largest
k eigenvalues of the matrixK(S) with entries K(S)ij =
κ(xi,xj) andR2 = maxx∈X κ(x,x).
Proof : The result follows from an application of Theorem A
provided

sup
S

∣∣∣∣
1
m

λ̂>k(S)− 1
m

λ̂>k(S \ {xi})
∣∣∣∣ ≤ R2/m.
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Let Ŝ = S \ {xi} and let V (V̂ ) be the k dimensional
subspace spanned by the firstk eigenvectors ofCS (CŜ).
Let κ correspond to the feature mappingψ. Using m times
equation (8) for the empirical distribution we have

λ̂>k(S) ≤
m∑

j=1

‖P⊥
V̂

(ψ(xj))‖2 ≤
∑

j 6=i

‖P⊥
V̂

(ψ(xj))‖2 + R2

= λ̂>k(Ŝ) + R2

λ>k(Ŝ) ≤
∑

j 6=i

‖P⊥V (ψ(xj))‖2

=
m∑

j=1

‖P⊥V (ψ(xj))‖2 − ‖P⊥V (ψ(xi))‖2 ≤ λ>k(S).

A similar derivation proves the second inequality.

Corollary 8: Consider a feature spaceF defined by a kernel
κ(x, z) in a spaceX with a distribution densityp(x). Further-
more letλ̂i, i = 1, . . . , m be the empirical eigenvalues. With
probability 1− δ over the selection of a random sample ofm
points drawn according top(x)

∣∣∣∣
1
m

λ̂≤k(S)− Em

[
1
m

λ̂≤k(S)
]∣∣∣∣ ≤ R2

√
1
m

ln
2
δ

Our next result concerns the concentration of the residuals
with respect to a fixed subspace.

Theorem 9:Let p be a probability density function onX.
Fix natural numbersm and a subspaceV and let S =
(x1, . . . ,xm) ∈ Xm be a sample ofm points drawn according
to a probability density functionp. Then for allε > 0,

P{|Ê [‖PV (ψ(x))‖2]− E [‖PV (ψ(x))‖2] | ≥ ε} ≤

2 exp
(−ε2m

2R4

)
.

Proof : Since we have that

Em

[
Ê

[‖PV (ψ(x))‖2]
]

= E
[‖PV (ψ(x))‖2] ,

the result follows from an application of Theorem B provided

sup
S,x̂i

∣∣∣ÊS

[‖PV (ψ(x))‖2]− ÊS\{xi}∪{x̂i}
[‖PV (ψ(x))‖2]

∣∣∣ ≤

R2/m.

Clearly the largest change will occur if one of the pointsψ(xi)
andψ(x̂i) lies in the subspaceV and the other does not. In
this case the change will be at mostR2/m.

We apply the theorem to the subspaceVk spanned by the first
k process eigenvalues to obtain the following corollary.

Corollary 10: Consider a feature spaceF defined by a kernel
κ(x, z) in a spaceX with a distribution densityp(x). Fur-
thermore letVk be the subspace ofF spanned by the firstk
process eigenvectors. With probability1−δ over the selection
of a random sample ofm points drawn according top(x)

∣∣∣Ê
[‖PVk

(ψ(x))‖2]− E [‖PVk
(ψ(x))‖2]

∣∣∣ ≤ R2

√
1
m

ln
2
δ

The concentration results of this section are very tight. In
the notation of the earlier sections they show that with high

probability

Ê
[
‖PV̂k

(ψ(x))‖2
]

=
1
m

k∑

i=1

λ̂i ≈ Em

[
Ê

[
‖PV̂k

(ψ(x))‖2
]]

= Em

[
1
m

k∑

i=1

λ̂i

]

and E
[‖PVk

(ψ(x))‖2] =
k∑

i=1

λi

≈ Ê
[‖PVk

(ψ(x))‖2] , (15)

where we have used Theorem 7 to obtain the first approximate
equality and Theorem 9 withV = Vk to obtain the second
approximate equality.

This gives the sought relationship to create an approximate
chain of inequalities

Ê
[
‖PV̂k

(ψ(x))‖2
]

=
1
m

k∑

i=1

λ̂i ≥ Ê
[‖PVk

(ψ(x))‖2]

≈ E
[‖PVk

(ψ(x))‖2] =
k∑

i=1

λi

≥ E
[
‖PV̂k

(ψ(x))‖2
]
. (16)

Notice that using Proposition 4 we also obtain the following
diagram of approximate relationships

Ê
[
‖PV̂k

(ψ(x))‖2
]

≥ Ê
[‖PVk

(ψ(x))‖2]

≈ ≈
Em

[
1
m

∑k
i=1 λ̂i

]
≥ E

[‖PVk
(ψ(x))‖2] .

Hence, the approximate chain could have been obtained in two
ways. It remains to bound the difference between the first and
last entries in this chain. This together with the concentration
results of this section will deliver the required bounds on the
differences between empirical and process eigenvalues, as well
as providing a performance bound on kernel PCA.

V. L EARNING A PROJECTION MATRIX

This section will work up to a proof of the three main results
given in the introduction. The key observation that enables the
analysis bounding the difference between

Ê
[
‖PV̂k

(ψ(x))‖2
]

=
1
m

k∑

i=1

λ̂i

and E
[
‖PV̂k

(ψ(x))‖2
]

is that we can view the projection

norm ‖PV̂k
(ψ(x))‖2 as a linear function of pairs of features

from the feature spaceF .

Proposition 11: Let V̂ be the subspace spanned by some fixed
subsetI of k eigenvectors of the kernel matrix. The projection
norm ‖PV̂ (ψ(x))‖2 is a linear functionf̂ in a feature space
F̂ for which the kernel function is given by

κ̂(x, z) = κ(x, z)2.

Furthermore the 2-norm of the function̂f is
√

k.



9

Proof : Let X = UΣV ′ be the singular value decomposition
of the sample matrixX in the feature space. The projection
norm is then given by

f̂(x) = ‖PV̂ (ψ(x))‖2 = ψ(x)′U(I)U(I)′ψ(x),

whereU(I) is the matrix containing thek columns ofU in
the setI. Hence we can write

‖PV̂ (ψ(x))‖2 =
NF∑

ij=1

wijψ(x)iψ(x)j =
NF∑

ij=1

wijψ̂(x)ij ,

whereψ̂ is the projection mapping into the feature spaceF̂
consisting of all pairs ofF features andwij = (U(I)U(I)′)ij .
The standard polynomial construction gives

κ̂(x, z) = κ(x, z)2 =

(
NF∑

i=1

ψ(x)iψ(z)i

)2

=
NF∑

i,j=1

ψ(x)iψ(z)iψ(x)jψ(z)j

=
NF∑

i,j=1

(ψ(x)iψ(x)j)(ψ(z)iψ(z)j)

=
〈
ψ̂(x), ψ̂(z)

〉
F̂

.

It remains to show that the norm of the linear function isk.
The norm satisfies (note that‖·‖F denotes the Frobenius norm
andui the columns ofU )

‖f̂‖2 =
NF∑

i,j=1

α2
ij = ‖U(I)U(I)′‖2F

=

〈∑

i∈I

uiu′i,
∑

j∈I

uju′j

〉

F

=
∑

i,j∈I

(u′iuj)2 = k

as required.

We are now in a position to apply a learning theory bound
where we consider a regression problem for which the target
output is the square of the norm of the sample point‖ψ(x)‖2.
We restrict the linear function in the spacêF to have norm√

k. The loss function is then the shortfall between the output
of f̂ and the squared norm.

The approach we adopt here makes use of the Rademacher
variables and the measure is therefore known as the
Rademacher complexity. We refer the reader to Ledoux and
Talagrand [27] as a core reference, though we will only be
using the results and approach described in [28].

Definition 12: Given a sampleS = {x1, . . . ,xm} generated
by a distributionD on a setX and a real-valued function class
F with domainX, the empirical Rademacher complexity of
F is the random variable

R̂m(F) = Eσ

[
sup
f∈F

∣∣∣∣∣
2
m

m∑

i=1

σif (xi)

∣∣∣∣∣

∣∣∣∣∣x1, . . . ,xm

]
,

whereσ = {σ1, . . . , σm} are independent uniform{−1,+1}-
valued (Rademacher) random variables. The Rademacher com-

plexity of F is

Rm(F) = ES

[
R̂m(F)

]
= ESσ

[
sup
f∈F

∣∣∣∣∣
2
m

m∑

i=1

σif (xi)

∣∣∣∣∣

]
.

Note that we denote the input space withZ in the theorem,
so that in the case of supervised learning we would haveZ =
Y × X. The following theorem follows closely the proof of
Theorem 8 in Bartlett and Mendelson [28], the small changes
allow us to obtain slightly tighter bounds for our special case.
We omit the details just noting that bounding in terms of the
empirical Rademacher complexity follows from one further
application of Theorem B.

Theorem D : (Bartlett and Mendelson, 2002) LetF be a class
of functions mapping fromZ to [0, 1] and letS = (zi)m

i=1 be
drawn independently according to a probability distributionD
and fix δ ∈ (0, 1). Then with probability at least1 − δ over
samples of lengthm everyf ∈ F satisfies

ED [f(z)] ≤ Ê [f(z)] + Rm(F) +

√
2ln(2/δ)

m

≤ Ê [f(z)] + R̂m(F) +

√
18ln(2/δ)

m
. (17)

Given a training setS the class of functions that we will
primarily be considering are linear functions with bounded
norm
{

x →
m∑

i=1

αiκ(xi,x) : α′Kα ≤ B2

}
⊆

{x → 〈w, φ (x)〉 : ‖w‖ ≤ B} = FB ,

whereφ is the feature mapping corresponding to the kernel
κ(·, ·). Note that although the choice of functions appears to
depend onS, the definition ofFB does not depend on the
particular training set. Bartlett and Mendelson [28] bound the
empirical Rademacher complexity of this function class.

Theorem E : (Bartlett and Mendelson, 2002) Ifκ : X ×X →
R is a kernel, andS = {x1, . . . ,xm} is a sample of points
from X, then the empirical Rademacher complexity of the
classFB satisfies

R̂m(FB) ≤ 2B

m

√√√√
m∑

i=1

κ(xi,xi) =
2B

m

√
tr (K)

The final ingredient that will be required to apply the technique
are the properties of the Rademacher complexity that allow
it to be bounded in terms of large classes. The following
standard theorem summarises the properties of the empirical
Rademacher complexity that we require.

Theorem F : Let F andH be classes of real functions. Then

1) If F ⊆ H, thenR̂m(F) ≤ R̂m(H).
2) For everyc ∈ R, R̂m(cF) = |c|R̂m(F)

The proofs of these results are immediate consequences of the
definition of empirical Rademacher complexity. We can now
apply these results to the approximation of the norm of the
variable by a linear function of bounded norm.
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Theorem 13:If we perform PCA on a randomly drawn train-
ing setS of size m in the feature space defined by a kernel
κ(x, z) and project new data onto the spaceV̂ spanned by
a subsetI of k eigenvectors, with probability greater than
1−δ over the generation of the sampleS the expected squared
residual is bounded by

E
[‖P⊥

V̂
(ψ(x))‖2] ≤ 1

m

∑

i 6∈I

λ̂i(S)

+
1 +

√
k√

m

√√√√ 2
m

m∑

i=1

κ(xi,xi)2 + R2

√
18
m

ln
(

2
δ

)
,

where the support of the distribution is in a ball of radiusR
in the feature space.

Proof. As indicated in Proposition 11 we consider the function
classF̂√k with respect to the kernel

κ̂(x, z) = κ(x, z)2,

with corresponding feature mappinĝψ. Note that the weight
vectors considered satisfy the special condition that they are
positive semi-definite, that is that

∑

ij

wijψ̂(x)ij ≥ 0,

for all x. Furthermore the function corresponds to the norm
squared of a projection mapping. We will denote the subset
of functions satisfying this condition byP. We augment
the corresponding primal weight vectors with one further
dimension while augmenting the corresponding input vectors
with a feature

‖ψ(x))‖2k−0.25 = κ(x,x)k−0.25 = k−0.25
√

κ̂(x,x)
= ‖ψ̂(x))‖k−0.25

that is the norm squared in the original feature space divided
by the fourth root ofk. We now apply Theorem D to the class

F̂ =
{

f` : (ψ̂(x), ‖ψ̂(x))‖k−0.25)

7→ (‖ψ̂(x))‖ − f(ψ̂(x)))R−2 | f ∈ F̂√k ∩ P
}

⊆ R−2F̂ ′√
k+
√

k
,

where we have restricted the inputs to images of points in the
input space as indicated. The squared norm of the image of the
input x under this feature mapping iŝk(x,x)(1+k−0.5). The
theorem is applied to the function̂f` wheref̂ is the projection
function of Theorem 11. We must first verify that the range
of the function class on the restricted inputs is[0, 1]. Since
we have restricted ourselves to positive semi-definite weight
vectorsf(ψ̂(x)) ≥ 0, so that

f`(ψ̂(x)) ≤ ‖ψ̂(x))‖R−2 ≤ 1.

Furthermore, since we have restrictedF̂ to only contain func-
tions that correspond to taking the norm squared of projection
mappings in the original feature space we have that

f(ψ̂(x)) ≤ ‖ψ̂(x))‖,

so thatf`(ψ̂(x)) ≥ 0 as required. We can therefore apply
Theorem 11. First note that for the function̂f` the left hand
side of the expression is equal to

1
R2
E

[‖P⊥
V̂

(ψ(x))‖2] ,

whereV̂ is the space spanned by thek eigenvectors in the set
I. Hence, to obtain the result it remains to evaluate the two
expressions on the right hand side of equation (17). The first
is a scaling of the empirical squared residual when projecting
into the spacêV , that is

1
R2
Ê

[‖P⊥
V̂

(ψ(x))‖2] =
1

mR2

∑

i 6∈I

λ̂i.

The second expression iŝRm(F̂) which by Theorem F parts

1 and 2 can be bounded byR−2R̂m

(
F̂ ′√

k+
√

k

)
. Next we

apply Theorem E to obtain

R̂m

(
F̂ ′√

k+
√

k

)
≤

√
k +

√
k

m

√
tr (K)

=

√
k +

√
k

m

√√√√2(1 + k−0.5)
m

m∑

i=1

κ(xi,xi)2

=
1 +

√
k√

m

√√√√ 2
m

m∑

i=1

κ(xi,xi)2.

Assembling all the components and multiplying through by
R2 gives the result.

We can apply the boundm times to obtain a proof of
Theorem 1.

Proof of Theorem 1. We apply Theorem 13 takingI =
{1, . . . , k}, for k = 1, . . . , m, in each case replacingδ by δ/m.
This ensures that with probability1 − δ the assertion holds
for all m applications. The second inequality of Theorem 1
follows from the observation that fork ≥ `

E
[
‖P⊥

V̂k
(ψ(x))‖2

]
≤ E

[
‖P⊥

V̂`
(ψ(x))‖2

]
,

while the first inequality follows from the last inequality of
equation (16).

A similar argument applies for Theorem 2.

Proof of Theorem 2. We apply Theorem 13 takingI =
{1, . . . , k}, for k = 1, . . . , m, in each case replacingδ by
δ/(m+1). This ensures that with probability1−δ the assertion
holds for allm applications together with the assertion that

∣∣∣E
[
‖ψ(x)‖2

]
− Ê

[
‖ψ(x)‖2

]∣∣∣ ≤ R2

√
1
m

ln
2(m + 1)

δ
.

This final inequality follows from a straightforward application
of McDiarmid’s inequality. The second inequality of Theo-
rem 2 follows from the observations above together with the
fact that

1
m

λ̂≤k = Ê
[
‖ψ(x)‖2

]
− 1

m
λ̂>k,

while the first inequality again follows from the last inequality
of equation (16).
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Finally we give the proof of Theorem 3.

Proof of Theorem 3. Consider applying Theorem 13 taking
I = {k}, and replacingδ by δ/(m+1). This ensures that with
probability 1 − δ the assertion holds for allm applications
together with the assertion that

∣∣∣E
[
‖ψ(x)‖2

]
− Ê

[
‖ψ(x)‖2

]∣∣∣ ≤ R2

√
1
m

ln
2(m + 1)

δ
.

This final inequality follows from a straightforward application
of McDiarmid’s inequality. The inequality of Theorem 3
follows from the observations above together with the fact
that

1
m

∑

i 6=k

λ̂i = Ê
[
‖ψ(x)‖2

]
− 1

m
λ̂k.

VI. EXPERIMENTS

To illustrate the results described in this paper experiments
were carried out with the Breast cancer data set [29] which
contains 683 data points. This dataset is available from the
UCI data repository. A normalised cubic polynomial kernel
was chosen,

κNC〈xi,xj〉 =
〈xi,xj〉3√〈xi,xi〉3〈xj ,xj〉3

(18)

from a range of other kernels, based on the empirical obser-
vation that the process eigenspectrum did not decay too fast.

We compare three quantities

(i) Ê
[
‖PV̂k

(ψ(x))‖2
]

= 1
m

∑k
i=1 λ̂i,

(ii) E
[‖PVk

(ψ(x))‖2] =
∑k

i=1 λi,

(iii) E
[
‖PV̂k

(ψ(x))‖2
]
.

From inequality (13) we have (ii)≥ (iii) and from Proposition
2 we have (i)≥ (ii) in the expectationEm with respect to the
product distribution.

We randomly selected 50% of the data as a ‘training’ set. The
process eigenspectrum was obtained by performing an eigen-
value decomposition of the kernel matrix constructed from
the entire dataset. Similarly the spectrum{λ̂i} was obtained
from an eigendecomposition of the appropriate submatrix. The
computation of‖PV̂k

(ψ(x))‖2 is carried out as explained in
[15].

Figure 2(a) shows the projected squared norm plotted against
k for these three quantities. Curves (i) and (iii) have been
averaged over 20 random choices of the training set. The error
bars give one standard deviation. Notice the close agreement
between the curves (i) and (iii), indicating that the subspace
identified as optimal for the training set is indeed capturing
almost the same amount of information for all data points. The
very tight error bars show clearly the very tight concentration
of the sums of tail of eigenvalues as predicted by Theorem 7.
In order to amplify the information depicted in Figure 2(a),
Figure 2(b) plots the differences (i)-(ii) and (iii)-(ii). As
expected we see that (i)-(ii)≥ 0 and (iii)-(ii) ≤ 0. For larger
projection dimensions the theory predicts that the accuracy
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Fig. 2. (a) Plot of the projected squared norm plotted against the projection
dimension. The plot shows three curves, (i) expected squared norm for training
set when projected into empirical eigenspace averaged over 20 random splits,
(ii) expected squared norm for the true process eigenspectrum and (iii)
expected squared norm for empirical eigenspace again averaged over 20
random splits. (b) Zooms in on plot (a) by displaying the differences between
(i) and (ii) and between (iii) and (ii).

will level off and remain constant and this effect can be
observed in Figure 2(b).

VII. C ONCLUSIONS

The paper has shown that the eigenvalues of a positive semi-
definite matrix generated from a random sample is concen-
trated. Furthermore the sum of the lastm − k eigenvalues
is similarly concentrated as is the residual when the data is
projected into a fixed subspace.

Furthermore, we have shown that estimating the projection
subspace on a random sample can give a good model for future
data provided the number of examples is much larger than the
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dimension of the subspace that captures most of the training
data. The results provide a basis for performing PCA or kernel-
PCA from a randomly generated sample, as they confirm that
the subspace identified by the sample will indeed ‘generalise’
in the sense that it will capture most of the information in a test
sample provided that the dimension is small compared to the
sample size and that the subspace captures most of the variance
in the training data. The result is somewhat counter-intuitive
in that the dimension of the feature space does not appear
explicitly. The critical quantity is the ratio of the empirical
or ‘effective’ dimension of the sample data to the number of
examples it comprises.

Experiments are presented that confirm the theoretical predic-
tions on a real world data-set for small projection dimensions.
For larger projection dimensions the theory predicts that the
accuracy will level off and remain constant. In practice there is
a slow attenuation with increasing projection dimension. This
is not inconsistent with the theory and accords with intuitive
expectations.
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