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Abstract Capacity control in perceptron decision trees is typically performed by control-
ling their size. We prove that other quantities can be as relevant to reduce their flexibility
and combat overfitting. In particular, we provide an upper bound on the generalization
error which depends both on the size of the tree and on the margin of the decision nodes. So
enlarging the margin in perceptron decision trees will reduce the upper bound on general-
ization error. Based on this analysis, we introduce three new algorithms, which can induce
large margin perceptron decision trees. To assess the effect of the large-margin bias, OC1
[18] of Murthy, Kasif and Salzberg, a well-known system for inducing perceptron decision
tree, is used as the baseline algorithm. An extensive experimental study on real world data
showed that all three new algorithms perform better or at least not significantly worse than
OC1 on almost every dataset with only one exception. OC1 performed worse than the best
margin-based method on every dataset.

Key Words: Capacity Control, Decision Trees, Perceptron, Learning Theory,
Learning Algorithm.
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1 Introduction

Perceptron Decision Trees (PDT) have been introduced by a number of authors under dif-
ferent names [17, 6, 7, 8, 10, 11, 27, 18]. They are decision trees in which each internal
node is associated with a hyperplane in general position in the input space. They have been
used in many real-world pattern classification tasks with good results [7, 18, 9]. Given their
high flexibility, a feature that they share with more standard decision trees such as the ones
produced by C4.5 [20], they tend to overfit the data if their complexity is not somehow kept
under control. The standard approach to controlling their complexity is to limit their size
with early stopping or pruning procedures.

In this paper we introduce a novel approach to complexity control in PDTs, based on the
concept of the margin (namely, the distance between the decision boundaries and the training
points). The control of this quantity is at the basis of the effectiveness of other systems,
such as Vapnik’s Support Vector Machines [12], Adaboost [24], and some Bayesian Classifiers
[13]. We prove that this quantity can be as important as the tree size as a capacity control
parameter.

The theoretical motivations behind this approach lie in the Data-Dependent Structural Risk
Minimization [25]: the scale of the cover used in VC theory to provide a bound on the gener-
alization error depends on the margin and hence the hierarchy of classes is chosen in response
to the data. Of course the two complexity control criteria can be used together, combining
a pruning phase with the bias towards large margins, to obtain better performance.

These results motivate a new class of PDT learning algorithms, aimed at producing large
margin trees. We propose three such algorithms: FAT, MOC1, and MOC2, and compare
their performance with that of OC1, one of the best known PDT learning systems. All three
large-margin systems outperform OC1 on most of the real world data sets we have used,
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indicating that overfitting in PDTs can be combatted efficiently by enlarging the margin of
the decision boundaries on the training data.

2 Perceptron Decision Trees

The most common decision trees, in which each node checks the value of a single attribute,
could be defined as axis parallel, because the tests associated with each node are equivalent
to axis-parallel hyperplanes in the input space. Many variations of this simple model have
been proposed since the introduction of such systems in the early 1980s. Some of them
involve more complex tests at the decision nodes, usually testing more than one attribute.

Decision trees whose nodes test a linear combination of the attributes have been proposed
by different researchers under different names: Linear Combination Trees, multivariate DT
[11], oblique DTs [18], Perceptron Decision Trees [27], etc. The first of such systems was
proposed by Breiman, who incorporated it into the package CART[10]. The tests associated
with each node are equivalent to hyperplanes in general position, and they partition the
input space into polyhedra as illustrated in Figure 1. They obviously include as a special
case the more common decision trees output by systems like C4.5.
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Figure 1: A Perceptron Decision Tree and the way it splits the input space

The extreme flexibility of such systems makes them particularly exposed to the risk of
overfitting. This is why efficient methods for controlling their expressive power (typically
pruning techniques) have always to be used in combination with the standard TopDown
growth algorithms.

The class of functions computed by PDTs is formally defined as follows:

Definition 2.1 Generalized Decision Trees (GDT). Given a space X and a set of Boolean
functions F = {f : X → {0, 1}}, the class GDT(F) of Generalized Decision Trees over F is
the set of functions that can be implemented using a binary tree where each internal node is
labeled with an element of F , and each leaf is labeled with either 1 or 0.

To evaluate a particular tree T on input x ∈ X, all the Boolean functions associated to the
nodes are assigned the same argument x ∈ X, which is the argument of T (x). The values
assumed by them determine a unique path from the root to a leaf: at each internal node
the left (respectively right) edge to a child is taken if the output of the function associated
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with that internal node is 0 (respectively 1). This path is known as the evaluation path. The
value of the function T (x) is the value associated with the leaf reached. We say that input
x reaches a node of the tree if that node is on the evaluation path for x.

In the following, the nodes are the internal nodes of the binary tree, and the leaves are its
external ones.

Examples.

• Given X = {0, 1}n, a Boolean Decision Tree (BDT) is a GDT over

FBDT = {fi : fi(x) = xi, i = 1, . . . , n}

• Given X = Rn, a C4.5-like Decision Tree (CDT) is a GDT over

FCDT = {fi,θ : fi,θ(x) = 1 ⇔ xi > θ, θ ∈ R, i = 1, . . . , n}
This kind of decision tree defined on a continuous space is the output of common
algorithms like C4.5 and CART, and we will refer to them as CDTs.

• Given X = Rn, a Perceptron Decision Tree (PDT) is a GDT over

FPDT = {fw : fw(x) = 1 ⇔ wTx > 0, w ∈ Rn+1},
where we have assumed that the inputs have been augmented with a coordinate of
constant value, hence implementing a thresholded perceptron.

PDTs are generally induced by means of a TopDown growth procedure, which starts from the
root node and greedily chooses a perceptron that maximizes some cost function, normally a
measure of the “impurity” of the subsamples implicitly defined by the split. This maximiza-
tion is usually hard to perform, and is sometimes replaced by randomized (sub)optimization.
The subsamples are then mapped to the two children nodes. The procedure is then recur-
sively applied to the nodes, and the tree is grown until some stopping criterion is met. Such
a tree is then used as a starting point for a BottomUp search, performing a pruning of the
tree. This implies eliminating the nodes which are redundant, or which are unable to “pay
for themselves” in terms of the cost function. Generally, pruning an overfitting tree pro-
duces better classifiers than those obtained with early stopping, since this makes it possible
to check if promising directions were in fact worth exploring and if locally good solutions
were on the contrary dead ends. So, while the standard TopDown algorithm is an extremely
greedy procedure, with the introduction of pruning it can be possible to look ahead; this
allows for discovery of more hidden structure.

The capacity control in PDTs is hence completely achieved by controlling the size of the tree,
that is, the complexity of the overall classifier. We will propose an alternative method, which
on the contrary focuses on reducing the complexity of the node classifiers independently of the
tree size. This will be possible thanks to a theoretical analysis of generalization performance
of the function class defined by PDTs in the framework of VC theory.

4



3 Theoretical Analysis of Generalization

The generalization performance of a learning machine can be studied by means of uniform
convergence bounds, using a technique introduced by Vapnik and Chervonenkis [30]. The
central concept in such an analysis is the “effective capacity” of the class of hypotheses
accessible by the machine: the richer such a class, the higher the risk of overfitting. This
feature of a learning machine is often referred to as its flexibility or capacity. The issue of
preventing overfitting by allowing just the right amount of flexibility is therefore known as
capacity control.

The notion of effective cardinality of a function class is captured by its “growth function”
for Boolean classes or “covering numbers” for real valued functions. The size of the covering
numbers depends on the accuracy of the covering as well as on the function class itself. The
larger the margin the less accuracy is required in the covering.

In the following we will be concerned with estimating the capacity of the class of PDTs. We
will see that the margin does affect the flexibility of such a hypothesis class, as does the tree
size. This will motivate some alternative techniques for controlling overfitting which – albeit
conceptually similar to pruning – act on the complexity of the node classifiers rather than
on the complexity of the overall tree.

We begin with the definition of the fat-shattering dimension, which was first introduced in
[15], and has been used for several problems in learning since [1, 4, 2, 3].

Definition 3.1 Let F be a set of real valued functions. We say that a set of points X is
γ-shattered by F relative to r = (rx)x∈X if there are real numbers rx indexed by x ∈ X such
that for all binary vectors b indexed by X, there is a function fb ∈ F satisfying

fb(x)

{ ≥ rx + γ if bx = 1
≤ rx − γ otherwise.

The fat shattering dimension fatF of the set F is a function from the positive real numbers
to the integers which maps a value γ to the size of the largest γ-shattered set, if this is finite,
or infinity otherwise.

As an example that will be relevant to the subsequent analysis consider the class:

Flin = {x → 〈w, x〉 + θ : ‖w‖ = 1}.

We quote the following result from [5](see also [12]).

Theorem 3.2 [5] Let Flin be restricted to points in a ball of n dimensions of radius R about
the origin. Then

fatFlin
(γ) ≤ min{R2/γ2, n + 1}.
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The following theorem bounds the generalization of a classifier in terms of the fat shattering
dimension rather than the usual Vapnik-Chervonenkis or Pseudo dimension.

Let Tθ denote the threshold function at θ: Tθ: R → {0, 1}, Tθ(α) = 1 iff α > θ. For a class
of functions F , Tθ(F) = {Tθ(f): f ∈ F}.

Theorem 3.3 [25] Consider a real valued function class F having fat shattering function
bounded above by the function afat : R → N which is continuous from the right. Fix θ ∈ R. If
a learner correctly classifies m independently generated examples z with h = Tθ(f) ∈ Tθ(F)
such that the train error is zero and γ = min |f(xi) − θ|, then with confidence 1 − δ the
expected error of h is bounded from above by

ε(m, k, δ) =
2

m

(
k log

(
8em

k

)
log(32m) + log

(
8m

δ

))
,

where k = afat(γ/8).

The importance of this theorem is that it can be used to explain how a classifier can give
better generalization than would be predicted by a classical analysis of its VC dimension.
Essentially, expanding the margin performs an automatic capacity control for function classes
with small fat shattering dimensions. The theorem shows that when a large margin is
achieved it is as if we were working in a lower VC class.

We should stress that in general the bounds obtained should be better for cases in which a
large margin is observed, but that a priori there is no guarantee that such a margin will occur.
Therefore a priori only the classical VC bound can be used. In view of corresponding lower
bounds on the generalization error in terms of the VC dimension, the a posteriori bounds
depend on a favorable probability distribution making the actual learning task easier. Hence,
the result will only be useful if the distribution is favorable or at least not adversarial. In this
sense the result is a distribution dependent result, despite not being distribution dependent
in the traditional sense that assumptions about the distribution have had to be made in
its derivation. The benign behavior of the distribution is automatically estimated in the
learning process.

In order to perform a similar analysis for perceptron decision trees we will consider the set
of margins obtained at each of the nodes, bounding the generalization as a function of these
values.

It turns out that bounding the fat shattering dimension of PDT’s viewed as real function
classifiers is difficult. We will therefore do a direct generalization analysis mimicking the
proof of Theorem 3.3 but taking into account the margins at each of the decision nodes in
the tree.

Definition 3.4 Let (X, d) be a (pseudo-) metric space, A be a subset of X and ε > 0. A set
B ⊆ X is an ε-cover for A if, for every a ∈ A, there exists b ∈ B such that d(a, b) < ε. The
ε-covering number of A, Nd(ε, A), is the minimal cardinality of an ε-cover for A (if there is
no such finite cover then it is defined to be ∞).
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We write N (ε,F ,x) for the ε-covering number of F with respect to the �∞ pseudo-metric
measuring the maximum discrepancy on the sample x, that is, with respect to the distance
d(f, g) = max1≤i≤m |f(xi)−g(xi)|, for f, g ∈ F . These numbers are bounded in the following
Lemma, which we present for historical reasons, though in fact we will require the slightly
more general corollary.

Lemma 3.5 (Alon et al. [1]) Let F be a class of functions X → [0, 1] and P a distribution
over X. Choose 0 < ε < 1 and let d = fatF(ε/4) ≤ em. Then

E (N (ε,F ,x)) ≤ 2

(
4m

ε2

)d log(2em/(dε))

,

where the expectation E is taken w.r.t. a sample x ∈ Xm drawn according to P m.

Corollary 3.6 [25] Let F be a class of functions X → [a, b] and P a distribution over X.
Choose 0 < ε < 1 and let d = fatF(ε/4) ≤ em. Then

E (N (ε,F ,x)) ≤ 2

(
4m(b − a)2

ε2

)d log(2em(b−a)/(dε))

,

where the expectation E is over samples x ∈ Xm drawn according to P m.

We are now in a position to tackle the main lemma which bounds the probability over
a double sample that the first half has zero error and the second error greater than an
appropriate ε. Here, error is interpreted as being differently classified at the output of the
tree. In order to simplify the notation in the following lemma we assume that the decision
tree has K nodes and we denote fatFlin

(γ) by fat(γ).

Lemma 3.7 Let T be a PDT with K decision nodes with margins γ1, γ2, . . . , γK at the
decision nodes satisfying ki = fat(γi/8). If it has correctly classified m labeled examples x
generated independently according to the unknown (but fixed) distribution P with support in
a ball of radius R and y is a second m sample, then we can bound the following probability
to be less than δ,

P 2m {xy: ∃ a tree T : T correctly classifies x,

fraction of y misclassified > ε(m, K, δ)} < δ,

where ε(m, K, δ) = 1
m

(D log(8m) + log 2K

δ
). where D =

∑K
i=1 ki log(4em/ki).

Proof : Using the standard permutation argument (as in [30]), we may fix a sequence xy
and bound the probability under the uniform distribution on swapping permutations that
the sequence satisfies the condition stated. We consider generating minimal γk/2-covers
Bk

xy for each value of k, where γk = min{γ′ : fat(γ′/8) ≤ k}. Suppose that for node i of
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the tree the margin γi of the hyperplane wi satisfies fat(γi/8) = ki. We can therefore find
fi ∈ Bki

xy whose output values are within γi/2 of wi. We now consider the tree T ′ obtained
by replacing the node perceptrons wi of T with the corresponding fi. This tree performs the
same classification function on the first half of the sample, and the margin at node i remains
larger than γi − γki

/2 > γki
/2. If a point in the second half of the sample is incorrectly

classified by T it will either still be incorrectly classified by the adapted tree T ′ or will at
one of the decision nodes i in T ′ be closer to the decision boundary than γki

/2. The point is
thus distinguishable from left hand side points which are both correctly classified and have
margin greater than γki

/2 at node i. Hence, that point must be kept on the right hand side
in order for the condition to be satisfied. Hence, the fraction of permutations that can be
allowed for one choice of the functions from the covers is 2−εm. We must take the union
bound over all choices of the functions from the covers. Using the techniques of [25] the
numbers of these choices is bounded by Corollary 3.6 as follows

ΠK
i=12(8m)ki log(4em/ki) = 2K(8m)D,

where D =
∑K

i=1 ki log(4em/ki). The value of ε in the lemma statement therefore ensures
that the union bound is less than δ. �
Lemma 3.7 applies to a particular tree with a specified number of nodes, architecture, and
fat shattering dimensions for each node. In practice we will observe these quantities after
running the learning algorithm which generates the tree. Hence, to obtain a bound that can
be applied in practice we must bound the probabilities uniformly over all of the possible
architectures and dimensions that can arise. Before giving the theorem that will give this
bound we require two results. The first is due to Vapnik [28, page 168] and is the key to
bounding error probabilities in terms of the probabilities of discrepancies on a double sample.

Lemma 3.8 Let X be a set and S a system of sets on X, and P a probability measure on
X. For x ∈ Xm and A ∈ S, define νx(A) := |x ∩ A|/m. If m > 2/ε, then

P m

{
x: sup

A∈S
|νx(A) − P (A)| > ε

}
≤ 2P 2m

{
xy: sup

A∈S
|νx(A) − νy(A)| > ε/2

}
.

The second result gives a bound on the number of different tree architectures that have a
given number of computational nodes.

Theorem 3.9 [21] The number Sk of k node Decision Tree skeletons is

Sk =
1

k + 1

(
2k

k

)
.

Combining these two results with Lemma 3.7 we obtain the following theorem:

Theorem 3.10 Suppose we are able to classify an m sample of labeled examples using a
perceptron decision tree and suppose that the tree obtained contained K decision nodes with
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margins γi at node i, then we can bound the generalization error with probability greater than
1 − δ to be less than

2

m

(
65R2D′ log(4em) log(4m) + log

(4m)K+1
(
2K
K

)
(K + 1)δ

)

where D′ =
∑K

i=1
1
γ2

i
, and R is the radius of a sphere containing the support of the distribution

P .

Proof : We must bound the probabilities over different architectures of trees and different
margins. We first use Lemma 3.8 to bound the probability of error in terms of the probability
of the discrepancy between the performance on two halves of a double sample. In order to
apply Lemma 3.7 we must consider all possible architectures that can occur and for each
architecture the different patterns of ki’s over the decision nodes. For a fixed value of K
Theorem 3.9 gives the number of decision tree skeletons. The largest allowed value of ki is
m and so for fixed K we can bound the number of possibilities by

1

K + 1

(
2K

K

)
2K+1mK ,

where 2K+1 counts the possible labeling of the K+1 leaf nodes. Hence, there are this number
of applications of Lemma 3.7 for a fixed K. Since the largest value that K can take is m,
we can let δK = δ/m, so that the sum

∑m
K=1 δk = δ. Choosing

ε

(
m, K,

(K + 1)δK(
2K
K

)
2K+2mK

)
=

1

m

(
65R2D′ log(4em) log(4m) + log

4(4m)K
(
2K
K

)
(K + 1)δK

)

in the applications of Lemma 3.7 ensures that the probability of any of the statements failing
to hold is less than δ/2. Note that we have replaced the constant 82 = 64 by 65 in order
to ensure the continuity from the right required for the application of Theorem 3.3 and
have upperbounded log(4em/ki) by log(4em). Hence, applying Lemma 3.8 in each case, the
probability that the statement of the theorem fails to hold is less than δ. �

4 Experimental Results

From the theory presented in the previous section, it follows that large-margin PDTs are
more likely to generalize well. A bias toward large-margin trees can be implemented in a
number of different ways, e.g. as a post-processing phase of existing trees or as a brand new
impurity measure to determine splitting/stopping criteria in TopDown growth algorithms.

To facilitate comparisons, we have implemented three such algorithms as modifications of
one of the best-known PDT learning systems, OC1 [18] of Murthy, Kasif and Salzberg, which
is freely available over the Internet. The effect of the large-margin bias can hence be directly
assessed by running the margin-arbitrary version of the same algorithm on the same data.
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The first such algorithm, FAT, accepts as input a PDT constructed using OC1 and outputs
a large margin version of the same tree. The other two, MOC1 and MOC2, have different
impurity measures which take into consideration the margins. All three algorithms work for
multi-class data.

The three systems have been compared with OC1 on ten benchmarking data sets. The results
confirm the predictions of the theoretical model, clearly indicating that the generalization is
improved by enlarging the margin.

The data sets we have used for the study are 6 data sets used in the original OC1 paper[18]
and 4 other data sets, which are publicly available in the UCI data repository [31]. The data
sets studied in [18] are Dim, Bright, Wisconsin Breast Cancer, Pima Indians Diabetes, Boston
Housing, and Iris. The four additional data sets are Bupa, Sonar, Heart, and Wisconsin
Breast Cancer Prognosis. The data sets differ greatly in subjects, sizes, and number of
attributes. The subjects of data sets range from medical to astronomical, the sizes from
150 to 4192, and the number of attributes from 4 to 601. For details of these data sets
see [18, 31]. For each data set, a single run of 10-fold cross-validation is carried out. The
relevant quantity, in this experiment, is the difference in the test accuracy between PDTs
with arbitrary margins constructed by OC1 and the PDTs with large margins on the same
data.

Comparing learning algorithms has drawn extensive attention recently [16, 14, 23, 19]. A
single run of 10-fold cross-validation on a reasonable number of data sets is still a preferred
practical approach. It is prone to detect the difference of two algorithms. We basically
followed the approach recommended in [23]. We used a paired t-test to assess the significance
of any differences found. We report differences with p-values of up to 22% as significant. The
value of 22% was adopted because there was a notable gap in the p-values found beginning
at 22% and because OC1 exhibits high variance in the decision tree structure found even
with small changes in data or algorithms.

In the rest of this section, we will briefly review the OC1 system, then present our three
large margin algorithms and compare their performances with that of OC1.

4.1 Review of OC1

OC1 [18] is a randomized algorithm that performs a randomized hill-climbing search for
learning the perceptrons and builds the tree TopDown. Starting from the root node, the
system chooses the hyperplane that minimizes a predefined “impurity” measure (e.g. infor-
mation gain [20], or Gini index [10], or the Twoing Rule [10, 18], etc.). The system is greedy
because at each stage it chooses the best split available and randomized because such a best
split is not obtained by means of exhaustive search but with a randomized hill-climbing
process.

1The number of (attributes, points) of each data set is as follows: Bright(14,2462), Bupa(6,345), Can-
cer(9, 682), Dim(14, 4192), Heart(13, 297) Housing( 13,506), Iris(4, 150), Pima(8, 768), Prognosis(32,198),
Sonar(60, 208).
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Throughout this study we use the twoing rule as the impurity measure for OC1, FAT, and
MOC1. MOC2 uses a modified twoing rule as impurity measure. Other impurity measures
can also be applied in FAT and MOC1 without change, while MOC2 would need minor
changes.

The Twoing Rule

TwoingV alue =
|TL|
n

∗ |TR|
n

∗
(

k∑
i=1

∣∣∣∣ |Li|
|TL| −

|Ri|
|TR|

∣∣∣∣
)2

(1)

where

n = |TL| + |TR| - total number of instances at current node

k - number of classes; for two class problems, k = 2

|TL| - number of instances on the left of the split, i.e. wT x + b < 0

|TR| - number of instances on the right of the split i.e. wTx + b ≥ 0

|Li| - number of instances in category i on the the left of the split

|Ri| - number of instances in category i on the the right of the split

This is a goodness measure rather than an impurity one, and OC1 attempts to maximize it
at each split during the tree growth by minimizing 1/TwoingV alue. Further details about
the randomization, the pruning, and the splitting criteria can be found in [18].

4.2 Results of FAT

Description of algorithm FAT

The algorithm FAT uses the tree produced by OC1 as a starting point and maximizes its
margins. This involves finding - for each node - the hyperplane which performs the same split
as performed by the OC1 tree but with the maximal margin. This can be done by considering
the subsample reaching each node as perfectly divided into two parts, and feeding the data
accordingly relabeled to an algorithm which finds the optimal separating hyperplane – the
separating hyperplane with maximal margin in this now linearly separable data. The optimal
separating hyperplanes are then placed in the corresponding decision nodes and the new tree
is tested on the same test data. Note that the PDT produced by FAT will have the same
tree structure and training accuracy as the original PDT constructed by OC1. They will
only differ on test accuracy. We use the Support Vector Machine (SVM) algorithm [29] to
find the optimal separating hyperplane. To conform with the definition of a PDT, no kernel
is used in the SVM and the optimal separating hyperplane is constructed in the input space.

Algorithm for FAT

1. Construct a decision tree using OC1; call it OC1-PDT.
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2. Starting from the root of OC1-PDT, traverse through all the non-leaf nodes. At each
node:

• Relabel the points at this node with ωTx + b ≥ 0 as class right, the other points
at this node as class left.

• Find the perceptron (optimal separating hyperplane) f(x) = ω∗T x + b∗, which
separates class right and class left perfectly with maximal margin.

• replace the original perceptron with the new one.

3. Output the FAT-PDT.

Optimal Separating Hyperplane - SVM algorithm for the linearly separable case
The following problems are solved at each node to find the optimal separating hyperplane
for linearly separable data [29].

min
w,b

1
2
‖w‖2 (2)

subject to yi(w
Txi + b) ≥ 1, yi ∈ {1,−1}, i = 1, . . . , �

where yi = 1 corresponds to class right and yi = −1 corresponds to class left and � is the
number of points reaching the decision node.

For computational reasons we usually solve the dual problem of (2):

min
α

W (α) =
1

2

�∑
i=1

�∑
j=1

αiαjyi, yj(xi · xj) −
�∑

i=1

αi (3)

subject to
∑�

i=1 αiyi = 0
αi ≥ 0, i = 1, . . . , �

FAT-PDT has a generalization error bounded by Theorem 3.10. We observed that FAT
completely relied on and was restricted by the perceptron decision tree induced by OC1. In
many cases, the margins in the splits found by OC1 are very small, so FAT has little scope
for optimization. This implies that the greedy algorithm OC1 is not a good tree inducer
for FAT, in the sense that better large margins decisions may not be found. One major
benefit of FAT is that it provides a new approach to applying the Support Vector Machine
for multi-class classification tasks.

Comparison of FAT and OC1

For each dataset, 10-fold cross-validation is used to measure the learning ability of the
algorithms FAT and OC1. A paired t-test is used to test the difference of the means of FAT
and OC1. From Figure 2, we can see that, FAT outperforms OC1 on nine out of the ten data
sets, and outperforms OC1 on all six data sets studied in [18]. The 10-fold cross-validation
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Figure 2: Comparison of the 10-fold CV results of FAT versus OC1. If the point is above the
line, it indicates the 10-fold CV mean of FAT is higher than that of OC1, and vice versa. The
figure shows that FAT outperforms OC1 on nine out of ten data sets and is outperformed
only on one data set.

mean differences of FAT and OC1 on those nine data sets are all significant when a paired
t-test is applied. On one data set Prognosis, OC1 outperforms FAT and the difference is
significant. We also observed that, except in one case (Prognosis), FAT performs as good
as or better than OC1 in every fold of 10-fold cross-validation. So when FAT has a higher
mean than OC1, it is significant at a small α level for the paired t-test even though the
difference is small. This is a strong indication that Perceptron Decision Trees with large
margins generalize better. The 10-fold cross-validation means and p values are summarized
in Table 2.

4.3 Results of MOC1

Description of MOC1

MOC1 (Margin OC1) is a variation of OC1 that modifies the splitting criterion of OC1 to
consider the size of the margin. No other changes are made in the base OC1 algorithm. The
same default pruning algorithm is used. The underlying philosophy is to find a separating
plane with a tradeoff between training accuracy and the size of margin at each node. This
idea is motivated by the Support Vector Machine for the linearly non-separable case, which
minimizes the classification error and maximizes the margin at the same time. SVM with soft
margin minimizes the sum of misclassification errors and the reciprocal of the soft margin.
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SVM tries to find a split with high classification accuracy and large soft margin. Analagously,
MOC1 minimizes the sum of the impurity measure and the reciprocal of the hard margin.

The MOC1 algorithm minimizes the following objective function:

(1 − λ) ∗ OC1 Objective + C ∗ 1

current margin
(4)

where

- OC1 Objective is the impurity measure of OC1; in this study, the default twoing
rule is used as impurity measure.

- current margin is the sum of perpendicular distances to the hyperplane of two
nearest points on the different side of the current separating hyperplane, i.e.,
currentmargin := mini,xT

i ≥b(x
T
i w − b) − maxi,xT

i <b(x
T
i w − b)

- λ is a scalar weight, λ ∈ [0, 1]

- C = λ ∗ log{10 ∗ (no of points at current node)}
The choice of the parameters C and λ determines how much the large margin is weighted in
selecting the split. We adapted heuristics based on our prior experience with decision trees
and support vector machines. Tuning these parameters could improve the performance.
When determining the weight on the margin, we take the log of the number of points at
the current node into consideration. The idea is that a constant weight on the margin for
all nodes is not good. The weight should be able to adapt to the position of the current
node and the size of training examples at the current node. Since we are not particularly
interested in finding the tree with highest possible accuracy, but rather demonstrating that
large margins can improve the generalization, we did not tune the λ for each data set to
achieve the highest possible accuracy. We set λ = .05 in all data sets. In other words, the
results of MOC1 presented below are not the best results possible. Better variants may exist.
For example, to make MOC1 relate more closely with the theoretical bounds, the square of
the current margin could be used with C = 1/M .

Comparison of MOC1 and OC1

As in the previous section, we use 10-fold cross-validation to measure the learning ability
of the algorithms MOC1 and OC1. To test the difference between the means of MOC1
and OC1, here again a paired t-test is used. From Figure 3 we can see that MOC1 has a
higher 10-fold cross-validation mean than does OC1 on eight of the ten data sets, and five
of them are significantly higher. OC1 has higher means on the other two data sets (Cancer,
Prognosis), but, the differences are tiny and are not significant. Overall, MOC1 outperforms
OC1 on six of the ten data sets and is as good as OC1 on the other four. Of the six data
sets studied in [18], MOC1 outperforms OC1 on five of them and performs as well as OC1
on the final one (Cancer). See Table 2 for respective means and p values.
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Figure 3: Comparison of the 10-fold CV results of MOC1 versus OC1. If the point is above
the line, it indicates the 10-fold CV average of MOC1 is higher than that of OC1, and
vice versa. The figure shows that MOC1 outperforms OC1 on six out of ten data sets and
performs as good as OC1 on the other four data sets.

4.4 Results of MOC2

Description of MOC2

Like MOC1, MOC2 alters the impurity measure used by OC1. MOC2 uses a modified twoing
rule that directly incorporates the idea of large margins into the impurity measure. Unlike
MOC1, MOC2 uses a soft margin. It treats points falling within the margin and outside of
the margin differently. Only the impurity measure within OC1 is changed. The rest of the
algorithm including pruning is the same as in the standard OC1 algorithm.

The modified twoing rule

TwoingV alue =
|MTL|

n
∗ |MTR|

n
∗

k∑
i=1

∣∣∣∣ |Li|
|TL| −

|Ri|
|TR|

∣∣∣∣ ∗
k∑

i=1

∣∣∣∣ |MLi|
|MTL| −

|MRi|
|MTR|

∣∣∣∣
where

n = |TL| + |TR| - total number of instances at current node

k - number of classes; for two class problems k = 2

|TL| - number of instances on the left of the split, i.e. wT x + b < 0

|TR| - number of instances on the right of the split i.e. wTx + b ≥ 0

|Li| - number of instances in category i on the left of the split
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|Ri| - number of instances in category i on the the right of the split

|MTL| - number of instances on the left of the split, wT x + b ≤ −1

|MTR| - number of instances on the right of the split wTx + b ≥ 1

|MLi| - number of instances in category i with wT x + b ≤ −1

|MRi| - number of instances in category i with wT x + b ≥ 1

In the modified twoing rule, our goal is, at each node, to find a split with fewer points falling
within the margin (in between −1 < wT x + b < 1), with high accuracy outside the margin
and good overall accuracy. Here again, we try to achieve a balance of classification accuracy
and size of margin. In doing this, we want to push apart the two classes from the separating
hyperplane as far as possible while maintaining a reasonably good classification accuracy,
hence, improving the generalization of the induced decision tree. The advantage of MOC2
is that there are no free parameters to tune.

Comparison of MOC2 and OC1

As in the previous section, 10-fold cross-validation is used to measure the learning ability of
the algorithms MOC2 and OC1. Paired t-tests are used to test the difference of the means
of MOC2 and OC1.
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Figure 4: Comparison of the 10-fold CV results of MOC2 versus OC1. If the point is above
the line, it indicates the 10-fold CV mean of MOC2 is higher than that of OC1 on that data
set, and vice versa. The figure shows that MOC2 outperforms OC1 on five out of ten data
sets, and performs as well as OC1 on the other five data sets.
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Dataset OC1 & FAT MOC1 MOC2
Leaves Depth Leaves Depth Leaves Depth

Bright 5.40 2.80 6.20 3.20 5.70 2.90
Bupa 5.00 2.80 2.10 1.10 7.40 3.60
Cancer 2.50 1.30 4.00 2.50 2.90 1.50
Dim 23.9 5.90 17.40 6.50 22.40 6.40
Heart 6.10 2.10 3.30 2.00 2.10 1.10
Housing 10.00 4.20 7.10 3.80 6.40 3.00
Iris 3.20 2.10 3.20 2.10 3.00 2.00
Pima 8.30 4.20 18.50 5.70 11.40 5.00
Prognosis 3.60 2.00 2.30 1.20 2.20 1.10
Sonar 4.30 2.60 6.10 3.30 5.90 2.90

Table 1: 10-fold CV average tree size of OC1, FAT, MOC1, and MOC2

From Figure 4 we can see that MOC2 has a higher mean on nine out of the ten data sets,
and has slightly lower mean on only one data set (Housing). Of the nine higher means, five
are significantly higher. The one lower mean is not significant. Overall, MOC2 outperforms
OC1 on five out of the ten data sets and performs as well as OC1 on the other five. Of the
six data sets studied in [18], MOC2 outperformed OC1 on three of them, and perform as
well as OC1 on the other three. The respective means and p values are summarized in Table
2

The modified twoing rule opens a new way of measuring the goodness of a split that directly
incorporates the generalization factor into the measure. In our experiments, it has been
proven to be a useful measure.

4.5 Tree Sizes

For FAT, the tree sizes are exactly the same as for OC1, since the FAT PDT has the same
tree structure as the OC1 PDT. FAT only replaces splits at nodes of the OC1 PDT with
large-margin perceptrons which perform exactly the same splits. Of the ten data sets, MOC1
induced five smaller trees, one tree the same size, and four larger trees when compared with
OC1. MOC2 induced five smaller trees and five bigger trees compared with OC1. We did
not find a consistent pattern of tree sizes. Table 1 lists the tree sizes of OC1, FAT, MOC1,
and MOC2.

4.6 Summary of experimental results

The theory states that maximizing the margins between the data points on each side of the
separating hyperplane in the perceptron decision tree will improve the error bounds; the
perceptron decision tree will be more likely to generalize better. But the theory does not
guarantee that any specific classifier has a low error rate. Our results support this theory.
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OC1 FAT MOC1 MOC2 Best
Dataset x̄ x̄ (p value) x̄ (p value) x̄ (p value) classifier
Bright 98.46 98.62 (.05) 98.94 (.10) 98.82 (.10) MOC1
Bupa 65.22 66.09 (.10) 68.41 (.20) 70.14 (.04) MOC2
Cancer 95.89 96.48 (.05) 95.60 95.89 FAT
Dim 94.82 94.92 (.20) 95.23 (.09) 94.90 MOC1
Heart 73.40 76.43 (.12) 75.76 (.21) 77.78 (.10) MOC2
Housing 81.03 83.20 (.05) 82.02 80.23 FAT
Iris 95.33 96.00 (.17) 95.33 96.00 FAT
Pima 71.09 71.48 (.04) 73.18 (.08) 72.53 (.23) MOC1
Prognosis 78.91 74.15 78.23 79.59 MOC2
Sonar 67.79 74.04 (.01) 72.12 (.19) 73.21 (.16) FAT

Table 2: 10-fold CV means of OC1, FAT, MOC1 and MOC2

From the 10-fold cross-validation results of the ten data sets, FAT has nine higher mean
testing-set accuracies than OC1 and they are all significantly higher; MOC1 has seven higher
mean accuracies, and six of them are significantly higher; MOC2 has eight higher mean
accuracies and five of them are significantly higher. Equal or lower mean accuracies only
happened on three data sets. For Cancer, MOC1 has a slightly smaller mean accuracy than
OC1 and MOC2 has the same mean accuracy as OC1. For Housing, MOC2 is slightly less
accurate than OC1. For Prognosis, both FAT and MOC1 are less accurate than OC1 but
only FAT is significantly so. The evidence is clear that the large margin methods tended
to improve accuracy. But no one large margin approach was best. Of the classifiers with
highest mean accuracies, FAT produced four, MOC1 and MOC2 each produced three, and
OC1 produced none.

From the experiments, we believe that PDTs with large margin are more likely to have
smaller variance of performance too. In our experiments, in most of the cases, FAT, MOC1,
and MOC2 produce classifiers with smaller variances, and many of them are significantly
smaller, though very occasionally they produce classifiers with significantly larger variance.
Partially this is due to the high variance within decision tree methods. However, we cannot
draw any confident conclusion about the variances. We therefore did not present our study
on variances here.

In short, the experimental results support that finding the separating hyperplane with large
margin at each node of a perceptron decision tree can improve the error bound, resulting
in a perceptron decision tree with greater average accuracy, i.e., one that generalizes better.
Furthermore, we believe that by improving error bounds through margin maximization, the
learning algorithm will perform more consistently and be more likely to have smaller variance.
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5 Conclusions

The experimental results presented in this paper clearly show that enlarging the margin does
improve the generalization and that this bias can be inserted into the growth algorithm itself,
providing trees which are specifically built to minimize the theoretical bound on generaliza-
tion error. Such trees do not lose any of their other desirable features, such as readability,
ease of maintenance and updating, flexibility, and speed.

Furthermore, the theoretical analysis of the algorithms shows that the dimension of the
input space does not affect the generalization performance; it is hence possible to conceive of
Perceptron Decision Trees in a high-dimensional feature space that take advantage of kernels
and margin-maximization such as Support Vector Machines. This would provide as a side
effect a very natural approach to multi-class classification with Support Vector Machines.

Other theoretical results exist indicating that the tree size is not necessarily a good measure
of capacity. Our analysis also shows how to take advantage of this theoretical observation and
design learning algorithms that control hypothesis complexity by acting on the complexity of
the node-classifiers and hence that of the whole tree. All three of the proposed approaches:
the post-processing method FAT and the two with margin-based splitting criteria MOC1
and MOC2, led to significant improvement over the baseline OC1 method. It is an open
question which method is best, but maximizing margins should be a consideration of every
PDT algorithm.
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