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We combine Mean Field Annealing with an anti-hebbian type adap-
tive weight penalty method forming an algorithm that performs well
on standard benchmark optimization problems. We compare the hy-
brid algorithm with the Petford and Welsh algorithm, MFA at a con-
stant temperature and a stochastic weight penalty technique, known as
GENET.

1 INTRODUCTION

Combinatorial optimization problems such as the Traveling Salesman Problem (TSP),
Graph Bi-partitioning and Graph Colouring have been used extensively for bench
marking new optimization algorithms. The challenge is to develop a general purpose
algorithm that converges rapidly and yet still produces a high quality solution.

When an optimization problem is mapped onto a neural network as states of
nodes connected by edges, we assign the problem a ‘Cost’ or ‘Energy’ function.
This energy is a function of the global state of the network at any one instant and
the energy function itself models the problem at hand. High energy represents a
state that is far from the desired solution. As we iterate through a node updating
procedure, we change the states of nodes and attempt to reduce the overall energy,
eventually finding a near optimal solution. The solution space for the problem can
be thought of as a multi-dimensional energy landscape containing deep valleys or
‘local minima’. Local minima can trap a gradient descent technique resulting in a
high energy solution being found.

Simulated Annealing (SA) [1] appears to provide us with the best compromise
between rate of convergence and solution quality. Transitions to states that increase
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the overall energy are permitted in addition to energy decreasing updates. This
flexibility to increase the overall energy allows the system to escape from local
minima. The percentage likelihood of accepting a proposed state transition that
will increase the overall energy is governed by a pseudo temperature parameter
T. The rate of change of this temperature is governed by a ‘Cooling Schedule’.
It has been shown (Aarts & Korst [1]) that with a logarithmic cooling schedule,
we can guarantee convergence to a global minimum with probability one, over a
sufficiently long period of time. Unfortunately, in practice the time required makes
the approach impractical for all but small problems.

In 1987 Peterson and Anderson introduced the Mean Field Learning Algorithm
(MFLA) for Neural Networks [6]. They replace the stochastic update of SA with
deterministic mean field theory equations. Again they use a pseudo temperature
parameter with a cooling schedule and reported speed up factors of up to 30 over
SA, with only a slight reduction in solution quality.

The GENET algorithm, (Tsang & Wang (1992) [10]), is a stochastic technique
comprising two stages. Gradient descent has control initially until the system sta-
bilizes in a minimum. If trapped in a non-zero energy state, a breakout method
takes over. This breakout method, proposed by Morris in 1993 [5], uses a weight
penalty matrix to penalise connections that are consistently adding to the overall
energy. This localised penalty effectively changes the shape of the energy landscape
around the local minimum raising the surface until the system can once again follow
a gradient descent path.

We observe that Tsang’s update rule is essentially anti-Hebbian. This suggests
that we can apply the same technique to the MFA algorithm giving rise to a new
algorithm in which the weights are continually updated hence avoiding the need to
have two separate stages. The hybrid algorithm also results in an automatic cooling
schedule where updating the weights effectively reduces the temperature.

We also include experiments comparing the performance of different algorithms
on a series of controlled benchmark problems which allow us to distinguish difficult
and easy examples. In the majority of cases, our hybrid algorithm outperforms
both a stochastic algorithm and the MFA algorithm.

2 BENCHMARKING ADAPTIVE MFA

In this section we describe the Graph Colouring Problem which we used to bench-
mark the algorithms.

Definition 2.1 Given a number of colours C' and a graph G(V, E) where V is
the set of vertices and F the set of pairs of vertices denoting the edge set, we aim
to see if it is possible with C' colours to colour each vertex of the graph such that
all adjacent vertices are coloured differently.

This problem maps simply onto a recurrent neural network where the nodes
represent the vertices of the graph colouring problem and the connections represent



the edges. Every node of the network has associated with it a state vector of length
C, where C' is the number of colours that we are attempting to colour the graph
with. We denote by V; = (Vij)f:1 , the state vector for node i. Each state vector
represents a probability distribution of colours for a node where V;; is the probability
of node i having colour j, hence, Zle Vij = 1.

We will also refer to the state vector as the colour assignments. Each edge (i, k)
of the network has an associated weight W;; which together form a matrix. The
input for colour ¢ at a node consists of the product of the outputs from adjacent
nodes for colour ¢ with the corresponding weight from the weight matrix. The values
are then then negated, exponentiated and normalised, giving an update rule for a
randomly selected node i of

V= exp(—= > i Vi Wi)
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where k ~ ¢ means ‘k adjacent to i’.

We adapt the Weight Matrix so that each non zero entry corresponding to a
connection from node i to some other node k is incremented by a penalty value
derived from the chord distance defined by Edwards and Cavilli-Sfroza [3]

j=1...,C (1)

AWik = (Vi,vk> (2)
where V; = (‘/Vij)f:l' Note that the vector V; has unit length since (Vi,{m =

Z]-Czl Vij = 1 so AWy, is the cosine of the angle between the corresponding vectors.
Hence, the algorithm is based on the anti-hebbian rule tending to increase the
penalty associated with connections where there is a significant conflict between
the colour assignments of the linked vertices.

Before running the algorithm, the entries in the Weight Matrix W;;,, correspond-
ing to a connection between node ¢ and node k, are set to a constant value. Other
entries are initialised to zero. The state vectors on each neuron are initialised such
that Vi; = % A small random perturbation about this value is then introduced
throughout each state vector.

Using the above equations, the algorithm is as follows;

Initialise the Weight Matriz and State Vectors.
While ( graph not coloured correctly) {
Randomly pick a node i to update.
Update Vi; to V}; given by equation 1.
For all nodes k adjacent to i set Wy, = Wi, + AWy, given by equation 2.}



3 EXPERIMENTAL RESULTS

To make a fair comparison of our algorithm with others, we chose only ones that were
sequential in nature. Firstly, the Petford and Welsh algorithm [7] which amounts
to simulated annealing at a constant temperature. Aarts and Korst [1] point out
that annealing at a well chosen constant temperature is almost as good as apply-
ing a cooling schedule. Secondly, we chose MFA with the temperature set to the
implied temperature of the Petford and Welsh algorithm denoted in the figures
by ‘TWELSH’. Finally we used a sequential adaptation of the GENET algorithm
which doesn’t require a temperature but uses a breakout method when no decreases
in energy are produced, i.e. when the system gets trapped in a local minimum.

All four algorithms were tested on the same input data. We randomly generated
three-colourable graphs by dividing the vertex set into three subsets of equal size.
Three types of three-colourable graphs were generated by varying the probability
p with which nodes in different subsets were made adjacent. The probability of
two nodes being adjacent was p = 0.5, p = 0.1 and p = 0.05 respectively. The
configurations p = 0.1 and p = 0.05 have interesting regions in which graphs prove
difficult to colour [7]. This occurs when n ~ %. It was in this ‘difficult’ region that
Adaptive MFA proved very successful.

For each value of p and n 100 graphs were generated. The graphs were generated
probabilistically so that the same set of graphs were given to all the algorithms to
ensure a fair trial. From early trials on the graphs, a cutoff level of 9000 iterations
was picked as the point at which the algorithm was considered to have failed. By
averaging over the full 100 trials for each configuration including those which had
reached the cutoff level, we derived a general measure of performance comprising
ability to come up with a solution and speed of convergence. For each connection
density 100 repetitions were performed for n = 50 to n = 400 in increments of
An = 50. Figures 1 to 3 show the results of our experiments.

Figure 1 is the case where p = 0.5 and so the connectivity is quite high. There
is no identifiable region that proves difficult to solve. Adaptive MFA in this case
performs equally well as the Petford and Welsh Algorithm and MFA. The GENET
algorithm, however, is clearly better at solving graphs with high connectivity. This
is because simple gradient descent is usually sufficient in this case, and the weight
update stage was not needed.

In Figure 2, the connectivity has been reduced to p = 0.1. We identified a
region around n = 100 where there was a marked increase in the average number of
iterations required to reach a solution. In this ‘difficult’ region, our Adaptive MFA
algorithm performs noticeably better than all the others.

Finally for the very sparsely connected graphs where p=0.05, we notice a widen-
ing of the ’difficult’ region. From n = 50 to n = 100 GENET performs better than
Adaptive MFA. From n = 200 on, we noticed that again Adaptive MFA comes out
as the best algorithm.
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In conclusion, we propose that the hybrid combination of MFA with an adaptive
weight penalty technique is an algorithm worthy of further investigation. On the
limited trials performed, Adaptive MFA seems to perform better on the whole in
"difficult’ regions than the Petford and Welsh algorithm, MFA and GENET. The
algorithm is simple, comprising of an update rule followed by a weight modification.
Continual local annealing that adapts the energy landscape is implemented cleanly
as an anti-hebbian weight change.

We propose further experiments investigating how we can control the weights at
critical temperatures [9], where the critical paths bifurcate, by monitoring the sizes
of updates.
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