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Sample Sizes for Threshold Networks with Equivalences
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This paper applies the theory of Probably Approximately Correct
(PAC) learning to muitiple output feedforward threshold networks in
which the weights conform to certain equivalences. It is shown that the
sample size for reliable learning can be bounded above by a formula
similar to that required for single output networks with no equivalences.
The best previously obtained bounds are improved for all cases.
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1. INTRODUCTION

This paper develops the results of Baum and Haussler
(1989) bounding the sample sizes required for reliable
generalisation of a single output feedforward threshold
network., They prove their result using the theory of
Probably Approximately Correct {PAC) learning intro-
duced by Valiant (1984). They show that for 0 <e<1/2, if
a sample of size

64W

64N
m>m0=—€—log—-—~

&

is loaded into a feedforward network of linear threshold
units with N nodes and W weights, so that a fraction 1 — &/2
of the examples are correctly classified, then with confidence
approaching certainty the network will correctly classify a
fraction 1 —¢ of future examples drawn according to the
same distribution. Similarly if a sample of size

32w 32N
m>m0=—8— log——;—

is loaded with no errors then with confidence approaching
certainty the network will correctly classify a fraction 1 —¢
of future examples drawn according to the same distribu-
tion. The results below will imply a significant improvement
to both of these bounds.

In many cases training can be simplified if known proper-
ties of a problem can be incorporated into the structure of
a network before training begins. One such technique is
described by Shawe-Taylor (1989), though many similar
techniques have been applied, as for example in TDNN’s
(Lang and Hinton, 1988). The effect of these restrictions is

to constrain groups of weights to take the same value and
learning algorithms are adapted to respect this constraint.

In this paper we consider the effect of this restriction on
the generalisation performance of the networks and in
particular the sample sizes required to obtain a given level
of generalisation. This extends the work by Baum and
Haussler (1989), described above by improving their
bounds and also improves the results of Shawe-Taylor and
Anthony (1991), who consider generalisation of multiple-
output threshold networks. The remarkable fact is that in all
cases the formula obtained is the same, where we now
understand the number of weights W to be the number of
weight classes, but N is still the number of computational
nodes.

The paper is organised as follows. Section 2 introduces
threshold networks and the various equivalences considered
and states our main results. Section 3 gives an introduction
to PAC learning and develops the necessary theory required
to prove the main results. Section 4 proves important
growth bounds for the networks considered, while Section 5
gives the proofs of the main results. In a final section we
discuss conclusions and open questions.

2. DEFINITIONS AND MAIN RESULTS

2.1. Symmetry and Equivalence Networks

We begin with a definition of threshold networks. To
simplify the exposition it is convenient to incorporate the
threshold value into the set of weights. This is done by
creating a distinguished input that always has value 1 and is
called the threshold input. The following is a formal
notation for these systems.

A network A" =(C, I, O, n,, E) is specified by a set C of
computational nodes, a set / of input nodes, a subset 0= C
of output nodes, and a node nye I called the threshold
node. The connectivity is given by a set Ec(Cul)x C of
connections, with {n,} x CS E.

With network 4" we associate a weight function on the
set of connections:

wE— A

We say that the network .4” is in state w.
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For notational convenience choose a numbering for all
nodes and refer to each node by its number. For a connec-
tion (i, j) € E we denote w({i, j)) by w,.

For the purposes of this paper we will assume throughout
that if node 7 is connected to node j then j > /. Such a num-
bering can always be found provided the network is cycle
free. This is the feedforward condition on the connectivity.

For a feedforward network it makes sense to introduce
the Jevel of a node. This is defined as the number of connec-
tions in the longest {directed) path from an input node.
Input nodes are at level 0 while nodes connected only to
input nodes are at level |, etc. Let /, denote the level of
node i. The feedforward condition on the numbering will be
satisfied by requiring

[>1=j>i,

since if node 7 is connected to node j then certainly /,> /.

At a given time the input values to the whole network are
specified by a function i from the set of input nodes other
than n, to {0, 1]

i: I\{no} — [0, 11.

The subset {0,1} of [0,1] may be the range or more
generally any subinterval of the set # of real numbers.
The precise domain considered does not affect any of the
analysis or results. Each node also has an output value
which is the weighted sum of its inputs thresholded at 0.
These values are given by the function

0: C— {0, 1}.

The output of the whole network is the vector of the values
of this function on the set of output nodes. We denote this
vector function of the weights and inputs by F . (w, i).
An automorphism y of a network 4" =(C, 1, O, n,y, F) 15
a bijection
yIuC—-Tu(,

such that y(7) =1, {n,} U O =fix(y), and the induced action
on (/U C) x C maps E to itself. Note that if I"is a set of
automorphisms fix( /") is the set of nodes that are fixed by all
the automorphisms of I.

We say that an automorphism y preserves the weight
assignment w if w,=w ., forallieIu C, jeC

Let y be an automorphism of a network 4" =(C, I, O,
n,, E) and let

i: I\{ny} - [0,1]
be an input to .4". We denote by i’ the input given by
i"(k)y=i(y~'k)

for ke I\{n,}.

The following theorem is a natural generalisation of part
of the Group Invariance Theorem of Minsky and Pappert
(1988) to multi-layer perceptrons.

THeorEM 2.1 (Shawe-Taylor, 1989). Ler y be a weight
preserving automorphism of the network 4" =(C, I, O, n,, E)
in state w. Then for every input vector i

F o wi)=F ,(w i)

Following this theorem it is natural to consider the con-
cept of a symmetry network introduced by Shawe-Taylor
(1989). This is a pair (.47, I'), where .4" is a network and I”
a group of weight preserving automorphims of .47, We will
also refer to the automorphisms as symmetries.

The theorem suggests a practical way of simplifying the
task of training networks required to be invariant under
certain automorphisms. This is done by constructing the
network so that the group of automorphisms acts on the
whole network as weight preserving symmetries and then
constraining weight updates to retain those symmetries. In
this way network output will at all times be invariant under
the automorphisms. Hence to train such a network we need
train it with each input in only one “position.” For a
symmetry network (.47, I’), we term the orbits of the
connections E under the action of I” the weight classes.

Finally we introduce the concept of an equivalence
network. This definition abstracts from the symmetry
networks precisely those properties we require to obtain our
results. The class of equivalence networks is, however, far
larger than that of symmetry networks and includes many
classes of networks studied by other researchers (Lang and
Hinton, 1988; Le Cun, 1988).

DerFINITION 2.2. An equivalence network is a threshold
network in which an equivalence relation is defined on both
connections and nodes. The relation is required to be trivial
on the threshold and output nodes. Further, the relations on
nodes and connections are required to be compatible in that
connections in the same class are between pairs of nodes in
corresponding classes, while there is a 1-1 correspondence
between the connection classes of connections to nodes in
the same node class. The connections in an equivalence class
are at all times required to have equal weight values.

The definition does not prescribe that the input nodes
should all fall in the same class; indeed, every threshold
network can be viewed as an equivalence network by taking
the trivial equivalence relations for all nodes. We now show
that symmetry networks are indeed equivalence networks
with the same weight classes.

LEMMA 2.3. A symmetry network (A", ') is an equiv-
alence network, where the equivalence classes are the orbits of
connections and nodes respectively.
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Proof. Consider two equivalent weights w connecting
node « to node v and w’ connecting node ' to v’. By the
definition of equivalence in the symmetry network there is
an automorphism y which takes the connection (i, v) to
(«', v') and so v and v’ are in the same equivalence class and
so are « and u'.

Let # and «' be two equivalent nodes. Then there 1s
an automorphism y of .4° which takes w to u'. The
automorphism y induces a weight class preserving bijection
between the inputs to node # and those of node «'. Hence u
and u' have the same set of input connection types. The fact
that {n,} v O < fix(I") implies that the relation is trivial on
these nodes, as required. |

We will require one technical lemma concerning the
structure of equivalence networks.

LemMMA 24. Let A" be an equivalence network and let ¢
be the set of classes of nodes. Then there is an indexing of the
classes, C;, i=1, .., m, such that nodes in C; do not have
connections from nodes in C, for j 2 i.

Proof. The result will follow if we can show that there
are no directed cycles in the directed graph with vertices the
equivalence classes of nodes and connections showing the
presence of connections between nodes in two classes. This
follows from the fact that the graph described is a quotient
graph of the network itself by the equivalence relation and
so if such a directed cycle exists, we will be able to find a
directed cycle in the original network contradicting the
feedforward condition. [

If we view the network as a function whose input—output
performance depends on parameters, the standard algo-
rithms can be readily adapted to update the parameters of
an equivalence network. In this case the parameters are
values for the weights of each equivalence class.

For example, this can be done for the generalised delta
rule {Rumethart er al, 1986) and the linear programming
algorithm (Shawe-Taylor and Cohen, 1990).

2.2. Main Results

We are now in a position to state our main results. Note
that throughout this paper log means natural logarithm,
while an explicit subscript is used for other bases.

THEOREM 2.5. Let A" be an equivalence network with W
weight classes and N computational nodes in n equivalence
classes. If the network correctly computes a function on a
set of m inputs drawn independently according to a fixed
probability distribution, where

mz=mye, §)

o [10 <1.3
6(1—\/5) g 0

then with probability at least 1 — 38 the error vate of the
network will be less than ¢ on inputs drawn according to the
same distribution.

THEOREM 2.6. Let A" be an equivalence network with W
weight classes and N computational nodes in n equivalence
classes. If the network correctly computes a function on a
Jraction 1 —(1—y)e of m inputs drawn independently
according to a fixed probability distribution, where

) ion (2]

then with probability at least 1 — 3 the error rate of the
network will be less than & on inputs drawn according to the
same distribution.

m Bmo(gs 5’ )’)

2n+2

1
Ye(l — /e/N) [ o8 ( é

3. THEORETICAL BACKGROUND

3.1. PAC Learning

We begin with an informal introduction to PAC learning.
In order to have predictive power there must be a relation
between the training and testing examples. In PAC learning
this relation is taken to be an underlying probability dis-
tribution which governs how both the training and testing
examples are drawn. The strength of the results is that they
are independent of the particular distribution which occurs
in practice.

In this context PAC learning requires that there is a
sample size depending only on a given accuracy parameter
¢ and confidence parameter J, such that if a hypothesis can be
found which agrees with the target on a training sample of
at least this size, then with probability 1 — & that hypothesis
will correctly classify future test examples with probability
1 —e. The sample size is required to be polynomially
dependent on 1/e and 1/ and further that a learning algo-
rithm exists which is polynomial in the size of its input. For
the purposes of this paper we will neglect the requirement
that a polynomial algorithm exists, since the problem of
training a threshold network is known to be NP-complete.
Without this requirement PAC learning is often referred to
as PAC learnability and is concerned only with generalisa-
tion performance under the assumption that the network
has been successfully trained. Clearly the task of training is
considerably simplified when equivalences are introduced
into a network of given size.

Standard PAC theory applies only to learning Boolean
valued functions or classifications of the input space. Hence
the set of hypotheses can be viewed simply as subsets of the
input space, being the sets of inputs which give output 1. In
many practical applications, however, researchers are inter-
ested in training threshold networks with multiple outputs.
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These might be classifications of inputs under different
criteria, or simply the representation of a mapping from one
multi-dimensional space to another. The theory of PAC
learning has been generalised to cover these cases (see
Haussler, 1989, and Shawe-Taylor and Anthony, 1991).

3.2. Definitions and Previous Results

In order to present results for binary outputs ({0, 1}
functions) and larger ranges in a unified way we will
consider throughout the task of learning the graph of a
function. All the definitions reduce to the standard ones
when the outputs are binary.

We consider learning from examples as selecting a
suitable function from a set H of hypotheses, being functions
from a space X to set ¥, which has at most countable size.
At all times we consider an (unknown) target function

cX-Y

which we are attempting to learn. To this end the space
X is required to be a probability space (X, X, u), with
appropriate regularity conditions so that the sets considered
are measurable (Blumer er af., 1989). In particular, the
hypotheses should be measurable when Y is given the
discrete topology, as should the error sets defined below.
The space S= X x Y is equipped with a o-algebra T x 27"
and measure v=(y, c), defined by its value on sets of the
form Ux {y}:

WUx{y})=u(Unc'(y)

Using this measure the error of a hypothesis is defined to be
er,(h)=v{(x,y)eS|h(x)#y}.

The introduction of v allows us to consider samples being
drawn from S, as they will automatically reflect the output
value of the target. This approach freely generalises to
stochastic concepts though we will restrict ourselves to
target functions for the purposes of this paper. The error of
a hypothesis & on a sample x =((x, ¥{), s (X5 Yy} ) €S™
is defined to be

er(hy=—{i | W(x)#y}|.

1
m

We also define the VC dimension of a set H of hypotheses
by reference to the product space S. Consider a sample
X=({(X1, ¥1)s e (Xp> ¥m)) € S™ and the function

x* H- {0,1}”,

given by x*(h),=1 if and only if A(x,)=y,, fori=1, .., m.
We can now define the growth function B (m) as

B, (m) = max [{x*(h) | he H}| <2™

The Vapnik-Chervonenkis dimension of a hypothesis space
H is defined as

VCdim( H)

_ foo; if By(m)=2", for all m;
- {max{m | By(m)=2"}; otherwise.

In the case of a threshold network .47, the set of functions
obtainable using all possible weight assignments is termed
the hypothesis space of 4" and we will refer to it as A", For
a threshold network .47, we also introduce the state growth
function S (m). This is defined by first considering all
computational nodes to be output nodes, and then counting
different output sequences.

S (m)= max

X={(i1, v, i) € X™

F p(w, i) [w: E— R},

H(F o w, 1), Fow, iy), oy

where X=[0, 1] and 4" is obtained from .4 by setting
O = C. We clearly have that for all .4 and m, B ,-(m) <
S o (m).

We are now in a position to state three important
theorems that we shall require for our analysis.

THEOREM 3.1 (Anthony et al, 1990). If a hypothesis
space H has growth function B, (m) then for any ¢ >0 and
k>m and

1
O<r<l ———=

N

the probability that there is a function in H which agrees with
a randomly chosen m sample and has error greater than ¢ is
less than

a2
k(1 r)_lBH(m-f-k)exp{—re km }

ek(1—r)? m+k

This result can be used to obtain the following bound on
sample size required for PAC learnability of a hypothesis
space with VC dimension d. The theorem improves the
bounds reported by Biumer et al. (1989).

THEOREM 3.2 (Anthony et al, 1990). If a hypothesis
space H has finite VC dimension d > 1, then there is my=
my(e, 8) such that if m>m, then the probability that a
hypothesis consistent with a randomly chosen sample of size
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m has error greater than ¢ is less than 8. A suitable value of

my is
_ 1 did—1) 6
mo—s(l_\/g)[log< o >+2d10g<3):|.

For the case where we allow our hypothesis to incorrectly
compute the function on a small fraction of the training
sample, we have the following result. Note that we are still
considering the discrete metric and so in the case where we
are considering multiple output feedforward networks a
single output in error would count as an overall error.

THEOREM 3.3 (Shawe-Taylor and Anthony, 1991). Let
O<e<1and 0<y< ). Suppose H is a hypothesis space of
Sfunctions from an input space X to a possibly countable set Y,
and let v be any probability measure on S =X x Y. Then the
probability (with respect to v™) that, for x € S™, there is some
he H such that

er(h)>¢ and er (h)<(l —y)er(h)

is at most

2
4B ,(2m) exp <—y :’").

Furthermore, if H has finite VC dimension d, this quantity is
less than & for

m>mye, d, v)

1 4 4
= ——————-yzs(l ” \/E) "4 lOg <3> +6d log <;T3€>:, .

4. THE GROWTH FUNCTION FOR
EQUIVALENCE NETWORKS

We will bound the number of output sequences B_, (m)
for a number m of inputs by the number of distinct state
sequences S ,-(m) that can be generated from the m inputs
by different weight assignments. This follows the approach
taken by Shawe-Taylor and Anthony (1991).

THEOREM 4.1. Let N be an equivalence network with W
weight equivalence classes and a total of N computational
nodes in n equivalence classes. Then we can bound S _,-(m) by

N W-—n
si,,(m)<2"< em) .

W—n

Proof. Let C,, i=1, .., n, be the equivalence classes of
computational nodes indexed as guaranteed by Lemma 2.4
(ignoring the equivalence classes of input and threshold

nodes and making a suitable renumbering) with |C;| =c,.
Further let the number of distinct equivalence classes of
input connections not including the threshold input for
nodes in C, be n; (L.e., the actual number of input connection
equivalence classes is n,+ 1). This number is independent
of the choice of vertex in the class by the definition of an
equivalence network. Then

and

Denote by 4/ the network obtained by taking only the
first j node equivalence classes. We will prove by induction
that

S y(m)< ﬁ B,(mc)),

i=1

where B, is the growth function for nodes in the class C,.
We take 4} to be the network composed of only the input
nodes, ie., no computational nodes. Hence we may take
S ,(m) =1, since there can be no adaption of the function
computed. Clearly the above result holds for j =0, since an
empty product has value 1. Assuming inductively that the
result holds for j > 0, consider the addition of the (j+ I)st
class to create the network .4, from the network .4;.
There are S ,(m) distinguishable weight assignments to
the initial part of the network. For each of these
assignments a particular sequence of m inputs is presented
to the class C;, ;. We must determine an upper bound on
the number of different state sequences that can be
generated from each of these input sequences by choosing
the weights for inputs to nodes in C;, ;. The particular set
of nodes connected to a node in C;, ; will in general be dif-
ferent for different nodes in C;,. For each input to the
whole network consider the outputs of each of these sets
collated together to give c;,, inputs to a single repre-
sentative from C;, ,. For each distinct state sequence over
the ¢;,  nodes in the class in response to the m original
input vectors, there will correspond a different output
sequence of this single node in response to the mc;,
collated inputs. Hence the growth function for the single
node bounds the growth function for the states in the
equivalence network. By considering the growth function
for this individual node we obtain that the number of dis-
tinguishable functions obtainable is bounded by
B, (mc;,,). In other words there will be at most this
many essentially different weight assignments, giving



70 JOHN SHAWE-TAYLOR

distinct sequences of output vectors on the nodes in C,
in response to the m inputs. Hence we obtain

(m)<S ,.(m)B

e 4 e lme, )
and the claim follows by induction.

Consider now the growth function of a single node « in
C,. Let v be a node with one input for each of the n; + 1
equivalence classes of connections to «. If the inputs to v are
the sum of the inputs on the corresponding class of connec-
tions to u, the two nodes determine an identical mapping
from weight assignments to outputs. Hence their growth
functions are identical. It is well known that the growth
function of a threshold node with r, non-threshold inputs 1s

bounded by
> ( l>n"
n;

It should be noted that we have made slightly more efficient
use of the bound on the growth function than was made by
Baum and Haussler (1989). They had the same formula
without the factor of 2 but with n,+ 1 in place of n,. The
difference 1s obtained by using the Cover (1965), bound on
the growth function rather than that derived from the VC
dimension of the node. This gives a bound on the function

(5

i=1 :

zi(

Consider the function
f(x)=xlog x.

This is a convex function and so for a set of values
Xy, -y Xy, WE have

1

- x; 1 '>X1
M Xy Og-‘.'/M og

llMa

M’

where X=3YM | x, Consider taking the x’s to be ¢, copies of
n;/c,foreach i=1, ..., n. We obtain

W—n

_nlo
Y

1
N/

Hence

and so

N W—n
S.V(n?)sz"( e > [}

W—n
as required. [

The bounds we have obtained make it possible to
bound the Vapnik—Chervonenkis dimension of equivalence
networks. Though we will not need these results, we give
them here for completeness.

PROPOSITION 4.2. The Ve pmk Chervonenkis dimension
of an equivalence network A" with W weight classes and
N =4 computational nodes in n equivalence classes where
each computational node is connected to at least 2 non-
threshold inputs is bounded by

2(W —n)log, eN.

Proof. Consider m =2(W —n) log, eN. We will use the
bound on the growth function to show that in this case
S (m)<2™ implying that m > VCdim(.4"). Substituting
the value of m into the bound on S .(m1) gives the inequality
we must show as

2 I/V(eN ]ng(eNH W—n < 22( W —n)log eN.
Taking the logarithm to the base 2 gives

W+ (W —n)log,(eN log,leN)) <2(W—n)log,eN,
or
W< (W —-n)log,{eN/log,(eN)).
Note that N >4 implies that eN > 2'° log,(eN ) and
log,(eN/log,(eN))>1.5.

This implies that it will be sufficient to show that

W<15(W—n),

but this must follow if each node has at least 2 non-
threshold connections. |

5. PROOF OF MAIN RESULTS

Using the results of the last section we are now in a
position to prove Theorems 2.5 and 2.6.

Proof of Theorem2.5. We use Theorem 3.1 which
bounds the probability that a hypothesis with error greater
than £ can match an m-sample. Substituting our bound
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on the growth function of an equivalence network and

choosing
rem
= —1
« V(W_n ﬂ
and
— W—n
r= ek

we obtain the following bound on the probability

W—n etem® \" 1
(m:T)z(m) N exp(—em)

By choosing m greater than

s () men ()

we guarantee that the above probability is less than 2"
Hence taking m > m,,, where m, is given by

my =myle, J)

6. /N
= ! {log( 1'3_”\)+2(W—njlog <—————\/—_>},
(1 —\/EJ 02 &

gives the required probability less than 5. |

Our second main result can be obtained more directly.

Proof of Theorem2.6. We use Theorem 3.3 which
bounds the probability that a hypothesis with error greater
than ¢ can match all but a fraction (1 — y) of an m-sample.
The bound on the sample size is obtained from the proba-
bility bound by using the inequality

e2m\“
BH(2M)<<T> :

In other words, the bound on m guarantees that

e2m\"* »lem
4<T> exp(— n ><5.

By adjusting the parameters we will convert the probability
expression to that obtained by substituting our growth
function. We can then read off a sample size by making
the same substitution in the sample size formula. Consider
setting d=W—n, ¢=¢/N and m= Nm'. With these
substitutions the bound for the probability is

),Zgrm/
4 .

4B,,(2Nm') exp < —

When we use the above inequality for the growth function
this gives 27" times the quantity we require to be less

than ¢:
2@Nm’ W—n }’Zgrml
4 - .
(W—n) P ( 1 >

Making the substitutions in the sample size formula gives

+6(W—n)log < :”,\;ﬂ )

m)[ﬁog <4>

This sample size is suflicient to guarantee the probability is
less than 2”5. To ensure the probability is less than § we
must therefore take a sample of size
4N )
}'2‘”38, ’

n+2

1

S S S (
yzs’('l—,/s'/N)[ B\

as required. |

>+6(W—n)10g(

6. CONCLUSION

The problem of training feedforward neural networks
remains a major hurdle to the application of this approach
to large scale systems. A very promising technique for
simplifying the training problem is to include equivalences
in the network structure which can be justified by a priori
knowledge of the application domain. This paper has
extended previous results concerning sample sizes for feed-
forward networks to cover so called equivalence networks
in which weights are constrained in this way. At the same
time we have improved the sample size bounds previously
obtained for standard threshold networks (Baum and
Haussler, 1989) and multiple output networks (Shawe-
Taylor and Anthony, 1989).

The results are of the same order as previous results and
imply similar bounds on the Vapnik—Chervonenkis dimen-
sion, namely 2( W — n) log, eN, though the free parameters
have been reduced from W to W —n. They perhaps give
circumstantial evidence for the conjecture that the log, eN
factor in this expression is real, in that the same expression
obtains even if the number of computational nodes is
increased by expanding the equivalence classes of weights.
Equivalence networks may be a useful area in which to
search for high growth functions and perhaps show that for
certain classes the VC dimension is Q(( W —n) log N ).

Note added in proof. The conjecture has subsequently been proved true
in: Maass, W. (1993), On the complexity of learning on neural networks,
in “Proceedings of First European Conference on Computational Learning
Theory,” EuroCOLT 93, pp. 1-17.

Received September 21, 1992; final manuscript received September 14, 1993
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