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Generating Binary Sequences
for Stochastic Computing

P. Jeavons, D. A. Cohen, and J. Shawe-Taylor

Abstract—This paper describes techniques for constructing
statistically independent binary sequences with prescribed ratios
of zeros and ones. The first construction is a general recursive
construction, which forms the sequences from a class of “ele-
mentary” sequences. The second construction is a special con-
struction which can be used when the ratio of ones to zeros is
expressed in binary notation. The second construction is shown
to be optimal in terms of the numbers of input sequences
required to construct the desired sequence. The paper concludes
with a discussion of how to generate independent “elementary”
sequences using simple digital techniques.

Index Terms—Stochastic computing, pseudorandom sequences,
neural networks.

I. INTRODUCTION

N THIS paper we address the problem of generating

statistically independent binary sequences with a pre-
scribed ratio of ones to zeros. Sequences of this kind are
necessary for the technique of stochastic computing [1]
which offers the possibility of enormously simplified hard-
ware implementations of a number of computing devices.
In particular, stochastic computing is recognized as having
significant potential for the efficient implementation of
neural networks, particularly those involving mixed elec-
tro-optical designs [2]. Designs for neural networks using
stochastic computing to simplify the hardware required
for the synaptic calculations have recently been proposed
[31-51

We demonstrate below how the required sequences
may be constructed from a class of “elementary” se-
quences, in which the possible ratios of ones to zeros is
restricted to a small set of values. These sequences may
be combined, using simple operations on the elements, in
order to obtain more general sequences, with arbitrary
ratios of ones to zeros, as described in the following
sections.

When the required ratio is expressed exactly in binary
notation, we show that there is a simple construction
using the minimum possible number of “elementary” se-
quences. The “elementary” sequences in this case may be
approximated by statistically independent pseudorandom
sequences [10], which may be generated using linear feed-
back shift registers [11]. A typical way in which these
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devices may be used to generate appropriate sets of
sequences is described in Section V.

The constructions we describe may be easily imple-
mented in fully digital hardware, so they complement the
fully digital neural network design described in [4]. Fur-
ther details of the hardware implementation of the tech-
niques described in this paper may be found in [13].

Previous approaches to the generation of binary se-
quences with prescribed ratios of ones to zeros have relied
on processing the elements of one or more unbiased
random binary sequences. A number of simple serial
algorithms to do this are given in [6], although these
algorithms are not immediately suitable for generating
sequences at a very high uniform rate, as required for
stochastic computing, since the time required to generate
each output bit depends on the values of the input bits
from a random sequence.

Random binary sequences with a specified probability
of ones are also used for testing VLSI circuits, and there
is a large literature on the generation of such test se-
quences using specialized hardware (see, for example, [7],
[8]). An earlier hardware implementation of a suitable
sequence generator is given in [1]. However, all of these
proposed generation techniques either limit the possible
probability values to a small number of fixed values, or
require more complex circuitry than the approach de-
scribed below.

Finally, we note that an alternative method for generat-
ing pseudorandom sequences has been described by
Wolfram [9], who also mentions in passing that elements
of such sequences may be combined to form a sequence
with an arbitrary proportion of ones using elementary
logic operations.

I1. DEFINITIONS
Definition 2.1: A binary sequence is a sequence of ones

(’s) and zeros (0’s). The ith element of a binary sequence
& will be denoted #{i]. The sequence obtained from the

‘binary sequence & by exchanging 1's and 0’s will be

denoted &.

Definition 2.2: The probability of a binary sequence &
of length n, denoted P(%), is defined to be the relative
frequency of 1’s:

n
Y il

i=1

P(¥) =
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As an example, consider a pseudorandom sequence as
generated by a maximum-period linear feedback shiftreg-
ister of length n [10]. Any subsequence of this sequence of
length 2" — 1 contains 2"~! 1’s, and so has probability
2"=1/(2" — 1), or approximately ;.

Definition 2.3: Two binary sequences, & and Z, of the
same length, are said to be independent if the probability
of the sequence & - % obtained by elementwise multipli-
cation is equal to the product of the probability of & and
the probability of &, that is

P(¥-F) = P(¥)P(R).

In what follows, we shall assume that all the sequences we
consider have the same length.

The definition of independence may be extended to the
case of more than two sequences, as follows.

Definition 2.4: The binary sequences in a set, S, are said
to be independent If the probability of any binary se-
quence formed by elementwise multiplication of any
nonempty subset, R, of S is equal to the product of the
probabilities of the sequences in R.

In the technique of stochastic computing, independent
binary sequences are used to represent analog values in
the interval [0, 1]. Each value is represented by a binary
sequence having probability equal to that value. Multipli-
cation of analog values may then be carried out using
simple elementwise multiplication on binary sequences,
which can be implemented with a single AND gate.

Several simple consequences of the above definitions
are listed in the following proposition.

Proposition 2.5: Let & and % be any binary sequences.

1) P(&) =1 - P(w).

2) If & and & are independent, then & and # are
independent.

3) If there is no index i such that &i] =2l =1,
then we may form the binary sequence & +.% in
which each element is the sum of the corresponding
elements from & and % and

P( + &) = P(¥) + P(&B).

We now define an integer-valued function of the probabil-
ity of a sequence, which may be used to divide sequences
into classes.

Definition 2.6: The length of a probability with respect
to a specified base is the number of digits required after
the point when the probability is expressed as a fraction in
standard place notation with respect to that base.

When the base is obvious from the context then it will
be omitted, and we will simply refer to the length of the
probability. The length of the probability of binary se-
quence & with respect to base k will be denoted ().

Note that a binary sequence with probability 0 consists
entirely of zeros, and has length 0. Similarly, a binary
sequence with probability 1 consists entirely of ones and
has length 0.

Several simple properties of the length function are
listed in the following proposition.

Proposition 2.7: Let & and % be any binary sequences,
and let k be any number base.

1) ka(i) = Mk(-ﬁ().
2) If & and & are independent, and neither sequence
consists entirely of 0’s, then

w (- B) = p (&) + p(B).

3) If there is no index i such that «{i]l =2li]=1,
then we may form the binary sequence & +% in
which each element is the sum of the corresponding
elements from & and % and

w, (A + B) < max { pu, (&), 1, (B)}.

Definition 2.8: An elementary binary sequence with re-
spect to a specified base is one whose probability has
length zero or one with respect to that base.

Again, when the base is obvious from the context we
will simply refer to elementary sequences. Sequences with
probability 3 are elementary with respect to base 10, since
the probability may be written in decimal notation as 0.5.
They are also elementary with respect to base 2, since the
probability may be written in binary notation as 0.1.

The bulk of this paper will be concerned with algo-
rithms for constructing binary sequences whose probabili-
ties are of arbitrary length from independent elementary
binary sequences. We will restrict our attention to algo-
rithms which use only a fixed function of a single element
of each input sequence to compute each element of the
output sequence. An algorithm that satisfies this restric-
tion will be referred to as a local algorithm. This restric-
tion allows us to quantify in a well-defined sense the
number of elementary binary sequences required by an
algorithm. It rules out, for example, algorithms that sam-
ple the odd elements of an input binary sequence and the
even elements of the same input sequence, to obtain two
separate elementary binary sequences which can then be
combined in some way to construct an output sequence.

Formally, we define a local algorithm as follows.

Definition 2.9: There is a local algorithm that computes
a binary sequence % from the sequences &}, &, ", &, if
and only if there exists a binary-valued function F of m
binary variables such that, for all i,

oli] = F([i], o,[il, -, 4,1,

Note that a local algorithm with no inputs must com-
pute a constant function.

Local algorithms have the following desirable property.

Proposition 2.10: Let &,,%,, -, %, be independent bi-
nary sequences. If & is computed from &, .%,,""*, %, _;
by any local algorithm, then & is independent of &7,.

Proof: The tesult is proved by induction. The result

holds for m = 1, because in this case & must be the
sequence consisting entirely of 1’s or the sequence con-
sisting entirely of 0’s, and these are both independent of
all other sequences.
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Now assume that the result holds for all values of m
less than r and consider the case when m = r. In this case
we have a set of independent binary sequences,
A, 5,0, %, and we assume that & is computed from
oy, ,,+,,_; by a local algorithm.

By the definition of local algorithm there exists a func-
tion F such that

Bli] = F(lil, il -, o, [i]).
Define two sequences &, and &, as follows:
#li] = F( li], #,lil,, %, _,[i],0),
#\li] = F(elil, slil, -, 2,50, 1).

Now we have

Q[l] =3{,_1[i] 'g1[i] +J¥,_1[i] 'Qo[ily

giving

@Blil - li} =o,_[i] -2 [i] -]
+2,_,[i]-B,li] - [i].

Now consider the set of binary sequences

A, Ay, Ao, H,_ A, This set is clearly independent,

so by the induction hypothesis %, is independent of

&, -, Similarly, the set of binary sequences

A, Ay, Ay, 1 ¥, is independent and &, is inde-

pendent of &7, _, -5,

Therefore, using Proposition 2.5 we obtain

P(# %) =P(,_)) -P(&) P()
+ P(s,_,) - P(%&,) - P(,)
= P(Z)P(,).

Hence % is independent of &, and the result follows by
induction. o

III. CONSTRUCTING BINARY SEQUENCES

In this section we describe an algorithm for construct-
ing binary sequences of any finite-length probability from
elementary binary sequences. We first give an example for
the case where the base is 10.

Example 3.1: We make an example construction of a
binary sequence % with probability of length 2 with
respect to base 10, from three elementary binary se-
quences &, %,,%;. Choose the elementary binary se-
quences &, %,, %, so that

P(#) =06, P(x)=02, P()=03.

Ensure that &, and &, are independent, and that &, and
&, are independent.

We will now construct a sequence # with probability
0.26 from these three sequences. For each i, set the ith
element of & as follows:

R ANRAREXAUADH
Using Proposition 2.5 we have
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Hence
P(#)=(1-0.6)x0.2 + 0.6%x0.3 = 0.26,

as required. The length of the probability of % with
respect to base 10, u,(#), is 2.

This example illustrates the following general algorithm
for constructing a binary sequence with a given probabil-
ity from binary sequences with probabilities of shorter
length.

Proposition 3.2: Let k be a suitable number base. It is
possible to construct a binary sequence % having any
desired probability value such that u,(#) = n using three
independent binary sequences, %, &,, and & such that
w () =n—1 and &,, ¥, are elementary sequences
with respect to base k.

Proof: Suppose that the desired probability is
P(#&)=0-d,d, -~ d, in standard place notation with
respect to base k. Choose three sequences ¥,,%,,%;
such that

P(t) =0-dyd, - d
P(t,) = 0-d,,
P(s,) = 0-d, + 1/k,

and ., is independent of both &, and #;. [Note that
P(%7,) may be equal to 0, and P(%/;) may be equal to 1.]
Calculate each element of & as follows:

n»

Bli] =7 li]-w,li] + i) -ali).
Using Proposition 2.5 the probability of % is
P(@) = (1 — P(£,))P(s4,) + P(£,) P(sL5).
Hence
P(B) = P(st,) + P(4,) Jk = 0.dyd, - d,,
as required. m]

This construction effectively allows us to add an extra
digit to the probability of a sequence, by combining the
sequence with two elementary sequences.

Note that, given any further sequence %, such that </,
&,, &, and &, are independent, we know from Proposi-
tion 2.10 that 2, will be independent of the binary se-
quence & constructed by this algorithm. Hence, using
this construction repeatedly, we can construct binary se-
quences with probabilities of arbitrary finite length from a
set of independent elementary sequences.

Corollary 3.3: Let k be a suitable number base. It is
possible to construct a binary sequence 4% having any
desired probability value such that w,(#) = n using at
most 2n — 1 independent elementary binary sequences
with respect to base k.

Proof: Use Proposition 3.2 repeatedly. ]

This result gives an upper bound for the number of
elementary sequences required to construct a sequence
with a probability of a given length. We can also obtain a
lower bound for the number of independent elementary
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binary sequences required by any local construction algo-
rithm. This lower bound is obtained as a consequence of
the following proposition.

Proposition 3.4: If & is computed from a set of inde-
pendent binary sequences &, .%,,**, %, by any local algo-
rithm, then for any number base k,

I-Lk(g) < E Mk(tyi).
i=1

Proof: This result is proved by induction. The result
holds for m = 0, because in this case % must be the
sequence consisting entirely of 1’s or the sequence con-
sisting entirely of 0’s, and these both have length 0.

Now assume that the result holds for all values of m
less than r and consider the case when m = r. In this case
we assume that # is computed from &, %,,":*,.%, by a
local algorithm. By the definition of local algorithm there
exists a function F such that

Bli] = F(#[il, #,li), -, & 1i]).
Define two sequences %, and &, as follows:
Byli] = F([i], #lil, -, 4], 0),
&li] = F([il, 51, [i], ).
Now we have
Blil =il B i) +7[i] - B,li).
Using Proposition 2.7 we obtain
m(#) < max { [TAC AKXV M‘k(‘;I '-@0)}
= max { u, (&) + 1 (B), () + p, (B}
= () + max { u, (B)), w (B}
By the induction hypothesis,
w(By) < 'Zl i (),

i=1
r—1
w(B) < ¥ m().
i=1
So we have

w(B) < Y w(),
i=1
and the result follows by induction. u]
The following is then a direct corollary.
Corollary 3.5: 1f & is computed from a set of m inde-
pendent elementary binary sequences with respect to base
k and p, (&) =n,then m > n.

IV. A SpECIAL CONSTRUCTION FOR BASE 2

In this section we show that a binary sequence of length
n with respect to base 2 may be constructed using only n
independent elementary binary sequences with respect to
base 2. In the light of Corollary 3.5 this is an optimal
construction. This construction also has the advantage

that the only nonconstant elementary sequences with re-
spect to base 2 have probability 1. This means that good
approximations to independent elementary sequences may
be easily obtained using linear feedback shift registers, as
will be described in Section V.

Proposition 4.1: Any binary sequence % such that
u,(&) = n may be constructed using n independent ele-
mentary binary sequences with respect to base 2.

Proof: The construction for each successive digit in
the expression for P(#) is the same as that used in the
proof of Proposition 3.2, but when the base is 2 there are
only 2 possible cases.

1) P(s,) =0, P(£) = 3.
2) P(&,) = 3, P(#;) = 1.

In the first case the construction simplifies to
Blil = [i]-wli],
and in the second case it simplifies to
Blil =7 i) -w,[i] + il

In either case there is only one additional elementary
sequence required for each digit, so only n independent
elementary sequences are required in total. O

Note that the two cases mentioned in this construction
consist of taking either the conjunction or the disjunction
of two binary sequences. Hence the construction of any
binary sequence with probability of length n with respect
to base 2 can be performed using only n — 1 binary
logical connectives. Since we have shown in Corollary 3.5
that n input sequences are required, this is clearly the
minimum possible number of binary connectives. One
consequence of this is that the construction may be imple-
mented using very simple logic circuitry {13},

It is possible to apply the construction described above
to form sequences whose desired probability is not ex-
pressed in binary notation: the probability is simply con-
verted to binary notation. Note, however, that this conver-
sion increases the length of the probability, in general.

V. CONSTRUCTING ELEMENTARY SEQUENCES

The results in the previous sections have reduced the
problem of constructing independent binary sequences
with arbitrary probability to the problem of constructing
independent elementary sequences. In this section we will
explain a simple general method for generating n elemen-
tary binary sequences with respect to base 2.

The method uses the well-established technology of
linear feedback shift registers [10]-[12]. A linear feedback
shift register of degree n generates a sequence, &, of
arbitrary length, as follows:

{1}, #12),---, #1n] are arbitrary binary values

#n+1+pl= ia,d/[i-kp]

i=1

Vp =0,
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(where the g; are fixed binary values and the addition is
performed modulo 2). Sequences generated by linear
feedback shift registers can be shown to have the follow-
ing properties.

Proposition 5.1 [12]: 1f & is a sequence generated by a
linear feedback shift register of degree n, then

1) « is periodic.

2) the period of & is < 2" — 1.

3) if & has period 2" — 1, then every nonzero binary
sequence of length n occurs exactly once as a subse-
quence of .« for each cycle.

A sequence of period 2" — 1 generated by a linear
feedback shift register of degree n is often referred to as
a “pseudorandom” sequence. The main result of this
section can now be proved.

Proposition 5.2: Let & be a pseudorandom sequence
generated by a linear feedback shift register of degree n
and let &,--, o, be n subsequences of & of length
2" — 1 beginning at n consecutive positions in .. Then
the n sequences &, #,,-, &, formed by appending a
zero to each of these sequences are all independent with
probability 1.

Proof: Consider the product of any k of the n se-
quences, & -# - %, . For any i in the range 1 to
2" — 1 we have
#1112, [+ 2, [i]

=m +j, +il-olm +j, + il o[m + j, +i]
for some m > 0. Using Proposition 5.1, we know that the
expression on the right-hand side will take the value 1
exactly 2"~* times as i varies from 1 to 2" — 1. When
{=2"then %, % - B, =0 by construction. Hence

P(B, -8, &) = 2774 /2 = 1/2",

Taking k equal to 1, we have shown that the probability
of each of the sequences %, is 3. Since the value of k is
arbitrary we have also demonstrated the independence of
the set %, &,, -+, B,. |

Corollary 5.3: The vectors &, ,%, have probability
2771/(2" — 1), and the product of any k of these se-
quences has probability 2" % /(2" — 1).
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Hence, when the value of n is large the sequences
&y, 5,0+, ¥, may be used without modification to provide
a very good approximation to independent elementary
sequences.

V1. CoNcLUSION

This paper has described a method for generating bi-
nary sequences with arbitrary ratios of 1’s to 0’s using
simple digital techniques. We are currently implementing
these techniques in a hardware device which will be used
to supply inputs to a stochastic neural network chip [13].
The extreme simplicity of the circuitry required to imple-
ment techniques we have described allows many parallel
sequence generators to be incorporated on a single chip.
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