Vo==V, = Vr = MVpr and Voo = Vpp - Vi — MoV
&
where &, = Y(B,/By), and A, = V(B /A(n-1)By). and Vy, = ¥, ~ V.
From eqn. 1 we verify that, for the saturation condition to be sat-
isfied for any input level, the transistor parameters must obey A, <
Viwin = VY Varand &, < (Vpp — Vi) Vir sO establishing the fol-
lowing input dynamic range:
Ve + MVer <V <1Vpp — Xalpy (2)

If we let now one of the inputs (say V) increase, while all the
others stay the same (worst case), ¥, decreases toward Ve= V.
whereas Vy, = Vi, = ... = ¥, increase. As mentioned earlier, if
the transistor parameter ratios are small enough they may cause
the latter voltage to be > V,,, - V;: this situation exists if

A2 < (2Vpp — 2V = 3Vp)Vr VA (3)

which is independent of n, as expected, because in this state each
active cell has just one active load.

0-5

o o
w o~
1 1
1

settiing time, s
o
~N
']
]

01
0 i i ¥ ¥
0 1 2 3 4 5
lg. pA

Fig. 2 Settling time against power consumption

n =32 (WIL), = 6/6, AV = 1V

We return now to the time response. Although the total bias
current nly is constant, only a fraction 87, (1 < & < n) is destined
to discharge the winning node (V;,), the magnitude of & depending
on how far V) is from the other input voltages. The settling time
of the system is therefore given by

T =CAV/élp (4)

where C is the capacitance of the output node (~(n-1)(WL)3 x
0.5fF/um? and AV (=V;) is the difference between Viore (=Vpp)
and the transition voltage of the output inverter (= Voo - V). This
behaviour is illustrated in Fig. 2 for practical lower and upper
bounds of 6.
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] 2 4 6 8 10
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Fig. 3 System gain

Experimental results: The performance of the network was meas-
ured on an n = 32 WTA circuit fabricated on a 2.0um CMOS
chip, with L = 10pm, A, = 0.7, and A, = 0.4. The experiments
agreed consistently with the predictions, showing always only one
winner present at a time, as imposed by the equilibrium state of
the circuit. A wide system resolution was obtained (~50dB), with a
sensitivity better than 10mV in the worst case. Two separate gain
measurements are shown in Fig. 3, where the low offset of the sys-
tem is apparent; these tests were performed with ¥, = 1.0V and
Vier (all inputs but one) = 2.0V,

ELECTRONICS LETTERS

An application of the circuit is shown in Fig. 4. The WTA was
used to detect the winning output of a Hamming network [5]. All
rows of the system processed the same random vector shown on
the left-hand side of Fig. 4, except one row, which processed the
vector shown on the right-hand side. (The latter vector has only
one bit distinct from the former, which circulates over the 8 x 8
block and is always in agreement with the corresponding input
bit.) As expected, the circuit yielded a fixed winner.

Fig. 4 WTA application

Conclusion: We have made use of a neural architecture to intro-
duce a new winner-take-all network. Basic properties of the circuit
were qualitatively and quantitatively discussed and experimental
results were presented. Positive-feedback, high gain, and small off-
set make possible the detection of very small perturbations, which
are immediately decoded through digital outputs directly available
on the network.
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Real time output derivatives for on chip
learning using digital stochastic bit stream
neurons

M. van Daalen, J. Zhao and J. Shawe-Taylor

Indexing terms. Learning systems, Neural chips, Stochastic
automata

The authors present the hardware design of an extremely compact
and novel digital stochastic neuron. that has the ability to
generate the derivative of its output with respect to an arbitrary
input. These derivatives may be used 1o form the basis of an on
chip gradient descent learning algorithm.

Introduction: An artificial neuron is required to calculate a single
output value by applying an ‘activation function’ to the weighted
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sum of its inputs. Such neurons are intended to operate in mas-
sively parallel networks, often processing real time data. Conven-
tionally, feedforward networks containing neurons of this type are
trained off-line using learning algorithms such as back propaga-
tion, but recently some research has focused on building the learn-
ing algorithms directly into the neural hardware [1, 2}.

In this Letter we present the design of an enhanced stochastic
bit stream neuron that contains additional circuitry that allows the
real time calculation of the neuron’s output derivative with respect
to an arbitary input. This derivative may then be used as the basis
for an ‘on chip’ gradient descent learning algorithm. The detailed
hardware design and operating principles of standard stochastic
bit stream neurons and their networks is given in [3-5, 7).

Stochastic bit stream neuron: To describe the process required to
calculate the output derivative of a stochastic bit stream neuron,
we will begin by giving a brief description of the basic operation
of such a neuron.

All signals processed by these neurons are real values repre-
sented by stochastic bit streams in the interval [0,1] for unsigned
values, and [-1,1] for signed values. A neuron has only one physi-
cal input and weight connection, but by the use of time division
multiplexing, may have many logical connections. The core of the
neuron is a simple counter, which may be preloaded with a thresh-
old value. Each input bit is weighted by either ANDing, when
operating on unsigned values, or XORing, when operating on
signed values, with a corresponding weight bit. Thus this weighted
input contributes 0 or 1 to the counter on each operational cycle.
Details of signed and unsigned stochastic bit stream neurons may
be found in {4, 8). The unique threshold values supplied to the
counter are chosen such that they will cause an overflow into the
top-most bit, when a given input count is achieved or exceeded.
Thus the top bit of the counter provides the output of the neuron.

The activation function applied by the neuron, which requires
no additional circuitry, is formed by the interaction of the proba-
bility distribution of the weighted input values, and the probability
distribution of the chosen threshold values. A sigmoid like activa-
tion function is achieved by using a fixed threshold value, and a
linear activation function is obtained when using a uniformly dis-
tributed threshold value; see [6] for the precise mathematical defi-
nitions.

Calculating the derivative: The probability of generating a ‘1” as
the output bit on a given operational cycle of a bit stream neuron,
with weighted inputs #; to i,, and preloaded threshold value 1,
may be written as shown in eqn. 1.

O, =Pr{iy+ig+iz+ - -+im > 1) (1)

=Pr(iy+ia+is+ - +iko1+ipa+Fim > tn)
+Pr(i1+i2+i3+' g it i, = tn)
x Pr(i, = 1) 2)

This function may be rewritten as eqn. 2, which is now easily dif-
ferentiated with respect to the arbitary input i, giving eqn. 3:

90,

Oy,
To implement this result for a given neuron, additional hardware
will be required. This circuitry must prevent the input i, from con-
tributing to the internal counter, and also must detect the condi-
tion that the counter exactly matches the preloaded threshold
value. This is easily arranged, as the preloaded threshold value is
chosen such that it sets the most significant bit of the counter
when achieved. So if i, is ‘0’ then the circuitry must detect the
counter value ‘1000...00°, or if i is ‘1’, it must detect the value
*1000...01". This functionality can be achieved with a simple com-
binatorial circuit. The number of counter bits required by a typical
bit stream neuron with m inputs, which must now be checked, is
given by 2log, m, which for most applications will be small, ~8 bit.
Actual circuit details are not given here, as these will depend
largely on the final hardware implementation platform, the most
efficient being fully custom VLSI.

=Pr(i1+ea+iz+ - +ik_1+ipp+ - Fim =tn) (3)

Results: Four graphs showing output functions and their deriva-
tives with respect to input 1 are presented in Fig. 1. The bit stream
neurons used had 15 inputs with either linear or sigmoidal activa-
tion functions. Each function is displayed twice. In the first

1776

instance all of the inputs to each neuron are distinct 1 Mbit
streams of the same value following the linear ramp function y =
x. The second set of two graphs shows neurons with the same acti-
vation functions, but with input 1 set to sin 2x, and the remaining

inputs 2 to 15 set to y = x as before.
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Fig. 1 Neural activation functions, and their derivatives

a Sigmoid activation function, 1Mbit on each of 15 inputs
b Linear activation function, 1 Mbit on each of 15 inputs
¢ Sigmoid activation function, 1 Mbit on each of 15 inputs
d Linear activation function, 1 Mbit on each of 15 inputs

For a neuron with a linear activation function the derivative of
the output with respect to a given input will always be constant,
irrespective of the inputs. This is illustrated by the two graphs
showing outputs and derivatives of a linear neuron.

In the case of a bit stream sigmoid neuron, the actual activation
is a complex function of the inputs [6]. A fully symmetric sigmoi-
dal activation function is only achieved when all the inputs are the
same value, (each one must be represented as a distinct bit stream)
and the threshold value is chosen as the midpoint of the input
range on a given operational cycle, i.e. 7 for a 15 input device. A
direct consequence of this is that the derivative of the sigmoidal
activation is also a function of the inputs. Two examples of this
behaviour can be seen in the appropriate graphs shown in Fig. 1.

The next two graphs, shown in Fig. 2, show the same results as
the first two of the last set, but here the lengths of the bit streams
presented to the inputs of the neuron have been reduced to 10k
and 1k bit. The resuiting increase in noise caused by the random
variance errors inherent in stochastic bit streams is easily apparent

from the graphs.
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Fig. 2 Sigmoid and linear activations with derivatives at 10k and 1kbit

a Sigmoid activation function, 10kbit on each of 15 inputs
b Linear activation function, 1kbit on each of 15 inputs

Conclusion: We have demonstrated that it is possible to construct
linear or sigmoidal stochastic bit stream neurons with the ability
to generate real time output derivatives using only simple digital
circuitry. We are currently evaluating an ‘on chip’ learning scheme
designed for feedforward networks that is closely modelled on
back propagation [9]. In this scheme each bit stream neuron con-
tains additional circuitry to produce the appropriate & values.
These are then aggregated and passed back through the network
to their respective weights by additional layers of simplified linear
neurons.
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80Gbit/s soliton data transmission over
500km with unequal amplitude solitons for
timing clock extraction

M. Nakazawa, E. Yoshida, E. Yamada, K. Suzuki,
T. Kitoh and M. Kawachi

Indexing terms: Soliton t , Optical ¢

Single-polarisation 80Gbit/s soliton data signals have been
successfully transmitted over 500km. The soliton source was a
modelocked fibre laser and a planar lightwave circuit was used for
stable optical multiplexing. A nonlinear loop mirror was used for
demultiplexing, in which unequal amplitude solitons were used for
clock extraction.

There are two interesting fields of application for soliton commu-
nication. One is long distance transoceanic communication over
10000km, in which the transmission speed is limited to 5-40Gbit/s
under the various dispersion and amplifier spacing conditions [1-
4]. The other is relatively short distance communication over
1000km, where the transmission speed is 100Gbit/s—1 Tbit/s. This
may prove useful as a high speed information highway.

The experiments for the former application have been under-
taken by many groups using loop circulations or straight line
transmissions, however there have been few experimental reports
of the latter type. This is because the pulse width of a soliton
source should be much shorter than 10ps, but it is not easy to gen-
erate such a pulse using a gain-switched laser diode or electron
absorption modulators. In such a high speed soliton system, the
amplifier spacing is longer than the soliton period. In addition,
dispersion irregularities should be reduced, i.e. the standard devia-
tion of the soliton periods should be smaller than that with longer
soliton pulses.

As long as we use some form of soliton control such as synchro-
nous amplitude or phase modulation with optical filtering, it is
possible to send a high speed soliton signal over unlimited dis-
tances [5]. However, it is also becoming increasingly important to
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realise soliton transmission of the order of 100Gbit/s over a rela-
tively long distance, as a linear signal has already been transmitted
at 100Gbit/s over 200km [6].

In this Letter we show for the first time that it is possible to
transmit an 80Gbit/s soliton data signal through a 500km straight
fibre line. This transmission distance is the longest yet reported for
such high speed soliton communication.
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Fig. 1 Experimental setup for 80Gbit/s soliton transmission over 500km

The experimental setup for the 80Gbit/s-500km soliton trans-
mission is shown in Fig. 1. The soliton source was an actively
modelocked 10GHz erbium fibre ring laser, which could emit a
2.7-3.0ps soliton pulse. The pulse was a transform-limited pulse
and modulated at 10Gbit/s with a 2-1 pseudorandom binary
sequence using an LiNbO, (LN) intensity modulator. A planar
lightwave circuit was used as a stable optical multiplexer to obtain
a 80Gbit/s pulse train. To obtain a 10GHz clock signal easily
from the transmitted 80Gbit/s signal, 10GHz soliton units were
superimposed on each other with slightly different soliton ampli-
tudes. This technique is also useful for reducing the soliton-soliton
interaction [4, 7).

The soliton transmission fibres (STFs) were dispersion-shifted
fibres with an average dispersion as low as —0.19ps/km/nm at
1.552um. The average soliton period was 19.0km, which meant
that the amplifier spacing had to be shortened to as little as 25km.
The coded pulses were amplified by EDFAs to an average soliton
power level of +8.2dBm when the mark rate of the pseudorandom
signal was 1/2. The average N = | soliton peak power was as high
as 31.5mW. The average fibre loss including the connector loss for
one span was ~6.0dB. A narrowband optical filter with a pass
band of 3nm was installed every 50km to stabilise the soliton
train.
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0 Gbit/s PANDA  gPF EDFA
. fibre demux
iy oout
soliton 10G bit/s
data

pulses

DFB narrow band
LD fiter(FRF) O

50—

Fig. 2 Optical demultiplexing circuit using a polarisation-insensitive
nonlinear optical loop mirror

An 80Gbit/s soliton data signal was demultiplexed to a 10Gbit/
s signal using a polarisation-insensitive nonlinear optical loop mir-
ror (PI-NOLM) [8]. The demultiplexing circuit is shown in Fig. 2.
Part of the transmitted 80Gbit/s soliton signal was detected with a
high speed InGaAs pin photodiode and a 10GHz clock signal was
extracted. A high SN clock was obtained because of the 10GHz
component resulting from our use of an unequal amplitude soliton
train. Then, the sinusoidal clock signal drove the DFB LD under
a gain-switching condition, and the generated optical pulse was
converted to a transform-limited 9 ps pulse with a combination of
spectral filtering and linear compression techniques. The 9 ps pulse
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