Gray-Markel structures and approximately the same as the
parallel structure.

As a measure of roundoff noise in digital filters G =
3% k;; wy is used which gives the noise gain of the scaled struc-
ture in terms of the diagonal elements of the matrices K and
W of the unscaled one.

Mullis and Roberts [3] have proved that the realisation of
narrowband LP transfer functions by DTDF leads to struc-
tures with very high roundoff noise. They have shown that
under the LP-LP transformation z=(z — a)/(1 —az) the
output noise gain is directly proportional to 1/(1 — «?)*"~2
Because for narrowband filters o — 1, the noise gain takes very
large values. It will be shown in the following that for the
TCTDF the output noise gain is invariant under the LP-LP
transformation, i.e. if

~f Z— 3
H
<1 — az)

is realised with TCTDF realisations for different values of a,
the noise gain for any realisation will be independent of o.
Under the bilinear transformation and the LP-LP transform-
ation given above, s is transformed as 5= s/w, where w, =
(1 — @)/{1 + «). Under this LP-LP transformation we obtain
H ,(s) = H(s/w,) which assumes a state realisation R, obtained
from the CTDF realisation R,, through the transformation

A, =wody by =0}y ¢ =0, di=4d,
Using these in eqn. 5 yields K, = K,, W, = W,. Any other
realisation of H,(s) can be obtained through the transform-
ation

A, =TA,T ' b,=Tbh, c,=T"'¢, d,=4d,

which yields

K,=TK,T' = TK,T'
W,= T W, T =T W,T! (11)

Now if we set T = diag (1, wg, @2, ..., ©)~ "), the realisation
R, also corresponds to a CTDF structure. Using this T in
eqn. 11, we obtain

(K3 W2)u = (Kol Wols i=12..n (12
which demonstrates that the output noise gain is invariant for
CTDFs under the LP-LP transformation. Applying the bilin-
ear transformation to the CTDF realisations R, and R,, we
obtain the corresponding TCTDF realisations R, and R,.
Now using eqn. 6 in eqn. 12 it can easily be shown that
(R [W,1i = [KolulWoli i=1, ..., n, which proves that
the roundoff noise is invariant under LP-LP transformation
for TCTDF structures. As an example we choose the third-
order LP transfer function given as

0-01594(z + 1)
23 — 1-9748612% + 1-556161z — 0-453768

H(z) =

For this transfer function the roundoff noise behaviour of the
TCTDF and that of the DTDF will be compared. The values
in Table 1 are the normalised values for the noise gain
obtained as Gy = (G/G,;,) where G, = Q7 ;> — {u} being
the eigenvalues of KW which are invariant under the LP-LP
transformation [3]. Table 1 shows clearly that the noise
behaviour of the new structure is invariant under the LP-LP

Table 1 NORMALISED

VALUES FOR
NOISE
o DTDF TCTDF
—-09 111-385 1-846
—-05 1-072 1-846
0 6-041 1-846
05 239-088 1-846
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transformation, while that of the DTDF deteriorates drasti-
cally as o — 1. Therefore the TCTDF is shown to be a better
structure for narrowband LP transfer functions.

4th October 1991
V. Tavsanoglu (Department of Electrical and Electronic Engineering,
South Bank Polytechnic, 103 Borough Road, London SE1 0AA, United
Kingdom)
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PROPORTION OF PRIMES GENERATED BY
STRONG PRIME METHODS

J. Shawe-Taylor

Indexing terms: Information theory, Cryptography

The numbers of primes generated by two prime generation
methods are evaluated. The methods considered generate
strong primes for cryptographic use in the RSA public-key
cryptosystem. The results show that they generate sufficiently
many primes to resist cryptanalytic attack by prime enumer-
ation for the sizes of primes used to guard against factor-
isation attack.

Introduction: A method of generating primes is described by
Shawe-Taylor [3] (henceforward the S-T method) which,
though reliant on random techniques, outputs numbers which
are guaranteed to be prime. Criticisms have been raised [2]
that the technique excludes a large number of primes.
Though this is undoubtedly true numerically, the purpose of
this Letter is to show that, proportionally, the exclusion rate is
small compared to the number of primes of the given size. The
original paper describing a method for generating strong
primes [1] (the Gordon method) also aims to exclude a
number of primes and we use the techniques of this paper to
estimate the proportion excluded in this case. Though the
prime generation techniques are widely used to resist factor-
isation of the RSA modulus, as yet it has not been shown that
there are sufficient primes to ensure that enumeration of all
primes of a given size obtained by these techniques would not
be an effective method of cryptanalytic attack. At the end we
give estimates of the proportion of primes generated by the
different methods for sizes of cryptographic interest.

The question of whether the method of prime generation
could be used to assist the cryptanalyst is not addressed here
and as far as we are aware remains open both for the Gordon
strong prime generation method and the S-T adaption. This
Letter is only concerned with the question of how many
primes can be generated by the different methods, because
were there to be too few, this would be a significant crypto-
graphic weakness.

Frequency of primes: It is well known that the frequency of
primes in integers of order N is approximated by 1/ln N
(throughout we will use In for natural logarithm and log for
logarithm to the base 2). The frequency of primes in odd
integers is therefore 2/ln N.

Using this key observation we can estimate the number of
primes that can be generated by the Gordon and S-T
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methods. The two methods of generating primes work on the
principle of generating smaller primes and combining them
with further random bits to progressively create larger (and
‘stronger’ primes) resulting in a prime of the required size. We
formalise this process in the following definition of a prime
generation sequence.

(i) Definition I: A k-stage prime generation sequence with
parameters

(s Jihs - s (M i)

is a procedure for generating a prime with n, bits, by gener-
ating a sequence of primes with n; bits, for i = I, ..., k. At
stage i a prime with n; bits is selected from a set of the form

{a+xb12P<x <2 — 1}

with a odd and b even, where (a, b) is determined in a (1-1)
fashion by a subset of the primes already generated. For i = k,
the pair (a, b) should be determined (directly or indirectly) in a
(1-1) fashion by all the primes previously generated.

Note that the Gordon method is a four-stage prime gener-
ation sequence, whereas the S-T method is an O(log n)-stage
prime generation sequence for primes with n bits. As an
example the final stage in both the Gordon and S-T method
involves taking

b=2rs
and

{u(r, s) if u(r, s) is odd

4 u(r, s) +rs if u(r, s) is even

where u(r, s) = (5" * — r* *) mod rs and r and s are the primes
generated at the previous two stages. The standard procedure
for selecting a prime from the available set is to start from a
point determined by a string of random bits and then step
through the set until a prime is found. This actually means
that primes which occur after a long sequence of nonprimes
are more likely to be selected. An equally effective and fairer
method would be to use another batch of random bits each
time a nonprime is selected, assuming the random bits are
cheaply available. A fuller discussion of the distribution of
primes generated is given by Maurer [2]. We now give a
lemma which gives an estimate of the number of primes that
can be generated by a k-stage prime generation sequence.

(ii) Lemma I1: The number of distinct primes that can be gen-
erated by a k-stage prime generation sequence with param-
eters (ny, j1)s - - - (Mg, jio) is approximately

2k
k

i=1

where ¢ = 2/In 2 and

Proof of lemma 1: Suppose we are selecting a prime number
from a set of odd integers with n bits of the form

{a+xb|2<x<2 -1}

Using the fact that primes are irregularly distributed, we can
estimate the number of primes in the set as 27" !/In (27). All of
these primes can be selected with different values of the
random bits. Consider the ith stage of the generation process.
By the above observation we can select approximately 2" '/In
(2%) primes. Because the set of primes from which the last
prime is generated is a (1-1) function of all the previous
primes, the total number of different final primes that can be
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generated is the product of the numbers generated at each
stage. This is the number given in the lemma statement. [ ]

Proposition 1: Using the Gordon [1] method of strong prime
generation to generate an n bit strong prime the number of n
bit primes that can be generated is approximately

o
n(ln 2)%n — log n)?[(n — log n)/2 —log (n — log n) — 2]

Proof of proposition I: There are four primes generated in the
Gordon method. In his terminology, they are usually denoted
s, t, r and p. They have (n —log n)/2, (n — log n)/2 — log
(n —log n) — 2, (n — log n)/2 and n bits, respectively, and the
numbers of random bits used in their generation are (n — log
ny2—1, (n—log ny2—log (n—log n—3 log (n—log
n) — 1 and log n — 1. Putting these into the formula of lemma
1 gives the result. ||

Corollary of proposition 1: The fraction of all n bit primes that
are generated by the Gordon method is approximately

1
(In 2)*(n — log n)*[(n — log n)/2 — log (n — log n) — 2]

S
[(n — log n) In 27°

Proposition 2: Using the S-T [3] generation method to gener-
ate a prime number with n bits provides more than

2n+1

(n In 2)°[(n/2 — log n) In 2] @2 &

primes.

Proof of proposition 2: Using the S-T method to generate a
prime with 1 bits (we are not initially considering the final
stage of ensuring a strong prime), we use a sequence of primes
with n; = 2/ + 1 bits, for i = iy, ..., k — 1, and n, = n, where iy
is some suitably small value where we can check directly for
primes (for example i, = 4) and k = [log (n — 1)]. The number
of random bits used in the generation at stage i is n;.; — n;
— 1, for i =iy + 1, ..., k, whereas for i = iy, 3 bits are used.
Hencet =n—llog(n— N1+ 1=n—k+ land

k nkf32k(h*1)/‘2*6

2(k— 1Kk —4)

because n; < n/2" 7! for i = iy, ..., k — 1. Using the fact that
k + 4 > log n we obtain

k
1 n < nt=372
i

i=ig
Putting these figures into the formula of lemma | we obtain a
lower bound for the number of primes

P 2"
4(1]1 2)k—3n(k7 542 = 4{11’1 2)[103 (n—1)— 3]n[log (n—1)—4)/2

on
= (nln 2)(105 n—1)-4)2

In the strong prime generation we first generate two primes
using the above method of size n/2 — log n — 2 and n/2 — log
n + 1 bits. Using these primes we generate the prime r of size
n/2 + 1 bits using log n — 1 random bits and finally the prime
p of size n bits and using log n random bits. Incorporating
these extra values into the formula of lemma 1 we obtain a
lower bound of

271*207.

0-5n2[(n/2 — log n) In 2]'e "2~ leem

which gives the result in the proposition statement. [ |

FLECTRONICS LETTERS 16th January 1992 Vol. 28 No. 2



Corollary 2: The fraction of all n bit primes that are generated
by the S-T procedure is approximately

2
(n In 2)[(n/2 — log n) In 2]\s /2" les

Conclusion: Table 1 shows the estimated number of primes
and the fraction generated by the two strong prime generation
methods for sizes of interest in RSA cryptography.

Table 1: ESTIMATED NUMBER OF PRIMES AND
FRACTION GENERATED USING GORDON
AND S-T ADAPTION METHODS

Size Number Fraction generated

in of

bits primes Gordon method S-T adaption
128 384 x 10%° 194 x 1072 1-10 x 107 1!
256 653 x 1074 877 x 1073 618 x 10716
384 1-48 x 10113 564 x 1073 113 x 10718
512 378 x 10'5? 416 x 1073 9-96 x 10~2!

Though the fractions are small, particularly in the case of the
S-T method, the actual numbers of primes generated by either
method are well beyond the powers of enumeration provided
we take primes of size 128 bits or more.

14th November 1991

J. Shawe-Taylor (Department of Computer Science, Royal Holloway
and Bedford New College, Egham Hill, Egham, Surrey TW20 OEX,
United Kingdom)

References

1 GORDON, I.: ‘Strong RSA keys’, Electron. Lett., 1984, 20, pp. 514-
516

2 MAURER, U. M.: ‘Some number-theoretic conjectures and their rela-
tion to the generation of cryptographic primes’. To be published in
Proc. 2nd IMA Conference on Cryptography and Coding, Ciren-
cester, 1989, MITCHELL, C. J. (Ed.)

3 SHAWE-TAYLOR, J. s.: ‘Generating strong primes’, Electron. Lett.,
1986, 22, pp. 875-877

SOME NEW RUNLENGTH CONSTRAINED
BINARY MODULATION CODES WITH
ERROR-CORRECTING CAPABILITIES

A.S. J. Helberg and H. C. Ferreira

Indexing terms: Information theory, Codes and coding, Error-
correcting codes

Five new combined error-correcting (d, k) codes for use on
bandwidth limited channels are presented. These new codes
are compared to known codes with similar parameters. The
error behaviour of the new codes after Viterbi decoding on
the binary symmetric channel is evaluated by simulation. The
power spectral densities are also measured and the results
presented.

Recent investigation [1, 2] has shown that under certain con-
ditions a combined code (i.e. a constrained code that has error
correcting capabilities) performs better than a concatenated
coding scheme (i.e. a coding scheme where the constraints are
met with an inner constrained code and the error-correction is
performed by an outer code.). We present five new combined
codes which were developed using different techniques.

The first two codes which we present were developed using
an extension of the construction technique for constrained
codes as proposed by Franaszek [3]). This extension incorpo-
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rates some distance building characteristics into the con-
strained code. In this way the concatenability of the
constrained sequences is taken care of by the original finite
state transition diagram that describes the constraints. The
resulting codes are shown in Figs. 1 and 2.

1/ 0010

0/010)
panl

01100}
Fig, 1 Finite state machine for rate R=1/4,dKk=U2,d,=3 code

0/ 01010
1700101 010010
1/01001 [29977]

Fig. 2 Finite state machine for rate R = 1/5, (d, k) =(1,2),d, =6 code

The second approach which we used is to map constrained
symbols onto a shift register graph to enhance the length
before remergence of the distance building paths. Great care
must be taken to ensure that the constraints are preserved
when using this method. The code we constructed using this
technique is shown in Fig. 3 and in Fig. 4 we show a code that
was constructed similarly using a three state graph to enhance
the length before remergence of the distance building paths.

1101
0/100 ‘
1 /001
0/00
0/010
Fig. 3 Finite state machine for rate R = 1/3,(d, k) = (1,3),d,, =4 code
0/000
17101
0/010
17001

Fig. 4 Finite state machine for rate R = 1/3,(d, k) = (1, 5), d, = 3 code
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