Similarly the ACF of the code ¢, is given by

(M—1-—|kly2
Rz,(k) = —a: - g - 17240
t=0
(M- 1~ [kl)y2
+ 2, —qe-1 - Ak - 17240
=1
—M—-l)<k<(M—1) withkodd (12)
and
M—-2—k)/2
R.32(k) = e - Apip-2/2)+1+ 1)
=0
M—2—lkly2
+ e - Akl - 2/2) 40+ 1]
t=0

- M- <k<M-1) with k even (13)

Summing the ACFs results in zero for odd k. For even k

(M -2 - [kl)/2
R.y1(k) + Repp(k) = 4 & Ay - 212) 41+ 1)
=
N—1-(kl/2)

=4 Q- Oy + 1) (14)
t=0

which is four times the ACF of the code a at even values of k.

Further transformations to a set of 2" codes : If the code pair ¢,
and ¢, are now transformed separately, a set of four codes is
produced. Further transformations result in a set of 2" codes
which obey the following:

j=2nt=2n

Y Y Rapk)=0 Vk,i#j (15)

j=1 1=1

1 1=2n

73 Max ZstBi(k)‘=malem,(k)| Vk#£0 (16)
t=1

B, is the ith code in the set and R, is the CCF of @ and b.

Practical application: The beamwidth of linear arrays may be
reduced considerably by transmitting two of more signals
from a suitably disposed set of transmitting antennas and
using appropriate matched filter processing.? At the receiving
array the transmitted signals must be separated completely
suggesting the need for orthogonal codes. If additive pro-
cessing is employed, as in the dual transmission radar shown
in Fig. 1, the signals need not be orthogonal if the CCFs of the
waveforms sum to zero and the ACFs sum to provide a useful
PSR. In such a scheme the waveform design task may be
reduced to the search for a single phase code with the required
range-velocity ambiguity diagram. By using the transform-
ations described previously, a set of codes for a 2" transmis-
sion radar may be obtained, offering a combined response
that is a time-expanded version of the original code’s
response. Although the codes suffer in range-bearing, the

linear array S, ()
S e Tmﬁ o

ST
&) G

K ty

ore

Fig. 1 Dual transmission radar
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problem may be eliminated by an appropriate choice of signal
bandwidth, carrier frequency and array length.?
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DAUGMAN's GABOR TRANSFORM AS A
SIMPLE GENERATIVE BACK PROPAGATION
NETWORK

Indexing term: Networks and network theory

Much work has been performed on learning mechanisms for
neural networks. A particular area of interest has been the
use of neural networks for image processing problems. Two
important pieces of work in this area are unified. An archi-
tecture and learning scheme for neural networks called gen-
erative back propagation has been previously developed and
a system for image compression and filtering based on 2-D
Gabor transformations which used a neural network type
architecture described. Daugman’s procedure is exactly repli-
cated. A procedure which used a four layer neural network as
a two-layer generative back propagation network with half
of the units. The GBP update rule is shown to perform the
same change as Daugman’s rule, but more efficiently.

Introduction: Much work has been performed on learning
mechanisms for neural networks. A particular area of interest
has been the use of neural networks for image processing
problems. This letter unifies two important pieces of work in
this area.

Hinton? described an architecture and learning scheme for
neural networks which he called generative back propagation.
Daugman' described a system for image compression and fil-
tering based on 2-D Gabor transformations which used a
neural network type architecture.

The aim of this letter is to show that Daugman’s procedure
which used a four layer neural network can be implemented
as a two-layer generative back propagation network with half
the units and less computation.

Generative back propagation: Generative back propagation
(GBP) is a method of approximating a set of descriptive
parameters from an image. It is typically used to parameterise
a pixel based scene in terms of a few real parameters.

The idea behind GBP is to use a feedforward neural
network which generates scenes from a small set of param-
eters. The parameters can be taken as the strengths of the
connections from an input layer with activations all equal to
one to the units of the first layer. This network can be used to
approximate the set of parameters corresponding to a novel
scene using neural network learning algorithms.>~® The algo-
rithms are used to adapt only the input parameter weights,
leaving all other weights fixed. This operation is shown in the
architecture of Fig. 1.

When the network has stabilised to a global minimum, the
weights will represent the best fit parameterisation of the
image.

Daugman Gabor transform: Daugman fixed a set of Gabor
functions and tried to express a pixel based image as an
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expansion in this basis of Gabor functions. The problem arises
that, unlike Fourier transforms and pixel representations,
Gabor functions do not form an orthogonal basis. This means

constant input values of |
1 1 |

variable weights
pcrameie{so in';age
i

fixed network to produce the image from
a given set of parameters

L b 1

resulting image

Fig. 1 Typical network configuration for GBP

that obtaining the expansion of the image with respect to the
Gabor functions is a difficult problem.

The approach that Daugman uses is to employ a network
of neuron-like units with a particular learning rule. The archi-
tecture is designed so that when the weights of the connec-
tions stabilise they are the best least-mean-squares
aprpoximations to the Gabor parameters. This is achieved by
finding the derivative of the error with respect to each of the
Gabor parameters and using a gradient descent method to
iteratively approximate the solution.

Suppose the Gabor functions are G{x, y), i=1, ..., n and
the picture has value I(x, y) at pixel (x, y). The expansion in
terms of the Gabor function is

I 9) = 3 4,Gix, y)
i=1

where the a;, i = 1,..., n are the sought parameter set.
_Suppose that some value for the a;s is guessed. The deriv-
ative of the least-mean-square error E with respect to a; is

4a;

-2 [(k;ak Gy, y))c.(x, y)]

O
Dy =7—=2 7 [Ix y)Gix, )]

The update rule for the parameters q; is then given by

ai=a;— %Da.-

Daugman showed that this algorithm always converges to the
correct solution, being the unique global minimum of the
error function.

The network: Daugman uses the network shown in Fig. 2
which has no explicit teacher. The weights are fixed except for

layer
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W G, lstlayer

1 2
output 3, G, (xy) [ (xy)
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output of ! N 4th layer
n
zx,y[Gl xy) (ﬁzlaka(x’y)ﬂ Lz

Fig. 2 Neural network used to calculate Gabor parameters
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the variable weights a,. These weights are updated using the
difference between the output of the fourth layer and the
output of the first layer. This is the value that was calculated
for the gradient descent. Hence this network can be used to
approximate the Gabor parameters.

To see why this is the case, we describe the precise architec-
ture of the network. The network has four layers and all the
nodes in the network have the identity function as their acti-
vation function. The nodes of the first, second and fourth
layers correspond to the n Gabor functions G;, i=1, ..., n.
The nodes of the input and the third layers are index by the
points (x, y) in the image.

The inputs to the first layer are the values of the pixels I(x,
y). The weight connecting to the first layer node correspond-
ing to G, from pixel (x, y) is G{x, y) so the output from this
node is Y, , I(x, ¥)G{x, ). This is part of the value that will
be required to update the approximation of the Gabor param-
eter. The output of the first layer are used to update the
Gabor parameters.

Each node G, in the second layer has one input which has
constant value (1) connected through a variable weight whose
strength is the approximated Gabor parameter for G;. This
means that nodes in the second layer produce the approx-
imated Gabor parameter for G, as outputs. The node for G, is
connected to the node corresponding to the pixel (x, y) in the
third layer with strength G,(x, y). The output of node (x, y) in
the third layer is then ) 5, @, Gy(x, ¥).

The strength of the connection from node (x, y) in the third
layer to the node G, of the fourth layer is G(x, y). The output
of node G, in the final layer is then Y, , [(Yi_, 4, Gix,
y)G(x, y)] which is the other part of the expression required
to update the approximated value of the Gabor parameters.

The input weights to the nodes in the second layer (Gabor
parameter approximations) are then updated by the difference
between the outputs of the first and the fourth layers. This
corresponds exactly to gradient descent.

constant input values of 1

gabor parameters

| | |

XIXIXIX

image 1(x,y)

1 variable Iwmgh(sI |

Fig. 3 GBP network which mimics Daugman's network

The equivalence: To demonstrate the equivalence it is suffi-
cient to construct the GBP network that mimics Daugman’s
iterative approximations of the Gabor coefficients. This
network is given in Fig. 3.

The network consist of two layers. All the nodes have the
identity function as their activation function. The nodes in the
first layer correspond to the set of Gabor functions. Each
node has only one input which is the approximate Gabor
parameter for that Gabor function. Each of the nodes in the
first layer is then connected to the second layer whose nodes
correspond to the pixels of the image. The strength of the
connection between Gabor node G; and pixel node (x, y) is
fixed as G{x, y).

The network is then trained in the standard GBP fashion.
All of the inputs to the network are fixed at strength one.
Ordinary back-propagation is then performed. But the only
weights for which learning takes place arc the weights to
nodes in the first layer, which are the approximate Gabor
parameters.

It is a simple matter to calculate the effect of this learning
on the approximate Gabor parameter g; for Gabor function
G;. The change in the value g; is

2 T 6 $ aGits = 165 )
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per iteration. Taking a = 1 gives exactly the same update as
the Daugman rule for the approximated Gabor parameters.

Conclusion: The Daugman specific architecture for calculating
the Gabor parameters is a special case of the more general
GBP architecture.

As the GBP architecture optimises some of the calculations
involved in determining optimum Gabor parameters it is also
more efficient than the corresponding Daugman network.
Suppose there is an image of N pixels that are encoded using
M Gabor parameters. Suppose further that K of the numbers
Gyx, y) for all i and pixels (x, y) are nonzero. If all of these
values are nonzero the K = MN. In any case there will be K
connections from each Gabor layer to each pixel layer in both
networks.

The GBP update now requires K multiplications and K
additions for both the feed-forward pass and for the feedback
pass and for the feedback pass. Hence 2K multiplications and
2K additions are required together with the N subtractions at
the image layer.

For Daugman’s method K multiplications and K additions
are required for the computation of the output at the first
layer. Similarly K multiplications and K additions are
required for the computation of the outputs of both the third
and fourth layers. An additional M subtractions are also
required to compute the differences between the first and
fourth layer outputs. So for Daugman’s method 3K multipli-
cations and 3K + M additions are required. This is K multi-
plications and K + M — N additions more than the GBP.
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TWO-SECTION DISTRIBUTED FEEDBACK
LASERS FOR INCOHERENT
FREQUENCY-SHIFT-KEYING TRANSMISSION
SYSTEMS

Indexing terms: Lasers and laser applications, Frequency shift
keying, Optical fibres

Fabrication and performance characteristics of two-section
distributed feedback lasers operating at 1-55um are present-
ed. Using this type of laser, a 622Mbit/s incoherent
frequency-shift-keying system over a 40km fibre has been
demonstrated with a receiver sensitivity of —41dBm at a
BER of 1077,

Introduction: Two-section distributed feedback (2S-DFB)
lasers have been developed to achieve large wavelength tuna-
bility and uniform frequency modulation (FM) response that
are essential for frequency shift keying (FSK) transmission
system applications.!? A nonuniform FM response of a laser
under FSK modulation will result in a signal pulse distortion
at the receiver.>* It has been shown that conventional single-
electrode DFB lasers usually have an amplitude dip in their

ELECTRONICS LETTERS 2nd August 1990 Vol. 26 No. 16

FM response caused by a thermal effect. The amplitude dip
(also called thermal dip) is caused by the opposite phases of
the change in refractive index caused by thermal modulation
and carrier modulation.® The frequencies of the thermal dips
are typically between a few kilohertz and a few megahertz.
This frequency range is within the range of receiver bandwidth
for the transmission systems operating at a few hundred
Mbit/s to a few Gbit/s. Without appropriate equalisation, the
signal pulse (especially in a nonreturn-to-zero system) will be
distorted by the thermal dip of the laser under FSK modula-
tion. 28-DFB lasers are found to have more uniform FM
response with thermal dips located at much lower frequencies
(below one kiloHertz). The frequencies of the thermal dips are
essentially outside the receiver band. The pseudorandom FSK
signal generated from a two-section DFB laser can be
detected at the receiver with a minimal distortion. We report
the fabrication and performance characteristics of the
InGaAsP 2S-DFB lasers operating at the 1-55 um region and
their applications in a 622 Mbit/s incoherent FSK system.

antimelt back
tayer

1-:55 pm InGaAsP
{active layer)

InGaAsP
waveguide
p*-InGaAsP_] layer

P-InP.

St InP— o

N-IinP

Fig. 1 Two-section DF B laser structure

Device fabrication and performance characteristics: The
2S-DFB lasers are based on the capped-mesa buried hetero-
structure (CMBH).® A schematic diagram of the 2S-DFB laser
structure is shown in Fig. 1. The fabrication of the CMBH
lasers is described in detail in Reference 6. The lasers are
508 um long and the two sections are of equal length. The
isolation resistance between the two sections is greater than
1kQ. The front facet and the back facet have antireflection
coating (~ 1%) and high-reflectivity coating (~ 65%), respec-
tively.

The light output from front facet against bias current char-
acteristic of a laser at 20°C is shown in Fig. 2a. The front
section current is kept at 80mA, 100mA, and 120mA while
the back section current is varied from 0 to 80 mA. The typical
threshold currents of the lasers were in the range of 15 to
30mA when both sections are equally biased. The lasers
emitted at a single frequency with side mode suppression
ratios greater than 35dB up to power levels >20mW. Fig. 2b
shows the CW spectrum of the 2S-DFB laser used in the
system experiment. The bias currents of the laser are 80mA
and 70 mA for the front and the back sections, respectively.

For FSK type system applications, it is essential that lasers
exhibit reasonable FM sensitivities and uniform FM response
extending to the GHz range. The measured FM response as a
function of modulation frequency for a 2S-DFB laser is shown
in Fig. 3. The modulation current is applied to the front
section. Under this bias condition (I, =80mA and I, =
70mA), the frequency at which the amplitude of the FM
response dips is below 3kHz and the phase of FM response is
essentially flat for modulation frequencies in the 3kHz to
500 MHz range. To obtain high enough FM sensitivities and
thermal dips at low modulation frequencies (e.g., <10kHz) for
the lasers, the front section is biased high above threshold,
and the modulation current should be applied to the front
section.

CW spectral linewidths of several lasers were measured
using a test set employing the delayed self-heterodyne prin-
ciple. Fig. 4 shows the statistical data of the linewidth for
several lasers under the bias conditions such that reasonable
FM sensitivities (>200MHz/mA) and low FM dip fre-
quencies (< 10kHz) are obtained. The latter represents criteria
for lightwave FSK system application. It is found that 80% of
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