
The Linear Programming Algorithm for Neural Networks

John S. Shawe-Taylor and Dave A. Cohen

Department of Computer Science

Royal Holloway and Bedford New College

Egham Surrey TW20 0EX UK

16th June, 1989

For reprint requests contact John Shawe-Taylor at the above address. Tel: (0784) 439021.

Running title: Linear Programming Algorithm

1

The Linear Programming Algorithm for Neural Networks

Abstract

A new learning algorithm for feed-forward neural networks based on linear program-

ming is introduced. This alternative to back-propagation gives faster and more reliable

learning on reasonably sized examples. Extensions of the method for efficient (approxi-

mate) implementations in large networks are considered.

Keywords: Neural networks, back-propagation, learning, feed-forward, linear program-

ming algorithm, parallel distributed processing, network simulations.

2

1 Introduction

Back-propagation using the generalised delta rule was introduced as the solution to the

credit-assignment problem which existed for threshold neurons [Ru-Hi-W86], thus opening

up the possibility of learning in multi-layer perceptron networks. Back-propagation (BP) is

an efficient method of calculating the partial derivatives of the error with respect to changes

in the weights, and then using a gradient descent algorithm which changes the weights in

the direction of fastest error reduction over all stimuli simultaneously. The algorithm is

criticised by Minsky and Pappert [Mi-Pa88] since not only is there no guarantee that the

algorithm will not get trapped in a local minimum, but also it is not clear that it represents

a significant speed up over random weight assignments in realistically sized examples.

These criticisms are, perhaps, overstated. Though local minima do exist [He88], they

seem in most cases not to be a problem. The PDP book [Mc-Ru86] does present many

interesting examples where the BP algorithm has successfully learnt certain representa-

tions. There are, however, causes for concern when for one reasonably small example the

method is reported to work in only 95% of the initial conditions tried.

Failures are usually reported for discrete problems, that is those whose input-output

specification pairs are all 0,1 vectors. This means that their solutions can only ever be

approximated by finite weight assignments. In these cases back-propagation can tend in

the wrong “direction” in weight space, allowing at least one of the errors to grow rather

than decrease.

Motivated by this observed problem, this paper derives a new learning algorithm by

specifying that the local weight changes must not allow any of the errors to increase. The

resulting algorithm is called the Linear Programming Algorithm, since at each iteration a

linear programme must be solved. That it solves the incorrect direction problem mentioned

above is borne out by examples. Use of a linear programme has been made for learning in

spin-glass-like neural networks [Kr-Me87] in order to maximise basins of attraction, but

the authors are unaware of its application to feed-forward Networks. The new algorithm

is also a gradient descent algorithm, but is seen as more circumspect about the route

down it takes. Any local minima will be as acute a problem for the new algorithm as

for back-propagation. Indeed we are able to characterise when the new algorithm fails to

3

find a solution. This characterisation suggests that for non-correlated inputs the number

of presentations can be as large as the number of edges divided by the number of output

nodes. For inputs with significantly inter-correlated groups which are required to give the

same output (e.g. all examples of one pattern in a classification problem) the number will

typically be higher.

The paper has a short second section introducing notation for feedforward networks

followed by the main section which develops the Linear Programming algorithm. In sec-

tion 4 some experimental results obtained using the new algorithm are described. This

is followed by a forward looking section suggesting ways in which the algorithm might

be efficiently approximated and hence realistically implemented for large networks. The

paper finishes with some general observations.

2 Definitions

At each time instant all PDP units in our model have an output value associated with

them that is a function of the inputs to that unit. This output is computed by passing a

weighted sum of the unit’s inputs through the unit’s activation function. Each unit has a

distinguished input that always has value 1, called the threshold input. The following is

a formal notation for these systems.

We will assume for simplicity that the activation function is the same function for

all nodes of the network and we denote the function by f . Note that all of the following

theory would still apply if each unit had a distinct activation function. So we have

f : R → I,

which is traditionally a monotonic function where R denotes the set of real numbers and

I a finite interval on the real line. This interval is usually taken as [0, 1] or [−1, 1]. A

network N = (N, I, O, n0, E) is specified by disjoint sets N and I of nodes, where I will

be the input nodes, and a subset O ⊆ N of output nodes and a node n0 ∈ I, called the

threshold node. The connectivity is given by a set E ⊆ (N ∪ I)×N of connections, with
{
n0

}×N ⊆ E, that is all non-input nodes are connected to from the threshold node.

4

With network N we associate a weight function on the set of connections:

w : E →R.

We say that the network N is in state w.

For notational convenience choose a numbering for all nodes and refer to each node

by its number. For a connection (i, j) ∈ E we denote w(i, j) by wji. It is often convenient

to form a square matrix W of weight values with rows and columns indexed by the set N

of nodes. The entries in the matrix are given by

Wji =
{

wji; if (i, j) ∈ E,
0; otherwise.

Note that weight values associated with connections from input nodes do not occur in this

matrix.

For the purposes of this paper we will assume throughout that if node i is connected

to node j then j > i. Such a numbering can always be found provided the network is

cycle free. This is the feedforward condition on the connectivity and though much of the

analysis can be applied, the practical problems of stability without this condition are not

addressed. This feedforward condition implies that the matrix W is lower triangular with

zero diagonal.

At a given time the input values to the whole network are specified by a function i

from the set of input nodes other than n0 to I:

i : I \ {
n0

} → I.

Each node also has an output value associated with it at each time instant. These values

are given by the function:

o : N ∪ I → I.

For notational convenience whenever a function takes values on nodes we often write

the argument as a subscript. Having introduced the notation we can now formulate the

well known equations governing the inputs, outputs and intermediate values in a network.

The value of the weighted sum of the inputs to each node of N is given by a function u:

u : N →R,

5

where

uj =
∑

(i,j)∈E

wjioi, for j ∈ N .

The outputs of individual nodes are then given by:

oj =





ij ; if j ∈ I \ {
n0

}
,

1; if j = n0,
f(uj); if j ∈ N ,

and the outputs of the whole network are given by:

oj = oj , for j ∈ O.

Given the feedforward condition the network N always determines a function

FN : R|E| × I |I|−1 → I |O|,

given by

FN (w, i) = o.

Provided that the activation function f is differentiable this function will also be.

3 Linear Programming Algorithm

This section develops some of the theory of learning in feedforward networks necessary

to derive the Linear Programming algorithm. We begin with a subsection on learning in

networks before introducing the new ideas in the second subsection ‘Derivation of the

Linear Programming Algorithm’.

6

3.1 Learning in Networks

When specifying the behaviour required of a network we generally give a sequence of

inputs with corresponding required outputs. These response pairs are indexed by a set

P of presentations. Hence for p ∈ P , ip is the input vector and op is the corresponding

output vector. We call a set of presentations discrete if the input and output vectors all

have values only 0 or 1.

For a given network N and presentation p, there is an error vector

ep = FN (w, ip)− op.

By learning in a network we mean modifying the state (weight function) of the net-

work. The central aim of a learning algorithm for network N and set P of presentations

is to choose the weight function w so as to minimise in some sense the error vectors ep for

all presentations p ∈ P .

The back-propagation algorithm is a gradient descent method used to minimise the

scalar error function
∑

p∈P

‖ep‖22.

Rather than commit ourselves to this particular error function we prefer to evaluate

the partial derivatives of the individual components of the error function. We can then

combine them to recover the back-propagation algorithm if we wish, but at the same time

have greater insight into how the different presentations are contributing to the weight

changes.

Taking partial derivatives with respect to wlk and letting

∆jl =
1
ok

∂uj

∂wlk
, (A)

we obtain that ∆jl satisfies

∆jl =
∑

(i,j)∈E

wjif
′(ui)∆il + δjl, ∀j,

and is independent of k. Hence if D is the square diagonal matrix with entries Dii = f ′(ui),

for i ∈ N , and ∆l is the vector with entries ∆jl, and ul is the unit vector with l-th entry

1, we can rewrite the above equation in matrix form:

∆l = WD∆l + ul.

7

Letting ∆ be the matrix with entries ∆jl, this gives us the equation:

∆ = WD∆ + I

or (I −WD)∆ = I.

Since I −WD is a lower triangular matrix with unit diagonal it is non-singular and ∆ is

its inverse. Using this inverse for ∆, if s and t satisfy the equation sT D∆ = tT , then

sT D = tT (I −WD).

As (I −WD) is lower triangular, we can evaluate t from s by the equations

ti = f ′(ui)


si +

∑

(i,`)∈E

w`it`


 , for i ∈ N, (B)

in decreasing order of index, since t` appears on the right hand side only if ` > i.

This allows us to evaluate the partial derivatives of the outputs at individual nodes

with respect to each weight in the network:

1
ok

∂oj

∂wlk
= f ′(uj)

1
ok

∂uj

∂wlk

= f ′(uj)∆jl by (A)

= (uj)T D∆ul.

Using the above method of evaluation we can write

∂oj

∂wlk
= okt

j
l ,

where by (B), t is given by the equations:

tj
i = f ′(ui)

(
δij +

n∑

`=i+1

w`it
j
`

)
for i ∈ N. (Y)

With this general derivation we can derive the generalised delta rule of back-

propagation as
∂‖e‖22
∂wlk

= 2oktl,

where t is given by:

ti = f ′(ui)

(
ei +

n∑

`=i+1

w`it`

)
for i ∈ N.

and it is understood that the error vector e has been extended to have an entry for each

node, the entries for non output nodes being 0.

8

3.2 Derivation of the Linear Programming Algorithm

As mentioned in the introduction a problem encountered by the back-propagation algo-

rithm when solving discrete problems for which exact solutions lie “at infinity” in weight

space is that as the weights increase one error can in fact tend to one rather than zero.

This can be thought of as a local minimum at infinity. To overcome this problem we

suggest that individual errors should not be allowed to increase. If the weight changes are

given by δw, we require that

(FN (w + δw, ip)j − op
j)

2 ≤ (FN (w, ip)j − op
j)

2.

We will take a local first order approximation to this inequality:

∑

(k,l)∈E

∂(ep
j)

2

∂wlk
δwlk ≤ 0

for all j ∈ O and p ∈ P , where δwlk is the small change made to the weight on the edge

(k, l). The weight changes must be restricted in order to minimise second order effects:

|δwlk| ≤ εlk,

where εlk are small non-negative quantities. Our learning requirement is to minimise

some overal measure of error subject to the above constraints. Choosing the 2-norm and

simplifying the expressions using the results of the previous section gives the following

linear programme K:

Subject to:
∑

(k,l)∈E

−op
kt

pj
l δwlk ≥ 0, ∀p, j;

δwlk ≥ −εlk, ∀(k, l) ∈ E;

−δwlk ≥ −εlk, ∀(k, l) ∈ E;

minimise
∑

(k,l)∈E


∑

p∈P

op
kt

p
l


 δwlk;

where tpj
i = f ′(up

i)


ep

jδij +
∑

(i,`)∈E

w`it
pj
`


 ; ∀p, j, i;

and tp
i =

∑

j∈O

tpj
i = f ′(up

i)


ep

i +
∑

(i,`)∈E

w`it
p
`


 ; ∀p, i.

9

We should emphasise that the solution of the linear programme K gives us the δwlk

which are small local changes to the weights satisfying the requirement that none of the

individual errors should increase and subject to that constraint maximising the overall

reduction in the error. As such they cannot be more accurate than the local information

from which they are calculated. We should also discuss the difference between our use

of a linear programme to solve local optimisation in a multi-layer network and the linear

programme formulation of the single layer perceptron problem given in [Du-Ha73].

Duda and Hart use a linear programme to determine when a set of samples are not

linearly separable, that is when the perceptron convergence algorithm will fail. They also

give a linear programme formulation for choosing a good approximation when a separable

(exact) solution does not exist. This suggests that the perceptron convergence theorem

might be used to deliver an approximate solution to a general linear programme. In

Section 5 we will propose this as a way of approximating our algorithm on large networks

where it may be impractical to obtain an exact solution of the linear programme.

Setting δwlk = 0 for all (l, k) ∈ E is a (trivial) feasible solution of the LP and since

the feasible region is clearly bounded there is always an optimal solution. This programme

is more easily solved by transforming to the dual LP which we denote K∗:

πpj ≥ 0; ∀p ∈ P, j ∈ O;

π+
lk ≥ 0; ∀(k, l) ∈ E;

π−lk ≥ 0; ∀(k, l) ∈ E;
∑

p,j

πpj(−op
kt

pj
l) + π+

lk − π−lk =
∑

p

op
kt

p
l ; ∀(k, l) ∈ E;

maximise
∑

(k,l)∈E

− (
π+

lk + π−lk
)
εlk.

In order to investigate when the linear programme K has a non-trivial solution con-

sider the |P ||O| vectors xpj of dimension |E| defined by

xpj
e = op

kt
pj
` , where e = (k, l) ∈ E.

We can characterise the behaviour of K in terms of these vectors as the following propo-

sition demonstrates.

Proposition 3.2.1 : The trivial solution to K is optimal if and only if there is a strictly

positive linear combination of the vectors xe equal to 0.

10

Proof : If the trivial solution is optimal then the value of the optimal of the dual LP is

also 0. Hence
∑

(k,l)∈E

−(π+
lk + π−lk)εlk = 0,

and since εlk > 0 and π+
lk + π−lk ≥ 0 for all (k, l) ∈ E, we have π+

lk = π−lk = 0. In this case

∑

p,j

πpj(−op
kt

pj
l) =

∑
p

op
kt

p
l

=
∑

p,j

op
kt

pj
l ,

so
∑

p,j

(πpj + 1)op
kt

pj
l =

∑

p,j

(πpj + 1)xpj
e

= 0, for all e = (k, l) ∈ E.

Since πpj + 1 > 0 and we have a strictly positive linear combination of the vectors xpj as

required.

Now consider a strictly positive linear combination of the xpj which sums to 0.

∑

pj

ηpjxpj = 0.

Choose λ > 0 such that ληpj ≥ 1 for all p, j and set πpj = ληpj − 1 ≥ 0. Then since

∑

p,j

πpj(−op
kt

pj
l) =

∑

p,j

(ληpj − 1)(−op
kt

pj
l)

= −λ
∑

p,j

ηpjxpj
e +

∑

p,j

op
kt

pj
l

= 0 +
∑

p

op
kt

p
l ,

we can set π+
lk = π−lk = 0 to obtain a feasible solution of K∗ having a cost of 0. But the

cost of K∗ is
∑

(k,l)∈E

−(π+
lk + π−lk)εlk ≤ 0

and so the feasible solution we have found is also optimal, implying that the optimal value

of K is also 0. Hence the trivial solution of the primary is an optimal solution.

This proposition is very encouraging. Provided we have more edges than the product

of the number of presentations and output nodes and that the presentations are not in

11

some sense degenerate, the vectors will not be linearly dependent. So in this case there will

certainly not be a positive linear combination equal to zero, and so the linear programme

will have a non-trivial solution.

It also gives an indication of how extra presentations, which are “similar” to existing

ones, might be correctly processed if they were required to give the same output as the

existing presentation. This is precisely generalisation. This will occur if the vector xpj

for the new presentation is in approximately the same “direction” as for the existing

presentation (this will be our definition of “similar”). The new vector will be very unlikely

to allow the creation of a positive linear combination equal to zero if one did not already

exist. So addition of “generalised” presentations will not affect the existence of a non-

trivial solution for the linear programme, at least in that locality of weight space. In

this way a network with a particular weight assignment can be seen to confer on the

space of possible presentations some similarity metric which may be used to characterise

generalisation. This promises to be a very fruitful avenue for theoretical investigation of

some of the more elusive properties of neural networks.

4 Experimental Findings

We have implemented a flexible simulation package which allows the user to interac-

tively change between the standard back-propagation learning algorithm and the linear

programming algorithm introduced above. Further it allows interactive manipulation of

the network for experimentation. This section is intended to describe some of the experi-

mental results obtained using this package.

Example 4.0.1 : The neural network was required to recognise parallel line classes in

the affine plane over the field of 2 elements.

This problem was given to a network with 4 input nodes and 2 hidden nodes and one output

node. If the 4 input nodes are arranged as a 2 × 2 grid then the first two presentations

are the two horizontal lines and have output 0, the second two presentations are the two

diagonal lines and have output 1 and the final two presentations are the vertical lines,

12

having again output 1. This problem was chosen as particularly difficult (although clearly

very small) since it is a generalisation of the “exclusive or” problem.

Using the standard back-propagation algorithm (BP) we found that starting with random

weights in approximately half of the learning trials the network converged to one which

did not solve the problem. Using the linear programming algorithm (LP) all of the errors

always tended to zero and the learning took far fewer iterations, typically 20 rather than

500 for BP.

In the case where BP fails to converge to a correct solution at least one error tends to

one. In this case BP was allowed to run for 500 iterations until the large error was about

0.999992. At this point the LP algorithm was engaged for just 30 iterations. The largest

error was reduced to about 0.998. The BP algorithm was now reengaged and all of the

errors converged to zero.

Further experiments were performed by increasing the number of hidden nodes (with full

connectivity) to 15. The LP algorithm solved the problem in even fewer iterations (though

of course each iteration took several minutes of microvax time), while BP is still just as

unreliable.

Example 4.0.2 : The neural network was required to distinguish between parallel line

classes in the affine plane over the field of three elements.

This problem was given to a network with 9 input nodes, 3 hidden nodes and one output

node. There were in all 12 presentations corresponding to the 12 lines in the affine plane.

These lines fall into four parallel classes each consisting of 3 lines. Two of the classes

were required to have output 1 and two were required to have output 0. This problem is

strictly more difficult than XOR because no pair of input nodes gives enough information to

determine the output (order 3). Again the BP algorithm converged to incorrect solutions,

but the LP algorithm always produced a correct solution. We found that, in this case also,

LP can be used to “correct” the back-propagation process.

Example 4.0.3 : The Neural network was required to distinguish between digits on a

20 pixel retina.

This problem was solved with two different network configurations. The first was a fully

13

connected network with 20 input nodes, 16 hidden units and 10 output nodes. All possible

connections except those between input and output nodes were allowed, giving a total

of 600 weights. The second network had two hidden layers containing 20 and 6 units

respectively. Here the total number of weights was 580. There were 3 versions of each

digit used in the experiment, giving 30 possible presentations, see Figure 1.

— Figure 1 about here —

Using back-propagation the problems of faulty convergence were experienced on some

outputs even when only the first 10 of the 30 presentations were presented. With the

Linear programming algorithm convergence with only 10 presentations was fast (about

15 iterations for the fully connected network and 38 for the layered network, with each

iteration about 1.5 minutes of CPU on a VAXstation 3500 using the NAG library routine

E04MBF to solve the linear programme).

When a further 10 presentations were added into the training set and training was

continued, the layered network redressed the balance needing a further 25 iterations (iter-

ations now took approximately 6 minutes of CPU) to converge while the fully connected

network needed 42 iterations. The last 10 presentations were used to test generalisation

with extremely noisy input. The fully connected network performed worse making a good

guess for 5 of the 10 digits (1, 2, 3, 6, 9), while the layered network made a correct guess

for 6 (3, 5, 6, 7, 8, 9).

For a discussion of the significance of these results the reader is refered to the con-

cluding section. The next section addresses the problem of implementing the linear pro-

gramming algorithm efficiently.

14

5 Implementation Strategies for the Linear Programming Algorithm

The linear programming algorithm appears to exhibit impressive behaviour on small

but difficult examples. Its efficiency on large examples is difficult to test because the size

of the linear programme increases very rapidly with network size. For example, a fully

connected network with 100 nodes (about 5000 edges) would require a matrix with over

50000000 entries to solve the linear programme. Apart from the space requirements it is

also unclear how the time taken scales up with number of presentations and number of

edges. The experimental experience was that the more critical dependency was on the

number of constraints, that is the number of presentations times the number of outputs.

Note that the linear programme should be solvable provided this number does not exceed

the number of edges. When this number doubled from 100 to 200 in Example 4.0.3, the

time taken for each iteration quadrupled.

One obvious economy to make is to combine the errors from the separate outputs

of a presentation so that only one back-propagation is performed per presentation and

only one constraint is added. Though this will allow processing of a larger number of

presentations, experience with Example 4.0.3 showed that the same problem occurred as

with standard back-propagation, namely one or more individual output errors increased,

though the overall error for the presentation decreased.

Thus it would seem that for larger networks both the space and time constraints make

the linear programming algorithm intractable. In this section we discuss ways in which

the algorithm or approximations to it might be used on larger problems and networks.

We will mention three techniques, presenting them in increasing order of adherence to the

original Linear Programming algorithm.

Approach 5.0.1 : Monitored Back-propagation

A first approach follows only loosely the spirit fo the original requirement put on the linear

programming algorithm, namely that at each iteration all of the errors are reduced. Stan-

dard back-propagation is applied to the network and the individual errors are monitored.

All individual errors which increased during an iteration are recorded. The presentations

with these increased errors would be back-propagated at the next several iterations until

15

the errors were reduced to their original values. Once this had been achieved (this should

be possible provided the original step size was sufficiently small), global iterations could

be continued. We call this method monitored BP.

Approach 5.0.2 : Perceptron Linear Programming

The second approach is more faithful to the algorithm and involves replacing the exact

solution to the linear programme with an approximate one. It involves an application of

the perceptron convergence theorem of Rosenblatt [Ro59]. For this reason it will be called

Perceptron LP. The constraints of the linear programme define hyperplanes:

∑

(k,l)∈E

−op
kt

pj
l δwlk ≥ 0, ∀p, j,

and solving the linear programme involves finding a weight vector which satisfies all of

these inequalities. But this is precisely what the perceptron convergence theorem does,

provided there exists some η > 0 and a unit weight vector satisfying

∑

(k,l)∈E

−op
kt

pj
l δwlk ≥ η, ∀p, j.

This requirement is stronger than that required for solution of the linear programme, since

there may exist non-trivial solutions which leave some errors unchanged. For practical

purposes, however, it will probably be sufficient to require that errors do not increase by

more than some η > 0 and convergence can be expected even if the second inequalities

above cannot be satisfied. Once a solution of the inequalities has been found using the

perceptron convergence algorithm, we can multiply it by a scalar factor so that for each

component δwlk we have −εlk ≤ δwlk ≤ εlk. The resulting weight change vector will be a

feasible solution of the linear programme and so will reduce each of the individual errors,

thus resulting in an overall reduction in error. Naturally, this solution will not generally

be the optimal solution of the Linear Programme.

In this application the perceptron convergence algorithm initialises the weight change

to some value. The obvious choice in this case is that given by the standard back-

propagation algorithm. We then iterate through the presentations (leaving the network

weights unchanged but updating the proposed changes) and test the predicted change in

the errors from the proposed changes. If for any presentation the predicted change is that

16

the error increases the derivatives corresponding to that presentation are added into the

proposed change. The iteration terminates when the predicted change for all the presen-

tations is a reduction in the error. At this point the normalisation is performed and the

weight change implemented.

In order to save memory in a large simulation we do not expect to have all the deriva-

tives available in memory. By retaining the values tpj
l at each node we could significantly

reduce the storage required. If this is still too large a requirement, we could process a

subset of presentations. As a presentation came to satisfy the error reduction requirement

it would be removed from the set and an as yet unprocessed presentation could replace

it chosen using some fairness criterion. When all the presentations have been processed

we cycle through them once more to verify that subsequent changes have not affected the

earlier presentations. In this way we could effect a significant reduction in storage without

recomputing the derivatives each time a presentation is considered.

By accepting an approximate solution to the linear programme we have solved the

problem of the very large storage requirements of the standard linear programme solvers.

There is very little known about the time complexity of the perceptron convergence algo-

rithm, so that it is not clear if this technique is practical for large networks in terms of

time complexity.

Approach 5.0.3 : Structured Learning

The third approach to overcoming the time and space constraint of the large linear pro-

gramme is to present only a subset of all the presentations at each iteration. This set

might be selected by some random distribution or some grouping criterion designed to

place potentially conflicting inputs together. The linear programming algorithm would

then be applied to this subset using only a subset of the weights as variables. The subset

of weights that is used could again either be chosen at random or some account could be

taken of the relative importance of weights to the chosen presentations, probably measured

by the relative sizes of their derivatives.

The third technique can be given psychological justification as learning in context.

When biological brains learn new concepts they are usually learnt by comparing and

distinguishing with known objects. The structured learning suggested here applies that

same principle to Neural Network learning.

17

Clearly the problem of size and time complexity is overcome, but at the expense of

introducing a great many indeterminates as to how presentations and edges are selected.

The overall convergence is also further obscured. It seems, however, to be a fruitful avenue

of investigation, particularly in relation to introducing structure into the presentation

inputs.

6 Conclusions

Back-propagation is a very effective and useful learning scheme for feedforward net-

works. It does however suffer from being unpredictable. The main aim of this paper has

been to develop a similar (in the sense of using gradient descent) learning algorithm which

is more robust.

The linear programming algorithm appears to provide rapid convergence (in terms

of the number of iterations) and to converge reliably to a network that has learnt the

presented stimulus response pairs. The learning also appears to be better distributed over

the network resulting in the network having better degradation properties.

Using the LP algorithm it may be possible to learn more complicated problems with a

given network than is possible using back-propagation. This is because one solution to the

convergence failure of back-propagation is to increase the size of the network. In general

it is desirable to solve a problem with a network which is close to the minimum size, since

this will increase the chances of good generalisation.

The major criticism of the proposed linear programme algorithm is the time taken

to execute each iteration and the practicalities of execution for very large networks. This

criticism is, however, put in perspective when for example a three layer network set to

solve the XOR problem took 29 LP iterations as opposed to 12 million BP iterations. We

have presented three methods, the Monitored BP, the Perceptron LP and the Structured

Learning methods, all of which approximate the linear programming algorithm and which

would be practical for larger networks.

A comparison of these methods should be of interest as the first method emphasises

18

the non-increasing of errors aspect of the linear programming algorithm without doing

work to disambiguate the presentations, while the second method disambiguates the errors

but probably does not retain the large weight changes in all parts of the network typical

of standard LP. The last approach manages all aspects of LP but creates the problems of

how to group presentations and weights. This is in contrast to standard back-propagation

which typically moves weights in later layers of the network by greater amounts than those

in earlier layers.

19

References

[Du-Ha73] : Duda, Richard O. and Hart, Peter E. (1973). Pattern Classification and Scene

Analysis. John Wiley and Sons.

[He88] : Hecht-Nielsen, R. (1988). Theory of the Backpropagation Neural Network. Ab-

stracts of 1st Meeting of INNS.

[Kr-Me87] : Krauth, W. and Mezard, M. (1987). Learning algorithms with optimal stability

in neural networks, Journal of Physics A: Mathematical and General , 20, L745–

751.

[Mc-Ru86] : McClelland, J. L. and Rumelhart, D. (1986). Parallel Distributed Processing, Vols

1 and 2. MIT Press.

[Mi-Pa88] : Minsky, M. and Papert, S. (1988). Perceptrons, expanded edition. MIT Press.

[Ro59] : Rosenblatt, Frank. (1959). Two Theorems of Statistical Separability in the Per-

ceptron. In Proceedings of a Symposium on the Mechanisation of Thought Pro-

cesses (pp. 421–456). Her Majesty’s Stationary Office: London.

[Ru-Hi-W86] : Rumelhart David E., Hinton, Geoffrey E. and Williams, Ronald J. (1986). Learn-

ing representations by back-propagating errors. Nature, 323.

20

