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Automorphism Groups of Primitive Distance-Bitransitive Graphs are 
Almost Simple 

JOHN SHA WE-TAYLOR, 

1. INTRODUCTION, DEFINITIONS AND INITIAL RESULTS 

We apply a result of Praeger, Saxl and Yokoyama [4] concerning the automorphism 
groups of primitive distance-transitive graphs to primitive distance-bitransitive graphs. 
Imprimitive distance-bitransitive graphs are discussed in Section 2. One of the cases of the 
Praeger, Saxl and Yokayama Theorem is considered in Section 3 and the following main 
result is proved in Section 4. 

THEOREM 1.1. If (T, G) is a primitive distance-hitransitive pair, then T is almost simple. 

We begin with the definition of a distance-bitransitive graph. Let G be a graph. By VG 
we denote the vertex set of G and by EG the edge set. For u, v in VG we write u '" v if (u, v) 
in EG. With dG(u, v) = d(u, v) we denote the usual distance in G between vertices u and v. 
The complement of a graph G is a graph GC with VG C = VG and u '" v in GC if u ,..., v in 
G. The subdivision graph S(G) of a graph G has vertex set VS(G) = VG u EG, and 
adjacency between elements of VG and elements of EG incident in G. Let A(G) denote 
the usual adjacency matrix of a graph G. The set of eigenvalues of a square matrix 
M is denoted by A(M). We also write A(G) = A(A(G)) for the set of eigenvalues of a 
graph G. 

A pair (T, G) where G is a connected graph and T a subgroup of aut(G), is distance
bitransitive if G is a nonregular, not complete bipartite graph with bipartition A u B = VG 
satisfying that for any four vertices u, v, u', v ' with u and u' both in the same part and 
d(u, v) = d(u', v'), there exists an automorphism g in Tsuch that (u)g = u' and (v)g = v'. 
A graph G is also called distance-hitransitive if the pair (aut(G), G) is distance-bitransitive. 

A distance-bitransitive pair (T, G) is imprimitive if either the permutation group (T, A) 
or the permutation group (T, B) is imprimitive. Note that T fixes A setwise as vertices in 
B have different degree to those in A. For a graph G we denote by G(k) the graph with vertex 
set VG and adjacency defined by u '" v iff dG(u, v) = k, for u, v in VG. 

We now define a distance-regularised and distance-biregular graph as introduced in [2]. 
For v in VG and i in N, G;(v) denotes the set of vertices at distance i from v. For u 
in VG and v in G;(u) we write c(u, v) = IG;_,(u) n G,(v)l, b(u, v) = IGi+,(u) n G,(v)l, 
a(u, v) = IG;(u) n G, (v)1 and k;(u) = IG;(u)l. 

We are interested in vertices u in VG for which the numbers b(u, v), a(u, v) and c(u, v) 
are independent of the choice of v in G;(u). In this case we say u is distance-regularised and 
we denote b(u, v), a(u, v) and c(u, v) by h;(u), a;(u) and c;(u). Let d be the diameter of G. 
Then the array: 

i(u) 

187 
0195-6698/87/020187 + II $02.00/0 

Cd_'(U) cAu) 1 
ad_' (u) ad(u) 

hd_,(u) * 
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is called the intersection array for u, and the matrix: 

o o 
bo(u) al (u) 

o bl(u) 

I(u) o 0 

bd_2(U) ad_1 (u) ciu) 

o bd_l(u) aiu) 

is called the intersection matrix for u. In the matrix we omit last rows and columns if they 
are identically zero. 

We will call a connected graph in which every vertex is distance-regularised a distance
regularised graph. A special case of distance-regularised graphs are bipartite distance
regularised graphs in which vertices in the same partition or colour class have the same 
intersection array. These graphs are called distance-biregular. It is shown in [2] that 
distance-regularised graphs are distance-regular or distance-biregular. 

Unless explicitly stated, we use the following standardised notation for a distance
biregular graph. Sets A and B denote the colour partition of VG, d is the diameter of G, u 
is a vertex in A and has intersection array: 

[ 

* c2 · .. Cd] 
o 0 0 ... 0 

r b l b2 * 
i(A) or just 

v is a vertex in B and has intersection array: 

The corresponding intersection matrices are denoted by I(A) and I(B) respectively. Note 
that deg(u) = rand deg(v) = s. We denote with kj the numbers IGj(u)1 and with Ii the 
numbers IGj(v)l, i = 0, ... , d. Note that Id_1 #- 0 and kd_1 #- 0 though one of Id and kd 
may be zero. 

Distance-bitransitive graphs are clearly distance-biregular, as distance-transitive graphs 
are distance-regular. 

A special class of distance-regular graphs which we will refer to is that of (k, g)-graphs. 
These are distance-regular graphs with valency k, girth g and diameter 19l2J, which are also 
bipartite when g is even. The subdivision graphs of such graphs are distance-biregular 
(see [3]) and we meet an example of such a graph in Proposition 3.2. 

We will first give some examples of distance-biregular and distance-bitransitive graphs in 
order to show that they form an important and natural generalisation of distance-regular 
graphs. Two classes of distance-biregular graphs that we will only mention in passing are 
generalised polygons and the incidence graphs of partial geometries. The following two 
examples are of distance-bitransitive graphs. 

EXAMPLE 1. Consider a vector space V of dimension m over the Galois field GF(q), 
where q is a prime power. The vertices of the graph G are the k-dimensional and (k + 1)
dimensional subspaces of V with (X, Y) an edge in G if X ~ Y. To ensure G is not a regular 
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graph we require m #- 2k + 1 (in the case m = 2k + 1 the graph obtained is the q-analogue 
of the double cover of the odd graph Ok). The group GL(m, q) acts as a group of auto
morphisms on G and it is not hard to check that (GL(m, q), G) is a distance-bitransitive 
pair. The group GL(m, q) has simple socle PSL(m, q). 

EXAMPLE 1.3. It is well known that the 2-(21,5, 1) design consisting of the points and 
lines of PG(2, 4) can be extended to a 3-(22, 6, 1) design by adding an additional vertex to 
each line and a class of 56 ovals, determined by an equivalence relation on the set of all ovals 
in PG(2, 4) (an oval is a maximal set of points no three of which are collinear and the 
relation is given by 0 '" 0' if 10 (\ 0'1 = 0,2 or 6). The graph G has vertex set the points 
of PG(2, 4) and the 56 ovals of a chosen class. The pair (x, 0) is an edge of G if x is a point 
of the ovalO. The group PSL(3, 4) is a group of automorphisms of G as it is the vertex 
stabiliser of M22 , the automorphism group of the 3-(22, 6, 1) design. Using the fact that 
PSL(3, 4) acts transitively on quadruples of points, exactly three of which are collinear and 
that three non collinear points uniquely determine an oval vertex adjacent to them in G, we 
can check that the simple group PSL(3, 4) acts distance-bitransitively. 

The intersection arrays of G are: 

[
* 1 2 

6 15 4 
12 6J 
4 * 

and 
[

*1 

16 5 
4 6J 

12 * 

We being with a useful lemma on the relation between the two arrays of a distance
biregular graph. 

LEMMA 1.4. Let G be a distance-biregular graph with the standard notation. Then 
C2i +I C2i = hi+lhi and b2ib2i-1 = e2ie2i-l, for i = 1, ... ,rdl2l - 1. 

Proof. Let 1 ~ i ~ rdl2l - 1 and consider two vertices u, v with d(u, v) = 2i + 1 (~d), 
with u in A and v in B. We wish to evaluate the size of the set Gj(u) (\ G2i +I _/V). We claim 
that 

mj = IGj(u) (\ G2i +H (V)1 = (hi+1 ... hi+H)/(c, ... cj ). 

We prove the claim by induction on j. For j = 1, ml = hi+1 by the definition of the 
intersection numbers. Suppose the equation holds for smaller numbers thanj. Each vertex 
in Gj _1 (u) (\ G2i +2-/V) is adjacent tOhi+H vertices in G2i +I _/V) each of which lies in Gj(u), 
while each vertex in Gj(u) (\ G2i+H(v) is adjacent to cj vertices in Gj _1 (u), each of which 
lies in G2i+2-iv). Hence mj - Ihi+2-j = mjcj . Using the induction hypothesis the claim 
follows. But then m2i+1 = IG2i+I (U) (\ Go(v)1 = 1 and so (hi+1 .. . };)/(c, ... C2i+1) = 1, 
andhi+' ... }; = C2i +1 ... c,. AShi_' ... }; = C2i-1 ... c, #- 0, we haVehi+,hi = C2i+' C2i· 

To prove the second equation of the lemma we partition G2i (U), for u in A and 1 ~ i ~ 
rdl2l - 1, into two subsets, G2i (U) (\ G2i-l (v) and G2i (U) (\ G2i +1 (v), where v is a vertex 
adjacent to u. We now estimate k2i = IG2i (U)1 in two ways. Firstly in the obvious fashion 

k2i = (bob, ... b2i-l )/(c, C2 ... c2;) #- 0, as 2i < d. 

To get the second estimate we first prove a claim that 

nj = IGj+,(u) (\ G/v) I = (b t b2 . .. b)I(};h . .. jj). 

We again proceed by induction onj. Forj = 1 it is true by the definition of b, . Now assume 
it holds for integers less thanj. Each vertex in Giu) (\ Gj _1 (v) is adjacent to bj vertices in 
Gj+t (u) all of which are distance j from v. Each vertex in Gj +t (u) (\ Gj(v) is adjacent to jj 
vertices in Gj_l(v) all of which are distance j from u. Hence nj_,bj = njjj. Using the 
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induction hypothesis 

nj = (b l b2 ... bj)/Ud; ... jj). 

By the symmetry of the definition of a distance-biregular graph 

!Gj+I(V) n Giu)! = (e le2 ... e)/(clc2 . .. cj). 

Hence k2i = !G2i (U) n G2i _I(V)! + !G2i(U) n G2i +I(V)! 

blb2 · .. b2i - 1 + ele2 ... e2i 
f..h· . ·hi-I CIC2· .. C2i 

By the first part CIC2 ... C2i-1 = f..h·· ·hi_l,andsobobl ··· b2i _1 = blb2··· b2i - IC2i + 
el e2 ... e2i' and bl b2 ... b2i _l(bo - c2;) = el e2 ... e2i , or bl b2 ... b2i = el e2 ... e2i . For 
i > 1, blb2 . .. b2i - 2 = ele2 . .. e2i-2 =F 0 and so b2ib2i_1 = e2ie2i-1 as required. 

Lemma 1.4 shows that one array of a distance-biregular graph determines the other. This 
result was proved in [2], but the formulas of Lemma 1.4 give a much simpler connection. 
The next lemma will not be used in the paper but is presented to give some justification for 
the exclusion of regular graphs from our definition of a distance-bitransitive pair. 

LEMMA 1.5. A regular distance-biregular graph is distance-regular. 

PROOF. We prove by induction that i(A) = i(B). As G is regular of degree r = s, the 
first two columns in each array are identical. Suppose now that the arrays are identical up 
to and including the (2i - 1 )-st column. Then by Lemma 1.4 b2ib2i -I = e2ie2i -I' and 
so b2i = eu. As r = s this gives C2i = hi. But again by Lemma 1.4 C2i+IC2i = hi+lhi and so 
C2i + I = hi + I, yielding b2i + I = e2i + I and agreement of the next two columns of the inter
section arrays. 

LEMMA 1.6. The diameter d of a non regular distance-biregular graph is even. 

PROOF. Suppose w.l.o.g. that Giu) =F 0 for u in A. By arranging the rows and columns 
of the adjacency matrix A(G) of G so that the vertices of A precede those of B we obtain 
a block pattern: 

A(G) [;_'_~] 
with M an n x m matrix. Then rank (A(G)) :::::; 2 min (n, m) as at most this many rows may 
be linearly independent. As n =F m, A(G) is not full rank and so 0 is an eigenvalue of G. 
In [2] it is shown that A(G) = A(I(A)) U A(I(B)). But then 0 is an eigenvalue ofI(A) or I(B). 
But I(A) and I(B) both have zero diagonal and so 0 is one of their eigenvalues iff they have 
odd order. Suppose d is odd. Let v E Giu) =F 0. But then u in Giv) and as v in B both 
i(A) and i(B) have an even number of non zero columns. Hence I(A) and I(B) both have 
even order, a contradiction. 

It is shown in [3] that if G is a distance-biregular graph then G(2) is the disjoint union of 
two distance-regular graphs called the derived graphs of G. The following lemma presents 
an analogous result for distance-bitransitive graphs. 

LEMMA 1.7. Let (F, G) be a distance-bitransitive pair. Then G(2) is the disjoint union of 
two connected graphs D and E on each of which Facts faithfully and distance-transitively. 
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PROOF. Let A u B = VG be the bipartition of G. In G(2) no vertex of A is adjacent to 
a vertex of B. Hence G(2) is the disjoint union of two graphs D and E with VD = A and 
VE = B. For u, u' vertices in A, d(](2)(u, u' ) = dG(u, u' )/2. Similarly for v, v' vertices in B. 
So D and E are connected graphs and r acts transitively on pairs at a given distance apart 
in both D and E. It remains to show that the action of ris faithful. Suppose g in ris the 
identity on D. Let v in Band u\, .... , Us be the neighbours of v in G. Since g fixes 
u\, ... , u" (v)g is also adjacent to precisely u\, ... , Us' Suppose (v)g =1= v. Considering 
the intersection array for v we must have: 

[
* 1 

i(B) = 
s r-

So G = K,.s the complete bipartite graph excluded in our definition of a distance-bitransitive 
pair. We conclude that g fixes every vertex of G. Hence g is the identity and racts faithfully 
on D . Similarly r acts faithfully on E. 

Note that if (T, G) is an imprimitive distance-bitransitive graph then one of the distance
transitive derived graphs D or E of the lemma will also be imprimitive. It is a well known 
result of Smith [5] that an imprimitive distance-transitive graph is either bipartite or 
antipodal. This prompts the following generalisation of the definition of primitivity to 
distance-regular and distance-biregular graphs. Imprimitive distance-biregular graphs are 
the subject of Section 2. 

A distance-regular graph G of diameter d is antipodal if G(d) is disconnected. A distance
regular graph is primitive if it is neither bipartite nor antipodal, otherwise it is imprimitive. 
A non regular distance-biregular graph is primitive if both of its derived graphs are 
primitive, otherwise it is imprimitive. A non regular distance-biregular graph is antipodal if 
at least one derived graph is antipodal. 

The exclusion of regularity in these definitions is justified by Lemma 1.5. 

2. IMPRIMITIVE DISTANCE-BIREGULAR GRAPHS 

It is known that the intersection array of an antipodal distance-regular graph is 
'palindromic'. To be precise if a distance-regular graph G has intersection array 

[~, :: ... ::~: ;:] 
then G is antipodal if and only if h j = Cd_j, i = 0, 1, ... , d, i =1= 19/2J. The proof of this 
is in [1] though it is not explicitly stated there. This result means that one of the intersection 
arrays of an antipodal distance-biregular graph must be 'palindromic', as the next proposition 
makes explicit. 

PROPOSITION 2.1. Let G he a non regular distance-hiregular graph with derived graph D 
on vertex set VD = A. Then D is antipodal if and only if GAu) =1= 0 for u in A, and i(A) 
satisfies h j = Cd_ j, i = 0, I, ... , d, i =1= d/2. 

PROOF. (=» Suppose GAu) = 0. Then Cd_\ = s and the derived graph D has 
diameter d ' = d/2 - 1, as d is even by Lemma 1.6. Let D have intersection array: 

i(D) = [: :~ .. . :~]. 
h~ h; * 
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Then a~, = (Cd- 2(bd- 3 - 1) + bd- 2(Cd- l - 1»/c2 (see [3]). But Cd- l = s > 1. Hence 
ad' > ° and so b~ -# Cd' , and D is not antipodal. We conclude that Giu) -# 0. Suppose 
now that bj = Cd_j for j < i, for some i, I ~ i < d/2. This is true for i = I, as 
bo = Cd = r. We consider the possible parities of i separately. 

Case (a): i odd. Here bi_1b;/c2 = b(i-ll/2 = C(d/2l-[(i-ll/2) = c(d- i+ll/2 = Cd_i+l Cd_;/C2, 
as (i - 1)/2 -# ld'/2J. But bi- 1 = Cd- i+l and so bi = Cd-i as required. 

Case (b): i even. Here CiCi- 1/C2 = C;/2 = b(d/2l-(i/2l = b(d-il/2 = bd_ibd_i+, /C2, 
as d/2 - i/2 -# ld'/2j. But bi- 1 = Cd- i+l so Ci - 1 = bd- i+ 1, as bi_1 + Ci-l = S = Cd-i+l + 
bd- i + 1 • We conclude that Ci = bd_i and so bi = Cd_i' The result follows by induction. 

(<=) Let d' = d/2, the diameter of D as Giu) -# 0. Then 

Cd'_j, j = 0, 1, . .. , d' j -# ld'/2J . 

We conclude this section by showing that both derived graphs of a non regular distance
biregular graph cannot be imprimitive. 

PROPOSITION 2.2. Let G be a non-regular distance-biregular graph. Then at least one of 
the derived graphs is primitive. Suppose the derived graph E is imprimitive. Then one of the 
following holds: 
(a) G is the subdivision graph of E, which is a bipartite (k, g)-graph, 
(b) E is an antipodal, non-bipartite graph with diam(E) ~ diam(D) . 

PROOF. We consider first the case when G has vertices of valency two. 
Case (a): G has vertices of valency 2. The main theorem of [3] states that in this case G 

is the subdivision graph of one of its derived graphs, which is a (k, g)-graph. Let E be this 
derived graph. Then in the standard notation r = 2 and s = k the degree of E. The 
intersection array of the second derived graph D may be computed as: 

[2(k ~ k-2 k - 2 k - I 2(k ~ 3) 1 
I) k-I k - I k - 2 

if g is odd, 

[2(k ~ k - 2 k - 2 2(k ~ 2) 1 
I) k - I k - I 

if g is even. In no case is D bipartite, as we must have k = s > 2 = r for non-regularity. 
The only case when the array is antipodal is when k = 3, g = 3. This means that E is K4 
and G = S(K4)' E is primitive while D is antipodal and non-bipartite with diam (D) > 
diam (E). This is example (b) of the proposition, with D and E interchanged. For other 
values of k and g, D is primitive, while the (k, g)-graph E is imprimitive only if bipartite 
(g even). This is example (a) of the proposition. 

Case (b): G has no vertices of valency 2. It is immediate that both derived graphs contain 
triangles and so neither is bipartite. If derived graph E is antipodal, then diam (E) = d/2 
by Proposition 2.1. But for the second derived graph D, diam (D) ~ d/2 and so diam (E) ~ 
diam (D). Hence it remains to prove that both derived graphs cannot be antipodal. Suppose 
this to be the case. By Proposition 2.1 both intersection arrays for G are 'palindromic' with 
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Gd(u) and GAv) non-empty for u in A, v in B. 
Let 

and 

[

* J; 
i(B) = 

s e l 

where [ = d12. Consider first [ odd. H~re by Proposition 2.1 and Lemma 1.4 b/c/_ , = e/ft_1 
and C/C/_ I = ftit - I' Adding we obtain c/_,(b/ + c/) = ft_l(e/ + ft) and soit_,/c/_ , = sir. 
Butthen bt/e/ = ft_,/c/_ , = sir. For [even b/_,b/ = e/_,e/and b/_,c/ = e/-lft, by Lemma 1.4. 
Adding we have b/_,(c/ + b/) = e/_ I (e/ + ft) and so b/_,le/_ , = sir. Now suppose that for 
some 2i + 1 ::::;; [, b2i+,le2i+, = sir. As C2i + 1 + b2i +1 = sand e2i +1 + hi+1 = r, we have 
C2i+ I Ihi+ I = (s - b2i+,)/(r - e2i+l) = sir. Then as C2i+I C2i = hi+lhi,J;dc2i = c2i+,lhi+, = 
sir, and as e2i + hi = s, while b2i + C2i = r, we have e2db2i = (s - hi)/(r - e2i) = sir. 
Further as b2i _Ib2i = e2i-Ie2i, b2i-,le2i-, = e2;/b2i = sir. Hence by induction b,lel = 
(s - 1)/(r - 1) = sir and so r = s, a contradiction. 

3. DISTANCE-BIREGULAR GRAPHS WITH HAMMING DERIVED GRAPH 

In this section we consider which non-regular distance-biregular graphs have the 
Hamming graph H(d, q) or its complement when d = 2 as one of their derived graphs. 
These results will be used in Section 4. 

First we define the Hamming graph H = H(d, q). H has vertex set the d-vectors over a 
q-element set X, d, q > 1. Two vectors are adjacent in H if they differ in precisely one 
component. 

The following lemma relating the two derived graphs of a distance-biregular graph will 
prove useful in this section. 

LEMMA 3.1. Let D and E be the derived graphs of a distance-biregular graph G with 
VD = A. Suppose G4 (u) "# 0, for u in A. Then the vertices of E correspond to maximal 
cliques in D. 

PROOF. Consider a vertex v E B = VE as a vertex of G. Its neighbours UI, ••• , Us will 
form a clique in the derived graph D. We must show that this clique is maximal. Suppose 
a further vertex u is adjacent to each of ul , ••• , Us in D. Now v is distance 3 from u in G, 
but every neighbour of v is distance 2 from u. Hence C3 = sand Giu) = 0, a contradiction. 

PROPOSITION 3.2. The only distance-biregular graph with Hamming derived graph is 
S(Kq,q), the subdivision graph of Kq,q. This graph is imprimitive and has derived graph H(2, q). 

PROOF. Suppose G is a distance-biregular graph with derived graph D on vertex set A 
isomorphic to H(d, q). By Lemma 3.1 the vertices of the other derived graph E correspond 
to maximal cliques of H(d, q) as G4 (u) "# 0, for u in A. The maximal cliques of H(d, q) 
are indexed by d-vectors over X' = X u {*} in which precisely one component is *, a 
symbol not in the set X used to define H(d, q). The clique indexed by c = (iI, ... , id)' with 
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ik = *, consists of all the vertices of H(d, q) which agree with c in every component except 
the kth. We claim that every such clique must correspond to a vertex of E. We prove this 
for the general clique c. The two vertices (i" ... , iI., ... , id ) and (i" ... , if:, ... , id ), 

where ik and if: are two distinct elements of X, are adjacent in H(d, q), so there must be a 
vertex v of B adjacent to both of them in G. The only maximal clique containing both of 
them is c and so c must correspond to v. Hence the claim holds and G has vertex set the 
vertices of H(d, q) together with its maximal cliques, with adjacency given by inclusion of 
a vertex in a clique. 

Now suppose d > 2. The clique v = (*, i2 , ••• , id ) is distance 4 from v' = (i" i;, *, 
i4 , ••• , id) and v" = (*, i;, i3 , ••• , id)' But every neighbour of v" is distance 3 from v, 
while just one neighbour (i" i;, i3 , ••• , id) of v' is distance 3 from v. This contradicts G 
being distance-biregular. 

If d = 2 the maximal cliques are indexed by rei, *), (*, i)li E X}. Each vertex (i" i2) of 
H(2, q) can be viewed as the edge joining (i" *) to (*, i2 ) in the complete bipartite graph 
with parts X, = X x {*} and X2 = {*} x X. Hence G ~ S(Kq,q)' The derived graphs of 
G are Kq,q and L(Kq.q) ~ H(2, q). As Kq.q is bipartite Gis imprimitive. 

PROPOSITION 3.3. Let q > 2. The existence of a distance-biregular graph G with derived 
graph H(2, qt is equivalent to the existence of a projective plane P of order q. The graph G 
is the incidence graph of the structure P' obtained from P by choosing two distinct points x 
and y and deleting all the lines through either of them and all the points on the line xy. The 
graph G is antipodal. 

PROOF. (=» Suppose G is a distance-biregular graph with derived graph D ~ B(2, qt 
on vertex set A in the standard notation. Let X denote the set used to define B(2, q) so that 
the set A can be regarded as A = {(i, j) Ii, j E X}, with d«i, j), (i', j'» = 2 iff i =1= i' and 
j =1= j'. Then G4 (u) =1= 0, for u in A, so by Lemma 3.1 the vertices of B correspond to 
maximal cliques of D. 

We claim that any maximal clique of D has q elements, for suppose C = {(i"j,), ... , 
(i" j,)} is a maximal clique of H(2, qy. Then each pair differ in both coordinates and so 
i" ... , i, are all distinct and likewise j" ... ,k Hence I ~ q = IXI. If I < q we can 
choose i,+, EX - {i" ... , iJ andj,+, EX - {j" ... ,j,}. Then (i,+, , j,+,) '" (iI, jl)' for 
t = I, ... , I, contradicting the maximality of C. 

We conclude that s = q and as H(2, q)" has intersection array: 

we can compute: 

i(A) 

[ 

* I (q - I)(q - 2)] 
o (q - 2)2 q - 1 , 

(q - 1)2 2(q - 2) * 

= [
*r 

rl(q - 1) 

q - 1 r(q - 2)/(q - I) 

q - 2 r]. 
2 * 

By Lemma 1.4 e,e2 = b,b2 and so e2 = r(q - 2)/(r - 1). Hence r - Ilq - 2 and 
q - I I r. This forces r = q - 1 and so 

i(A) = 

and 

i(B) [q
* 

1 

q-l q-2 

q - 2 

2 

q-2 q-l 

q - 2 

1 
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By Proposition 2.1 G is antipodal. The derived graph E on the vertex set B has intersection 
array: 

[ 

: q(q ~ 3) q(q; 2)]. 

q(q -- 2) q - 1 * 
This is an antipodal graph of diameter 2 with I{u} u Giu) I = q. Hence E ~ K(q_I)(q), the 
complete (q - I)-partite graph with each part having q vertices. We label the parts of E 
from 1 to q - 1. To complete the first half of the proof it remains to construct a projective 
plane P of order q from G. The points of the plane P will be the vertices of A = VH together 
with q + 1 points labelled x, y, PI' .•• , Pq_l. The lines of P will be labelled by the vertices 
of B together with 2q + 1 additional lines Ii, mi, i E X and 100 • Vertex v of B in block k of 
E labels a line composed of the points {u E A I u '" v} u {pd. The line I; is the set of points 
{(i, j) Ii E X} U {x} while mi is the set {(j, i) Ii E X} U {y}. Finally 100 is the set of points 
{x, y, PI' •.. , Pq_1 }. It is fairly straightforward to check that each pair of points lie on 
exactly one line and that each pair of lines intersect in exactly one point. Finally the four 
points x, y, (i, i), (j, j) (i, i E X, i I: i) form a four-point. So P is a projective plane of 
order q. 
(~) Suppose P is a projective plane of order q. Let x, y, P' and G be as in the proposition 

statement. Let u be any point of P'. The point u lies on q + 1 lines in P, but the line through 
x and the line through y (distinct because u is not on xy) have been deleted, so u lies on 
q - 1 lines in P'. Let v be a line of P'. The line v intersects xy in P in a point P I: x or 
y. Hence v is incident with q points in P' and G is a semi-regular graph. Two points lie on 
one line in P so the incidence graph of P has girth greater than 4. Hence girth(G) ~ 6. Now 
consider a point u of P' and a line v of P' not incident with u. Let u' be a point on v. The 
line uu' is in P' iff x and yare not on uu' . Now ux and uy intersect v in two distinct points 
ofv as u is not on xy. Hence precisely q - 2 points of v are collinear with u in P'. We thus 
see that a point vertex of G has the first seven intersection numbers well defined as follows: 

q-I q-2 

But in the argument above we took any line not incident with u and found it was distance 
3 from u. So Gs(u) = 0 and the point vertices of G are distance-regularised with array: 

q-2 q-l] 

q-l q-2 2 * 
Finally consider a line v of P' and a point u not incident with it. The only line through u 
which does not intersect v in P' is the line through the point v n xy. Again we choose any 
point u not incident with v, so Gs(v) = 0 and the line vertices of G are distance-regularised 
with array: 

[
* 1 q - 2 q]. 
qq-2q-l 1 * 

So G is a distance-biregular graph. We now investigate its derived graph on the point 
vertices. A point vertex u of G can be labelled by an ordered pair of lines (ux, uy), which 
clearly determine u as their intersection. Conversely a pair of lines (I, m) with x on I and 
yon m, but neither the line xy, determine a point vertex of G. We now use this labelling, 
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so that the point vertices of G are 

A ((l,m)I/EL(x) - {xy} andmEL(y) - {xy}}. 

'" X x X, with IXI = q. 

The distinct vertices (I, m) and (1', m') are adjacent in the derived graph of G iff they are 
collinear in P'. This will be true iff the line through them in P was not deleted, i.e. did not 
go through x or y. But the line (I, m)(/', m') of P is incident with x iff it is I = I', while it 
is incident with y iff it is m = m'. We conclude that (I, m) is adjacent to (I', m:) in the 
derived graph iff I i= l' and m i= m', and so the derived graph is H(2, q)". 

4. PRIMITIVE DISTANCE-BITRANSITIVE GRAPHS 

We begin this section by introducing the group theoretical definitions we will need. 
The socle of a group r is the product of its minimal normal subgroups. Note that the 

socle is a characteristic subgroup and so certainly normal. It is a standard group theoretical 
result that the socle is the direct product of mutually isomorphic simple groups. A group 
Tis almost simple ifthere is a finite non abelian simple group T, such that T ~ r ~ aut(T). 
A permutation group (T, X) is affine if it is primitive and the socle N of r is elementary 
abelian. 

The next well known result tells us more about affine permutation groups. We include 
a proof for completeness. 

PROPOSITION 4.1. Jf(T, X) is an affine permutation group with socle N ~ Zp, then N acts 
regularly on X and r ~ AGL(m, p). 

PROOF. First note that N acts transitively on X as the orbits of N would otherwise be 
non-trivial blocks of imprimivity: . 

Let gin rand 0 an orbit of N. Then Og is an orbit of N, as for n E N, x E 0, 

xgn = xn'g E Og, 

as n' = gng- I EN, and xng = xgn", where n" = g-I ng E N. 
Now suppose n in N fixes x in X. Let x' be any element of X and n' in N such that 

xn' = x'. Then 

x' n x' n' -I nn' 

xnn' = xn' = x', 

so n is the identity and N acts regularly. 
Finally an element g in r acts on N ~ Zp by conjugation. As g-I nn' g = g-I ngg- I n' g, 

this gives us a map 0(: r --+ GL(m, p). The kernel of 0( is Cr(N). Let g in Cr(N), so that g 
fixes an element x. Then as above for any x' in X, choose n' in N so that xn' = x' and we 
have x'g = xng = xgn = xn = x'. So g is the identity, Cr(N) acts regularly and as 
C r(N) ~ N, C r(N) = N. In conclusion we can write r = I'x ~ N for some fixed x in X 
and 0( embeds I'x into GL(m, p). Hence G ~ AGL(m, p). 

We now state Praeger, Saxl and Yokoyama's result mentioned in the introduction. 

THEOREM 4.2. [4]. Let G be afinite primitive distance-transitive graph of diameter d with 
r a group acting distance-transitively on G. Then one of the following holds: 

(a) G is the Hamming graph or d = 2 and G is the complement of the Hamming graph, 
(b) r is almost simple, 
(c) (T, VG) is affine. 
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We now present the proof of our main result. 

PROOF OF THEOREM 1.1. By Lemma 1.7 T acts distance-transitively (and faithfully) on 
each of the derived graphs D and E of G. As G is primitive, we can apply Theorem 4.2 to 
each of graphs D and E. We consider the three possible cases for graph D: 

(a) D ~ H(d, q) or D ~ H(2, q)". By Propositions 3.2 and 3.3 this cannot occur if Gis 
primitive. 

(b) T is almost simple. 
(c) (T, VD) is affine. In this case the socle N of T acts regularly on VD and so 

I VDI = INI. But consider the action of T on E. As Tis not almost simple and we can exclude 
the case when E is of Hamming type, (T, VE) is also affine and so WEI = INI. But then 
I VDI = I VEl and so G is regular contradicting (T, G) being a distance-bitransitive pair. 
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