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(2)    (c) = z, (c) = (a) = (b) = (e) = 

(e) = 1,
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(8)    (a) = (b) = z, (c) = (c) = (e) = 

(e) = 1,
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 (a) =  (b) = z, (e) = (e) = 1,
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(e) = 1,
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 (b)  = 1,

(15)  (c) = (c) = (e) = (e) = (a) = z, (

b)  = 1,

(16)  (c) = (c) = (e) = (e) = (b) = z,(a

)   = 1,
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 = z,

(18)  (c) = (e

q

qqqqqq

qqqqqq

qqqqqq

qq

22

2121

1122

212

) = (e) = z, (c) = (a)  = (b)  = 1,
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(b)  = 1,

(20)  (c) = (e) = (e) = (a) = z, (c)   =
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(23)  (c) = (e) = (e) = (b) = z, (c)   =
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e) = 1,

(30)  (c) = (a) = (b) = z, (c) = (e) = (

e) = 1,
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Applying theorem 4.12 and the Riemann-Hurwitz formula in each case we deduce that the signature of 
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 is 
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As before homomorphisms giving the same signature for 
[image: image4.wmf]2

G

 represent different double covers of S.  Any connected unramified double cover of S will be isomorphic to one of the 31 Klein surfaces, U/
[image: image5.wmf]2

G

, represented above.

5) Let S be a Klein surface with genus g and r boundary components such that S – U/
[image: image6.wmf]G

 where 
[image: image7.wmf]G

 is either a non-orientable surface group or a bordered surface group.  Let (
[image: image8.wmf]c

S,f, 

s

) be the complex double of S.  Sc is orientable without boundary and because S has boundary if it is orientable, Sc is connected.  It follows immediately from theorem 4.12 that the only way to form an orientable subgroup without boundary of index two in 
[image: image9.wmf]G

 is to take the kernel of the homomorphism which maps all the orientation reversing generators to the element of order two in Z2 and all the orientation preserving generators to the identity.  But the canonical Fuchsian group, 
[image: image10.wmf]+

G

 of 
[image: image11.wmf]G

 is the subgroup of index two in 
[image: image12.wmf]G

 consisting of all elements which preserve orientation.  Thus, as mentioned before,


Sc = U/
[image: image13.wmf]+

G


F is the map




[image: image14.wmf]f([z]) = [z]

+

G

G


and if 
[image: image15.wmf]+
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\

 then 
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 is defined by




[image: image17.wmf]([z])[z].

++

GG

s=g


(If we choose another element 
[image: image18.wmf]++,

-1 +

'   then  '  so [z] = ['z]

GG

geGGggeGgg

+

\

 which shows that 
[image: image19.wmf]s

 is well-defined.) 
[image: image20.wmf]+

G

 has signature (2g + r – 1, +, [ ], { }) if S is orientable and (g + r – 1, +, [ ], { }) if S is non-orientable.


In each of the examples 4.13, 4.14 and 4.15 the kernel of homomorphism (1) gives 
[image: image21.wmf]+

G

.


Since Sc is a Riemann surface the algebraic genus of Sc (the non-negative integer that makes the algebraic version of the Riemann-Roch theorem work) is equal to the topological genus.  If E and F are the fields of meromorphic functions on S and Sc respectively then F = E(I) (see [2]) and by a well-known classical result ([4]) the algebraic genus of S is equal to the algebraic genus of Sc, i.e. to the topological genus of Sc = U/
[image: image22.wmf]+

G

.


If S is a non-orientable Klein surface with genus g and r boundary components such that S = U/
[image: image23.wmf]G

 where 
[image: image24.wmf]G

 is a non-orientable bordered surface group, then the orienting double of S, So, is a connected orientable Klein surface with 2r boundary components.


Again it follows immediately from theorem 4.12 that the only way to form an orientable subgroup of index two in 
[image: image25.wmf]G

 with 2r boundary components, which we shall denote by 
[image: image26.wmf]o

G

, is to take the kernel of the homomorphism which maps all the glide reflection generators of 
[image: image27.wmf]G

to z 
[image: image28.wmf]e

 Z2  and all the hyperbolic and reflection generators of 
[image: image29.wmf]G

 to the identity.  In example 4.14 this is a homomorphism (2).  So = U/
[image: image30.wmf]o

G

 and from the Riemann-Hurwitz formula we see that the genus of 
[image: image31.wmf]o

G

 is g – 1 so 
[image: image32.wmf]o

G

 has signature



(g – 1, +, [ ], {( )2r}).


If we take the same non-orientable surface S with boundary then the Schottky double of S, Ss, is a connected non-orientable Klein surface without boundary.  If 
[image: image33.wmf]s

G

 is the non-orientable subgroup of index two in 
[image: image34.wmf]G

 such that Ss  = U/
[image: image35.wmf]s

G

then from the Riemann – Hurwitz formula we see that the genus of 
[image: image36.wmf]s

G

 is 2g + 2r – 2, so 
[image: image37.wmf]s

G

 has signature



(2g + 2r – 2, - 1, [ ], { }).

However from example 4.14 we see that there is not a unique homomorphism whose kernel has the signature of 
[image: image38.wmf]s

G

 because in this example homomorphisms (5), (6) and (7) each have such a kernel.


Clearly from theorem 4.12 the homomorphism whose kernel is 
[image: image39.wmf]s

G

 must map all the reflection generators of 
[image: image40.wmf]G

 to the element of order two in Z2.


As  Ss is constructed by taking two copies of S and ‘gluing’ them together along their boundaries it should be clear that the homomorphism whose kernel of 
[image: image41.wmf]s

G

is the one which maps all the generators of 
[image: image42.wmf]G

 to the identity except the reflections.  In example 4.14 this is homomorphism (5).

6) Let us now consider normal n-sheeted coverings of Klein surfaces when n > 2.

If n is even it is clear from theorem 4.12 that the situation could be quite complex.  However when n is odd we can obtain some general results.

Firstly when n = p prime, the only group of order p ( upto isomorphism) is the cyclic group Zp with presentation {z: zp = 1}l.  If 
[image: image43.wmf]1

G

 is a bordered surface group we can extend the proof of part (i) of theorem 4.12 to ascertain the number of boundary components of a normal subgroup, 
[image: image44.wmf]2

G

, of index p in 
[image: image45.wmf]1

G

, i.e. the number of boundary components of U/
[image: image46.wmf]2

G

, a p-sheeted normal covering surface of U/
[image: image47.wmf]1

G

.

Theorem 4.16.
Let 
[image: image48.wmf]1

G

 be a bordered surface group with orbit-genus g and r boundary components.  Let 
[image: image49.wmf]1p

: Z,

qG®

 for prime ; > 2, be defined on the canonical generators of 
[image: image50.wmf]1

G

 (as described before theorem 4.12) so that 
[image: image51.wmf]q

, = 
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G

, is a normal subgroup of index p in 
[image: image53.wmf]1

G

.  Define a map 
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t

 from {e1, … er} (the set of generators of 
[image: image55.wmf]1

G

 commuting with the generating reflections) to {1,p} such that 
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Then the number of boundary components of 
[image: image57.wmf]2

G

 is 
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Proof.


Let g be one of the generators of 
[image: image59.wmf]1

G

 such that g 
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GG

\

.  Because every element of Zp which is not the identity generates the whole group it is easy to see that whichever generator of 
[image: image62.wmf]1
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 in 
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 we choose for g we can write
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 = 
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G

 + 
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G

g2 + … + 
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G

gp-1.


All reflections in 
[image: image68.wmf]1

G

 are conjugate to one of the generating reflections C1, … Cr.  As in the proof of theorem 4.12 part (i) our aim is to count the number of conjugacy classes of reflections in 
[image: image69.wmf]2

G

.


As before we define a reflection c’ 
[image: image70.wmf]e
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 to be induced by the reflection ci in 
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G

.  By lemma 1.15 if ci 
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 is also in 
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G

, c’ is conujugate to gmcig-m in 
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G

for some m = 1,1,2, … p-1.  As Zp  (p 
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 2) contains no element of order two, ci 
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G

 for all i = 1, … r.  Therefore every ci must induce one or more conjugacy classes of reflections in 
[image: image80.wmf]2

G

.  To determine the number of conjugacy classes of reflections in 
[image: image81.wmf]2

G

 induced by ci we only have to establish when gmcig-m is conjugate to gncig-n in 
[image: image82.wmf]2

G

, m 
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 n, m,n 
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 {0,1, … p-1}.


If gmcig-m is conjugate to gncig-n in 
[image: image85.wmf]2

G

, m 
[image: image86.wmf]¹

 n, then there exists h 
[image: image87.wmf]e
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G

 such that



H (gmcig-m)h-1 = gncig-n,

Which implies that g-nhgm is an element of the centralizer of ci in 
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G

, i.e.



g-nhgm 
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[image: image91.wmf]ii

c,e


by theorem 1.16.  So we can put



h = gnxg-m
for some x 
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.

If ei 
[image: image94.wmf]e
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G

 then 
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c,e
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 which implies x 
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G

, i.e. 
[image: image101.wmf]q

(x) = 1.  As Zp is abelian



[image: image102.wmf]n-mn-mn-m

(h)(gxg) = ((g)(x) = ((g)).

q=qqqq


Since g 
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, 
[image: image105.wmf](g)  1, also n - m  o or p and so

q¹¹



(0 (g)) n-m 
[image: image106.wmf]¹

 1.

This implies that 
[image: image107.wmf]q

(h) 
[image: image108.wmf]¹

 1 so h 
[image: image109.wmf]e
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G

.  Therefore gmcig-m cannot be conjugate to gncig-n in 
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G

 if m 
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 n.


If ei 
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[image: image114.wmf]2

G

, we can choose g = ei.  Then, since eiciei-1 = ci,



gmcig-m = eimciei-m = cI
and similarly

gncig-n = ci.

So gmcig-m = gncig-n and are therefore trivially conjugate in 
[image: image115.wmf]2

G

.  


Therefore if ei 
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, gmcig-m is never conjugate to gncig-n in 
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G

 for n 
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 m and if ei 
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, gmcig-m is conjugate to gncig-n in 
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 for all m,n.  So the number of conjugacy classes of reflections in 
[image: image123.wmf]2

G

 induced by ci is 1 or p depending on whether ei 

is in 
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G

 or no.  We can define a map 
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:{e,...e}  {l,p} such that
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and the number of boundary components of 
[image: image127.wmf]2
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 is 
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Secondly when n is odd general results concerning the orientability of a subgroup of index n in an NEC group can be obtained.

Theorem 4.17.
Let 
[image: image129.wmf]1

G

be an orientable NEC group with signature


(g, + , [m1, . . . mk], {(n11, . . . n
[image: image130.wmf]s

1

1

), . . . (nr1, . . . n
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)}) and let 
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: 
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 G, where G is any finite group with odd order n, be a homomorphism defined on the canonical generators of 
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 such that ker 
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, = 
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, is a subgroup of index n in 
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.  Then 
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 must be orientable.

Proof.
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G

 will have generators and relations as in (1.6).  The generators ai, bi, xi, ei are all orientation preserving and the generators cij are reflections, i.e. orientation reversing.


The result is obvious if 
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G

 does not contain reflections as it is then a Fuchsian group.  So we suppose that 
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 contains reflections.


Since G has odd order it has no element of order two, so for 
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(cij) = 1, for all i = 1, … r, j = 0,1, … si.


As 
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 is a normal subgroup of index n in 
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 there exist coset representatives g1,g2, … gn in 
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 such that 
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G

g1 + 
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G

g2 + . . . 
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G

gn

Without loss of generality we can assume that g1, . . .  gn are orientation preserving because we can replace any coset 
[image: image151.wmf]2

G

g by 
[image: image152.wmf]2

G

(cg), where c 
[image: image153.wmf]e
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 is a reflection, if necessary.  Also without loss of generality we can assume g1 = 1.


Let F be the canonical fundamental region for 
[image: image155.wmf]1

G

 associated with the canonical generators.  Then



F’ = FUg2FU . . . UgnF

Is a fundamental region for 
[image: image156.wmf]2

G

.


The sides of F’ are images of sides of F and fall into pairs congruent by transformations of 
[image: image157.wmf]2

G

 (except the sides of reflection which are fixed by reflection generators and their conjugates)


If we can show that all pairs of congruent sides of F’ are congruent by orientation preserving transformations then we shall have shown that U/
[image: image158.wmf]2

G

 is orientable, i.e. that 
[image: image159.wmf]2

G

 is an orientable group.  So let us assume that there is one pair of sides of F’ which are congruent by an orientation reversing transformation in 
[image: image160.wmf]2

G

, x say, and try to reach a contradiction.


Let the two sides congruent by x be p and q, where p is a side of giF and q is a side of gjF, I,j = 1,2, . . . n.  Then 



p = gi
[image: image161.wmf]h

,   where 
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 is a side of F

   
q = gj
[image: image163.wmf]z

,  where 
[image: image164.wmf]z

 is a side of F.

( If 
[image: image165.wmf]h

 and 
[image: image166.wmf]z

 then i 
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 j so that p and q are distinct.) so


x(gi
[image: image168.wmf]h

) = gj
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which implies that 


(gj –1xgi) 
[image: image170.wmf]h

=
[image: image171.wmf]z

.


Thus 
[image: image172.wmf]h

 and 
[image: image173.wmf]z

 are congruent by gj-1xgi 
[image: image174.wmf]e
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.  But 
[image: image176.wmf]h

 and 
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 are sides of F, the canonical fundamental region for 
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G

 associated with the canonical generators of 
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G

 and so if 
[image: image180.wmf]h

 and 
[image: image181.wmf]z

 are congruent by a transformation in 
[image: image182.wmf]1

G

 that transformation must be one of the canonical generators of 
[image: image183.wmf]1

G

 and is unique (upto inverse).  Hence



gj-1xgi = t, say

where t is one of the generators of 
[image: image184.wmf]1

G

 (or the inverse of one of the generators) and thus is either orientation preserving or a reflection.  However gi and gj have been chosen so that they are both orientation preserving so for x to be orientation reversing t must be orientation reversing and therefore a reflection.


But if t is a reflection we have the following situation.

Since 
[image: image185.wmf]h

 and 
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 are congruent by t in F, 
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 = 
[image: image188.wmf]z

 = 
[image: image189.wmf]x

 say and 



p = gi
[image: image190.wmf]x


 

q = gj
[image: image191.wmf]x


As t is one of the reflection generators of 
[image: image192.wmf]1

G

, t 
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.  Therefore gitgi-1, gjtgj-1 
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 because 
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G
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[image: image199.wmf]1

G

.  Now gi
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 is fixed pointwise by the reflection gitgi-1 and gj
[image: image201.wmf]x

 is fixed by the reflection gjtgj-1.  Also x(gi
[image: image202.wmf]x

) = gj
[image: image203.wmf]x

, x 
[image: image204.wmf]e
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G

.


Consider any point on the N.E. line gi
[image: image206.wmf]x

.  Because of the continuity of elements in G, we can always find a small enough neighbourhood, V say, of this point such that a point p 
[image: image207.wmf]e

 
[image: image208.wmf]i

VgF

I

 is mapped just outside giF by gitgi-1.  The transformation x will map this point to a point just outside gjF within a small neighbourhood of some point on the N.E. line gj
[image: image209.wmf]x

.  This point just outside gjF will be mapped by gjtgj-1 just inside gjF.  Therefore our original point p has been mapped by transformation in 
[image: image210.wmf]2

G

 from just inside giF to a point just inside gjF as illustrated in the following diagram.

So we have two points in the same 
[image: image211.wmf]2

G

-orbit in the interior of a fundamental region for 
[image: image212.wmf]2

G

 which is a contradiction.


Hence t cannot be a reflection and so 
[image: image213.wmf]2

G

 must be orientable.

Theorem 4.18.

Let 
[image: image214.wmf]1

G

 be a non-orientable NEC group with signature


(g, - , [m1, . . . mk], {(n11, . . . n
[image: image215.wmf]s

1

1

), . . . (nr1, . . . n
[image: image216.wmf]r

rs

)})

and let 
[image: image217.wmf]q

: 
[image: image218.wmf]1

G

 
[image: image219.wmf]®

 G where G is any finite group with odd order n, be a homomorphism defined of the canonical generators of 
[image: image220.wmf]1

G

 such that ker 
[image: image221.wmf]q

, = 
[image: image222.wmf]2

G

, is a normal subgroup of index n in 
[image: image223.wmf]1

G

.  Then 
[image: image224.wmf]2

G

 must be non-orientable.

Proof.  



[image: image225.wmf]1

G

 will have generators and relations as in (1.7.)  The generators xi, ei are all orientation preserving, the cij’s are reflection and the ai’s glide reflection (orientation reversing).  


Since G has odd order it has no element of order two, so for 
[image: image226.wmf]q

 to be a homomorphism 
[image: image227.wmf]q

(cij) = 1, for all i = 1, . . . r,  j = 0,1 . . . si.  We choose coset representatives g1, . . . gn in 
[image: image228.wmf]1

G

 such that



[image: image229.wmf]1

G

 = 
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G

g1 + 
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G

g2 + . . . + 
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G

gn.

Without loss of generality we can choose g1 = 1.


Let F be the canonical fundamental region for 
[image: image233.wmf]1

G

 associated with the canonical generators.  Then



F’ = FUg2FU . . . UgnF

Is a fundamental region for 
[image: image234.wmf]2

G

.


Let us consider any one of the glide reflection generators in 
[image: image235.wmf]1

G

, i.e. in the set 

{a1, . . . 1g}.  Call it a.  Denote by 
[image: image236.wmf]a

 the side across which F is mapped by a and denote by 
[image: image237.wmf]a

* the side congruent to 
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 in F by a, so



a(
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*) = 
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Now if a 
[image: image241.wmf]e
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G

, a 
[image: image243.wmf]¹

 gi for i = 1, . . . n and the two sides congruent by an in F (
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 and 
[image: image245.wmf]a

*) are still congruent in F’ by a, which is orientation reversing.  Thus we can embed a Mobius band in the surface U/
[image: image246.wmf]2

G

 and hence 
[image: image247.wmf]2

G

 is non-orientable.

(Note:  We can always choose coset representatives such that 



giFngjF = 
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, i,j = 1, . . . n, i 
[image: image249.wmf]¹

 j,

so 
[image: image250.wmf]a

 and 
[image: image251.wmf]a

* are sides of F’ and not interior to it.)


If a 
[image: image252.wmf]e
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G

then let the order of 
[image: image254.wmf]q

(a) in G be m.  So 2 < m 
[image: image255.wmf]e

 n.  Then we can choose gi = ai-1 for i = 1, . . . m, so


F’ = FUaFUa2FU . . . Uam-1Fugm+1FU . . . UgnF.


Now 
[image: image256.wmf]q

(am) = (
[image: image257.wmf]q

(a))m = 1 in G, i.e. am 
[image: image258.wmf]e

 
[image: image259.wmf]2

G

 and since the order of 
[image: image260.wmf]q

(a) must divide n which is odd, m must be odd and hence am must be orientation reversing.  Also



am(
[image: image261.wmf]a

*) = am-1(a
[image: image262.wmf]a

*) = am-1(
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).

Am-1(
[image: image264.wmf]a

) is a side of am-1F and therefore a side of F’. 
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* is a side of F and so also is a side of F’.  Thus we have two sides of connected component of F’ congruent by an orientation reversing transformation in 
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G

 and again 
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G

 must be non-orientable.  (Note:  When a 
[image: image268.wmf]e
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G

 let FU aFU . . . Uam-1F = Fa.  Fa is connected but 
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* and am-1
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 are not sides of intersection with Fa.  Because 
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it is always possible to find elements 
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K

, where m’ = n/m – 1, such that the set
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F’ = FaU
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1FaU . . . U
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m,Fa
Where 
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iFa = 
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iFU
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iaFU . . . U
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iam-1F. We can always choose the elements such that Fa
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iFa = 
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, i = 1, . . . m’ and 
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iFa
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jFa  =
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, i = 1, . . . m’ and 
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FF, i  j, i,j = 1, . . . m'.

gg=Æ¹

I

  So we can always choose a fundamental region for 
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G

 such that  
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* and am-1
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 are sides of F’ and not interior to it.)


In theorems 4.17 and 4.18 U/
[image: image292.wmf]2

G

 is a normal n-sheeted covering surface of U/
[image: image293.wmf]1

G

, possibly ramified.  We have thus proved the following.

Theorem 4.19.
Let S be a Klein surface such that S = U/
[image: image294.wmf]1

G

, where 
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G

 is an orientable (respectively non-orientable) NEC group.  Then an n-sheeted covering surface of S of the form U/
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G

, where 
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G
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[image: image299.wmf]1

G

, must be orientable (respectively non-orientable), provided m is odd.

7) To end this chapter we shall take a brief look at non-normal n-sheeted coverings.  I.e. n-sheeted coverings of Klein surface U/
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G

 (
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G

 and NEC group) of the form U/
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G

, where 
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G
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G

 is a non-normal subgroup of index n in 
[image: image306.wmf]1

G

.


To find non-normal subgroups of index n in an NEC group 
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G

 we look at homomorphisms 
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: 
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G
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 G, where G is a finite permutation group transitive on n points.  If G’ 
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 G is the stabilizer of a point then 
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G

 = 
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-1(G’) is a subgroup of index n in 
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G

.  The case when 
[image: image315.wmf]2

G

 
[image: image316.wmf]<
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G

 is just a special case of this with G = 
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G

/
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G

 acting in its right regular representation and 
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: 
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 G the natural homomorphism.


The following example shows that we cannot extend theorem 4.17 to non-normal subgroups, in other words there exist non-normal odd-sheeted coverings of orientable surfaces which are non-orientable.

Example 4.20
Let 
[image: image323.wmf]1

G

 be an orientable bordered surface group with orbit-genus g – 1 and r = 1 boundary components.  So 
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G

 has signature 



(1, +, [ ], {( )})

with generators a, b, c, e and relations



c2 = 1


       ece-1 = c

                         eaba-1b-1 = 1.

We define 
[image: image325.wmf]q

 on the generators of 
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G

 so that 
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 is a homomorphism onto a permutation group transitive on three points.  Let
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(a) = (1 2 3)
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(b) = (1) (2) (3)
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(c) = (1 2) (3)
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(e) = (1) (2) (3).
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 is easily verified to be a homomorphism.  Let 
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 = 
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-1 (Stab(1)), so [
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G

:
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] = 3 and e,b 
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, c,a 
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.  Choose coset representatives 1, a, a2 so
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 = 
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 + 
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a + 
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a2.

Let F be the canonical fundamental region for 
[image: image345.wmf]1

G

 associated with the canonical generators.  Then



F’ = FUaFUa2F

is a fundamental region for 
[image: image346.wmf]2

G

.


Denote by 
[image: image347.wmf], , , 

abge

 the sides across which F is mapped by the transformations a, b, c, e.  Then the canonical surface symbol for 
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G

 is 
[image: image349.wmf]'''.

egeabab



Now 
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(ca-1) = 
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(c) (
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(a)) –1 = (1) (2 3) so (ca-1) 
[image: image353.wmf]e

 Stab(1) and ca-1 
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.  Also a
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 is a side of aF, 
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 is a side of F and 


Ca-1(a
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) = 
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.

Therefore two sides of F’ are congruent by an orientation reversing transformations in 
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G

.  So we can embed a Mobius band in the surface U/
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G

 and 
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G

 must be non-orientable.


We can also count the number of conjugacy classes of reflections induced in 
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G

 by the generating reflection c 
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.  For
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so ac 
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 and 
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 = 
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ac.  Since c has order two 
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c = 
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a and as
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 = 
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c = 
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c + 
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ac + 
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a2c

we must have
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a2c = 
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a2,

i.e.  a2ca-2 
[image: image382.wmf]e
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.  Now suppose there exists g 
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 such that gcg-1
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.  This implies that 
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gc = 
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g, i.e. 
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g = 
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a2 and g = 
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a2 where 
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.  Then


gcg-1 = 
[image: image396.wmf]g

a2ca-2
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-1
which implies that gcg-1 conjugate to a2ca-2 in 
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G

, Thus, as c 
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, there is only one conjugacy class of reflections in 
[image: image401.wmf]2

G

, i.e. 
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 has only one boundary component.


We can now use the Riemann-Hurwitz formula to deduce that the genus of 
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G

 is 2 and that 
[image: image404.wmf]2

G

 has signature





(2, -, [ ], {( )}).
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