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UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF MATHEMATICAL STUDIES

Doctor of Philosophy

AUTOMORPHISMS AND COVERINGS OF KLEIN SURFACES

by Wendy Hall

In this thesis the theory of automorphisms and coverings of compact Klein surfaces is
discussed by considering a Klein surface as the orbit space of a non-Euclidean
crystallographic group. In chapter 1 we set out some of the well-established theory
concerning these ideas.

In chapter 2 maximal automorphism groups of compact Klein surfaces without
boundary are considered. We solve the problem of which groups PSL (2,q) act as
maximal automorphism groups of non-orientable Klein surface without boundary.

In chapter 3 we discuss cyclic groups acting as automorphism groups of compact
Klein surfaces without boundary. It is shown that the maximum order for a cyclic group
to be an automorphism group of a compact non-orientable Klein surface without
boundary of genus g 23 is 2g, if gisodd and 2 (g—1) ifgiseven.

Chapter 4 is the largest section of the thesis. It is concerned with coverings
(possibly folded and ramified) of compact Klein surfaces, mainly Klein surfaces with
boundary. All possible two-sheeted connected unramified covering surfaces of a Klein
surface are classified and the orientability of a normal n-sheeted cover, for odd n, is

determined
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INTRODUCTION

Historically, Riemann surfaces were introduced as devices which render certain
mappings as one-one mappings and were originally defined to be without boundary and
orientable. The notion of a Klein surface is attributable to Klein because of his remarks
in 1882 on the closing pages of [9]. Riemann surfaces have been studied extensively
during the last century. Klein surfaces which are not Riemann surfaces were occasionally
mentioned but work on them did not really begin until the appearance of [23]. In this
work Schiffer and Spencer refer to Riemann surfaces as surfaces which can be orientable
or non-orientable, with or without boundary. In [2] the term Riemann surface will infer
an orientable surface without boundary.

Pioncaré¢ introduced Fuchsian groups in order to generalize elliptic functions and
subsequently realized that they were identical with groups of orientation preserving
isometries of the non-Euclidean plane geometry of Lobatschewsky.

The orbit space of Fuchsian group is Riemann surface and recently Fuchsian
groups have become very significant in the study of Riemann surfaces (e.g. [3], [14],
[11]).

Non-Euclidean crystallographic (NEC) groups are discontinuous groups of
isometries of the non-Euclidean plane which contain orientation reversing elements. The
orbit space of a NEC group is a Klein surface. Thus, Klein surfaces can be studied by
way of NEC groups. In chapter 1, we give the preliminary definition and results
(obtained from the large volume of work already published on the subject) which we

require to develop these ideas.



In chapter 2, we consider maximal automorphism groups of compact Klein
surfaces without boundary. Hurwitz [8] showed that the order of a group orientation
preserving automorphisms of a compact Riemann surface, of genus g = 2, cannot exceed
84 (g — 1). He also showed that this bound is attained when g = 3. Macbeath [13], [16]
has shown that this bound is attained for infinitely many values of g. Maximal groups of
orientation preserving automorphisms of compact Riemann surfaces are called Hurwitz
group. Macbeath [16] gives the condition for PSL (2,q) to be a Hurwitz group. The
orders of the automorphism groups of compact non-orientable Klein surfaces without
boundary, of genus g 2 3, are bounded above y 84 (g —2) and a group of this order acting
on a Klein surface of genus g is called an H* -group. Every H* -group is a Hurwitz
group. Singerman [24] showed that the Huwitz group PSL (2,7) is not an H* -group
while the Hurwitz group PSL (2,8) is. We establish general conditions which determine
when PSL (2,q) is an H* -group given that it is a Hurwitz group and show that infinitely
many such groups appear.

It is know (e.g. [7]) that the maximum order for a cyclic group to be a group of
orientation preserving automorphisms of a compact Riemann surface of genus g = 2 is
2(2g +2) and May [22] has considered the problem for Klein surfaces without boundary.
We show that the maximum order for a cyclic group to be a group of automorphisms of
such a surface of genus g = 3 is 2g, if g is odd and 2(g-1) if g is even.

In chapter 4 we discuss coverings of Klein surfaces. Including ramified and
folded covers. These have been studied in some detail by Alling and Greenleaf [2].
Initially, we consider 2-sheeted connected unramified covering of compact Klein surfaces

with boundary. By determining all subgroups of index two in certain NEC groups with



compact orbit space I' we classify all possible connected unramified 2-sheeted coverings
of the orbit space of T

We then extend the problem to connected n-sheeted coverings of compact Klein
surfaces. We determine the number of boundary components of a normal subgroup of
prime index p, in a NEC group and the orientability of a normal subgroup of odd index n,
in a NEC group. We give an example to show that in general these results cannot be
extended to non-normal subgroups.



CHAPTER 1

Preliminary definitions and results.

1. Non Euclidean crystallographic groups.

1). Let U denote the upper —half complex plane, {z€¢ £ : Im z > 0}. U can
be made into a model of the non-Euclidean (written N.E.) plane as follows.

Define the N.E. length of a piecewise differentiable arc C by

yl(C):Ic Jdx® +dy’
y

and the N.E. area of a measurable set E by

dxdy
y2

v®- ]

The geodesics of this metric are circles and lines orthogonal to the real axis | (see [14])
and are called N.E. lines.

The N.E. distance between two points in U is the length of the unique N.E. line
joining them.

The metric induces a topology on U which is the same as the topology induced

from the usual topology on £ .



Let g denote the group of transformations of the extended complex plane, £ U

{oo} of the form

+
Az > M, a,b,c,dreal,ad -bc=1
cz+d
7+
B)z —» af—b, a,b,c,d, real, ad - bc = -1
cz+d

The set of transformations of type A forms a subgroup of index two in g, denoted
by g+ (although in other contexts it is more usually denoted by PSL (2, | ).

Each element of g is a conformal (type A) or anti-conformal (type B)
homeomorphism of U onto itself. Every conformal homeomorphism of U lies in g+ (see
e.g. Springer [27]) so that g is the group of conformal and anti-conformal
homeomorphisms of U onto itself. Every element of g maps N.E. lines to N.E. lines and

preserves N.E. distance.
We topologise g as the subset of | *
{a,b,c,d:ad—bc= %1}
by identifying (a, b, ¢, d) and (-a,-b, -c, -d) and taking the identification topology. The

topological group g has two components, namely g+ and g\g+. A discrete subgroup of g is

called a non-Euclidean crystallographic group which we shall always abbreviate to NEC

group. An NEC group contained in g+ is called a Fuchsian group. If an NEC group

contains elements of type B, i.e. orientation reversing elements, we shall call it a proper
NEC group.

2) We can classify the elements of g by their orientation and their fixed point set.



Elements of type A are orientation preserving. Their fixed point set is found by solving
the quadratic equation

2= 2210 4 bet
cz+d

There are three types.

(i) Hyperbolic if |a+d| > 2, with two fixed points on | U {oo}

(11) Elliptic if |a + d| < 2, with two complex conjugate fixed points, one of which is in
U.

(iii)  Parabolic if |a+d| =2, with one fixed pointon ; U {wo} .

Elements of type B are orientation reversing. Their fixed point set is found by solving the

equation

az+b
cz+d

ad-bc=-1

7 =

They are two types.

(i) Glide reflections if a + d # 0, with two fixed points on | U {oo} .

(11) Reflections if a + d = 0, with N.E. line of fixed points.

As the elements are classified by their trace (a + d) and their determinant, conjugate
elements of g are of the same type. Each of the five types of transformations has a

canonical form are listed below.



Type of element

Hyperbolic

Elliptic

Parabolic

Glide reflection

Reflection

If g € g is a hyperbolic elemkent then g is conjugate to the transformation w (z) =
Az, > 1 and A is known as the multiplier of the transformation. A is an ivariant of the

conjugacy class. Now lim g" (z) must exist and is a fixed point of g, called the
attracting fixed point. Simarlarly lim g" (z) is called the repelling fixed point. A

hyperbolic element is uniquely determined by its multiplier and its fixed points. The same
remarks apply to glide reflections.
Reflections are of order two. The only other elements which can have finite order

are elliptic elements and conversely every elliptic element in an NEC group is of finite

order.

3) A NEC group I' acts properly discontinuously on U in the sense that every point z

Canonical form

z — W, where

z = Az(A>1)

o[ z-1
e - 1,0 # 2nm
zZ+1

z > z+1
z > Az (h-1)

zZ > -Z

€ U has a neighbourhood V such thatif yeI"and YV nV # 6, then yz=z.



The -orbit of z € U is { yz: y ¢ I'} and we for the orbit (or quotient) space, U/ T,

by giving the set of all orbits the identificaiton topology.

Definition 1.1. A surface is a connected Hausdorff space on which there is an open

covering by sets homeomorphic to open sets in | °

Definition 1.2. A connected Hausdorff space is called a surface with boundary if it

is not a surface and if it possesses an open covering by sets which can be mapped

homeomorphically onto relatively open sets of a closed half-plane.

Definition 1.3. A T — fundamental region 1is closed set F with the properties
1) F contains at least one element of every orbit,
2) Int F contains at most one element of every orbit,

3) The N.E. area p (I\int F) = 0.

It has been shown by Wilkie [28] that for every NEC group I' with compact
quotient space there exists a canonical surface symbol of a fundamental region for
I" from which a canonical presentation for I" can be derived. U/ I is a surface, with

or without boundary, orientable or non-orientable, depending on the structure of T

It is easy to see that U/ I is a surface with boundary if and only if I' contains reflections.



Throughout this thesis we shall only be concerned with NEC groups with compact
quotient space. By a well known result, such groups contain no parabolic elements (see
Bers [3]). Also the classification of compact surfaces is well-known (see e.g. Massey
[19], Lefschetws [10], Griffiths [6]).

Every compact oreintable surface is homeomorphic to a sphere with g handles
attached.

Every compact non-orientable surface is homeomorphic to a sphere with g cross-
caps attached.

Every compact orientable surface with boundary is homeomophic to a sphere with
g handles attached and k discs removed.

Every compact non-orientable surface with boundary is homeomorphic to a sphere

with g cross-caps attached and k discs removed.

We now give a brief description of how a presentation of a NEC group I' may be
obtained from a given fundamental region. The method is found in detail in [14] and [28].
Let p € U be a point not fixed by any element of I'. Let F be the set of points

satisfying

D (z,p)<d(gz,p) forallgel,

where d 9z,p) dentotes the N.E. distance of a point z € U to p. F is a fundamental region

for I' and is called the Dirichlet region. It is a convex set bounded by N.E. lines, with all



its vertices in U (the closure of U). As I' has compact quotient space F will be a bounded
convex polygon with afinite numer of sides.

Two vertices are called congruent if they lie in the same I — orbit . Two edges are
congruent if there is an element of I' which maps one edge to the other.

If F meets one of its images gF (g & ') in an edge then g ' F meets F in an edge.
These edges are distinct uless g”= 1, i.e. unless g is an elliptic transformation of order 2 or
a reflection. If g is an elliptic transformation of order 2, Fn gF is an edge of F, say AB,
which is mapped onto itself by g. The mid-point C of AB is fixed point of g and AC is
mapped on CB by g. We add C to the set of vertices of F and regard AC and CB as two
separate but congruent edges of F. If, however, g is a reflection every point of Fn gF is
fixed under g. Such and edge of F is congruent to no other edge of F under I'.

F has the following properties (see [28]).

1. F is homeomorphic to a closed disc.

2. Flint F is a polygonal Jordan curve, i.e. a curve which is a finite union of N.E. line
segments.

3. There are a finite number of points on F\int F (the vertices) dviding F\int F into

Jordan arcs (the edges).
4. The edges of F are divided into three categories as follows:
a) Congruent pairs s, s , where s, s are the edges Fn gF, Fn g"'F respectively and
gelbutg’#1. Heres=gs .
b) Congruent pairs s, s where s = gs and g is an elliptic transformation of order 2.

In this case sus = Fn gF.



c) Edges s” where s” is Fn gF and g is a refletion. Such and edge is congruent to
no other edge of F and is an N.E. line segment.
5. If Fn gF # 6 where g ¢ I'" and F, gF do not have an edge in common then Fn gF is

at most a finite number of vertices.

(A fundamental region with the above properties is called a regular fundamental region.)

The set [gF: g ¢ I') forms a tesselation which fits together to cover U. Any face of
the tesselaion with the g’ F for some g’ g € I' and so will determine a unique face of the
tesselation. Faces with an edge in common are called neighbours.

Let F be a face and F’ another face meeting F in an edge a. Denote the group
element which maps F to F’ by a so that F> = aF. If a is the edge congruent to o the a
(o) =L

To associate a surface symbol with a regular fundamenal region, e.g. the Dirichlet
region, F for I we first label the edges of type ¢). The remaining edges occur in congruent
pairs and we now label one edge from each congruent pair. If a is the label of such an
edge, the edge congruent to a is labelled o’ or a * according as the transformation which
maps it onto the edge o preserves or reerses orientation. If we now write dow the labels of
the edges of F in order anti-clockwise we obtain the surface symbol for F which will
determine the topological strcture of U/ T'.

Starting from the Dirichlet region for I' (or any regular fundamental region for I') F
we can otbain a new fundamental region as follows. Let a aﬁd a be two congruent edges

of F and split F into two regions F;, F, by a polygon arc joining two vertices of F such that

N A



a € Fy, a e F,. Thenifa (a) =0, F; U aF, will be a new fundamental region for I' which
will have a different surface symbol. The side of this fundamental region may not now be
N.E. lines. However, edges which are axes of reflection will still be N.E. lines. In this
way a canonical form of the surface symbol is obtained (see [28]).

There are two types of canonical forms of surface symbols. One is for groups with
orientable quotient space and one is for groups with non-orientabel quotient space. The

wsurface symbol for a group with orientable quotient space is

(1~4) 531 &1 ‘éz iz’ Tt ikik ‘g Y10 Y11 ° " Yi1s €1 ‘e Y20 Y21 ° - Y2s2 &
e Y0t Vs Sr‘al Bl al,Bla'”U‘ngaz‘:"Bg,

and the surface symbol for groups with non-orientable quotient space is

(15& & ExE ey Yrs | €O O *o0* ¢+t ol O™

which differs from (1.4) only in the last part of the symbol.

If we identify corresponding points on the related edges of the fundamental region
with surface symbol (1.4) we obtain an orientabl«Nisi rfacNil ith boundary which is a sphere
with r discs removed and g handles added.

Similarly with surface symbol (1.5) we obtain a non-orientable surface with
boundary which is a sphere with r discs removed and g cross-caps added.

On these surfaces, the edges o (in the non-orientable case) and a, B (in the
orientable case) determin a canonical system of cross-cuts meeting at a base-point Q, say.

There are k distinguished points M; in the interior of the surface and s; distinguished points



Nil, - - - on the ith boundary component. The lines €; joins Q to the points M and the
line ¢; joins Q to a point on the ith boundary component between and .

It can be shown that the set of group elements which map F on a neighbour
generate I'.  We obtain the relations in I' in the following way. There are a infinite
number of faces meeting at each vertex, each face being a neighbour of the preceding face.
If F is one of the faces going round the vertex we shall meet in order the faces a,F, a;aF,
ajapasF, - - - etc. (ajel’). After a finite number of steps we come back to F so that for
some n, a;a, - - - a,F = F and we obtain the relation a;a, - - - a,= 1 for the vertex, known as
the canonical relation for that vertex. Congruent vertices give rise to the same canonical
relation and it is shown that every relation in the group is a consequence of the canonical
relations.

Denote by a, b, c, e, x the transformation which map F across the sides a, B, v, €, &.

Then a group with surface symbol (1.4) will have presentation.

(1.6) generators a,b, 1=12,K g
x, 1=1,2,K k
e 1=12, K r

1

1=1,2,Kr,j;=0,1,2,Ks,

Cij

and relations  x;"i=1

Cii = € ~L€;

Czi:j'l = Czij = ( Cisj'cij)nijzl

-1, -1 -1b -1 __
x,x, K x,¢ee, Keaba, b~ Kab, > "=l

The presentation for groups with surface symbol (1.5) (i.e. with non-

orientable quotient space) will have generators a;, 1=1,2, K gx;,¢;,¢; asin (1.6). The

relations will be as in (1.6) except for the final relation which becomes

10



(1.7) xx, K xee, K ea’a,’” K a’ =l

In (1.6) the elements a;, b; will be hyperbolic, x; elliptic, ¢;reflections and
the e, will usually be hyperbolic although in exceptional cases they may be elliptic. In
(1.7), similar remarks apply, except now the a, are glide reflections.

The number m;, n;; are the orders of the orientation preserving elements of

I' and are called the periods of I'. We call the m, proper periods. We can associate with
each group of NEC signature.

The NEC signature of the group I with presentation (1.6), i.e. with
orientable quotient space is
(18) (g9 +’ [ml’ K mk]7 <{(nll’ K nls])7 K (nrl K nrsr)})

and the NEC signature of the group with presentation (1.7), i.e. with non-orientable
quotient space is

(1.9) g - [m,K m], {n,K n,),K (n,,K ng)}).

Brackets such as (n,;, K n,)are called period cycles. Note that once we are given a

1
signature of a group the surface symbol and presentation are uniquely determined. So
given a signature for an NEC group I' we can immediately determine the topological
structure of UT".

The integer g is known as the genus of the surface and called the orbit-genus
of the group. The genus is an invariant of the surface as is the number of discs removed.

A removed disc will be called a hole or a boundary component.

An NEC group may have empty period cycles and signature of the form

(g, %, [m;, K m. ], {(), (), K O })

which, if the number of empty period cycles if I', we shall write as

(g, % [m, K m], {O)'})

11



A Fuchsian group will have an orientable quotient space with no holes. All
its periods are proper periods and it is determined by its orbit-genus and its periods. Its

NEC signature is

(g, + [m, K m,], {})

and is usually written

g;m;, K m,).

Groups with no periods are no reflections are known as surface groups. If

the orbit space is orientable it is called an orientable surface group (sometimes known as

a Fuchsian surface group) and will have signature

(ga +5 [ ]a { }) or (ga """" ) .

If the orbit space is non-orientable it is known as a non-orientable surface group and will

have signature

g;‘,[],{})-

Groups with no periods but with reflections are known as bordered surface

groups. A group with signature

(g1 {0

will be called an orientable bordered surface group (with r boundary components) and a

group with signature

12



(ga T [ ]a {( ) r})

will be called a non-orientable bordered surface group (with r boundary components).

4)
Lemma 1.10 ([17]) Let I' have signature (1.8) or (1.9). Then an element of finite order

in ' is conjugate to one of the following:

(1) A power of some x; (I <1 < k)

(i1) A power of some ¢, j-1¢; (1 <1<, 1<) <)
(111) Some ¢; (1 <1 <1,0<j<s).

Proof.

An element of finite order in I" is either an elliptic element or a reflection

and thus has a fixed point p ¢ U. IfF is a fundamental region for I', F contains an
element in the orbit of p, say gp € F forsome g & I'. Thus gp, being a fixed point of

gtg "1 lies on the boundary of F. The stabilizers of fixed points on the boundary of F are

those listed in (i) (ii) or (iii) above and as gtg ' belongs to the stabilizer of one of these

points our assertion is proved.

In [28] Wilkie gave some sufficient conditions for two NEC groups to be
isomorphic, his work was purely algebraic, Macbeath [17] found necessary and
sufficient conditions for two NEC groups to be isomorphic but these results were not

obtained algebraically.

Definition 1.11. Let I" and T be two isomorphic NEC groups and let ®: " — T be the

isomorphism. I and I’ are called geometrically isomorphic if there exists a

homeorphism w of U onto itself such that

13



® (g)=wgw ' forallgeT.
We say that the isomorphism @ can be realized geometrically.

If the isomorphism @ can be realized geometrically then the groups I' and
['" are conjugate in the group of all homeomorphisms of U. If z ¢ U, the geometrical
isomorphism w maps the T -orbit of z on the T -orbit of wz, thus it induces a

homeomorphism between the quotient spaces.

Theorem 1.12. (1[1.7]) Let ®:T" — I be an isomorphism (of the group structure
only) between two NEC groups. Then @ can be realized geometrically.

Macbeath proved this result using Teichmuller’s theorem on external
quasiconformal mappings and used it to determine the necessary and sufficient conditions
for I and I to be isomorphic.

The genus and orientability of a surface are geometric invariants of that
surface so clearly if two NEC groups are isomorphic then the orientability and genera of

their orbit spaces are the same.

4) From lemma 1.10 we see that every reflection in an NEC group is conjugate to
one of the (canonical) generating reflections. When trying to determine the
number of boundary components of an NEC group, as we shall be in chapter 4,

we are in fact counting conjugacy classes of reflection.

Lemma 1.15. Let I' be a bordered surface group and let I', < I'; with index n. Let

g, K g eI, \T,such that
I''=I.g +I,g, +K +T,g,

and let ceI', ¢ I', be areflection. Then any conjugate of ¢ in r will be conjugate to

g cg b inI’, forsomei=1,K n.

Proof.

14



Clearly any conjugate of ¢ in I', will be an element of I",. Consider
hech”, where he I',. Then he T, g, for some i=1, K n. So we can express h in the form h =

xg:, x € I', and then

heh™ xg; ¢ (xg,)" =x(g cg ") x "

which is a conjugate of g, cg” inT,.

Singerman [25] has investigated some of the algebraic properties of NEC

groups in particular their reflections.

Theorem 1.16. ([25]) Let c eI be areflection, I' a NEC group. Then Z (c) , the
centralizer of ¢ in I', is infinite. In particular if ¢ is the generating reflection associated
with an empty period cycle and e is the generator in the canonical presentation for I'

commuting with c, then Z (c) = (c, e), the group generated by ¢ and e.

Clearly, from this result, an ‘e generator’ associated with an empty period
cycle must have infinite order, i.e. is hyperbolic. In the case of I" being a bordered
surface group this is obvious since the only elements of finite order are the generating

reflections and their conjugates.

In [25] the N.E. area of a fundamental region of an NEC group was
determined. This is independent of a fundamental region chosen for the group and thus
will depend only on the signature of the group. Thus we can denote the N.E. area of a

fundamental region for I" by p (I).

Theorem 1.17. ([25])
(a) Let I' be a NEC group with signature (1.8). Then the N.E. area of a

fundamental region for I" is given by

15



SR Sl
u(F)=2n(2g-2+;(l—g)+r+zzg(l—n—ﬁ)).

i=1 j=1

(b) If T has signature (1.9) then

k 1 | 1
u(r)zzn(g-2+;(1-E)+r+zza(l—n—ij)).

i=1 j=1

Let I' be a NEC group and Ag, + Ag,+K Ag, .

If F is a fundamental region for I' then it is easily verified that g, Fu g, Fv ... vg F

g, Foug,Fv K vg F

is a fundamental region A . But the N.E. area is invariant and we deduce the formula for

the index of A in I', known as the Riemann-Hurwitz formula,

[ T:A]=pA)/n),

(6) Let " be a proper NEC group. Then the Fuchsian subgroup of I' consisting

of all elements which preserve orientation has index two in I and will be denoted by

" I'"is called the canonical Fuchsian group of T".

If I is a NEC group with signature (1.8) or (1.9) then the elements of finite

order in I' are given in (i), (ii) and (iii) of lemma 1.10. But the elements

X;,C;»1,C; liein T and so the periods of T contain the periods of T".

i2Vi%j-1

16



In [25] it is shown that each proper period, m,, is repeated twice and only
twice in I'" but each period of the form n; occurs only once among the periods of T

Using this and the Riemann-Hurwitz formula which says that p (I'") = 2p (I') we deduce

the following theorem.

Theorem 1.18.

(a) Let I"be a proper NEC group with signature (1.8). Then I'" has signature
(2g+r-1;m,m, K m,m,n,, n, K ng )-
(b) If T' has signature (1.9) then T"* has signature

(g+r-1;m,m,K m,m,n,n,, K n,).
7). If T"is a NEC group we denote by N G + (I") the normaliser of G+ of
and by NG (T") the normaliser of G of I'. Let I'" be the canonical Fuchsian group of
randlet te C\I'" sothat T=T" +tI"". If ge Ng(I') then gl'g ' =T'and

g +trg! =T + ',

ie. gl g +gtlg! =T+ tI'”

By equating together the set of orientation preserving elements on both sides of the

equation we see that gl''g” =T""so that g & N g (I'") which implies that

Ng(T) < Ng(I™).

17



Now Ng + (I'") is a subgroup of index one or two in Ng (I'") and it is well-
known that Ng + (I'") is a Fuchsian group (see e.g. [14]), and thus discrete. Therefore
Ng (I'" ) and hence Ng(T") is discrete. At I' < Ng (I"), Ng (T") has a compact

fundamental region (for NEC groups” with compact orbit space) and hence has compact
orbit space.

We have thus proved the following.

Lemma 1.19. Let I be a NEC group.

(a) If T is a proper NEC group and I'" its canonical Fuchsian group then Ng
(T)eNg (I').

(b) If T"has compact orbit space the Ng (I") is a NEC group with compact orbit

space.
II Klein surfaces and their automorphisms

1).

Definition 1.20. A complex chart on a surface S consists of a pair (U,z) where U is

an open set and z is a homeomorphism and U onto an open set in the complex plane. £ .
If S is a surface with boundary then z is a homeomorphism of U onto either an open set in
£ or a relatively open set in a closed upper-half plane.

Definition 1.21. A family of charts QQ ={U,,z,)},, where I is an index set, is called

iel

a dianalytic (or complex) atlas for S if

(1) UelU, =8,
(i1) if ((U;,z),(U;,z) e U, N U; # & then z zj'1 conformal or anti-

conformal homeomorphism defined on z; (U; NU;) intersects the boundary
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of U, the closed upper-half plane, then we require z.z j'l to have an analytic

or anti-analytic extension to an open subset of the plane.

The maps z,z j'l are called co-ordinate transformations (or transition

functions).

If S is a surface with boundary then the boundary 6 S of S consists of the

points s € S such that s € U, with z, (U,) open in U . But not openinf and z (s) e IR.

We denote the interior of S, i.e. s\3S, by S°.

Definition 1.22. A Klein surface is a surface, or a surface with boundary, S with a

dianalytic atlas Q. It will be denoted by (S, Q) or just by S.

The dianalytic atlas Q is said to define a dianalytic structure on S. Another atlas

Q’ = {(v;,w,)}; , defines the same structure provided {U;,z,) U (V;,W;)} ;> 18 @

dianalytic atlas for S. We say Qand Q’ are dianalytically equivalent.

A dianalytic atlas in which all the co-ordinate transformations are conformal
(sense-preserving) maps will be called analytic atlas . We say an analytic atlas on a

surface S defines an analytic structure on S.

By a Riemann surface we shall mean a surface without boundary with an analytic

atlas. The meaning of the term Riemann surface with boundary should be clear.

Clearly a Riemann surface is an orientable Klein surface without boundary.

If (S, Q) is an orientable Klein surface then there are tow analytic structures on S
each of which is dianalytically equivalent to Q (see Alling and Greenleaf [2], theorem
1.2.4.). (The proof basically involves choosing a maximal analytic atlas for S.)

Choosing between the two analytic structures is equivalent to choosing an

orientation for S. (The two resulting Riemann surfaces are anti-conformally
equivalent) So without real ambiguity we may consider an orientable Klein surface to

be a Riemann surface or a Riemann surface with boundary.
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We now wish to define a morphism f: S — T of Klein surfaces. This differs from
the corresponding concept for Riemann surfaces principally in that S may “fold” along

OT. For this reason we need to define the folding map. This is the map

a.C »> ﬁgiven by

O (x +1y) = (x + 1/y/).

We define a positive chart (V,w) to be a chart such that w(V)C U.

Definition 1.23. ([2]) A morphism f: S — T of Klein surfaces is a continuous map f of
S into T, with f(6 S)C o T, such that for all s € S there exist dianalytic charts (W,Z) and
(V,w) about s and f(s) respectively, and an anlytic function F on z (W) such that the

following diagram commutes.

(1.24) f

(1.25) W —»V

In this case if F is anti-analytic then we can replace z by z, which will make F analytic so

that f is still a morphism.

Let f: S — T be a non-constant morphism of Klein surfaces.
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Let s ¢ S. Alling and Greenleaf [2] have shwon that we can find dianalytic charts (U,z)
and (V,w) at s and f (s) respectively, such that z (s) = 0 = w(f(s)), f (U)CV and such that
g/U has the form
gU={w" ¢ o(+z") iff(s)edT
{who(xz) iff(s)e T°

where e is an iteger, e> 1. The integer e is called the ramification index of f at s and will

be denoted by e, (s). We say that f is ramified at s if e, (s) > 1; otherwise we say thaqt f

1s unramified at s.

We define the relative degree of s € S over f (s), d; (s), to be

2 if s € S°and £ (s) € 8T
d;(s)= . )
1 otherwise.

Definition 1.26. A non-constant morphism f: S — T between two Klein surfaces will

be called an n-sheeted covering of T if for every pointt € T

D e (9)d(s)=n.

sef”! t)

If e;(s)=1forallseS, f:S— Tis an unramified n-sheeted covering, otherwise it is a

ramified n-sheeted covering.

In [2] Alling and Greenleaf give detailed proof to show that every non-constant
morphism between two compack Klein surfaces is an n-sheeted covering for some n. Also
if S, T and X are Klein surfaces and f: S — T, g T — X non-constant morphisms then
gf: S — Xis a non-constant morphism. If f is an n-sheeted covering of T and g is an m-

sheeted covering of X then gf is an mn-sheeted covering of X.
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Let S,,S,be two homeomorphic orientable Klein surfaces. An orientation
preserving (reversing) homeomorphism f: S, — S, is called a conformal (anti-conformal)

homeomorphism if f is a morphism with respect to the dianalytic structures on S, and S, .

A conformal (anti-conformal) homeomorphism from S, toS, will be called a

t+automorphism (-automorphism). An automorphism is either a + or a — automorphism.

For any orientable Klein surface S the set of all automorphisms form a group Aut S, which

contains as a subgroup of indes 1 or 2 the group of all + automorphisms of S, denoted by

+ Aut S.

If S,,S,are two homeomorphic non-orientable Klein surfaces, then a
homeomorphism f: S, — S, is called a conformal homeomorphism if f is a morphism
with respect to the dianalytic structures of S, and S,. A conformal hemeomorphism of a

non-orientable surface onto itself will be called a automorphism. The set of

automorphism of non-orientable surface forms a group, Aut S.

If S, andS, are two Klein surfaces and F: S, —S, is a conformal

homeomorphism then S, S, are called conformally equivalent or isomorphic.

2) We shall only be concerned with compact Klein surfaces (either with or without
boundary). We now discuss how the surface U/I", where I'is an NEC group (with

compact quotient space) may be given a dianalytic structure.
Theorem 1.27. Let I'be a NEC group. Then the quotient space U/I"has a unique
dianalytic structure such that the quotient map n: U — U/T"is a morphism of Klein

surfaces.

Proof.
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Since I' acts properly discontinuously of U, this follows immediately from a result

of Alling and Greenleaf ([2]) theorem 1.8.4).

The map mis folded over the boundary U/T"and ramified over the distinguished
points of the surface. If I' is a surface group or a bordered surface group the m is

unramified. Also, it is easy to see that for z ¢ U, n(z) ¢ o (U/T")if and only if there exists
a reflection c eI suchthatc(z)=z. If I'is a Fuchsian group then U/I"has an induced

analytic structure with which it is a Reimann surface.

Let I be a non-orientable surface group or a bordered surface group, then the
quotient space U/I'", where I'" is a canonical Fuchsian group of T, is a Riemann surface.

Ifz e U let

T (2) =[z];

n.(2) = [z

and

If f: U/l — U/T is the natural projection defined by

f(lz]..) =[z]

then the following diagram commutes

and fis an ur [ ring of U/T.

ur

If U/ J/T"is a uniquely defined two-sheeted orientable

covering sur boundary then U/T"" is a uniquely defined two-

sheeted orientable covering surface without boundary of U/T".

It is a well-known result that any compact Riemann surface of genus g > 2can be

represented in the form U/I", where I'is a Fuchsian surface group and p (I') =2n (2g - 2)
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(see Springer [27]). This is because U is the universal covering space of all compact

Riemann surfaces except the sphere and the torus.

Schiffer and Spencer [23] describe the double of a compact Klein surface S, which
if S is a surface with boundary or a non-orientable surface with or without boundary, is a
connected compact Riemann surface. If S has genus g and r boundary coponents then the

genus of the double of S is 2g+r-1if S is orientable and g + r —1 if S is non-orientable.
The same double is described by Alling and Greenleaf [2]. They call it the complex

double and denote it by S_. We shall describe in detail in chapter 4 the construction of S,

but for the moment we shall assume its existence and use it to prove the following

theorem.

Theorem 1.28. Let S be a compact Klein surface with genus g and r boundary

components such that g > 2if S is orientable without boundary, 2g + r > 3 if S is

orientable with boundary and g +r >3 if S is non-orientable. Then S = U/I', where I'is

either a surface group or a bordered surface group.

Proof.

If S is orientable without boundary and genus g > 2 then S= U/I', where I" is a

Fuchsian surface group.

If S is orientable with boundary and 2g +r > 3 then the genus of S is

Y =2g+r=12> 2.
If S is non-orientable ( with or without boundary) and g + r — 1 > 3 then the genus of S_,

the double of S is

Y,=g+r-12> 2.

24



Therefore in both cases S, = U/A, where Ais an orientable surface group. S_is symetric
and so admits and anti-conformal involution which we may represent by
[z], —[gz], where g € gis an orientation reversing transformation with the property that
gA=Agandg’c A. Let ’= A+gA. T/A has a natural action of U/A sending
[z], to[gz], and the orbit U/A/T/A

When given the induced dianalytic structure is conformally equivalent to S. (We note

here that if S has boundary then we can take g to be a reflection.)

Let p be the natural projection of

U/A onto U/A/T/A and let p[z], ={[z],]={[gz],}-

The correspondence {[z], = {[z],} — [z]; 1S one-one and is a conformal homeomorphism

from the following diagram
U
nl
n/\
U/ A ur
e
P

S=U/AT/A

As the maps m.,m,and p are all open, continuous and analytic. Therefore U/T is

conformally equivalent to S.

From theorem 1.28 we see that the only compact Klein surfaces not representable as U/T",
where I'is a surface group or a bordered surface group, are in the orientable case the
sphere (g = 0, r = 0), the torus (g = 1, r = 0), the closed disc) g =0, r = 1) and the closed
annulus (g=1, r=1) and in the non-orientable case the projective plane (g =1, r = 0), the

Mobius band (g = 1, r = 1) and the Klein bottle (g =2, r=0).
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3) We shall now develop the theory of automorphisms of Klein surfaces without
boundary.

The representation of homeomorphisms between compact Riemann surfaces by
homeomorphisms of U is well —known (see e.g. Macbeath [13], Bers [3]) and the results

extend to Klein surfaces without boundary.

Let I',I"'be two surface groups. Put

. (2) =[z];
We say a homeomorphism w: U-—U induces a homeomorphism f: U/T" —» U/T" if the

following diagram commutes.

W
U—— U

1

Clearly if w: U — U is a homeomorphism such that wI'w ™ =TI""then the mapping

Dz]T) = [wz] .

is well defined and f is a homeomorphism.

If f: U/T"— U/T"is a homeomorphism then using results in the theory of covering
spaces we can deduce that there exists a homeomorphism w: U — U which induces f.
This mapping w is not uniquely defined for f is also induced by

wy,yel,as fn. =fn. =frn_y. It follows that w also induces an isomorphism i: I' > T

defined by i (y) =wyw™ and so wI'w~ = I''. F is conformal or anti-conformal if and

only if w ¢ g. Also if U/I'and U/T" are orientable surfaces then f is orientation

preserving if and only if w is orientation preserving so that f is conformal if and only if w

1

e g. wI'w™ =TI"we deduce the following well-known result. If I',I"'are orientable (non-
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orientable) surface groups then U/T", U/I"'are conformally equivalent if and only if there

exists w & g+ (w & g) such that wI'w™' =T"".

If we put I'=T"we see that f is an automorphism of U/I"if and only if w € Ng
(I'). The group of automorphisms of U/I" is isomorphic to Ng (I')/I". If " is an
orientable surface group then the goup of + automorphisms of U/T"is isomorphic to

Ng+(I')/T.

May [21] has infact extended this result and has shown that if " is a bordered
surface group then the group of automorphisms of U/I" is Ng (I')/I". We discuss these

ideas as related to Klein surfaces with boundary in chapter 4.

Groups of + automorphisms of compact Riemann surfaces have been well-studied
by Hurwitz [8], Macbeath [13], [14], [15], Harvey [7], Maclachlan [18] and
Singerman[24], [26].

If S is a compact Riemann surface of genus g>2 then=U/A where Ais an
orientable surface group and
+Aut S=Ng+ (A)/A
which is a quotient of two Fuchsian groups. Any subgroup G of + Aut S is therefore of

the form

G=T/A
Where T'is a Fuchsian group. Conversely, any element of Ng+(A) induces a +

automorphism of U/A so that I'/ A acts as a group of + automorphisms of U/A .

Therefore a necessary and sufficient condition for a group G to be a group of +
automorphism of a compact Riemann surface S = U/A is that there is a homeomorphism

from a Fuchsian group I' onto G such that the kernel is the orientable surface group A.

Using this we can compact orientable Klein surface without boundary since
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|G| _ H(A) _ 2n(2g - 2) .
() (@)

If I" has signature (h; m;, m,, K m,) then

WD) =2m(2h—2+ Y1, - 1))
i=1 my

and by considering all possibilities (see Macbeath [14]) we can show that p(I') > n/21
with equality holding only when I' is the Fuchsian traing (0; 2,3,7). We have thus shown
that |G| < 84 (g-1). This bound was first obtained by Hurwitz [8], who showed that it

was attained when g = 3. Since then it has been shown to be attained for infinitely many g

(e.g. Macbeath [13]). We shall look more closely at this problem in chapter 2.

Let S be a non-orientable compact Klein surface without boundary of genus

g > 3sothat S= U/A, where A is a non-orientable surface group, then

AutS ; Ng(A)/A
And since Ng(A)is a NEC group with compact quotient space any group of

automorphism of U/A will be isomorphic to I'/ A where I' is a NEC group. Conversely
'/ A acts as a group of automorphisms of U/A .

Thus a group of automorphisms of a non-orientable Klein surface without boundary of

genus g > 3 is finite.

Theorem 1.30. ([24]) A necessary and sufficient condition for a finite group G to be a
group of automorphisms of a compact non-orientable Klein surface without boundary S of

genus g > 3 is that there exists a proper NEC group I' and a homomorphism

0 :T" — G such that the kernel of 0is a surface group and 6(I'") = G.
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Proof.

If G is a group of automorphisms of S then G =I"/A where Ais a non-orientable
surface group such that S = U/A and I' is a proper NEC group. Hence there exists a
homomorphism 0:I" — G whose kernel is a non-orientable surface group. Thus there

exists

teker@ N (I'\I'").

Then T =T" +tI'". Let 0(I'")=G". So

G=0(I)=0(I""+tI'"')=0(I'")+0() 6(I'')=G" +G =G"

Which implies that 6 (I'" ) =G
Conversely suppose there exists a homomorphism 6 I' — G such that 8(T"") = G
and ker 0 is a surface group A. Now if A were an orientable surface group A < T'", so

that A is the kernel of the restriction of 6 to I'". Thus

G=T"/A; T/A,

Which is impossible as p(I'") =2u(I'). Therefore A is a non-orientable surface group

and G is a group of automorphisms of a non-orientable Klein surface without boundary of

genus g > 3.

If we let 8= U/A" then §is the uniquely defined two-sheeted orientable

covering surface of S = U/A .

Corollary 1.31.  If G is a group of automorphisms of S then G is a group of +

automorphisms of §/‘, its orientable two-sheeted covering surface.

Proof.
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S = U/A, so by theorem 1.30 G = I'/A where I' is a proper NEC group. The
group I'/A has a natural actionon S. If yeT" then

YA([z],) = [vzl, -
As A is a non-orientable we can without loss of generality assume that y by y?i where

L e A\A". Clearly, as A* < A,
YA([z],.) = [vz],.

so that G has a well-defined action on U/A". It follows that G is a group of +

automorphisms of §'= U/A".

Lemma 1.32. If o is an anti-conformal involution of §¢ such that S = 8/ <a> (where

<a> denotes the group generated by o ) and G is a group of automorphisms of S (which
by corollary 1.31 is a group of + automorphisms of S (which by corollary 1.31 is a group

of + automorphisms of §/‘) then o commutes with every element of G.

Proof.
S=U/A, §= U/A" and by anti-conformal involution o of ¢ such that S = §¥

<a> 1s of the form.
o:lz] o: [7],. =>[Az]., he A\AD"

By theorem 1.30 G = I'/A, where I" is a proper NEC group. Letg= yA ¢ I'/A, which

from the proof of corollary 1.31 is a + automorphism of 8§ Then

go([z],.) = glz],. =[vAz],.
and

og([z],.) = olyz],. =[Mz],.
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But A7y "Ay e A because A < I'soA'y"Ay is orientation preserving .  Therefore

L'y Ay e A* and hence go = og.

We note here that if S is a non-orientable Klein surface without boundary of genus

g then § has genus g — 1 from the Riemann-Hurwitz formula.

Definition 1.33. A homomorphism from a NEC group onto a finite group whose kernel

is a surface group is called a surface-kernel homomorphism.

Lemma 1.34. A homomorphism 6 from a NEC group I' onto a finite group G is
surface-kernel if and only if for every element x of finite order in I, 0(x) has the same

finite order.

Proof.

A NEC group is a surface group if and only if it contains no elements of
finite order. It is then clear that if 0 preserves the orders of the elements of finite order in
I', ker 6 must be a surface group. Converseley, if 0 is a surface-kernel homomorphism
and x ¢ I is an element with finite order m then 0 (x) has order d dividing m. This

implies x* & ker 0 and as ker 0 is a surface group, d =m.

Note: As every element of finite order in an NEC group I' is conjugate to a generator of
I', 0 is surface —kernel if and only if 6 preserves the orders of the elliptic and refelection
generators.
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CHAPTER 2

Maximal automorphism groups of compact

Klein surfaces without boundary.

1). In chapter 1 we deduced Hurwitz’s result that the order of a group of +
automorphisms of an orientable Klein surface without boundary (i.e . a Riemann surface)
of genus g cannot be bigger than 84(g —1). Because this bound was first obtained by

Hurwitz we have the following definition.

Definition 2.1. A group of 84(g-1) + automorphisms of an orientable Klein surface
without boundary of genus g is called a Hurwitz group.

The problem of finding Hurwitz groups has been considered by Macbeath [13],
[16], by Lehner and Newman [12] and by Singerman [24].

Let S be an orientable Klein surface without boundary of genus g> 2, which
admits a group of 84 (g — 1) + automorphisms. Le A be an orientable surface group such

that S = U/A , then as shown in chapter 1, the group + automorphisms of S is isomorphic

of N¢"(A)/A, p(Ng*(A)) = n/21 and Ng*(A)is the Fuchsian group with signature

(052,3,7)

i.e. the group with presentation

Xy; X =y =(xy) = 1}.

This group may be obtained as follows. Let A be the proper NEC group generated
by the reflections c, ¢y, c3, in the three sides of a non-Euclidean triangle with angles
n/2, /3, w7 . A has the presentation {c;,c,,c3; 012 = 022 = 032 = (clcz)2 = (C203)3 = (c103)7 =
1}.

A", the canonical Fuchsian group of A, is the (0; 2,3,7) group with presentation
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{x.y; X = y3 = (XY)7 =1}, x=cjcz, y=CaC3.

Lemma 2.2. Every normal subgroup of A™ is a surface group.

Proof.

Every element of finite order in A" is conjugate to either x, y or xy. If
A is a normal subgroup of finite index A" which contains an element of finite order it
must contain one of these elements . Suppose x € A. Then under the canonical

homomorphism from A to A"/ A, x must mapt to 1, the identity. Suppose that y maps to

;/. Then from the presentation of A, we must have

< |
Il
< |
Il
[S—

which implies that ; =1land A = A", Similarly if A contains y orxy, A = A". Hence

every normal subgroup of A is a surface group.

We have thus shown that a finite group G is a Hurwitz group if and only if it is a

homomorphic image of A", i.e. it has two generators X,Y such that X* =Y’ = (XY)' = 1.

2). Maximal groups of automorphisms of non-orientable Klein surfaces without
boundary have been studied by Singerman [24] and of Klein surfaces with boundary by
May [20], [21], [22]. In [20] May has shown that a compact Klein surface of algebraic
genus y > 2with non-empty boundary cannot have more than 12 (y -1) automorphisms,
the algebraic genus of a surface being the non-negative integer that makes the algebraic
version of the Riemann — Roch theorem wor [4], the field of meromorphic functions of
Klein surface being an algebraic function field in one variable over ; . (It can be shown
that as long as the boundary is non-empty the algebraic genus of a Klein surface S = U/T",
where ['is a bordered surface group, is equal to the topological genus of the surface

U/T". This will be discussed more fully in chpter 4). In [21] May shows that the bound

12(y -1) is attained for infinitely many values of the algebraic genus y and exhibits some

infinite families of surfaces with boundary which admit groups of 12(y -1)
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automorphisms. In [22] it is shown that there are an infinite number of values of the

algebraic genus y for which there is no Klein surface with boundary with 12(y -1)

automorphisms.

In this work we shall be concerned with maximal groups of automorphisms of non-
orientable Klein surfaces without boundary and it may be assumed throughout the rest of

this chapter that the Klein surfaces considered are without boundary.

Lemma 2.3. If G is a group of automorphisms of a non-orientable Klein surface, S

of genus g then |G| < 84(g-2). If |G| = 84(g-2)then G is a Hurwitz group.

Proof.

By Collary (1.31) every group of automorphisms of S is isomorphic to
a group of + automorphisms of §¢ the orientable two sheeted covering surface of S. If S

has genus g, then Shas genus y =g —1. Therefore |G| < 84(g-2). If |G| = 84(g-2)if and

only if |G| = 84(y-1) i.e. if and only if G is a Hurwitz group.

Definition 2.4. A group of 84(g-2) automorphisms of a non-orientable Klein surface of

genus g will be called an H* - group.

From lemma 2.3 we can see that if G acts as an H* - group on a non-orientable

surface S, then G acts as a Hurwitz group on § In particular every H* - group is a

Hurwitz group.

Now suppose S is a non-orientable Klein surface of genus g > 3, which admits a
group of 84(g-2) automorphisms. Let A be a non-orientable surface group such that S =

U/T", then
ING(A)/ Al = 84(g-2).

But
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W(Ng(A))  u(Ng(A))

and thus p (Ng(A)) =n/42. Thus N¢(A)is the NEC group with signature

0, [1 {2.3,7)}).

This is the NEC group (unique upto isomorphism) with the smallest possible area of

fundamental region and is the group A with presentation
{c1,c2,C35 012 = sz = 032 = (0102)2 = (CzC3)3 = (C1c3)7 =1},

By exactly the same methods used in the proof of lemma 2.2 we can show that

every normal subgroup of A of finite index greater than two is a surface group.

Theorem 2.5 ([25]). A finite group G is an H* - group if and only if it contains three

generators C;, C,, C; which obey the relations
Ci2 =0l =G5 = (C1Co)* = (C2C3)’ = C1C3) =1,
And G is generated by C,C, and C,Cs.

Proof.

If G is an H* - group, there exists a homomorphism 6:A — G wuch that 6(A") =
G, and so has gnerators as described in the theorem. Conversely, if G has these genertors,
there exists a homomorphism 6 : A — G such that 6(A") = G and the kernel of 6 must be a

surface group as all normal subgroups of A of index greater than two are surface groups.

By applying theorem 1.30 we deduce that G is an H* - group.
Corollary 2.6. A Hurwitz group G generated by X,Y which obey the relations
X =Y=(XY) =1
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Is an H* - group if and only if there exists Z ¢ G such that
7 =(ZX) =(@ZY) =1

Proof.
If such a Z exists, then G is generated by C; =ZX, C, =Z, C3 =ZY

obeying the relations

Ci2=C% =G5’ = (C1C2)* = (C2C3)° = (C1C3) = 1.

Thus, by theorem 2.5, G is an H* - group.
Conversely, if G is an H* - group generated by C;, C,, C; obeying the same
relations as above and also generated by X — C,C,, Y = C,C5 then Z = C, obeys the

relations

7' =(ZX) = (ZY) =1.

3). In searching for Hurwitz groups an obvious first step is to look amongst simple
groups. This is because no non-trivial Hurwitz group is cyclic and any factor group of a
Hurwitz group is a Hurwtiz group. So if we factor out a Hurwitz group by a maximal
normal subgroup we obtain a simple Hurwtiz group (see [14]). Since the projective
unimodular groups, PSL(2,q) (Dickson’s LF(2,q) [5]), are simple for q > 3, it is natural to
look amongst these for Hurwitz groups. Macbeath [16] has determined for which values
of q PSL (2,q) is a Hurwitz group. His results will be discussed later. Here we give the
definition of PSL (2,q) and some of its properties.

For each prime power, q = p", there is a field of order q. Moreover for every prime
power, q, there is, upto isomorphism, precisely one field of order q, namely GF(q), and

there are no fields of order q if q is not a prime power.

e.g. ifn=1, q=p, prime, then GF(p) = residues mod p.
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Let g =p". Then the general linear group, GL(2,q) is defined as
a b
GL(2,9) = { (J: a,b,c,d, € GF(q), ad - bc # 0}.
c

The centre of GL(2,q), denoted by Z(GL(2,q)), is

and we define the projective general linear group, PGL (2,q), as
PGL(2,q) = GL(2,q) /Z(GL(2,9)).
We define the special linear group, SL(2,q), as

a b
SL(2,q9) = {(c djs GL(2,q) : ad-bc= l}

And the projective special linear group, PSL(2,q), is then

SL(2,q)/Z(SL(2,q)).

1 0 1 0
Z(SL(2,q)) is ( 0 +J ifp # 2 and (O J if p=2. The order of PSL(2,q) 1s q(g-1)

(qt1)/2ifp #2 and q(g-1) (q+1) if p=2.
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a b
Under the natural homomorphism from SL(2,q) onto PSL(2,q). a matrix ( dj in
c

a b)(xl O
SL(2,q) induces a unique element in PSL(2,q), namely the coset [ dj [ 0 +J .
C T

Without ambiguity we can represent an element of PSL(2,q) by either of the two matrices

in SL(2,q) which induce it.

a b
The trace of a matrix ( dj in GL (2,9) and (a+d) and it is easy to show the
c

following:-
(1) matrices in SL(2,q) which induce an element of order 2 in PSL(2,q) have trace 0
(i1) matrices in SL(2,q) which induce an element of roder 3 in PSL(2,q) have trace 0

(ii1))  matrices in SL(2,q) which induce an element of order 7 in PSL(2,q) have trace &,

where &%+ £7-2& -1=0.
2) We now state Macbeath’s result.

Theorem 2.7. PSL(2,q) is a Hurwitz group if and only if

(1) qQ=p p prime = *1(mod 7)
(i) q=p°  pprime = 0, 1 (mod 7)
®» q=7

In case (1) there are three distinct orientable Klein surfaces upon which the group acts as a

Hurwitz group. In cases (ii) and (iii) there is only one such Klein surface.
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The two smallest Hurwitz groups are PSL(2,7) and PSL(2,8) which act on
orientable surfaces of genus g = 3, g = 7 respectively. Singerman [24] has shown that
PSL(2,7) is not an H* - group but PSL(2,8) is an H* - group and this will follow from our
results aswell. Thus the smallest value of the genus for which a non-orientable Klein
surface admits 84(g —2) automorphisms is g = 8. Our problem is to establish a general
result to determine when PSL
(2,9) is an H* - group given that it is a Hurwitz group. (Since every H* - group is a

Hurwitz group when looking for H* - groups we need only look amongst Hurwitz groups).

Macbeath has shown that all the groups listed above are Hurwitz groups i.e. that

there always exist generators X,Y such that
X*=Y*=(XY) =1.

If X ¢ PSL(2,q) with order 2 then trace X = 0, so by con-jugation we can always assume

that

LetY = (X y] e PSL(2,q). If X and Y generate PSL(2,q) then the quadratic form
z w

Q= Q,,» defined by

QEML) = & +n* +{ +oml+ BLE+vEn

is non-singular, where o = trace X, f=trace Y, y=trace XY (see [16]).

Now Q(&,1n,§) is non-singular if and only if
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1 vy/2 B/2
det|y/2 1 oa/2| #0
B/2 a/2 1

But a=trace X = 0

B =trace Y = x+w
y = trace XY = z-y.
So we can deduce that if X and Y generate PSL(2,q) then

X2+y2+zz+w2 #2.
5). We know from corollary 2.6 that if PSL(2,q) is a Hurwitz group generated by X
and Y such that

X2=Y'=(XY)' =1
Then it is an H* - group if and only if there exists Z ¢ PSL(2,q) such that

7' =(ZX) = (ZY) =1.

It is left oly for us to determine when such an element Z exists.

Lemma 2.8. Suppose that PSL(2,q) is generated by X,Y where

Then there always Z ¢ PGL(2,q) such that

72 =(ZX)}=(2ZY) =1

Proof.
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o
LetZ = e PGL(2,9).
Y O

We want Z> = 1, so we require trace Z = 0 i.e.
o0=-a
(Note: It is easy to shwo that a matrix in GL(2,q) which induces an element of order two

in PGL(2,q) must have trace 0).

We also wan (ZX)” = 1, so we require trace ZX =0 i.e.
v=5

Now

—— (oc B ] (x y] _ (ocx—i—ﬁz ocy—i—BwJ
B —o)lz w Bx—az PBy—aw
so that
trace ZY = o(x —w) + B(y+z)
and since (ZY)* = 1 we must have trace ZY = 0 i.e.
a(x—w) =-B(y+z).

Hence given any value for 3 we can always find a value for a such that Z satisfies the
required relations (if x = w, put B =0 and then o can take any value). But we must

ensure that Z € PGL(2,q) i.e. that det Z # 0.
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Now det Z = - (o.*+p ) and we know that

o (x-w) =-B(y+2).
If we square both sides of this equation and add B (x-w)” to both sides we get
o (x-w)’ + BA(x-w)’ = B(y+2)" + B (x-w)”
From which, since xw-yz = 1 (because Y ¢ PSL(2,q)), we can deduce that

B*  _ (x-w)*

o’ +p° - (x> +y*+z +w’ -2

Put

(x-w)’

XP+y +722+w =2)

For X and Y to generate PSL(2,q), x* +y” +z" +w’ # 2, so T always exists.
If x = w, T=0 which implies that § =0 and o can take any value except zero, so
det Z=(a*+p?) #0.

If X # w, since T # 0, we can write

a2=32@232 l 1L
T T
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Now % # 0 and so % -1 # -1 which implies that o’ # -B’and hence again det Z # 0.

Therefore there always exists an element Z ¢ PGL(2,q) such that

7' =(ZX)* =(ZY) ' =1.
Theorem 2.9. If PSL(2,q) is a Hurwitz group generated by X,Y such that X* =Y’ =
(XY)” = 1 then it is an H* - group if and only if (3 - &?) is a square in GF(q), where & =

trace XY.

Proof.

As X,Y generate PSL(2,q) we can assume that
0 1
X =
-1 0

and

xw—yz=1, x>+y*+z° +w’ # 2. Since the order of Y is three and the order of XY is

seven we know that
Xx+w=trace Y = =1
and if

z—y=trace XY = &
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then & is a solution of the equation &’ +&* —2£—1=0 in GF(q). By the proof of lemma

2.8 there exists an element Z ¢ PGL(2,q) of the form

zz(g _ij a’+p’ = 0

satisfying the relations
7' = (ZX) =(ZY)’ =1
and
B* (x*+xy’+2°+w?-2) = (o’ +B%) (x-W)’K (*)
By corollary 2.6 PSL (2,q) is an H* - group if and only if Z ¢ PSL(2,q) i.e. if and only if

det Z=-(a’ +B°) =1 (in GF(q)).

We know that x+w = 1 and z-y = £, so squaring both expressions and using the fact that

xw —yz = 1 we can deduce that
X+y +z27+w = E2 — 1
substituting this expression in(*) we obtain
B(E-3) = (a’ +B°) (x—w)’
so —(a2+pB2) =1if and only if

3 (x-w)*

b= (3-8)
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(Note: 3—-£2 # 0 since X’ +y* +z° +w’° # 2)
This equation has a solution for B if and only if ( 3 - &) is a square in GF(q).

Given a value for B we can find a as in the proof of lemma 2.8.

Hence PSL(2,q) is an H* - group if and only if (3 - £*) is a square in GF(q).

We now now the conditions under which PSL(2,q) is an H* - group. We can, in

fact, directly relate the condition imposed on & to properties of GF(q).

If the equation

E3+E2-26-1=0

has three roots 1, + 1, + 1, =—1

T,T, +T,T, + 1,7, =2

T,7T,T, =1

so if -1 is a square in GF(q) then either (3 - t,”) is a square for all i (i=1,2,3) oritisa
square for one value of i only. If -1 is not a square in GF(q) then either (3 - t,>) is never a

square or it is a square for two values of 1.

In GF(q) (q=p", p prime), if ¢ = 1(mod 4) or p=2 then —1 is a square, otherwise
(i.e.if q=(i.e if ¢ = 3 (mod4)) —1 is not a square. Thus we can tell immediately for how
many values of i (=1,2,3) it is possible for (3 - 1,*) to be a square in GF(q).

Let us consider the three cases in theorem 2.7 seperately.

(1) q=7p, prime p = = 1(mod 7). In this case there are three distinct traces

T,, T,, T, yielding elements of PSL(2,q) of order seven. As Macbeath [16] has shown that
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in this cse there are three distinct orientable Klein surfaces on which PSL(2,q) acts as a
Hurwitz group it is clear that the number of values of I(=1,2,3) for which (3 - 1°)is a

square in GF(q) corresponds to the number od distinct non-orientable Klein surfaces on
which PSL(2,p) acts and an H* - group, for if two Klein surfaces have non-conformally

equivalent orientable two-sheeted covers then they themselves must be distinct.

(i1) q=p’, pprime p = +2 or +3(mod 7). In this case the three traces

T,, T,, T, are conjugate under the automorphism group of GF(p®) which induces
automorphisms of PSL(2,p’) (see [16]). Since automorphisms preserve squares ( 3 - 1)

is either a square for all values of I or (3 - 1,°) is never a square. In the latter case which

occurs when p = 3(mod 4) PSL(2,p°) is clearly not and H* - group. In the former case
which occurs when either p=2 or p = 1(mod 4) PSL (2,p’) is an H* - group acting on one
non-orientable Klein surface only because it acts only on one orientable Klein surface, S
say as a Hurwitz group (as shown by Macbeath [16]). So if it acted as an H* - group on
more than one non-orientable Klein surface, say on K; and K,, they would have the same
orientable two-sheeted covering surface S and there would exist anti-conformal

involutions ¢;, [ = 1,2, of S such that

where <Gi> denotes the group generated by o, .

From lemma 1.32 we see that ¢ |, o, must oth commute with every element of
PSL(Z,p3) and since 66, ' & PSL (2,p3 ) which has a trivial centre, 6 | = 6, and hence
K; = K.

(Note: PSL (2.8) is now a special case and clearly from the above is and H* - group acting

on one non-orientable Klein surface because 8§ = 2°.)
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(ii1)) q=7. The fact that PSL(2,7) is not an H* - group follows directly now since the
only solution of & +&>—2&—-1=0 in GF(q) is £=2, and (3 —2%) = -1 is not a square in
GF(7) because 7 = 3(mod 4).

Now p = £1(mod7)andp = I(mod 4) if and only if p = 1 or 13(mod 28),
p = £ 1(mod 7) and p = 3(mod 4) if and only if p = 1 or —13(mod 28),
p = £2(mod 7) and p = 1(mod 4) if and only if p = 5 or 9 (mod 28),
p = £3(mod 7) and p =1 (mod 4) if and only if p = -3 or —11(mod 28)

and we have proved the following.

Theorem 2.10.
(1) If g =p prime and p = 1 or 13(mod 28) then PSL(2,q) is an H* - group acting on
one or three distinct non-orientable Klein surfaces. If q=p prime and p = -1 or —13(mod

28) then PSL(2,q) is an H* - group acting on two distinct non-orientale Klein surfaces if (3
- 1.°) is a square for two values of i and is not and H* - group if (3 - 1.°) is never a square,
where 1,, 1,, T, are three roots of the equation &’ +&° —2£~1 =0 in GF(q). Otherwise

PSL(2,p) is not an H* - group.

(11) If q = p’, prime then PSL(2.q) is an H* - group if and only if p=2 orp = 5,9, -3
or —11(mod28). In this case ther eis only one non-orientable surface on which the group

acts as an H* - group.
By Dirichlet’s theorem on primes in an arithmetic progression there are an infintie
number of compact non-orientable Klein surfaces for which the upper bound for the order

of the automorphism group is attained. The result shows also that there exist and infinite

number os simpe H* - groups.

Example 2.11. q=p=13
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By theorem 2.10, PSL(2,13) is an H* - group. Does it act on one or three non-orientable

surfaces?

GF(13) = residues mod 13. Let t,, T,, T, be the roots of

£ 482 -2t—-1 =0in GF(13). So

Now (3 - 1,”) = 6(mod 13), which is not a square in GF(13),

(3 - 1,%) = 4(mod 13), which is a square in GF(13),

(3 - 1,°) = 7(mod 13), which is not a square in GF(13).
(Note: 6.4.7.) = -1(mod 13).)

So PSL (2,13) is an H* - group acting on only one non-orientable Klein surface of genus
15.

6). For each prime p = * 1(mod 7) a computer program was run which solved the
equation &’ +&°—2E—1 =0 in GF(p) giving the roots t,, 1,, T, and then determined

when (3 1.°) was a square in GF(p). The following results were obtained.

p = 1(mod 4)
(@  (3-1)square (b)  (3- 1) square for
for one value of | all three values of I
p=13 p= 181
29 293
41
97
113
197
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281
337
349
421
433
449
461

() (3-1)square (d  (3-1°)never

for two values of I square

P= 43 P= 167
71 239
83 251
127 379
139 491

211
223
307
419
463
503

In (a) PSL(2,p) is an H* - group acting on one non-orientable Klein surface. In
(b) PSL(2,p) is an H* - group acting on three distinct-non-orientable Klein surfaces. In
(c) PSL (2,p) is an H* - group acting on two distinct non-orientable Klein surfaces. In (d)

PSL(2,p) is not an H* - group.
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CHAPTER 3

Cyclic groups of automorphisms of compact

Non-orientable Klein surfaces without boundary

1). In this chapter we are going toc consider the problem of when cyclic group acts as a
group of automorphisms of a compact non-orientable Klein surface. The problem for +
automorphisms of compact Riemann surfaces has been solved by Harvey [7]. His results are

stated below.

In [22] May has shown that the order of a cyclic group of automorphisms of a compact

Klein surface S with boundary of algebraic genus (as defined in chapter 2) y>2 cannot be
larger than 2y+2if S is orientable and y is even; otherwise the order cannot be larger than
2y. It is shown that for all values of the algebraic genus y >2 there are both orientable and

non-orientable surface with a cyclic automorphism group of maximum possible order.

In this chapter, as in chapter 2, we shall be considering non-orientable Klein surfaces
without boundary and it is interesting to note that in this case the maximum order for a cyclic
group of automorphisms of such a surface again depends on whether the genus of the surface

is even or odd.

2). We now state Harvey’s results. All surfaces from now on are assumed to be without

boundary.

Theorem 3.1. ([7])  Let I" be a Fuchsian group with signature (g; m,, K, m, ) and let m be
the l.cm. of {m,, K ,m,}. There is a surface-kernel homomorphism 0:I' — Z_ (cyclic

group of order n) if and only if the following conditions are satisfied.

(1) l.em. {m,, K &%, K ,m,}=m, forall i, where it denotes the omission of m,
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(i1) m divides n and if g =0, m = n,

(i) k # l,andifg=0,k > 3,

(iv)  if 2Im, the number of periods divisible by the maximum power of 2 dividing m is
even.

(Note: If A= kerOand the above conditions are satisifed then Z acts as a group of

orientation preserving automorphisms of U/ A).

Theorem 3.2 ([7]). The maximum order for a + automorphism of an orientable Klein surface

of genus g is 2(2g + 1). This maximum order is attained for each g and hence Z,,, is a +

automorphism group for some surface of genus g, for every valueof g > 2.

Our problem is to find an attainable upper bound for the order of an automorphism of

a non-orientable Klein surface.

Lemma 3.3. An upper bound for the order of an automorphism of a non-orientable

Klein surface, S, of genus g is 2(2g-1).

Proof.

By corollary 1.31 every group of automorphisms of S is isomorphic to a group of +
automorphisms of §¢ the orientable two-sheeted covering surface of S. If S has genus g then

§ has genus Yy =g-1. So if Z, is an automorphism group of S then it is an automoprhism

group of §and by theorem 3.2 n< 22y +1)=2(2g-1).

Thus we have an upper bound for the order of an automorphism of a non-orientable
Klein surface, but is this bound actually attained? The answer to this question is in the
negative as we see in the following theorem.
Theorem 3.4. The maximum order for an automorphism of a non-orientable Klein surface

of genus g > 3 is
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2g, ifgisodd,
2(g - 1), ifgiseven.

The maximum order is attained for every g, hence Z,, is an automorphism group of some non-

orientable Klein surface of odd genus g > 3.

Proof.

By theorem 1.30 if Z, is an automorphism of a non-orientable Klein surface, S, of

genus g > 3 then there exists a proper NEC group I"and a homomorphism 0:— Z_such that

ker 0 1is a surface group and 0 (I'" ) = Z,. I'" must satisfy the conditions of theorem 3.1.

Let ker 6 = A, then A will be a non-orientable surface group (with orbit-genus g), S
= U/A and
Z .

n o

I'/A.

Hence

n=[[/A| = HA) 2n(g - 2)
ud) )

For g odd, ifn > 2g then

H(]") < M <7
2g

and for g even, if n > 2(g —1) then again p(I') < =, so in both cases

O<wI) =2w(T) <2m.
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Since I'" is a Fuchsian group it will have signature of the form
(Y> ml: K H mk)

in which case
S 1
pI)=2n2y -2+ (1- —))
i=l mi
and so we wish to consider only those signatures which satisfy the condition

k
0<2y-2+> (- L)<1.

i=1 i

This implies that y < 1. If y=1thenk =1 and if y = 0 then k < 5. However for I'" to

satisfy the condition fo theorem 3.1, k # 1. Hence y = 0 and k > 3 and it is easy to see

from condition (iv) that k <5. Also we note if k = 3 then ZL < landk=4 ZL <2.
m; m.

1

Let us therefore consider NEC groups I' such that I'" has signature of the form (0;
my,my,ms) or (0; my,my,m3,my). If T has signature (0; m;,m,,m3) then by theorem 1.18 there

are two possibilities for the signature of I' namely

(1) (Oa +, [ ]a {(m17m27m3)}) = l_‘1 say,

(2)  ifmy=my, (0, +, [m], {m3)}) =T, say.

If T has signature (0; m;,mp,m3,m4) then again by theorem 1.18 there are four

possibilities for the signature of I' namely
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(3) (07 +a [ ]’ {ml 7m2 9m3 ,I’Il4)}) = 1—‘3 saYa
4) if m;, =m,, (0, +, [m, ], {(m3 ’m4)}) =T, say,
(5) if m, =m,, m, :l’l’l4,(0, +, [m19m3]9 {( )}):FS say,

(6) ifm, =m,, m; =m,, (I, [m,m], { }) =T say

We wish to consider surface-kernel homomorphisms 0 from I'onto Z such that
0(I'")=Z, suchthat 6(I'") = Z_, so to satisfy theorem 3.2 since y (the orbit-genus of T'")
= 0 in all cases, we must have n=m = l.cm. {m,,K ,m,}. The following lemma shows that
a surface-kernel homomorphism onto Z_ for n> 2 does not exist in the first four of the above

Six cases.

Lemma 3.5. There does not exists a surface-kernel homomorphism 0:I', — Z  forn>

2andI1=1,2,3, or 4.

Proof.

I'; and I'; have presentations

{Cl,Cz,CS;Clz = sz = C32 = (Clcz)ml = (0203)m2 =(c,C4 )m3 =1}

and

{€15€,,C5,Cy; c12 = sz = C32 = C42 =(cc, )ml = (C2C3)m2 = (‘3304)m3 = (0104)m4 =1}

respectively, and are thus generated by elements of order two. So no homomorphism

0:I'’ — Z existsforn>2, forI=1 or3.
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{e,x; & =x™ =(xexe)™ =1

and since Z, is abelian any homomorphism 0: I'; — Z must have

B(xcx'c) =1

and hence 0 cannot be surface-kernel.

I', has presentation

{x,c,,¢,; x™ =¢” =¢,” =(c,c,)™ = (c,xe,x )™ =1},

If Z has an element of order two then it is unique and so for any homomorphism

0: 'y, > Z wemusthave

0(c,c,) = (B(c,))* = 1

and again 0 cannot be surface-kernel, which completes the proof of the lemma.

The following lemma shows that there does exist a surface-kernel homomorphism

06: Iy » Z_,where m= l.c.m.{m,,m,}, under certain conditions.

Lema 3.6. Let I"be a proper NEC group with signature

(0, +, [kI1, {O)}).

If either K and 1 are both even or have opposite parity then there exists a surface-kernel

hoomorphism 0: ' — Z_, where m = l.c.m.(k,1), such that (0("") = Zy, .
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(Note: T'" has signature (0; k,k, 1,1 ) and satisfies all the conditions of theorem 3.1)
Proof.
I" has presentation
{c,x,X,; ¢ =x* =x,1 =x,x,0(x,x,) "c=1}.
Zm = <1,z,zz, K ,z™'z" = l>

The condition that either k and 1 are both even or have opposite parity implies that m is even.

Clearly without this condition we could not define a homomorphism 6: I' — Z_,since I'

contains an element of order two an dif m was odd Z,, would not contain an element of order

two.

If we let t = g.c.d.(k,1), so m = kl/t, then we can define a homomorphism

0:T —> Z_, by

8(x1)=z'", which has order exactly k
8(x2) = 2, which has order exactly 1,

0(c) =z, which has order exactly 2.

0 is onto because | /t and k/t are relatively prime, so there exists p,q, € Z (the set

of integers) such that

pt qt '
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Therefore

0(x,"x,") =z

and z generates Zy,.
Every element of finite order in I" is mapped to an element of the same finite order

by 0 and so 0 is a surface-kernel homomorphism (by lemma 1.34) onto Z,,. We also have

0(I'")=Zybecause x,,x, ¢ ['", hence the lemma is proved.

Applying lemma 3.6 to I'; we see that, provided m(=1.c.m.{m;,ms}) is even, we

can define a surface-kernel homomorphism 0: I'; — Z_ such that 6(I'")=Z_. SoZ_ acts

as a group of automorphisms of the Klein surface U/ A = ker 6 and we know that

mo2mMe-2) _ g-2
M(rs) (1 - 1/rn1 - 1/1’1’13)

5

where g is the orbit-genus of A.
The following lemma shows us how to maximise m in terms of g.
Lemma 3.7. Given any two integers r,s such that

[r.s] (1 -%-i):b

where b is a fixed integer and [r,s] = 1.c.m.(1,s) then

[ ] - 2b +4, ifbis odd,
r7 . .
2b + 2, if b is even,
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Proof.
The equation

[r,s](1 - l - l) =b
r s

is always satisfied because if bisodd putr=2,s=b+ 2 and if bis even putr=2,s =2b + 2.

Now suppose [r,s] > 2b + 4. Then, since < %, the equation

2b+4
[r,s] (1----)=b
r s
implies that
I 1 _1
-+ o>
r s 2

This inequality is satisfied by only a few integer values of r and s namely (assuming without

loss of generality that r < s)

r=2, s arbitrary,
r=3, s=34o0r5
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and in each case we can obtain a contradiction.

(1)

2)

€)

4)

()

r =3, s =3 implies [r,s] =3, b=1, so [r,s] <2b + 4.
r=3,s=4implies [r,s] = 12, b= 5, so [r,s] <2b + 4.
r=3,s=>51implies [r,s] = 15,b=7, so [r,s] <2b + 4.

r=2, s odd implies [r,s] =2s,b=2 -2, s0 [r,s] =2b + 4.
r=2, s even implies [1,s] =s, b= % -1,s0[r,s] <2b +4.

Therefore for any value of b, [r,s] < 2b+ 4. Clearly 2b + 4 is the least upper bound for
b odd since [r,s] =2b + 4 when r=2 and s =b + 2. We now wish to show that if b is

even then [r,s] < 2b + 2.

Suppose b is even and [r,s] > 2b + 2, then again since

< 1 the equation
2b+2 2,

implies that

_ | =
+
©n | =

N | =

so we have the same cases as before for integer values of r and s. Now only one of

these cases, namely case (5), gives us a value of b which could be even, i.e. when r =

2,siseven, [r,s]=sand b= % - 1. But then [r,s] =2b + 2 and so if b is even we must
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always have [r,s] < 2b + 2, the upper bound being attained when r =2 and s = 2b + 2.

This completes the proof of the lemma.

If we putr=m;, s=mj3 and b=g—2 in lemma 3.7 then [r,s] = m and we have

< 2g, if gis odd,
-~ |2(g-1),if gis even.

since

W) =2n(1 - — - ) =u(ry)

m; m,

we would obtain no larger values for m using I, .

If W) > =, then

Since we have considered all cases with p(I') < © we have proved that the maximum order

for an automorphism of a non-orientable Klein surface of genus g > 3 is

2g, if gis odd,
2(g—1),if gis even.

The maximum order is attained for each g since the NEC group with signature (0, +, [2,g],
{()}) admits a surface-kernel homomorphism onto Z,, when g is odd by lemma 3.6 and by
the same lemma the NEC group with signature (0, +, [2,2(g — 1)], {( )} admits a surface-

kernel homomorphism onto Z,, ,, when g is even.
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CHAPTER 4

Covering of Klein surfaces.

1). In chapter 1 we saw that every nonconstant morphism between two compact Klein
surfaces is an n-sheeted covering for some n, possibly ramified. If a morphism f: T —

S of Klein surfaces is a ramified n-sheeted covering then s € S has a neighbourhood V such
that (V) has n components each of which is mapped homeomorphically onto V by f except

where the covering is ramified or folded.

If T is ramified over s ¢ S (we say a pointt € T is over a point s € S if f(t) = s) then
at each point in the set f'(s) severla sheets of the covering surface T hang together, the
number of sheets at one point being the ramification index e of f at the point. Over such
points, locally, the covering map f looks lie z — z°. If S has non-empty boundary and T has
no boundary component over one ( or more) boundary components of S then the covering is
folded over that boundary component of S. for all points t € T over & S at which folding
occurs di(t) = 2, where dft) is the relative degree of f(t) as described in chapter 1. The

following is an example of a folded covering.

Example 4.1 Let S be an orientable Klein surface with r > 1 boundary components and

genus g. Let S* be a surface homeomorphic to S and let h: S — S* be the homeomorphism.

If Q=(U

1

,Z,),; 1s an analytic atlas of S we can define an analytic atlas

Q * and S* by putting Q2 * equal to the set of charts (h(U,),z )., where

iel

Z(h(p)) =z(p), forallpe S.

It is easily seen that Q * is an analytic atlas.
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Now form a new Klein surface T as follows. Consider the space SUS* and
‘glue’ the borders together by identifying, forp € 8 S, p and h(p). An analytic atlas Q1 is
defined on Tby Q1= Q; UQ,, where Q  consists of all charts (U, z) on S such that
UnN 3 S = J, together all charts (h(U), z) on S* and Q is the set of all charts (Uuh(U),w),
forall Usuchthat Un oS # & and

w(p) = z(p)
forallp ¢ S

w(h(p)) = z(p)

This definition is consisent on & S is mapped to the real line. It is trivial to show that
this defines an analytic atlas for all charts in €2 ;. We use the reflection principle, which says

that if V is an open set in £ symmetric ab out the real line and if g is an analytic funciton
definedon Vand g(; NnV)c )then g(z) = @, to shwo that the co-ordination

transformations associated with Q , are analytic.

The Klein surface (T, € 1) obtained in this way is orientable with genus 2g +r— 1 and
no boundary. This surface is the ‘classical’ double of an orientable Klein surface with

boundary as described by Schiffer and Spencer [23].
Note that the homeomorphism h now acts as an anti-conformal involution on T.

The covering map f: T — S is the identity on all points of T except those which are on
the union of the boundary of S and S* which is closed curve in T. So f maps points T in pairs
onto the interior of S except the points on the union of the two boundaries, a neighbourhood
of such a point being mapped onto a neighbourhood of a point on the boundary of S, 1.e. onto

a half-closed disc. Hence over the boundary of S the covering map locally has the form of the

folding map & (J(x +1iy)=x + i|y|).
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2). We shall begin by considering 2-sheeted coverings of Klein surfaces. These are
otherwise known as double covers.

In[2] Alling and Greenleaf define a double cover as follows.

Definition 4.2. A morphism f: T— S of Klein surfaces is a double cover if each s € S has
a neighbourhood V such that f' (V) has two components, each of which is mapped
homeomorphically onto V by f; of f'(s) = {t} and there exist dianalytic charts (U,,z,) and
(Us,zs) of t and s respectively such that z(t) = 0 = z,(s), f(Uy) < U and

(1)
¢z, ifsedSandtg T,
(i)  zf|Ut = <¢z°, ifsedSandtg 3T,
2 ifsg 88
(iii)

¢ being the folding map; f is unramified if (ii) and (iii) never occur.

This is clearly compatible with definition 1.26 with n = 2. Alling and Greenleaf
proceed to show the existence and uniqueness of three special double covers, the first of

which is described in the following theorem.

Theorem 4.3 ([2]). Let S be a Klein surface. There exists a double cover f: S — S of S by
an orientable Klein surface without boundary S, (here we allow S, to be disconnected) such
that S; has an anti-conformal involution ¢ with fo =f. If (S’.f’, o) is any other such triple,

then there is a unique conformal homeomorphism p: S’ — S¢ such that ' p =1f.

Further, f is unramified, o is the only anti-conformal sutomorphism of S; such that fo

=fand S, is disconnected if and only if S is orientable and S = ¢ .
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The triple (S, f, o) is called the complex double of S and is usually just denoted by S

. It corresponds to the ‘classical’ double of a Klein surface described in [23], where it is hwon

that if S is orientable with genus g and r > 1 boundary components then S has genus 2g +r —

1 and if S is non-orientable with genus g and r boundary components then S; has genus g + 1 —

1. If S is orientable then the complex double is the same as the double described in example

4.1

Sc can be constructed as follows (see[2]). Let (Uj,zj)je s be a dianalytic atlas of S. For

eachj ¢ J,let U = Uj = U7, and 2’j= z;, 7;, 2= Z;. Let Q be the disjoint union of the

U’ s and make identifications of the following two types.

(1)

(2)

If W is a component of Ui Uy and if zjz,-1 1s conformal (respectively anti-conformal)

on zx(W), then identify its image in U} with its image in U (respectively its image in
U’ with its image in U}) and its image in U with its image in U} (respectively its

image in U with its image in U}).
Let Bj = 8 SN Uj and identify its image in U with its image in U7’ .

Let Sc be the quotient space of Q, with all the above identifications. Let U ;be the

image of UL U7.

Let S; be the quotient space of Q, with all the above identificaitons. Let U ; be the
image of U} U U7 in S; and let z; map Ijj into £ as follows:
z;|u; =z;and z;| U] =z]. Itis easily seen that z; is a homeomorphism . Using the

"' is analytic on ij(ij): thus ([AJJ,QJ,)j£J is

reflection principle, we can see that 2, Z,
an anlytic atlas of Sc. Let f: Sc — S be induced by the identity maps U’ — Uj and

U;' - Uj.
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The two points p and p of S, which lie over the same point s ¢ S are called

conjugate points . If p corresponds to a boundary point of Sthe p=p. The

correspondence between conjugate points of S. defines a one-one anti-conformal

mapping, o, of S, onto itself. Clearly ”=1and fc =f.

If S= U/T", where I' is either a non-orientable surface group or a

bordered surface group, then U/T"" is the uniquely defined two-sheeted orientable

covering surface without boundary of S. So, as S, is unique.

Se=u/T"

This will be discussed in more detail in section 5 of this chapter.

We describe the other two special doubles in a less formal way as they will

not be used in any formal proofs.

If we construct QQ in exactly the same way as above but employ only
identifications of the first type we obtain an orientable Klein surface with boundary
which is an unramified double cover of S. This double cover, called the orienting
double by Alling and Greenleaf and denoted by S,, is disconnected if and only if S is
orientable. If S has r boundary components then S, has 2r boundary components. If

dS=¢ then S, =S§._.

Examples 4.4. If' S is a Mobius strip then S, is an annulus and S, is a torus. If S is
a Klein bottle with a hole then S, is a torus with two holes and S; is a sphere with two

handles attached (see example 4.14).

The third double cover is also unramified ad is called the Schottky double .

It is obtained by modifying the procedure to construct the complex double so that
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identifications always occur between U’ and U, (and U? and U}") or more directly

we can take two copies of S with opposite orientations and glue them together on the
boundary. We denote the Schottky double of S by S,. If S is orientable then S = S..

If S is non-orientable then so is Sy and S is disconnected if and only if 6 S = ¢.

Example 4.5. If S as a Klein bottle with one hole then Sy is a sphere with four cross-
caps attached. If S is the projective plane with two holes then Sy is again a sphere with

four cross-caps.

3)

Definition 4.6 Let F: T — S be a covering of Klein surfaces. The fibre of a point
s ¢ Sis the set of points f-1(s) in T. A homeomorphism g: T — T is called a covering
transformation if g takes each fibre to itself, i.e. fg = f. Elarly the set of covering

transformations forms a group under composition of maps.

Let I', be an NEC group so U/T’; is a Klein surface and let I", be a
subgroup of I', of index n. Then I', is a NEC group and U/T’, is a Klein surface

which is an n-sheeted covering surface of U/I"|, possibly ramified.

If n,:U— U/ is the natural projection and we put n;,(z) =[z];; then

the covering map is the natural map f: U/T", — U/T’, defined by

F(lz] ) = [2] 1y

Since fr., =n, and w,, = 1,2, is a morphism f is itself a morphism of Klein

ri»

surfaces.

Definition 4.7. The covering f: U/I", — T, is called a normal covering if I', < T,.
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This definition is just an extension of the idea of a normal covering of a

Riemann surfac as defined in [1].

Iff: U/I", — U/T, is a normal covering then the group G I',/I", acts as a

group of covering transformations and it is easy to show that G acts transitively on

each fibre 1.e. if x;, X, € U/T", and are in the same fibre then there exits g € G such

that g(x;) = xz..

If 6 is a homorphism from I, onto a group G of order n, then ker 6 is a
normal subgroup of I'; of index n. Every subgroup of I'; can be found in this way.
So we can find every n-sheeted normal covering of U/T", by looking at all possile

homomorphisms from I', onto all possible groups of order n.

If I', is a surface group or a bordered surface group then any subgroup I',
or I'; will be a surface group, possibly bordered and U/T", will be an unramified

covering surface of U/T, .

4). For n =2 the problem of finding all subgroups of index n in I, is greatly

simplified since there is (up to isomorphism) only one group of order two, namel Z,,
the cyclic group of order two with presentaiton {z: z* = 1} and any subgroup of index

two must be a normal subgroup. Therefore by looking at all homeomorphism from I’

onto Z; and considering the kernel of each one we can find all 2-sheeted coverings of

U/T’, of the form U/T", where I', < I', with index two, every one of which will be

normal.

If S is a Klein surface such that S = U/I", where I'; is a bordered surface
group, and we consider a homomorphism 0: I', — Z, then U/ker 6 will be a

connected unramified normal double cover of S. The question we ask is: can every
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connected unramified double cover of S be represented as the orbit sapce of a

subgroup of index two in I', with the natural covering map?

To answer this questionw e need first to establish a more general fact, that
is to show that an automorphism of a Klein surface is induced by an automorphism of
the upper hal-plane even if the Klein surface has boundary. This result has also been

obtained by May [21] but by a different though analogous method.

Proposition 4.8.  Let S be a Klein surface such that S = U/T" where I is a surface

group , possibly bordered, and let g: S — S be an automorphism of S. Then there

exists a homeomorphism o ¢ g, such that oI'o™' =T, which induces g.

Proof.

Case (i): If S = ¢, then we use ordinary covering space theory as in chapter 1 to

show  exists.

Case (i1) If S = ¢, let (S, f, o) be the complex double of S. As 6 S is non-empty,

S¢ is connected. Cosnider the map gf: S¢ — S.
gf (o) =g(fo) =gf (by theorem 4.3).

So (S., gf, o) is another triple representing the complex double of S. Therefore by
theorem 4.3 there exists a unique conformal homeomorphism

p: S, = S, such that gf=1p.

Sc is an orientable Klein surface without bounday so there exists a homeomorphism

o ¢ g (infact o € g*) which induces p as described in chapter 1. If
n.:U—> U/l =S8, is the natural projection, we have the following commutative

diagram.
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nl" nl"
v p v
S,— S, = ur”
f f
v g v
S >S =u/r

Letfn . =q, then,as S=U/T",

q(z) = n . (2) =[2] .
Now gq=qw and so forz ¢ U
gzl =[w@)]; .
Lety & T, then
[0Y(2)] = [o(y2); = g[z]. = [o(2)];.

Therefore there exists A € I' such that A ® y(z) = o(z) and so (because of the

discreteness of I' and the continuity of ®)

oyo ' =rel

which implies that

olo ' =T.
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Proposition 4.9. Let f: T— S be a connected unramified double cover of Klein surfaces

such that T =U/I", where I' is a surface group, possibly bordered. Then there exists a

surface group A, possibly bordered, such that S=U/I" and I' < A with index two.

Proof.

Iff: T — Sis adouble cover then there exists an automorphism t: T

— T such that t°= 1 (7 is the correspondence between point(s) in the same fibre). If T

= U/T then by proposition 4.8 there exixts a homeomorphism ® & g which induces t

such that ®['w™' =T. andsince ©° =1, o & T.
Let A be the group generated by I' and o, i.e.
A=T=oTl.
Then I' < A with index two and

S= ur =U/A
AT

Clearly f can now be defined by f([z].) = [z], .

From this proposition we can deduce that all double covers of S = U/I",, where
I', is a bordered surface group, are of the form U/T",, where I', < I', with index
two, and that by looking at U/ker 0 for all homomorphisms 0 from I', onto Z, we can

determine all possible connected unramified double covers of S.

Lemma 4.10. Let T, be a bordered surface group with orbit-genus g and r boundary

components. Then there are 2 - 1 homomorphisms 0 from I'; onto z  where
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{2g +2r- 1, if T, is orientable
a =

g+ 2r-1, if I', is non-orientable.

Proof. We define 0 on the canonical generators of I', and then the proof is a simple

process of counting all such homomorphisms. We divide the proof into two cases.

(1) When I, is an orientable bordered surface group. Then I', has signature
(g +,[1,{0))}
and generators
a,,b, 1i=1,K ,g
€, 1=1,K
C, i=1,K r
with relations

-1
eiciei = Ci

-1, -1 RS TR
ee, K eaba b K aba b~ =1

Since Z, is abelian of order two, all the relations in I'; will be preserved

automatically by 0 except we must ensure that
0(e1) O(er) ... O(er)=1.

So we can choose 0 (aj) and 0 (b;) in each of two ways for eachi=1, ... g, 06 (c;) in each

of two ways for eachi=1, ... r, 0 (e;) in each of two ways for eachi=1, ... r-1 and then
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0 (e;) is uniquely determined by the relation 0 (el) 6(2) ... 6 (er)=1. For 6 to be onto
it cannot map everything to the identity of Z,. Thus the number of homomorphisms from

I', onto Z,1is

282827 1 = 2% ]
(i1) When I, is a non-orientable bordered surface group. Then I', has signature
(g.-[1 10}
and generators

a. i=1,K ,g
e 1i=1,K r
C. i=1,K r

with relations

ece  =c,

17171

2 2_
ee, K ea” K a,/ =1

We thus have the same situation as in the orientable case except that there are no b;’s

giving us that the number of homomorphisms in this case is
2g+2r—1 _1

Since there are 2* — 1 homomorphisms 0: I', > Z,, T', has 2 — 1 subgroups, ker

0, of index two. Some of these subgroups will be isomorphic but as they come from

different homomorphisms each subgroup corresponds to a different 2-sheeted covering of
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U/T",. By proposition 4.9 every connected double cover of U/T", can be found in this

way. We have thus proved the following.

Theorem 4.11.  Let S be a Klein surface of genus g with r boundary components such
that S = U/T where I is a bordered surface group. Then there are 2* — 1 connected

unramified double covers of S, where

{2g + 2r-1,1f S is orientable
a —

g+ 2r-1,if S is non-orientable

(Note we specify that S has non-empty boundary because this theorem does not hold for r
= 0 as, from the proof of lemma 4.10, it is easy to see that if r = 0 the number of
homomorphisms is 2°¢-1 or 2% - 1 and not 2°*™" -1 or 2¢”'- 1. We are more interested
in the case when r > 0 because then the complex double and the Schottky double are

always connected).
The result in theorem 4.11 agrees with the number of connected unramified
double covers of a Klein surface with boundary found by Alling and Greenleaf from their

topological approach ([2]).

If we can in some way determine ker 0 from the construction of the

homomorphism 0: I', — Z,, defined on the canonical generators of I',, we can identify
the surface U/ker 0 and hence classify all connected double covers of U/T, .

If T, has orbit-genus g and r boundary components then it has signature

(g +,[1.{OD

and generators
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(A) if I'; is orientable (B) ifT, is non-orientable

a,b. 1=1,K g a, 1i=1,K g
¢, i=1,Kr c, i=LLKr
e 1=1,Kr e, i=LLK r

1

with relations

(A) ¢’ =1 (B) ¢’ =1
ece  =c, ece  =c,

ee,Keaba, 'b 'K ee,K ea’a,’K ag2 =1
.aba, b =1.

In presentation (A) the orientation preserving generators are the a;’s, bi’s and e;’s
(all hyperbolic), the only orientation reversing generators are the reflections, c;. The only

difference in presentation (B) is that the a;’s are orientation reversing (glide reflections).

A subgroup, I',, of index two in I'; will have signature of the form.

(h, £[1, {0

The Riemann-Hurwitz formula gives us that

wI,) =2,(I’)

from which we can determine h if we know s and the orientability of T, .

Theorem 4.12.  Let I', be a bordered surface group with orbit-genus g and r boundary
components. Let 0: I', — Z, be a homomorphism defined on the canonical generators
of I', (described above) and let ker 6 = I',. Define a map t, from {ci,c,, ... ¢;} (the set

of generating reflections) to {0,1,2) such that
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2 ifc.e el
To(cl) = q1 ifc, el’,,eig’,, foralli=1..r
0 ifc, eI,

Then

(1) the number of boundary components of I', is
S= Z ’EG (Ci )9
i=1

(1)  if T, is orientable then I', is non-orientable if and only if I',\I", contains both

orientation reversing and orientation preserving generators of I, .

(1)  if I', is non-orientable then I', is non-orientable if and only if I',\I", contains
both orientation reversing and orientation preserving generators of I', or I',

contains any of the glide reflection generators of I, .

Proof.
(1) If two reflections are conjugate in an NEC group I', then they represent the same

boundary component in U/I". We are considering a bordered surface group I', withr
boundary components, so all reflections in I', will be conjugate to one of the generating

reflections cy, ... ¢;. Our aim is to count the number of conjugacy classes of reflections in

r,.
We define a reflection ¢’ ¢ I', to be induced by the reflection ¢; in I';if ¢’ is

conjugate to ¢;in I',. Letg € ',)\I', sothat I',=I", + gI', then, by lemma 1.15, if ¢; ¢

I, isalsoin I',, ¢’ is either conjugate to ¢; or gc,g 'in I',. Ifc; g T, then it induces no

reflections in I',. If ¢; € I', then it induces 1 or 2 conjugacy classes of reflections in I',

depending on whether ¢; is conjugate to gc,g”'in T, or not.
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If gc.g™' is conjugate to ¢; in I, then there exists h ¢ T', such that

h(ge,g™Hh™ =c,.

This implies that hg is in the centralizer of ci in I'; which, from theorem 1.16 is <ci, €, > Soh=

xg', for some x € <c. e‘>.

Ife; g I',,putx=e ¢ <ci,ei>, soh=eg'. Sincee,g' g T,, eg’ e, and

1

h(ge,gh™ =eg'geg 'ge =ece =c,.
so ge.g ' is conjugate to ¢jin T,.

Ifei € T',, then <ci,ei> cTI, Soifx e <ci,ei> thenx ¢ I', and, since g' #
I,,h= xg' # I',. Therefore there does not exist h € T, such that gc.g™' is conjugate

tociin I, .

Hence if ¢; € T',, ciis conjugate to ge.g”' in I, ifand only ife; £ T',. So we

can defineamap 7,: {c,, K ¢} — {0,1,2} such that

2 ifc.e €T,
T,(c,) =141 ifcel,, e gI,, foralli=1K r
0 ifc el,

and the number of boundary components of I', is
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S= Zr‘,re(ci)

(1) T, 1s orientable and will have generators (A) as described above.

Let I')\T", contain both orientation reversing and orientation preserving generators of I',.
Let us assume that I',\I", contains c; (orientation reversing) for somei=1, ... 4 and a;

(orientation preserving) for some j =1, .... g. Without loss of generality we can choose

{1,ci} as coset representative so that
=T, +cl,.

Throughout the proof (ii) and (iii) let F be the canonical fundamental region for

I', associated with the canonical generators of I'; and using the notation developed in
chapter 1 denote by a,f,y,¢ the sides across which F is mapped by the transformations

a,b,c,e. As, in this case, I'; 1s orientable the surface symbol for I, is
€78 '6,7,8, 'K €ye¢'apo'B' K af,o,B,

Also,as I', =T, +¢; I',, F UciF is a fundamental region for I',. We need to look at
how the sides of F UcF are identified under I',, remembering that c; is orientation

reversing. The following is a diagram showing the structure of F Uc;F.
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IfF, under I,

3(3j") = aj.

So

Ciaj(aj’) = CiOLj.

Now aj g I', butciaj € I', because c;, a; £ I', and c;a; is orientation reversing.
Therefore in FUcF the side o’ is a congruent to the side c;o.j by an orientation reversing
transformation in I, . Hence when the fundamental region FUCF is folded up to form
the surface U/T",, the sides a;” and c; o ; will be identified as shown by the arrows in the

following diagram.

If we draw a strip from a;’ to ¢;a;” then when the fundamental region is folded
up this strip will become a Mobius band. Therefore we can embed a Mobius band in the

surface U/I", and so U/I", must be a non-orientable surface, i.e. I', must be non-

orientable. From this proof it is clear that whatever mixture of orientation reversing and

orientation preserving transformation I',\I', contains, I', must be non-orientable.

Conversely, let I', be non-orientable. Let g ¢ I',\I", be one of the generators of
I',. Then FUgF is a fundamental region for I',. As I', is non-orientable there must be at

least one pair of sides of FUgF which are congruent by an orientation reversing

transformation, x say.
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The sides of F are congruent in pairs by the generators of I'; unless they are sides

fixed by one of the generating reflections in which case they are fixed pointwise and are

congruent to no other side of F. So if n is a side of F then there exists a side of F, n,
congruent to F by h ¢ I', such that h(f]) = n, where h is one of the generators of I", or
the inverse of one of the generators. (If m is a side fixed by a reflection then 1| = n).

So in gF, g1 and g1 are congruent by ghg™ ¢ T,.

Now n, 7N, gn and gn are sides of FUgF and all sides of FUgF can be found if this
way. Ifh € I, then 7 is congruent to m under I', by h and g7 is congruent to gnunder
I, by ghg. Ifh ¢ I', then ghhg” ¢ I', and g7 is congruent to n under ', by hg!
and 1 is congruent to gn under I', by gh. Therefore x ¢ I", and is of the form h, ghg!,

gh or hg™" where h is one of the generators of T, or the inverse of one of the generators.

. . . . . -1
However x is orientation reversing. So if x =h or x = ghg™, for some h, then

since I', contains no glide reflection generators x must be a reflection. But then the sides
congruent by h,  and 1, must coincide n = 1} = y say, so that gn =gmn =gy and x
fixes either y or gy pointwise. Therefore, as we require the sides congruent by x to be
distinct, x = hg™” or x = gh, for someh g T’ ,» and since X is orientation reversing one of g
and h must be orientation reversing and the other orientation preserving. Sinceh g I,
andg g I',, I'/\I', contains a mixture of orientation reversing and orientation

preserving generators of I, .

(1) T, is non-orientable and will have generators and relations (B) as described

above. In this case the surface symbol associated with the canonical generators of I', is

’ 1A ! * *
€7€ &,Y,8 K gv¢ 0,00 K oo,
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If I',\I', contains both orientation preserving and orientation reversing generators of I,
then the proof that I, is non-orientable is exactly the same as in the case when I'; is

orientable (except that in this case the only orientation preserving generators are e, ...

er).

Clearly if I', contains any of the glide reflection generators of I', then I', is non-
orientable. For if two sides of F are congruent by a glide reflection generator of I,
which is also in I', then these two sides will also be congruent in FUgF, where g ¢
I',\I', , by the same (orientation reversing) generator. Since FUgF is a fundamental
region for I', this means that we can again embed a Mobius band in the surface U/I",

and hence I', is non-orientable.

Conversely let I', be non-orientable and suppose I', does not contain any of the
glide reflection generators of I',. Then, as in the case when I', is orientable, if g ¢
')\, is a generator of I',, FUgF is a fundamental region for I", and there exists an x ¢
I', which is orientation reversing and maps one side of FUgF to another. As before x
must be of the form hg' or gh, where h & T',\T, is one of the generators of I', or the
inverse of one of the generators, because I', contains none of the glide reflection
generators of I', so if x is to be orientation reversing but not a reflection it cannot be of

the form h or ghg™.

Again for x to be orientation reversing one of g and h must be orientation

reversing and the other orientation preserving and hence I')\I", contains a mixture of

orientation reversing and orientation preserving generators of I, .

If however I', is non-orientable but I', \I", does not contain a mixture of

orientation preserving and orientation reversing generators of I', then either
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(a) I',\T", contains only orientation preserving generators of I,

or

(b) I',\T", contains only orientation reversing generators of I',

We must show that in both cases I', must contain at least one of the glide

reflection generators of I’ .

In case (a) as I', \I', contains only orientation preserving generators, I", must
contain the glide reflection generators of I', . (Here we note that as I'; is non-orientable

it cannot have zero genus and hence must have glide reflection generators.)

In case (b) let us assume I', \I", contains all the glide reflection generators of T,
so I', contains none but will contain all the orientation preserving generators and
possibly some of the reflection generators. Let where g & I',\I', be one of the generators of

I',, then g must be orientation reversing and FUgF is a fundamental region for I, .

As described in the proof of (i1) above all sides of FUgF are of the form nor gn
where 1 is a side of F and the sides to which they are congruent under I';, ) or gnj. Let

h be the generator of I, (or the inverse of a generator of I',) such that h (1) = 1, so ghg’

'(gR)=gn.

Ifhis areflectionthen n =1 =y sayandgn =gn =7y andgn =gn =gy. If
h e I', then y and gy are fixed pointwise by h and ghg™ and are congruent to no other
sides of FUgF. Ifhg T', then ghg! # I', but hg', gh # I', and g1 is congruent to M
under I", by an orientation preserving transformation and 7 is congruent to gn under T,

similarly by an orientation preserving transformation.
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If h is a glide reflection then h, ghg” & I', because we are assuming that T,
contains none of the glide reflection generators of I',. But hg', gh # I',, both of which

are orientation preserving and we have the same situation as when h is a reflection no in

r,.

If h is hyperbolic then h,ghg” # I', because I')\I', contains only orientation
reversing generators. So 7 is congruent to n under I', by an orientation preserving
transformation and similarly g7 is congruent to gn under I', by an orientation

preserving transformation.

Thus the sides of FUgF, except for the sides fixed by reflections, are

congruent in pairs under I', by orientation preserving transformations. So I', must be

orientable, which is a contradiction.

Therefore at least one of the glide reflection generators of I', must be in
I', for I', to be non-orientable when I', \I", contains only orientation reversing

generators.

We have thus shown that if I', is non-orientable then either I',\I', must
contain a mixture of orientation preserving and orientation reversing generators of I'; or
I", must contain at least one of the glide reflection generators of I'; (or both) and this

completes the proof of the theorem.

(It is easy to verify that if I, contains elliptic generators x;, 1= 1, ... k, with the relations
x;"™ =1, then theorem 4.12 is still true and if the signature of I", has non-empty period
cycles then the conditions determining the orientability of the subgroup I', remain
unaltered. In these cases the double cover f: U/I', — U/I", may be ramified.)

We now give some examples to show how theorem 4.12 can be used.
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Example 4.13. Let S be an orientable Klein surface with genus g=1andr=1

boundary components (i.e. a torus with one hole), then S = U/I";, where T, is and

orientable bordered surface group with signature

(L [ 1 {OD.

I', will have generators a, b, ¢, € with relations

c =1
ece’ =c¢
eaba’'b! =1

If I, is a subgroup of index two in I', then it will have signature of the form

(b, £,[1 {O})

and all possible numerical pairs of values for h and s can be found from the Riemann-

Hurwitz formula
W) =2u(I)

But using theorem 4.12 we can determine which pairs of values actually occur and the

orientability of I', in each case.

Let 0 be a homomorphism from I', onto Z, = <1, z> defined on the canonical generators
of I',. By lemma 4.10 (with g=1,r=1 T, orientable) there seven such

homomorphisms which will give us seven double covers of S of the form U/T", where I',
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= ker 6. By proposition 4.9 any connected unramified double cover of S will be

isomorphic to one of these.

We now list the homomorphisms. From the proof of lemma 4.10 we see that we
must have in all cases 0 (e) = 1. For brevity we shall use the abbreviation o.p.g. for

orientation preserving generator and o.r.g. for orientation reversing generator.

(1) 6(c)=2z,0(@)=06()=0()=1, herec g I',, I'\I', contains

only or.g.’sof I,

(2) 6(a)=0(b) =2, 0(c)=0(e) = 1
(3) 0(a)=z, 0(b) =0(c) =0(c) = 1 herece ¢ I',, I'/'\T,
(4) 8(b) =z, B(a) =0(c)=0(c) = 1 Only o.p.g. ‘sof ',

(5) 0(c) = 6(a) = z, O(b) = 0(e) = 1
(6) 0(c)=0(b) =z, 0(a) = 0(c) = 1
(7) 0(c) = 6(a) = 0(b) =z, 6(c) = 1

Herec g I',, I')\I', contains a

Mixture of 0.p.g. ‘s and o.r.g’s of T,

By applying theorem 4.12 in each case we obtain the number of boundary

components of I', and its orientability. Then we use the Riemann-Hurwitz formula to

determine the orbit-genus, h.

e.g. in (1), theorem 4.12 implies that I", is orientable and has no boundary components (s

=0)so

uT,) =2n2g-2+r)=2n

So from the Riemann-Hurwitz formula we deduce that h — 2.

We can now list the signatures of I', in each of the above cases.
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M EH1LEH)

(2)
(3) (L +[1,10})
(4)

(5)
(6) (49 ) []9 {})
(7)

In (1) the Klein surface U/T", is orientable with genus 2 and no boundary. (2), (3)

and (4) represent different double covers of S because they come from different

homomorphisms but in each case U/T", is orientable with genus 1 and 2 boundary
components (i.e. a torus with 2 holes). In (5), (6) and (7) U/T’, is non-orientable with

genus 4 and no boundary, each case representing a different double cover of S.

Example 4.14 Let S be a non-orientable Klein surface with genus g=2 andr =1
boundary components (i.e. a Klein bottle with one hole). Then S =U/T’,, where I, is

non-orientable bordered surface group with signature

(2’ T [ ]’ {( )})

I', will have generators al, a2, ¢, e with relations

=1
ece’ =c¢

2 2
ea,'a,” =1
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As in example 4.13 if ', is a subgroup of index two in I', then it will have signature of

the form

(h, £,[1, {OD)

and
u(T,) = 2u(T).

By lemma 4.10 the number of homomorphism 0: I', — Z, is seven, again we must
have 0 (e) =1 in each case. Letker 6 = I',. For brevity we abbreviate glide reflection

generator to g.f.g.. The homomorphisms are

(1) 6(c)= 6(a;) =6(a,) =2,6(¢c) =1, herec g T,, I,\T', contains
only or.g.’sof T,

(2) B(a,)=6(a,) =z, 6(c)=6(c) =1, herec,e ¢ I',, I',\T", contains
only or.g. ‘sof T

herec,e ¢ I',, I',\T", contains

(3) 6(a,) =2, 8(a,)=6(c) = 6(e) = 1 }

(4) 0(a,) =z, 0(a,) =6(c) = 0(c) = 1 only o.r.g.’s of ', but I, contains a

gfg. of I',

(5) B(c) =z 6(a,) = 6(a,) =6(c) = 1
(6) 0(c) = O(a,) = z, O(a,) = B(e) = 1
(7) 0(c) = O(a,) =z O(a,) = B(e) = 1

herec g I',, I',\I', contains
only or.g. ‘sof I', but I',
contains g.f.g’(s) of T, .

87



Applying theorem 4.12 and the Riemann-Hurwitz formula in each case we

obtain the signature of I', to be

M) 2, + 1))

2) (L+ 140}

3) 2
27_7 5
(4)} (2= [ 1O

()
(6) 4, = [1AO™ )
(7)

As before different homomorphisms giving the same signature for I',

represent different double covers of S. Any connected unramified double cover of S will

be isomorphic to one of the seven Klein surfaces, U/T", , represented above.

Example 4.15. Let S be an orientable Klein surface with genus g =1 and r = 2 boundary

components (i.e. a torus with two holes). Then S =U/I"; where I, is an orientable

bordered surface group with signature.

(1, + [ 1 {OD.

I', will have generators a, b, ¢y, ¢2, €1, e, with relations
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-1 -1 _
€CC =C, €066 =C

ee,aba’b’ = 1.

If I, is a subgroup of index two in I', then it will have signature of the form

(h, £,[1,{O)

and

() = 2u().

By lemma 4.10 the number of homomorphisms 0: I', — Z, is 31, we must have

0(e,)0(e,) =1 in each case. Letker 6 = I',. The homomorphisms are
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(M) 6(c;) =0(c,) =z 6(a) = 6(b) = 6(¢,) =6(e,) = 1,

(2)  6(c;) =2 6(c,) =6(a) =0(b) =6(¢,) =6(e,) = 1,
() 6(c,) =2 6(c,) = 0(a) =0B(b) =6(e,;) =O(e,) = 1,
(4)  0(e,) =0(e,) =2 0(c,) = 0(c,) = 0(a) =0(b) = 1,
(5) 6(e;) =06(e,) =6(a) =z, 6(c,;) =6(c,) =6(b) = 1,
(6) 6(e;) =06(e,) =6(b) =z, 8(c,) = 6(c,) =6(a) = 1,
(7) 6(e,) = 6(e,) = 6(a) =6(b) = 2, 6(c,) = 6(c,) = 1,
(8) 6(a) =6(b) =2 6(c,) =0(c,) =6(¢e;) =6(e,) = 1,
(9) 6(2) =2 0(b) = 6(c,) =6(c,) =6(e;) =0(e,) = 1,
(10) 6(b) =z, 6(a) = 6(c,) = 6(c,) =0(e;) =6(e,) = 1,

(11) 0(c,) = 0(c,) = 6(a) = O(b) =z, B(e,) =0(e,) = L,
(12) 6(c,) =0(c,) = 6(a) =z, O(b) = O(e,) =6(e,) = L,
(13) 6(c,) =0(c,) = 0(b) =z B(a) = O(e;) =6(e,) = L,
(14) 6(c,)=6(c,)=6(e,) =6(e,) =z, 6(a) =0(b) =1,
(15) 6(c,)=6(c,)=6(e,) = 6(e,) =0(a) =z, 6(b) = 1,
(16) 0(c,) =0(c,) = 0(e,) =0(e,) = 0(b) = 2,0() =1,
(17) 8(c,) = 8(c,) = 0(e,) = 0(e,) = 6(a) = 0(b) =7z,

(18) 6(c,) =0(e,) = O(e,) =z, 8(c,) = 6(a) =0(b) =1,
(19) 6(c,) = 0(e,) = 0(e,) = 2, B(c,) =6(a) =6(b) =1,
(20) 6(c,)=6(e,) =6(e,) =6(a) =z, 6(c,) =06(b) =1,
(21) 6(c,)=0(e,) = 0(e,) =0(a) =z, 6(c,) =06(b) =1,
(22) 0(c,) = 0(e,) =6(e,) =0(b) = 2,0(c,) =0(a) =1,
(23) 0(c,) = 0(e,) = 0(e,) = 0(b) = 2,0(c,) =0(a) =1,
(24) 6(c,) = 0(e,) =6(e,) =0(2) =0(b) =2 0(c,) =1,
(25) 6(c,) = 0(e,) = 0(e,) = 6(2) =6(b) =26(c,) =1,

(26) 6(c,) = 6(a) =z, 6(c,) = 6(b) = 0(e,) = O(e,) = 1,
(27) 8(c,) = 0(a) =z, 6(c,) = B(b) = 0(¢,) = O(e,) = 1,
(28) 0(c,) = 0(b) = 2, 0(c,) = 0(a) = 6(e,) = O(e,) = 1,
(29) 8(c,) = 0(b) =7 0(c,) =0(a) = 0(e,) = O(e,) = L,
(30) 6(c,) = 6(a) =0(b) =z, 6(c,) = O(e,) = O(e,) = 1,
(31) 6(c,)=6(a)=0(b) =z, 0(c,) = 0(¢e,) = O(e,) = 1.
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Applying theorem 4.12 and the Riemann-Hurwitz formula in each case we

deduce that the signature of T, 1s

M G HILED

(2)
g

g
(7)

(2, +11{0})

(8)

9
O o

(10)

(11)
(6a ',[], { })
(17)

(18)
(53 T [ ]a {( )})

(25)

(26)
(43 T [ ]a {( )2})
€2))
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As before homomorphisms giving the same signature for I', represent

different double covers of S. Any connected unramified double cover of S will be

isomorphic to one of the 31 Klein surfaces, U/I",, represented above.

5) Let S be a Klein surface with genus g and r boundary components such
that S — U/T" where T is either a non-orientable surface group or a bordered surface
group. Let (S,_,f, o) be the complex double of S. S, is orientable without boundary and
because S has boundary if it is orientable, S, is connected. It follows immediately from
theorem 4.12 that the only way to form an orientable subgroup without boundary of index
two in I is to take the kernel of the homomorphism which maps all the orientation

reversing generators to the element of order two in Z; and all the orientation preserving

generators to the identity. But the canonical Fuchsian group, I'" of I' is the subgroup of
index two in I' consisting of all elements which preserve orientation. Thus, as

mentioned before,

Sc=U/T"

F is the map

f([z]..) = [z];

andif y e T\T" then o is defined by
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o((z],.) =[yz],..

we choose another element y' € then yy ¢ so |yz] . =[yz] . which shows
If we ch her el "¢ \I'" then yy'eT" . =[vz]... which sh

that o is well-defined.) I'" has signature (2g +r—1,+,[ ], { }) if S is orientable and (g +

r—1,+ (1], {})if S is non-orientable.

In each of the examples 4.13, 4.14 and 4.15 the kernel of homomorphism

(1) gives T'".

Since S, is a Riemann surface the algebraic genus of S. (the non-negative
integer that makes the algebraic version of the Riemann-Roch theorem work) is equal to
the topological genus. If E and F are the fields of meromorphic functions on S and S,
respectively then F = E(I) (see [2]) and by a well-known classical result ([4]) the
algebraic genus of S is equal to the algebraic genus of S, i.e. to the topological genus of

Sc=U/T".

If S is a non-orientable Klein surface with genus g and r boundary
components such that S = U/I" where I" is a non-orientable bordered surface group, then
the orienting double of S, S,, is a connected orientable Klein surface with 2r boundary

components.

Again it follows immediately from theorem 4.12 that the only way to form

an orientable subgroup of index two in I with 2r boundary components, which we shall
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denote by I'_, is to take the kernel of the homomorphism which maps all the glide

reflection generators of I'to z € Z, and all the hyperbolic and reflection generators of I

to the identity. In example 4.14 this is a homomorphism (2). S, =U/I", and from the

Riemann-Hurwitz formula we see that the genus of I', is g — 1 so I' has signature

(g-L+[1{O™).

If we take the same non-orientable surface S with boundary then the
Schottky double of S, S, is a connected non-orientable Klein surface without boundary.

If ', is the non-orientable subgroup of index two in I" such that S = U/I" then from the
Riemann — Hurwitz formula we see that the genus of I', is 2g + 2r— 2, so I'; has

signature

g+2r-2,-1,[ 1, { })-

However from example 4.14 we see that there is not a unique homomorphism whose

kernel has the signature of I', because in this example homomorphisms (5), (6) and (7)

each have such a kernel.

Clearly from theorem 4.12 the homomorphism whose kernel is I', must

map all the reflection generators of I' to the element of order two in Z,.
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As Sqis constructed by taking two copies of S and ‘gluing’ them together

along their boundaries it should be clear that the homomorphism whose kernel of I is

the one which maps all the generators of I" to the identity except the reflections. In

example 4.14 this is homomorphism (5).

6) Let us now consider normal n-sheeted coverings of Klein surfaces when n

> 2.

If n is even it is clear from theorem 4.12 that the situation could be quite

complex. However when n is odd we can obtain some general results.

Firstly when n = p prime, the only group of order p ( upto isomorphism) is

the cyclic group Z, with presentation {z: z° = 1}1. If I, is a bordered surface group we

can extend the proof of part (i) of theorem 4.12 to ascertain the number of boundary

components of a normal subgroup, I',, of index p in I', 1.e. the number of boundary

components of U/I",, a p-sheeted normal covering surface of U/T, .

Theorem 4.16.  Let I', be a bordered surface group with orbit-genus g and r boundary
components. Let 6: I') - Z_, for prime ; > 2, be defined on the canonical generators of
I', (as described before theorem 4.12) so that 6, = I',, is a normal subgroup of index p

in I', . Define a map t, from {ey, ... e} (the set of generators of I', commuting with the

generating reflections) to {1,p} such that
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ife eI
T4(€,) = p. P foralli=1,..r.
life g T,

Then the number of boundary components of I', is

§= Zr:'ce(ei)-

Proof.

Let g be one of the generators of I', such that g ¢ I',\I",. Because every

element of Z, which is not the identity generates the whole group it is easy to see that

whichever generator of I, in I', \I", we choose for g we can write
[, =T,+,%+. . +TI,%"

All reflections in I', are conjugate to one of the generating reflections C;,

... C.. As in the proof of theorem 4.12 part (i) our aim is to count the number of

conjugacy classes of reflections in I, .

As before we define a reflection ¢’ € I', to be induced by the reflection c;
in T',. Bylemma 1.15ifc; ¢ T, isalsoin I',, ¢’ is conujugate to g"cig"" in I, for some
m=1,1,2, ... p-1. AsZ, (p # 2) contains no element of order two, ¢c; ¢ I', foralli=1,
... . Therefore every ¢; must induce one or more conjugacy classes of reflections in I, .
To determine the number of conjugacy classes of reflections in I', induced by c; we only

have to establish when g”cig™ is conjugate to g'cig” in I',, m # n, m,n ¢ {0,1, ... p-1}.
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If g"cig™ is conjugate to g"cig™ in I',, m # n, then there exists h ¢ T,

such that
H (g"cig™h™ = g'eig™,
Which implies that g"hg™ is an element of the centralizer of ciin ', i.e.
g"hg" ¢ (c,e,)
by theorem 1.16. So we can put
h=g"'xg™
for some x ¢ <ci,ei>.
Ife; € T', then <ci,ei> c I', which implies x ¢ I',,i.e. 0(x)=1. As Z, is abelian

6(h) =0(g"xg™) = (6(2)""0(x) = (B(g)™".

Sinceg g I';, 6(g) # 1,alson-m # o orpandso

O™ = 1.

This implies that 6 (h) # 1soh g I',. Therefore g"cig™ cannot be conjugate to g'cig™

inI', ifm # n.
. -1
Ife; g I',, we can choose g = e;. Then, since eicie;i = ci,
m -m__ _m -m __
g Cg =€ C& =Cp
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and similarly g'cig” = ¢
So g"cig™ = g'cig™ and are therefore trivially conjugate in I',.

Therefore ife; € T',, g"cig™ is never conjugate to g'cig™ in ', forn # m
andife; g T',, g cig" is conjugate to g'cig™ in ', for all m,n. So the number of
conjugacy classes of reflections in I', induced by c; is 1 or p depending on whether ¢;

isin I', orno. We can define amap t,:1{¢,...e,} — {l,p} such that

ife eI
T4(e;) = p. U2 foralli=1,..t.
life g T,

and the number of boundary components of I', is

§= ire(ei)-

Secondly when n is odd general results concerning the orientability of a subgroup of

index n in an NEC group can be obtained.

Theorem 4.17. Let I', be an orientable NEC group with signature

(g, +,[my,...mg], {(ng, ... nlsl ), (0r,...n )P)andlet 6: I — G,

where G is any finite group with odd order n, be a homomorphism defined on the

canonical generators of I'; such thatker 0,=T',, is a subgroup of indexnin I',. Then

I', must be orientable.
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Proof.

I', will have generators and relations as in (1.6). The generators a;, b;, x;, €; are

all orientation preserving and the generators c;; are reflections, i.e. orientation reversing.

The result is obvious if I'; does not contain reflections as it is then a Fuchsian

group. So we suppose that I', contains reflections.

Since G has odd order it has no element of order two, so for 0 (c;) =1, forall 1 =

I,..t,j=0,1, ... s

As I', is a normal subgroup of index n in I', there exist coset representatives

g1,82, ... gnin I'| such that

I'=L,atl,ot...Ig

Without loss of generality we can assume that g;, . . . g, are orientation preserving

because we can replace any coset I', g by I', (cg), where ¢ € I, is a reflection, if

necessary. Also without loss of generality we can assume g; = 1.

Let F be the canonical fundamental region for I', associated with the canonical

generators. Then

F’=FUgFU...UgF

Is a fundamental region for I',.
The sides of F’ are images of sides of F and fall into pairs congruent by

transformations of I', (except the sides of reflection which are fixed by reflection

generators and their conjugates)
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If we can show that all pairs of congruent sides of F’ are congruent by orientation

preserving transformations then we shall have shown that U/T", is orientable, i.e. that I',

is an orientable group. So let us assume that there is one pair of sides of F’ which are

congruent by an orientation reversing transformation in I',, x say, and try to reach a

contradiction.

Let the two sides congruent by x be p and g, where p is a side of giF and q is a

side of giF, I,j=1,2,...n. Then

p=gin, where n is aside of F
q=g;jC, where C is aside of F.

(If n and € theni # j so that p and q are distinct.) so

x(gin) = giC

which implies that

(g 'xg) n=¢.

Thus n and C are congruent by gj'lxgi ¢ I',. But n and ¢ are sides of F, the
canonical fundamental region for I', associated with the canonical generators of I', and
so if n and ¢ are congruent by a transformation in I', that transformation must be one of

the canonical generators of I', and is unique (upto inverse). Hence

gj'lxgi =t, say
where t is one of the generators of I', (or the inverse of one of the generators) and thus is

either orientation preserving or a reflection. However g; and gj have been chosen so that
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they are both orientation preserving so for x to be orientation reversing t must be

orientation reversing and therefore a reflection.
But if t is a reflection we have the following situation.

Since n and { are congruentby tin F, n = { = & say and

p=g¢
q=g¢

As t is one of the reflection generators of I',,t € I',. Therefore gitgi, gjtgj'1 e I,
because I', < I',. Now g;& is fixed pointwise by the reflection gitg;! and g & is fixed

by the reflection gjtgj'l. Alsox(gi§)=g&,xel,.

Consider any point on the N.E. line g;& . Because of the continuity of elements in
G, we can always find a small enough neighbourhood, V say, of this point such that a

pointp € VI g.F is mapped just outside g;F by gitg;!. The transformation x will map

this point to a point just outside g;F within a small neighbourhood of some point on the

N.E. line g;& . This point just outside giF will be mapped by gjtgj'1 just inside gjF.
Therefore our original point p has been mapped by transformation in I", from just inside

giF to a point just inside gjF as illustrated in the following diagram.

So we have two points in the same I', -orbit in the interior of a fundamental region for

I', which is a contradiction.

Hence t cannot be a reflection and so I'", must be orientable.

Theorem 4.18. Let I', be a non-orientable NEC group with signature
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(g, -, [my,...mg], {(n, ... n )y o (1,0 )})

and let 6: I', — G where G is any finite group with odd order n, be a homomorphism
defined of the canonical generators of I'; such thatker 0, = I',, is a normal subgroup of

indexnin I';. Then I', must be non-orientable.

Proof.

I', will have generators and relations as in (1.7.) The generators X;, ¢; are all

orientation preserving, the c;j’s are reflection and the a;’s glide reflection (orientation

reversing).

Since G has odd order it has no element of order two, so for 6 to be a
homomorphism 0 (cj)=1, foralli=1,...1r, j=0,1...s;. We choose coset

representatives gi, . . . g, in I', such that
IN=I,gi+I,g+...+T,g.

Without loss of generality we can choose g; = 1.

Let F be the canonical fundamental region for I'; associated with the canonical

generators. Then
F’=FUgFU...UgF

Is a fundamental region for I, .

Let us consider any one of the glide reflection generators in I',, i.e. in the set

{ai, ... lg}. Callita. Denote by a the side across which F is mapped by a and denote

by a * the side congruent to o in F by a, so
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a(a®)=a

Nowifa e I',,a # gifori=1,...n and the two sides congruent by anin F (a

and o *) are still congruent in F’ by a, which is orientation reversing. Thus we can

embed a Mobius band in the surface U/I", and hence I', is non-orientable.

(Note: We can always choose coset representatives such that
gFngF=0,ij=1,...n,1# j,
so o and o * are sides of F’ and not interior to it.)

Ifa g I',then let the order of 0 (a)in Gbem. So2 <m £ n. Then we can

choose g; = a-1fori= I,...m,so
F’ = FUaFUa’FU . . . Ua™'Fugn. FU . . . Ug,F.

Now 6 (a™)=(6(a))"=1inG,i.e.a™ ¢ T', and since the order of 0 (a) must

divide n which is odd, m must be odd and hence a™ must be orientation reversing. Also

a™(o*)=a""aa*) =a""(a).

m-1

Am-1(a)is aside of a” F and therefore a side of F’. o * is a side of F and so also is a

side of F’. Thus we have two sides of connected component of F’ congruent by an

orientation reversing transformation in I', and again I', must be non-orientable. (Note:
Whena g I, let FUaFU . .. Ua™!F =F,. F,is connected but o * and a™"' o are not
sides of intersection with F,. Because I', < T, it is always possible to find elements

7, K v,,¢€T,, where m’ =n/m — 1, such that the set
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1, a, a’, K a™

Y. ya  yal, K oya™
M M M K M

m-1

'Ym“ Ym'a’ 'Ym'a s K /Ym'a

FP=F,Uy ,F,U...UynF,

Where yiF,= yiFUy;aFU . .. inam'lF. We can always choose the elements such that
F.l yiFa=0,i=1,...m"and yiF,I y;F, =J,i=1,...m" and
vE L vE

a

=J,1 # j,1,j=1,...m". So we can always choose a fundamental region for

I, such that o * and a™"' o are sides of F” and not interior to it.)

In theorems 4.17 and 4.18 U/T", is a normal n-sheeted covering surface of U/I",,

possibly ramified. We have thus proved the following.

Theorem 4.19.  Let S be a Klein surface such that S = U/I"|, where I'; is an orientable

(respectively non-orientable) NEC group. Then an n-sheeted covering surface of S of the

form U/T",, where I', < I'|, must be orientable (respectively non-orientable), provided

m is odd.

7) To end this chapter we shall take a brief look at non-normal n-sheeted

coverings. l.e. n-sheeted coverings of Klein surface U/I"; (I'; and NEC group) of the

form U/T",, where I', c I, is a non-normal subgroup of indexnin I',.

To find non-normal subgroups of index n in an NEC group I'; we look at
homomorphisms 0: I', — G, where G is a finite permutation group transitive on n

points. If G> G is the stabilizer of a point then I', = 0 "|(G) is a subgroup of index n
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in I'; . The case when I';, < T, is just a special case of this with G = I', /T", acting in its

right regular representation and 0 : I', — G the natural homomorphism.

The following example shows that we cannot extend theorem 4.17 to non-
normal subgroups, in other words there exist non-normal odd-sheeted coverings of

orientable surfaces which are non-orientable.

Example 4.20 Let I', be an orientable bordered surface group with orbit-genus g — 1 and

r = 1 boundary components. So I', has signature

(L 11 {03

with generators a, b, ¢, e and relations

=1

-1 _
ece’ =c
eabab!'=1.

We define 0 on the generators of I', so that 6 is a homomorphism onto a permutation

group transitive on three points. Let

B(a)=(123)
0(b)=(1)(2) 3)
0(c)=(12)(3)
0(e)=(1) (2) 3.

0 is easily verified to be a homomorphism. Let I', = 0 1 (Stab(1)), so [[,:T',]=3and

. 2
ebe I'),c,a g I',. Choose coset representatives 1, a, a” so
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[,=T,+T,a+T,a"

Let F be the canonical fundamental region for I', associated with the canonical

generators. Then
F’ =FUaFUa’F
is a fundamental region for I, .

Denote by a, B, v, € the sides across which F is mapped by the

transformations a, b, c, €. Then the canonical surface symbol for I'; is eye'afa'B".

Now 0 (ca’)=6(c)(0(a)) '=(1)(23)so(ca’) € Stab(l)and ca ¢
I',. Alsoay is aside of aF, y is a side of F and

Ca'l(ay) =7.

Therefore two sides of F” are congruent by an orientation reversing transformations in

I',. So we can embed a Mobius band in the surface U/I", and I', must be non-

orientable.

We can also count the number of conjugacy classes of reflections induced

in I', by the generating reflectionc ¢ I',. For

0(ac) = 0(a) 0(c) = (1)(23)

soac ¢ I', and I', = I',ac. Since ¢ has order two I',c = I',a and as

I'=T,c=TI,ctTI,ac+ F2azc
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we must have
2 2
I'a'c=1T,a’,

i.e. a’ca” ¢ I', . Now suppose there exists g € I', such that geg'le I',. This implies

that I',gc=1T,g,1e. I,g=1T, a’and g= ya’ where y ¢ I',. Then

gcg-l — ya2ca-2y-l

which implies that gcg™ conjugate to a’ca™ in I',, Thus,asc g I',, there is only one

conjugacy class of reflections in I',, i.e. I, has only one boundary component.

We can now use the Riemann-Hurwitz formula to deduce that the genus of

I', is 2 and that I', has signature

(29 T [ ]a {( )})
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