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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF MATHEMATICAL STUDIES 

Doctor of Philosophy 

AUTOMORPHISMS AND COVERINGS OF KLEIN SURFACES 

by Wendy Hall 

 

In this thesis the theory of automorphisms and coverings of compact Klein surfaces is 

discussed by considering a Klein surface as the orbit space of a non-Euclidean 

crystallographic group.  In chapter 1 we set out some of the well-established theory 

concerning these ideas. 

 In chapter 2 maximal automorphism groups of compact Klein surfaces without 

boundary are considered.  We solve the problem of which groups PSL (2,q) act as 

maximal automorphism groups of non-orientable Klein surface without boundary. 

 In chapter 3 we discuss cyclic groups acting as automorphism groups of compact 

Klein surfaces without boundary.  It is shown that the maximum order for a cyclic group 

to be an automorphism group of a compact non-orientable Klein surface without 

boundary of genus  g !3 is  2g,   if   g is odd  and   2 (g – 1)   if g is even. 

 Chapter 4 is the largest section of the thesis.  It is concerned with coverings 

(possibly folded and ramified) of compact Klein surfaces, mainly Klein surfaces with 

boundary.  All possible two-sheeted connected unramified covering surfaces of a Klein 

surface are classified and the orientability of a normal n-sheeted cover, for odd n, is 

determined 
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INTRODUCTION 

 

Historically, Riemann surfaces were introduced as devices which render certain 

mappings as one-one mappings and were originally defined to be without boundary and 

orientable.  The notion of a Klein surface is attributable to Klein because of his remarks 

in 1882 on the closing pages of [9].  Riemann surfaces have been studied extensively 

during the last century.  Klein surfaces which are not Riemann surfaces were occasionally 

mentioned but work on them did not really begin until the appearance of [23].  In this 

work Schiffer and Spencer refer to Riemann surfaces as surfaces which can be orientable 

or non-orientable, with or without boundary.  In [2] the term Riemann surface will infer 

an orientable surface without boundary. 

 Pioncaré introduced Fuchsian groups in order to generalize elliptic functions and 

subsequently realized that they were identical with groups of orientation preserving 

isometries of the non-Euclidean plane geometry of Lobatschewsky. 

 The orbit space of Fuchsian group is Riemann surface and recently Fuchsian 

groups have become very significant in the study of Riemann surfaces (e.g.  [3],  [14],  

[11]). 

 Non-Euclidean crystallographic (NEC) groups are discontinuous groups of 

isometries of the non-Euclidean plane which contain orientation reversing elements.  The 

orbit space of a NEC group is a Klein surface.  Thus, Klein surfaces can be studied by 

way of NEC groups.  In chapter 1, we give the preliminary definition and results 

(obtained from the large volume of work already published on the subject) which we 

require to develop these ideas. 



 In chapter 2, we consider maximal automorphism groups of compact Klein 

surfaces without boundary.  Hurwitz [8] showed that the order of a group orientation 

preserving automorphisms of a compact Riemann surface, of genus g ! 2, cannot exceed 

84 (g – 1).  He also showed that this bound is attained when g = 3.  Macbeath [13], [16] 

has shown that this bound is attained for infinitely many values of g.  Maximal groups of 

orientation preserving automorphisms of compact Riemann surfaces are called Hurwitz 

group.  Macbeath [16] gives the condition for PSL (2,q) to be a Hurwitz group.  The 

orders of the automorphism groups of compact non-orientable Klein surfaces without 

boundary, of genus g ! 3, are bounded above y 84 (g – 2) and a group of this order acting 

on a Klein surface of genus g is called an H* -group.  Every H* -group is a Hurwitz 

group.  Singerman [24] showed that the Huwitz group PSL (2,7) is not an H* -group 

while the Hurwitz group PSL (2,8) is.  We establish general conditions which determine 

when PSL (2,q) is an H* -group given that it is a Hurwitz group and show that infinitely 

many such groups appear. 

 It is know (e.g. [7]) that the maximum order for a cyclic group to be a group of 

orientation preserving automorphisms of a compact Riemann surface of genus g ! 2 is 

2(2g +2) and May [22] has considered the problem for Klein surfaces without boundary.  

We show that the maximum order for a cyclic group to be a group of automorphisms of 

such a surface of genus g ! 3 is 2g, if g is odd and 2(g-1) if g is even. 

 In chapter 4 we discuss coverings of Klein surfaces.  Including ramified and 

folded covers.  These have been studied in some detail by Alling and Greenleaf [2].  

Initially, we consider 2-sheeted connected unramified covering of compact Klein surfaces 

with boundary.  By determining all subgroups of index two in certain NEC groups with 



compact orbit space ! we classify all possible connected unramified 2-sheeted coverings 

of the orbit space of !. 

 We then extend the problem to connected n-sheeted coverings of compact Klein 
surfaces.  We determine the number of boundary components of a normal subgroup of 
prime index p, in a NEC group and the orientability of a normal subgroup of odd index n, 
in a NEC group.  We give an example to show that in general these results cannot be 
extended to non-normal subgroups. 
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CHAPTER 1 

 

Preliminary definitions and results. 

 

1. Non Euclidean crystallographic groups. 

 

1).  Let U denote the upper –half complex plane, {z ! £ : Im  z  > 0}.  U can 

be made into a model of the non-Euclidean (written N.E.) plane as follows. 

  Define the N.E. length of a piecewise differentiable arc C by 

    

 y
2 2dx dy

(C) = c  
y
!

"l  

 

and the N.E. area of a measurable set E by 

 

    2E

dxdy ( ) = 
y

# $ ""  

    
The geodesics of this metric are circles and lines orthogonal to the real axis ¡  (see [14]) 

and are called N.E. lines. 

 The N.E. distance between two points in U is the length of the unique N.E. line 

joining them. 

 The metric induces a topology on U which is the same as the topology induced 

from the usual topology on £ . 
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 Let g denote the group of transformations of the extended complex plane, £ U 

% &'  of the form 

az + bA) z  ,  a,b,c,d real, ad - bc = 1
cz + d

(  

  az + bB) z  ,  a,b,c,d, real, ad - bc = -1
cz + d

(     

 

The set of transformations of type A forms a subgroup of index two in g, denoted 

by g+ (although in other contexts it is more usually denoted by PSL (2, ¡ ). 

Each element of g is a conformal (type A) or anti-conformal (type B) 

homeomorphism of U onto itself.  Every conformal homeomorphism of U lies in g+  (see 

e.g. Springer [27]) so that g is the group of conformal and anti-conformal 

homeomorphisms of U onto itself.  Every element of g maps N.E. lines to N.E. lines and 

preserves N.E. distance.  

We topologise g as the subset of 4¡  

  {a, b, c, d: ad – bc = ±1} 

by identifying (a, b, c, d) and (-a,-b, -c, -d) and taking the identification topology.  The 

topological group g has two components, namely g+ and g\g+.  A discrete subgroup of g is 

called a non-Euclidean crystallographic group which we shall always abbreviate to NEC 

group.   An NEC group contained in g+ is called a Fuchsian group.  If an NEC group 

contains elements of type B, i.e. orientation reversing elements, we shall call it a proper 

NEC group. 

2) We can classify the elements of g by their orientation and their fixed point set. 
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Elements of type A are orientation preserving.  Their fixed point set is found by solving 

the quadratic equation 

  az + bz =  ad - bc =1
cz + d

 

 

There are three types. 

(i) Hyperbolic  if  a d!  > 2, with two fixed points on ¡  U % &'  

(ii) Elliptic  if a d!  < 2, with two complex conjugate fixed points, one of which is in 

U. 

(iii) Parabolic if  a d!  = 2, with one fixed point on ¡  U % &' . 

Elements of type B are orientation reversing.  Their fixed point set is found by solving the 

equation 

  az + bz =  ad - bc = -1
cz + d

 

They are two types. 

 

(i) Glide reflections if a + d ! 0, with two fixed points on ¡  U % &' . 

(ii) Reflections if a + d = 0, with N.E. line of fixed points. 

 

 

As the elements are classified by their trace (a + d) and their determinant, conjugate 

elements of g are of the same type.  Each of the five types of transformations has a 

canonical form are listed below. 
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 Type of element  Canonical form 

 

 Hyperbolic z  z (  > 1)( ) )  

 Elliptic iw - i z - iz  w, where  = e  ,   2n
w + i z + i

* + ,( * - ./ 0
1 2

 

 Parabolic  z  z + 1(  

 Glide reflection  z  z  (  - 1)( ) )  

 Reflection  z  -z(  

 

 If g ! g is a hyperbolic elemkent then g is conjugate to the transformation w (z) = 

) z, > 1 and )  is known as the multiplier of the transformation. )  is an ivariant of the 

conjugacy class.  Now  
n
lim
('

 gn   (z) must exist and is a fixed point of g, called the 

attracting fixed point.  Simarlarly 
n
lim
('

 g-n (z) is called the repelling fixed point.  A 

hyperbolic element is uniquely determined by its multiplier and its fixed points.  The same 

remarks apply to glide reflections. 

 Reflections are of order two.  The only other elements which can have finite order 

are elliptic elements and conversely every elliptic element in an NEC group is of finite 

order. 

 

3) A NEC group " acts properly discontinuously on U in the sense that every point z 

! U has a neighbourhood V such that if # ! " and #V n V $ * , then #z = z. 
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 The "-orbit of z ! U is { #z: # ! "} and we for the orbit (or quotient) space, U/ ", 

by giving the set of all orbits the identificaiton topology. 

 

Definition 1.1. A surface is a connected Hausdorff space on which there is an open 

covering by sets homeomorphic to open sets in 2¡  . 

 

Definition 1.2. A connected Hausdorff space is called a surface with boundary if it 

is not a surface and if it possesses an open covering by sets which can be mapped 

homeomorphically onto relatively open sets of a closed half-plane. 

 

Definition 1.3. A  " – fundamental region   is closed set F with the properties  

1) F contains at least one element of every orbit, 

2) Int F contains at most one element of every orbit, 

3) The N.E. area % (I\int F) = 0. 

 

It has been shown  by Wilkie [28] that for every NEC group " with compact 

quotient space there exists a canonical surface symbol of a fundamental region for 

" from which a canonical presentation for " can be derived.  U/ " is a surface, with 

or without boundary, orientable or non-orientable, depending on the structure of ". 

 

It is easy to see that U/ " is a surface with boundary if and only if " contains reflections. 
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 Throughout this thesis we shall only be concerned with NEC groups with compact 

quotient space.  By a well known result, such groups contain no parabolic elements (see 

Bers [3]).  Also the classification of compact surfaces is well-known (see e.g. Massey 

[19], Lefschetws [10], Griffiths [6]). 

 Every compact oreintable surface is homeomorphic to a sphere with g handles 

attached. 

 Every compact non-orientable surface is homeomorphic to a sphere with g cross-

caps attached. 

 Every compact orientable surface with boundary is homeomophic to a sphere with 

g handles attached and k discs removed. 

 Every compact non-orientable surface with boundary is homeomorphic to a sphere 

with g cross-caps attached and k discs removed. 

  

 We now give a brief description of how a presentation of a NEC group " may be 

obtained from a given fundamental region.  The method is found in detail in [14] and [28]. 

 Let p ! U be a point not fixed by any element of ".  Let F be the set of points 

satisfying 

  

   D (z,p) & d (gz,p)     for all g ! ", 

 

where d 9z,p) dentotes the N.E. distance of a point z ! U to p.  F is a fundamental region 

for " and is called the Dirichlet region.  It is a convex set bounded by N.E. lines, with all 
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its vertices in ' (the closure of U).  As " has compact quotient space F will be a bounded 

convex polygon with afinite numer of sides. 

 Two vertices are called congruent if they lie in the same " – orbit .  Two edges are 

congruent if there is an element of " which maps one edge to the other. 

 If F meets one of its images gF (g ! ") in an edge then g–1 F meets F in an edge.   

These edges are distinct uless g2 = 1, i.e. unless g is an elliptic transformation of order 2 or 

a reflection.  If g is an elliptic transformation of order 2, Fn gF is an edge of F, say AB, 

which is mapped onto itself by g.  The mid-point C of AB is fixed point of g and AC is 

mapped on CB by g.   We add C to the set of vertices of F and regard AC and CB as two 

separate but congruent edges of F.  If, however, g is a reflection every point of Fn gF is 

fixed under g.  Such and edge of F is congruent to no other edge of F under ". 

  F has the following properties (see [28]). 

1. F is homeomorphic to a closed disc. 

2. F\int F is a polygonal Jordan curve, i.e. a curve which is a finite union of N.E. line 

segments. 

3. There are a finite number of points on F\int F (the vertices) dviding F\int F into 

Jordan arcs (the edges). 

4. The edges of F are divided into three categories as follows: 

a) Congruent pairs s, s’ , where s, s’  are the edges Fn gF,  Fn g-1F respectively and 

g ! " but g2 $ 1.  Here s = gs’ . 

b) Congruent pairs s, s’ where s = gs’ and g is an elliptic transformation of order 2.  

In this case sus’ = Fn gF. 
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c) Edges s” where s” is Fn gF and g is a refletion.  Such and edge is congruent to 

no other edge of F and is an N.E. line segment. 

5. If  Fn gF $ *  where g ! " and F, gF do not have an edge in common then Fn gF is 

at most a finite number of vertices. 

 

(A fundamental region with the above properties is called a regular fundamental region.) 

 

 The set [gF: g ! ") forms a tesselation which fits together to cover U.  Any face of 

the tesselaion with the g’ F for some g’ g ! " and so will determine a unique face of the 

tesselation.  Faces with an edge in common are called neighbours. 

 Let F be a face and F’ another face meeting F in an edge (. Denote the group 

element which maps F to F’ by a so that F’ = aF.  If   (   is the edge congruent to ( the a 

(() = (. 

 To associate a surface symbol with a regular fundamenal region, e.g. the Dirichlet 

region, F for " we first label the edges of type c).  The remaining edges occur in congruent 

pairs and we now label one edge from each congruent pair.  If ( is the label of such an 

edge, the edge congruent to ( is labelled (’ or ( * according as the transformation which 

maps it onto the edge ( preserves or reerses orientation.  If we now write dow the labels of 

the edges of F in order anti-clockwise we obtain the surface symbol for F which will 

determine the topological strcture of U/ ". 

 Starting from the Dirichlet region for " (or any regular fundamental region for ") F 

we can otbain a new fundamental region as follows.  Let ( and (  be two congruent edges 

of F and split F into two regions F1, F2 by a polygon arc joining two vertices of F such that 

^

^

^

^
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( ! F1, ( ! F2.  Then if a (() = (, F1 U aF2 will be a new fundamental region for " which 

will have a different surface symbol.  The side of this fundamental region may not now be 

N.E. lines.  However, edges which are axes of reflection will still be N.E. lines.  In this 

way a canonical form of the surface symbol is obtained (see [28]). 

 There are two types of canonical forms of surface symbols.  One is for groups with 

orientable quotient space and one is for groups with non-orientabel quotient space.  The 

wsurface symbol for a group with orientable quotient space is 

 

(1.4) )1 )1 ‘)2 )2’ · · · ) k ) k ‘!1 #10 #11 · · · #1s !1 ‘!2 #20 #21 · · · #2s    !2’· · · 

  · · · !r #r0 · · · #rs       !r ‘(1 *1 (1’*1’ · · · (g *g (g ‘*g’ 

and the surface symbol for groups with non-orientable quotient space is 

 

(1.5) )1 )1 ‘· · · ) k ) k’ !1 #10 · · · #rs     !r (1 (1 *(2(2* · · · (g (g*’ 

 

which differs from (1.4) only in the last part of the symbol. 

 If we identify corresponding points on the related edges of the fundamental region 

with surface symbol (1.4) we obtain an orientable surface with boundary which is a sphere 

with r discs removed and g handles added. 

 Similarly with surface symbol (1.5) we obtain a non-orientable surface with 

boundary which is a sphere with r discs removed and g cross-caps added. 

 On these surfaces, the edges ( (in the non-orientable case) and (, * (in the 

orientable case) determin a canonical system of cross-cuts meeting at a base-point Q, say.  

There are k distinguished points Mi in the interior of the surface and si distinguished points  

2

r 

Nis 
      i 

Nis
      i

Nil       
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Nil, · · ·         on the ith boundary component.  The lines !i  joins Q to the points M and the 

line !i  joins Q to a point on the ith boundary component between        and  . 

 It can be shown that the set of group elements which map F on a neighbour 

generate ".  We obtain the relations in " in the following way.  There are  a infinite 

number of faces meeting at each vertex, each face being a neighbour of the preceding face.  

If F is one of the faces going round the vertex we shall meet in order the faces a1F, a1a2F, 

a1a2a3F, · · · etc.  (ai ! ").  After  a finite number of steps we come back to F so that for 

some n, a1a2  · · · anF = F and we obtain the relation a1a2 · · · an = 1 for the vertex, known as 

the canonical relation for that vertex.  Congruent vertices give rise to the same canonical 

relation and it is shown that every relation in the group is a consequence of the canonical 

relations. 

 Denote by a, b, c, e, x the transformation which map F across the sides (, *, #, !, ).  

Then a group with surface symbol (1.4) will have presentation. 

 

i i

i

i

ij i

(1.6) generators a ,b i = 1,2,  g
x i = 1,2,  k
e i = 1,2,  r
c i =1,2, r, j = 0,1,2, s

K
K
K
K K

 

isi i ci0 i

2 2 n
i ij i ij

-1 -1 -1b -1
1 2 k 1 2 r 1 1 1 1 g g g

m
i iand relations x  = 1

 c  = e  -1 e

 c ,j-1 =  c  = ( c , j-c ) ij=1

x x   x e e  e a b a b a b =1.K K K
  

                                          

 The presentation for groups with surface symbol (1.5) (i.e. with non-

orientable quotient space) will have generators ia , i i iji = 1,2,  g x ,e ,cK  as in (1.6).  The 

relations will be as in (1.6) except for the final relation which becomes 
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(1.7) 2 2 2
1 2 k 1 2 r 1 2 gx x   x e e   e a a   a  =1K K K   

  

 In (1.6) the elements i ia ,  b  will be hyperbolic, ix  elliptic, ijc reflections and 

the ie  will usually be hyperbolic although in exceptional cases they may be elliptic.  In 

(1.7), similar remarks apply, except now the ia  are glide reflections. 

 The number i ijm , n  are the orders of the orientation preserving elements of 
3  and are called the periods of 3 .  We call the im proper periods.  We can associate with 
each group of NEC signature. 
  
 The NEC signature of the group3with presentation (1.6), i.e. with 
orientable quotient space is  
(1.8) 1 k 11 1s1 r1 rsr(g, +, [m ,  m ], {(n ,  n ), (n   n )})K K K K  
 
and the NEC signature of the group with presentation (1.7), i.e. with non-orientable 
quotient space is  
 
(1.9) 1 k 11 1s1 r1 rsrg, -, [m ,  m ], {n ,  n ),  (n ,  n )})K K K K . 
 
Brackets such as 11 1s1(n , n )K are called period cycles.  Note that once we are given a 

signature of a group the surface symbol and presentation are uniquely determined.  So 

given a signature for an NEC group 3  we can immediately determine the topological 

structure of U3 . 

 The integer g is known as the genus of the surface and called the orbit-genus 

of the group.  The genus is an invariant of the surface as is the number of discs removed.  

A removed disc will be called a hole or a boundary component. 

 An NEC group may have empty period cycles and signature of the form 

  

 1 k(g, , [m ,  m ], {( ), ( ),  ( ) })4 K K  

 

which, if the number of empty period cycles if 3 , we shall write as 

  

 r
1 k(g, , [m ,  m ], {( ) }).4 K  
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 A Fuchsian group will have an orientable quotient space with no holes.  All 

its periods are proper periods and it is determined by its orbit-genus and its periods.  Its 

NEC signature is 

 

 1 k(g, +, [m ,  m ], { })K  

 

and is usually written 

 

 1 kg; m ,  m ).K  

 

 Groups with no periods are no reflections are known as surface groups.  If 

the orbit space is orientable it is called an orientable surface group (sometimes known as 

a Fuchsian surface group) and will have signature  

 

 (g, +, [ ], { }) or           (g; -------) . 

 

If the orbit space is non-orientable it is known as a non-orientable surface group and will 

have signature 

 

 g, -, [ ], { }) . 

 

 Groups with no periods but with reflections are known as bordered surface 

groups.  A group with signature 

 

 r(g, +, [ ], {( ) })  

 

will be called an orientable bordered surface group (with r boundary components) and a 

group with signature 
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 r(g, -, [ ], {( ) })  

 

will be called a non-orientable bordered surface group (with r boundary components). 

 

4) 

Lemma 1.10  ([17])  Let 3  have signature (1.8) or (1.9).  Then an element of finite order 

in 3  is conjugate to one of the following: 

 

(i) A power of some ix  (1  i  k)5 5  

(ii) A power of some i ij ic , j-1 c  (1  i  r, 1  j  s )5 5 5 5  

(iii) Some ij ic  (1  i  r, 0  j s ).5 5 5 5  

 

Proof. 

 

 An element of finite order in 3  is either an elliptic element or a reflection 

and thus has a fixed point p ! U .  If F is a fundamental region for 3 , F contains an 

element in the orbit of p, say gp !  F for some g 6  3 .  Thus gp, being a fixed point of 
-1gtg , lies on the boundary of F.  The stabilizers of fixed points on the boundary of F are 

those listed in (i) (ii) or (iii) above and as -1gtg  belongs to the stabilizer of one of these 

points our assertion is proved. 

 

 In [28] Wilkie gave some sufficient conditions for two NEC groups to be 

isomorphic, his work was purely algebraic,  Macbeath [17] found necessary and 

sufficient conditions for two NEC groups to be isomorphic but these results were not 

obtained algebraically. 

 

Definition 1.11.  Let 3  and 73  be two isomorphic NEC groups and let :   78 3( 3 be the 

isomorphism. 3  and 73 are called geometrically isomorphic if there exists a 

homeorphism w of U onto itself such that 
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 -1 (g) = wgw  for all g ! .8 3  

We say that the isomorphism + can be realized geometrically.  

 If the isomorphism +  can be realized geometrically then the groups 3  and 

73  are conjugate in the group of all homeomorphisms of U.  If z !  U , the geometrical 

isomorphism w maps the 3 -orbit of z on the 73 -orbit of wz, thus it induces a 

homeomorphism between the quotient spaces. 

 

Theorem 1.12.  (1[1.7])  Let +:     73 ( 3 be an isomorphism (of the group structure 

only) between two NEC groups.  Then +  can be realized geometrically. 

 Macbeath proved this result using Teichmuller’s theorem on external 

quasiconformal mappings and used it to determine the necessary and sufficient conditions 

for 3  and 73  to be isomorphic.   

 The genus and orientability of a surface are geometric invariants of that 

surface so clearly if two NEC groups are isomorphic then the orientability and genera of 

their orbit spaces are the same. 

 

4) From lemma 1.10 we see that every reflection in an NEC group is conjugate to 

one of the (canonical) generating reflections.  When trying to determine the 

number of boundary components of an NEC group, as we shall be in chapter 4, 

we are in fact counting conjugacy classes of reflection. 

 

Lemma 1.15. Let 
1
, be a bordered surface group and let 2 1 3 3<  with index n.  Let 

1 n 1 2g ,  g  ! \3 3K such that  

 1 2 1 2 2 2 n = g  + g  +  + g ,3 3 3 3K  

and let 2 1c !  c 3 3 be a reflection.  Then any conjugate of c in 
1
, will be conjugate to 

-1
i i 2g  cg   in  for some i = 1,  n.3 K  

 

Proof. 
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 Clearly any conjugate of 1 2c in  will be an element of . 3 3 Consider 

-1
1hch , where h ! 3 .  Then 2 ih ! g , for some i=1, n.3 K   So we can express h in the form h = 

i 2xg , x !  and then3  

 -1 -1 -1 -1
i i i ihch xg  c (xg )  = x(g  cg  ) x  

which is a conjugate of -1
i i 2g  cg  in 3 . 

 

 Singerman [25] has investigated some of the algebraic properties of NEC 

groups in particular their reflections. 

 

Theorem 1.16.  ([25])  Let c !  be a reflection,3 3  a NEC group.  Then Z (c) , the 

centralizer of c in 3 , is infinite.  In particular if c is the generating reflection associated 

with an empty period cycle and e is the generator in the canonical presentation for 3  

commuting with c, then Z (c) = (c, e), the group generated by c and e. 

 

 Clearly, from this result, an ‘e generator’ associated with an empty period 

cycle must have infinite order, i.e. is hyperbolic.  In the case of 3  being a bordered 

surface group this is obvious since the only elements of finite order are the generating 

reflections and their conjugates. 

 

 In [25] the N.E. area of a fundamental region of an NEC group was 

determined.  This is independent of a fundamental region chosen for the group and thus 

will depend only on the signature of the group.  Thus we can denote the N.E. area of a 

fundamental region for 3  by % ( )3 . 

  

Theorem 1.17.  ([25])  

(a) Let 3  be a NEC group with signature (1.8).   Then the N.E. area of a 

fundamental region for 3  is given by  
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isk r

i 1 i 1 j 1 ij

1 1 1% ( ) = 2- (2g -2 + (1 ) (1 ) ).
m 2 ni

r
9 9 9

3 : ! ! :; ;;  

 

(b) If 3 has signature (1.9) then 

 

 
isk r

i 1 i 1 j 1i ij

1 1 1% ( ) = 2-(g - 2+ (1 - ) (1 ) ).
m 2 n

r
9 9 9

3 ! ! :; ;;  

 

 Let 3  be a NEC group and 1 2 ng  g  g< ! < ! <K . 

 

 

If F is a fundamental region for 3  then it is easily verified that 1 2 ng  F. g  F. … .g F  

 

1 2 ng  F g F   g F= = =K  

 

is a fundamental region > . But the N.E. area is invariant and we deduce the formula for 

the index of >  in 3 , known as the Riemann-Hurwitz formula, 

 

 [ 3 :> ] = % ( ) /%(,)> , 

 

 

(6) Let 3  be a proper NEC group.  Then the Fuchsian subgroup of 3  consisting 

of all elements which preserve orientation has index two in 3  and will be denoted by 

.! !3 3 is called the canonical Fuchsian group of 3 . 

 

 If 3  is a NEC group with signature (1.8) or (1.9) then the elements of finite 

order in 3  are given in (i) , (ii) and (iii) of lemma 1.10.  But the elements 
+

i i j-1 ijx ,c , c  lie in 3  and so the periods of !3  contain the periods of 3 . 
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 In [25] it is shown that each proper period, im , is repeated twice and only 

twice in !3 but each period of the form ijn occurs only once among the periods of !3 .  

Using this and the Riemann-Hurwitz formula which says that +% ( ) 2% ( )3 9 3 we deduce 

the following theorem. 

 

Theorem 1.18. 

 

(a) Let 3 be a proper NEC group with signature (1.8).  Then !3 has signature 

 

 
r1 1 k k 11 12 rs(2g + r - 1; m , m ,  m , m , n , n ,  nK K ). 

 

(b) If 3  has signature (1.9) then !3 has signature 

 

 
r1 1 k k 11 12 rs(g + r - 1; m , m ,  m , m , n , n ,  n ).K K  

 

7). If 3 is a NEC group we denote by N G + (3 ) the normaliser of G+ of 3  

and by NG (3 ) the normaliser of G of 3 .  Let  !3  be the canonical Fuchsian group of 

3 and let +t ! \3 3  so that + +, =  + t3 3 .  If  -1g ! Ng( ) then g g and 3 3 9 3  

 

 + + -1 +g( t )g  t ,!3 ! 3 9 3 ! 3  

 

i.e. + -1 + -1 +g g gt g  t!3 ! 3 9 3 ! 3  

 

By equating together the set of orientation preserving elements on both sides of the 

equation we see that + -1g g !3 9 3 so that +g ! N g ( )3  which implies that 

  

 +Ng( ) Ng ( ).3 ? 3  
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 Now Ng + ( !3 ) is a subgroup of index one or two in Ng ( !3 ) and it is well-

known that Ng + ( !3 ) is a Fuchsian group (see e.g. [14]), and thus discrete.  Therefore 

Ng ( !3 ) and hence Ng(3 ) is discrete.  At 3 ?  Ng (3 ), Ng (3 ) has a compact 

fundamental region (for NEC groups3with compact orbit space) and hence has compact 

orbit space. 

 We have thus proved the following. 

 

Lemma 1.19. Let 3  be a NEC group. 

(a) If 3  is a proper NEC group and !3  its canonical Fuchsian group then Ng 

(3 )?Ng ( !3 ). 

(b) If 3 has compact orbit space the Ng (3 ) is a NEC group with compact orbit 

space. 

 

 

II Klein surfaces and their automorphisms 

 

1). 

Definition 1.20. A complex chart on a surface S consists of a pair (U,z) where U is 

an open set and z is a homeomorphism and U onto an open set in the complex plane. £ .  

If S is a surface with boundary then z is a homeomorphism of U onto either an open set in 

£ or a relatively open set in a closed upper-half plane. 

 

Definition 1.21. A family of charts i i i!I{U ,z )}@ 9 where I is an index set, is called 

a dianalytic (or complex) atlas for S if  

 

(i) i iU !I U  = S,  

(ii) if ( i i j j i j(U , z ), (U ,z ) ! U   U    A - B then -1
i jz z conformal or anti-

conformal homeomorphism defined on j i jz  (U U )A intersects the boundary 
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of U , the closed upper-half plane, then we require -1
i jz z to have an analytic 

or anti-analytic extension to an open subset of the plane. 

 

The maps -1
i jz z are called co-ordinate transformations (or transition 

functions). 

I f S is a surface with boundary then the boundary /S of S consists of the 

points s ! S such that s ! i i iU  with z  (U ) open in U . But not open in £ and iz  (s) ! IR.  

We denote the interior of S, i.e. s o\/S, by S . 

 

Definition 1.22. A Klein surface is a surface, or a surface with boundary, S with a 

dianalytic atlas @ .  It will be denoted by (S, @ ) or just by S. 

 

 The dianalytic atlas @  is said to define a dianalytic structure on S.  Another atlas 

@ ’ = j j j{(v , w )}  J  defines the same structure provided i i j j ieI jeJ{U ,z ) (V ,w )} ,C is a 

dianalytic atlas for S.  We say @ and @ ’ are dianalytically equivalent. 

 

 A dianalytic atlas in which all the co-ordinate transformations are conformal 

(sense-preserving) maps will be called analytic atlas .  We say an analytic atlas on a 

surface S defines an analytic structure on S. 

 By a Riemann surface we shall mean a surface without boundary with an analytic 

atlas.  The meaning of the term Riemann surface with boundary should be clear.  

Clearly a Riemann surface is an orientable Klein surface without boundary. 

 If (S, @ ) is an orientable Klein surface then there are tow analytic structures on S 

each of which is dianalytically equivalent to @  (see Alling and Greenleaf [2], theorem 

1.2.4.).  (The proof basically involves choosing a maximal analytic atlas for S.) 

 Choosing between the two analytic structures is equivalent to choosing an 

orientation for S.  (The two resulting Riemann surfaces are anti-conformally 

equivalent)  So without real ambiguity we may consider an orientable Klein surface to 

be a Riemann surface or a Riemann surface with boundary. 
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 We now wish to define a morphism f: S (T of Klein surfaces.  This differs from 

the corresponding concept for Riemann surfaces principally in that S may “fold” along 

/T.  For this reason we need to define the folding map.  This is the map 

:C  UB ( given by 

 

   (x + iy) = (x + i/y/).8  

 

 We define a positive chart (V,w) to be a chart such that w(V)C U . 

 

Definition 1.23.  ([2])  A morphism f: S (T of Klein surfaces is a continuous map f of 

S into T, with f(/S)C /T, such that for all s !  S there exist dianalytic charts (W,Z) and 

(V,w) about s and f(s) respectively, and an anlytic function F on z (W) such that the 

following diagram commutes. 

 

(1.24) 

 

 

 

(1.25) 

  

 

 

 

 

In this case if F is anti-analytic then we can replace z by z , which will make F analytic so 

that f is still a morphism. 

 

 Let f: S  T( be a non-constant morphism of Klein surfaces. 

 

      f 
  W                             V 
 
 
z                                       w 
 
            F             0  

  U              £           U  
      f 
  W                             V 
 
 
z                                       w 
 
                    F 
  £                            £  
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Let s !  S.  Alling and Greenleaf [2] have shwon that we can find dianalytic charts (U,z) 

and (V,w) at s and f (s) respectively, such that z (s) = 0 = w(f(s)), f (U)CV and such that 

g/U has the form 

 

%
%

1-1 e

1 e

g/U = w  0  ( z )      if f (s) ! /T

         w ( z )             if f (s) ! T:

4

4 o

o

o  

where e is an iteger, e 1.D   The integer e is called the ramification index of  f at s and will 

be denoted by fe  (s) .  We say that f is ramified at s if fe  (s)  > l; otherwise we say thaqt f 

is unramified at s. 

 

 We define the relative degree of s  !  S over f (s), fd  (s) , to be 

 

 fd (s)= 
2     if s ! S and f (s) ! /T
1  otherwise. 
E
F
G

o

 

 

Definition 1.26. A non-constant morphism f: S  T( between two Klein surfaces will 

be called an n-sheeted covering of T if for every point t ! T 

 
-1

f f
sef (t)

e (s)d (s) = n.;  

If fe (s) = 1 for all s ! S,  f: S T( is an unramified n-sheeted covering, otherwise it is a 

ramified n-sheeted covering. 

 

 In [2] Alling and Greenleaf give detailed proof to show that every non-constant 

morphism between two compack Klein surfaces is an n-sheeted covering for some n.  Also 

if S, T and X are Klein surfaces and f: S  T( , g: T X(  non-constant morphisms then 

gf: S X( is a non-constant morphism.  If f is an n-sheeted covering of T and g is an m-

sheeted covering of X then gf is an mn-sheeted covering of X. 
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 Let 1 2S , S be two homeomorphic orientable Klein surfaces.  An orientation 

preserving (reversing) homeomorphism f: 1 2S  S(  is called a conformal (anti-conformal) 

homeomorphism if f is a morphism with respect to the dianalytic structures on 1 2S  and S . 

 

 A conformal (anti-conformal) homeomorphism from 1 1S  to S  will be called a 

+automorphism (-automorphism).  An automorphism is either a + or a – automorphism.  

For any orientable Klein surface S the set of all automorphisms form a group Aut S, which 

contains as a  subgroup of indes 1 or 2 the group of all + automorphisms of S, denoted by 

+ Aut S. 

 

 If 1 2S , S are two homeomorphic non-orientable Klein surfaces, then a 

homeomorphism f: 1 2S  S(  is called a conformal homeomorphism if f is a morphism 

with respect to the dianalytic structures of 1 2S  and S .  A conformal hemeomorphism of a 

non-orientable surface onto itself will be called a automorphism.  The set of 

automorphism of non-orientable surface forms a group, Aut S. 

 

 If 1 2S  and S  are two Klein surfaces and F: 1 2S  S(  is a conformal 

homeomorphism then 1 2S , S  are called conformally equivalent or isomorphic. 

 

2) We shall only be concerned with compact Klein surfaces (either with or without 

boundary).  We now discuss how the surface U/3 , where 3 is an NEC group (with 

compact quotient space) may be given a dianalytic structure. 

 

Theorem 1.27. Let 3 be a NEC group.  Then the quotient space U/3 has a unique 

dianalytic structure such that the quotient map -: U  U/( 3 is a morphism of Klein 

surfaces. 

 

Proof.  
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 Since 3  acts properly discontinuously of U, this follows immediately from a result 

of Alling and Greenleaf ([2]) theorem 1.8.4). 

 

 The map - is folded over the boundary U/3 and ramified over the distinguished 

points of the surface.  If 3  is a surface group or a bordered surface group the -  is 

unramified.  Also, it is easy to see that for z !U, - (z) !  / (U/ )3 if and only if there exists 

a reflection c !  such that c (z) = z3 .  If 3 is a Fuchsian group then U/3has an induced 

analytic structure with which it is a Reimann surface. 

 

 Let 3  be a non-orientable surface group or a bordered surface group, then the 

quotient space +U/ , where !3 3 is a canonical Fuchsian group of 3 , is a Riemann surface.  

If z !U let 

 

and  
+

+

,

,

- (z)  = [z]

- (z)  = [z] .
3

3

 

 

If f: +U/  U/3 ( 3 is the natural projection defined by 

 

  +f ([z] ) [ ]z 33
9  

 

then the following diagram commutes 

 

  

and f is an unramified two-sheeted covering of U/, . 

 If U/, has no boundary then +U/, is a uniquely defined two-sheeted orientable 

covering surface of U/, .  If U/, has boundary then +U/,  is a uniquely defined two-

sheeted orientable covering surface without boundary of U/, . 

 

 It is a well-known result that any compact Riemann surface of genus g  2D can be 

represented in the form U/, , where 3 is a Fuchsian surface group and % (,) = 2- (2g - 2)  

                     U 
 
       +-3           

+U/3               -,  
           f 
                   U/,  
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(see Springer [27]).  This is because U is the universal covering space of all compact 

Riemann surfaces except the sphere and the torus. 

 

 Schiffer and Spencer [23] describe the double of a compact Klein surface S, which 

if S is a surface with boundary or a non-orientable surface with or without boundary, is a 

connected compact Riemann surface.  If S has genus g and r boundary coponents then the 

genus of the double of S is 2g+r-1if S is orientable and g + r –1 if S is non-orientable.  

The same double is described by Alling and Greenleaf [2].  They call it the complex 

double and denote it by cS .  We shall describe in detail in chapter 4 the construction of cS  

but for the moment we shall assume its existence and use it to prove the following 

theorem. 

 

Theorem 1.28. Let S be a compact Klein surface with genus g and r boundary 

components such that g  2D if S is orientable without boundary, 2g + r D  3 if S is 

orientable with boundary and g + r 3D  if S is non-orientable.  Then S = U/, , where 3 is 

either a surface group or a bordered surface group. 

 

Proof. 

 

 If S is orientable without boundary and genus g  2D  then S = U/, , where 3  is a 

Fuchsian surface group. 

 If S is orientable with boundary and 2g + r D  3 then the genus of cS  is  

 

  1Y  = 2g + r = 1  2.D  

If S is non-orientable ( with or without boundary) and g + r – 1 D  3 then the genus of cS , 

the double of S is 

 

  2Y  = g + r - 1  2D . 
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Therefore in both cases cS  = U/ , > where > is an orientable surface group. cS is symetric 

and so admits and anti-conformal involution which we may represent by 

[z] [gz]< <( where g ! g is an orientation reversing transformation with the property that 

2g  = g and g ! > > > .  Let   + g3 > >= .  /3 >  has a natural action of U/>  sending 

[ ] to[gz]  and the orbit U/ / /> > > 3 >z  

When given the induced dianalytic structure is conformally equivalent to S.  (We note 

here that if S has boundary then we can take g to be a reflection.) 

 

 Let p be the natural projection of 

U/  onto U/ / /  and let p[z] {[ ] ] {[gz] }.> > >> > 3 > 9 9z  

The correspondence {[z]  = {[z] } [z]  is > > 3( one-one and is a conformal homeomorphism 

from the following diagram 

 

 

 

 

 

 

As the maps - ,-3 > and p are all open, continuous and analytic.  Therefore U/, is 

conformally equivalent to S. 

 

From theorem 1.28 we see that the only compact Klein surfaces not representable as U/, , 

where 3 is a surface group or a bordered surface group, are in the orientable case the 

sphere (g = 0, r = 0), the torus (g = 1, r = 0), the closed disc) g = 0, r = 1) and the closed 

annulus  (g = 1, r = 1) and in the non-orientable case the projective plane (g = 1, r = 0), the 

Mobius band (g = 1, r = 1) and the Klein bottle (g = 2, r = 0). 

 

       U 
                      -,  
-<  
      U/ <              U/3  
 
  P 
 
S = U/ / /< 3 <  
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3) We shall now develop the theory of automorphisms of Klein surfaces without 

boundary. 

 The representation of homeomorphisms between compact Riemann surfaces by 

homeomorphisms of U is well –known (see e.g. Macbeath [13], Bers [3]) and the results 

extend to Klein surfaces without boundary. 

 

 Let , '3 3 be two surface groups.  Put 

 

  - (z) [z]3 39  

We say a homeomorphism w:  U(U induces a homeomorphism f: U/, U/, '(  if the 

following diagram commutes. 

 

 

 

  

 

 

Clearly if w: U U( is a homeomorphism such that 1w,w ': 9 3 then the mapping  

  f)[z]3 ) = [wz] '3  

is well defined and f is a homeomorphism. 

 

 If f: U/, U/,'( is a homeomorphism then using results in the theory of covering 

spaces we can deduce that there exists a homeomorphism w: U U( which induces f.  

This mapping w is not uniquely defined for f is also induced by 

w#,# ! , as f- f-  = f- #3 3 33 9 .  It follows that w also induces an isomorphism i: '3(3  

defined by  i (#)  -1= w#w  and so w,w:  = '3 .  F is conformal or anti-conformal if and 

only if w !  g.  Also if U/  and U/ '3 3  are orientable surfaces then f is orientation 

preserving if and only if w is orientation preserving so that f is conformal if and only if w 

!  g. 1w,w ': 9 3 we deduce the following well-known result.  If , '3 3 are orientable (non-

                    W 
      U                         U 
 
-3                               '-3  
 
                    f 
   U/,                         U/,'    
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orientable) surface groups then U/ ,  U/ '3 3 are conformally equivalent if and only if there 

exists  w !  g+ (w !  g) such that 1w,w ': 9 3 . 

 

 If we put '3 9 3 we see that f is an automorphism of U/, if and only if w !  Ng 

(3 ).  The group of automorphisms of U/,  is isomorphic to Ng (3 )/3 .  If 3  is an 

orientable surface group then the goup of + automorphisms of U/, is isomorphic to 

Ng+(3 )/3 . 

 

 May [21] has infact extended this result and has shown that if 3  is a bordered 

surface group then the group of automorphisms of U/,  is Ng (3 )/3 .  We discuss these 

ideas as related to Klein surfaces with boundary in chapter 4. 

  

 Groups of + automorphisms of compact Riemann surfaces have been well-studied 

by Hurwitz [8], Macbeath [13], [14], [15], Harvey [7], Maclachlan [18] and 

Singerman[24], [26]. 

 

 If S is a compact Riemann surface of genus g 2 then = U/  where D > > is an 

orientable surface group and 

   +Aut S = Ng + ( ) /> >  

which is a quotient of two Fuchsian groups.  Any subgroup G of + Aut S is therefore of 

the form 

 

   G = /3 >  

Where 3 is a Fuchsian group.  Conversely, any element of Ng+(> ) induces a + 

automorphism of U/>  so that /3 >  acts as a group of + automorphisms of U/> . 

 

 Therefore a necessary and sufficient condition for a group G to be a group of + 

automorphism of a compact Riemann surface S = U/>  is that there is a homeomorphism 

from a Fuchsian group 3  onto G such that the kernel is the orientable surface group > . 

  

 Using this we can compact orientable Klein surface without boundary since 
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  %( ) 2-(2g - 2)G  =  
%( ) %( )
>

9
3 3

. 

 

If 3 has signature (h; 1 2 km , m ,  m ) thenK  

  

  
k

1 i

1%( ) = 2-(2h 2  (1  ) )
mi

i9
3 : ! :;  

 

and by considering all possibilities (see Macbeath [14]) we can show that %( )  - / 213 D  

with equality holding only when 3  is the Fuchsian traing (0; 2,3,7).  We have thus shown 

that G   84 (g - 1)5 .  This bound was first obtained by Hurwitz [8], who showed that it 

was attained when g = 3.  Since then it has been shown to be attained for infinitely many g 

(e.g. Macbeath [13]).  We shall look more closely at this problem in chapter 2. 

 

 Let S be a non-orientable compact Klein surface without boundary of genus 

g  3D so that S = U/> , where >  is a non-orientable surface group, then 

 

  Aut S  N ( )/> >; H  

And since N ( )>H is a NEC group with compact quotient space any group of 

automorphism of U/> will be isomorphic to /3 >  where 3  is a NEC group.  Conversely 

/3 >  acts as a group of automorphisms of U/> . 

 

Thus a group of automorphisms of a non-orientable Klein surface without boundary of 

genus g  3D  is finite. 

 

Theorem 1.30. ([24])  A necessary and sufficient condition for a finite group G to be a 

group of automorphisms of a compact non-orientable Klein surface without boundary S of 

genus g  3D  is that there exists a proper NEC group 3  and a homomorphism 

2 : G3( such that the kernel of 2 is a surface group and 2( )  G!3 9 . 
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Proof. 

 If G is a group of automorphisms of S then G /9 3 > where > is a non-orientable 

surface group such that S = U/>  and 3  is a proper NEC group.  Hence there exists a 

homomorphism 2 : G3(  whose kernel is a non-orientable surface group.  Thus there 

exists 

   

  +t ! ker 2  ( \ )A 3 3 . 

 

Then 3  = !3  + t !3 .  Let 2 ( !3 ) = G+.  So 

 

 G = 2 (3 ) = 2 ( !3  + t !3 ) = 2  ( !3 ) + 2 (t) 2 ( !3 ) = G+  + G+ = G+ 

 

Which implies that 2 ( !3 ) = G 

 Conversely suppose there exists a homomorphism 2 G3( such that 2 ( !3 ) = G 

and ker 2  is a surface group > .  Now if >  were an orientable surface group >  <  !3 , so 

that >  is the kernel of the restriction of 2  to !3 .  Thus 

 

  G = !3 />  ;  3 /> , 

 

Which is impossible as % ( !3 ) = 2% (3 ).  Therefore >  is a non-orientable surface group 

and G is a group of automorphisms of a non-orientable Klein surface without boundary of 

genus g  3D . 

 

 If we let S% = U/> +  then S% is the uniquely defined two-sheeted orientable 

covering surface of S = U/> . 

 

Corollary 1.31. If G is a group of automorphisms of S then G is a group of + 

automorphisms of  S%, its orientable two-sheeted covering surface. 

 

Proof. 
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 S = U/> , so by theorem 1.30 G = 3 />  where 3  is a proper NEC group.  The 

group 3 />  has a natural action on S.  If # ! 3  then 

 

  # ([z] ) = [#z]> >> . 

As >  is a non-orientable we can without loss of generality assume that #  by #3  where 

+3  \> >6 .  Clearly, as  ,!> ? >  

 

  +# ([ ] )  [#z]!> >
> 9z  

 

so that G has a well-defined action on U / !> .  It follows that G is a group of + 

automorphisms of S% = U / !> . 

 

Lemma 1.32. If I is an anti-conformal involution of S% such that S = S%/ I  (where 

I  denotes the group generated by I ) and G is a group of automorphisms of S (which 

by corollary 1.31 is a group of + automorphisms of S (which by corollary 1.31 is a group 

of + automorphisms of S%) then I  commutes with every element of G. 

 

Proof. 

 S = U/> , S% = U / !>  and by anti-conformal involution I  of  S% such that S = S%/ 

I  is of the form. 

 

  I : [z] +:  [z] [3 ] ,  3 ! \! !> >
( > >z bI  

 

By theorem 1.30 G = 3 /> , where 3  is a proper NEC group.  Let g = #>  !  3 /> , which 

from the proof of corollary 1.31 is a + automorphism of S%,   Then 

and  
+ + +

g ([ ] )  [3 ] [#3z]

g([z] )  =  [#z]  = [3#z]

! ! !> > >

> > >

9 9z g zI

I I
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But 1 -1 -1 -13 # 3# !  because    so 3 # 3#: > > 3<  is orientation preserving .  Therefore 
1 13 # 3# !  and hence g  = g: : !> I I . 

 

 We note here that if S is a non-orientable Klein surface without boundary of genus 

g then S% has genus g – 1 from the Riemann-Hurwitz formula. 

 

Definition 1.33. A homomorphism from a NEC group onto a finite group whose kernel 

is a surface group is called a surface-kernel homomorphism. 

 

Lemma 1.34. A homomorphism 2  from a NEC group 3  onto a finite group G is 

surface-kernel if and only if for every element x of finite order in 3 , 2 (x) has the same 

finite order. 

 

Proof. 

  A NEC group is a surface group if and only if it contains no elements of 

finite order.  It is then clear that if 2  preserves the orders of the elements of finite order in 

3 , ker 2  must be a surface group.  Converseley, if 2  is a surface-kernel homomorphism 

and x !  3  is an element with finite order m then 2 (x) has order d dividing m.  This 

implies xd  !  ker 2  and as ker 2  is a surface group, d = m. 

 

Note: As every element of finite order in an NEC group 3  is conjugate to a generator of 
3 , 2  is surface –kernel if and only if 2  preserves the orders of the elliptic and refelection 
generators. 
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CHAPTER 2 

 

Maximal automorphism groups of compact 

Klein surfaces without boundary. 

 

1). In chapter 1 we deduced Hurwitz’s result that the order of a group of + 

automorphisms of an orientable Klein surface without boundary (i.e . a Riemann surface) 

of genus g cannot be bigger than 84(g –1).  Because this bound was first obtained by 

Hurwitz we have the following definition. 

 

Definition 2.1. A group of 84(g-1) + automorphisms of an orientable Klein surface 

without boundary of genus g is called a Hurwitz group. 

 The problem of finding Hurwitz groups has been considered by Macbeath [13], 

[16], by Lehner and Newman [12] and by Singerman [24]. 

 

 Let S be an orientable Klein surface without boundary of genus g!  2, which 

admits a group of 84 (g – 1) + automorphisms.  Le "  be an orientable surface group such 

that S = U/" , then as shown in chapter 1, the group + automorphisms of S is isomorphic 

of N ( ) / ,  !(N ( ))# #" " "$ $  = " / 21 and N ( )# "$ is the Fuchsian group with signature 

 

   (0; 2,3,7) 

 

i.e. the group with presentation 

  {x,y; x2 = y3 = (xy)7 = 1}. 

 

 This group may be obtained as follows.  Let %  be the proper NEC group generated 

by the reflections c1, c2, c3, in the three sides of a non-Euclidean triangle with angles 

"/2, "/3, "7 .  %  has the presentation {c1,c2,c3; c1
2 = c2

2 = c3
2 = (c1c2)2 = (c2c3)3 = (c1c3)7 = 

1}. 

% + , the canonical Fuchsian group of % , is the (0; 2,3,7) group with presentation 
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  {x,y; x2 = y3 = (xy)7 = 1},  x = c1c2, y=c2c3. 

Lemma 2.2. Every normal subgroup of % +  is a surface group. 

 

Proof.  

  Every element of finite order in % + is conjugate to either x, y or xy.  If 

"  is a normal subgroup of finite index % + which contains an element of finite order it 

must contain one of these elements .  Suppose x #  " .  Then under the canonical 

homomorphism from % + to % +/" , x must mapt to 1, the identity.  Suppose that y maps to 

y .  Then from the presentation of % +, we must have 

 

   y 3 = y 7 = 1 

 

which implies that y  = 1 and "  = % +.  Similarly if &  contains y or xy, "  = % +.  Hence 

every normal subgroup of % + is a surface group. 

 

 We have thus shown that a finite group G is a Hurwitz group if and only if it is a 

homomorphic image of % + , i.e. it has two generators X,Y such that X2 = Y3 = (XY)7 = 1. 

 

2). Maximal groups of automorphisms of non-orientable Klein surfaces without 

boundary have been studied by Singerman [24] and of Klein surfaces with boundary by 

May [20], [21], [22].  In [20] May has shown that a compact Klein surface of algebraic 

genus $  2! with non-empty boundary cannot have more than 12 ( $ -1) automorphisms, 

the algebraic genus of a surface being the non-negative integer that makes the algebraic 

version of the Riemann – Roch theorem wor [4], the field of meromorphic functions of 

Klein surface being an algebraic function field in one variable over ¡ .  (It can be shown 

that as long as the boundary is non-empty the algebraic genus of  a Klein surface S = U/' , 

where ' is a bordered surface group, is equal to the topological genus of the surface 

U/' +.  This will be discussed more fully in chpter 4).  In [21] May shows that the bound 

12( $ -1) is attained for infinitely many values of the algebraic genus $  and exhibits some 

infinite families of surfaces with boundary which admit groups of 12( $ -1) 
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automorphisms.  In [22] it is shown that there are an infinite number of values of the 

algebraic genus $  for which there is no Klein surface with boundary with 12( $ -1) 

automorphisms. 

 

 In this work we shall be concerned with maximal groups of automorphisms of non-

orientable Klein surfaces without boundary and it may be assumed throughout the rest of 

this chapter that the Klein surfaces considered are without boundary. 

 

Lemma 2.3. If G is a group of automorphisms of a non-orientable Klein surface, S 

of genus g then G   84(g-2).  If G  = 84(g-2)( then G is a Hurwitz group. 

 

Proof. 

  By Collary (1.31) every group of automorphisms of S is isomorphic to 

a group of + automorphisms of S%, the orientable two sheeted covering surface of S.  If S 

has genus g, then S%has genus $ 1g) * .  Therefore G   84(g-2).  If G  = 84(g-2)( if and 

only if G  84($-1))  i.e. if and only if G is a Hurwitz group. 

 

Definition 2.4. A group of 84(g-2) automorphisms of a non-orientable Klein surface of 

genus g will be called an H* - group. 

 

 From lemma 2.3 we can see that if G acts as an H* - group on a non-orientable 

surface S, then G acts as a Hurwitz group on S%.  In particular every H* - group is a 

Hurwitz group. 

 

 Now suppose S is a non-orientable Klein surface of genus g !  3, which admits a 

group of 84(g-2) automorphisms.  Let "  be a non-orientable surface group such that S = 

U/% , then 

  N ( ) /  84(g-2)." " )$  

But 
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  !( ) 2"(g-2)N ( ) /  =  =
!(N ( ) ) !(N ( ) )

"
" "

" "
$

$ $
 

and thus ! (N ( )) = "/42.  Thus N ( )" "$ $ is the NEC group with signature 

 

  (0, +, [ ],  {2,3,7)}). 

 

This is the NEC group (unique upto isomorphism) with the smallest possible area of 

fundamental region and is the group %  with presentation 

 

 {c1,c2,c3; c1
2 = c2

2 = c3
2 = (c1c2)2 = (c2c3)3 = (c1c3)7 = 1}, 

  

 By exactly the same methods used in the proof of lemma 2.2 we can show that 

every normal subgroup of %  of finite index greater than two is a surface group. 

 

Theorem 2.5 ([25]).   A finite group G is an H* - group if and only if it contains three 

generators C1, C2, C3 which obey the relations 

 

 C1
2 = C2

2 = C3
2 = (C1C2)2 = (C2C3)3 = C1C3)7 = 1, 

 

And G is generated by C1C2 and C2C3. 

 

Proof. 

 If G is an H* - group, there exists a homomorphism & : G%+  wuch that &( )#%  = 

G, and so has gnerators as described in the theorem.  Conversely, if G has these genertors, 

there exists a homomorphism & : G%+ such that &( )#%  = G and the kernel of &must be a 

surface group as all normal subgroups of %  of index greater than two are surface groups. 

By applying theorem 1.30 we deduce that G is an H* - group. 

 

Corollary 2.6. A Hurwitz group G generated by X,Y which obey the relations 

 

   X2 = Y3 = (XY)7 = 1 
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Is an H* - group if and only if there exists Z #  G such that 

   Z2 = (ZX)2 = (ZY)2 = 1 

 

Proof. 

  If such a Z exists, then G is generated by C1 = ZX, C2 = Z, C3 = ZY 

obeying the relations 

   

  C1
2 = C2

2 = C3
2 = (C1C2)2 = (C2C3)3 = (C1C3)7 = 1. 

 

Thus, by theorem 2.5, G is an H* - group. 

 Conversely, if G is an H* - group generated by C1, C2, C3 obeying the same 

relations as above and also generated by X – C1C2, Y = C2C3 then Z = C2 obeys the 

relations 

 

  Z2 = (ZX)2 = (ZY)2 = 1. 

 

3). In searching for Hurwitz groups an obvious first step is to look amongst simple 

groups.  This is because no non-trivial Hurwitz group is cyclic and any factor group of a 

Hurwitz group is a Hurwtiz group.  So if we factor out a Hurwitz group by a maximal 

normal subgroup we obtain a simple Hurwtiz group (see [14]).  Since the projective 

unimodular groups, PSL(2,q) (Dickson’s LF(2,q) [5]), are simple for q !  3, it is natural to 

look amongst these for Hurwitz groups.  Macbeath [16] has determined for which values 

of q PSL (2,q) is a Hurwitz group.  His results will be discussed later.  Here we give the 

definition of PSL (2,q) and some of its properties. 

 

 For each prime power, q = pn, there is a field of order q.  Moreover for every prime 

power, q, there is, upto isomorphism, precisely one field of order q, namely GF(q), and 

there are no fields of order q if q is not a prime power. 

 

e.g.  if n = 1, q = p, prime, then GF(p) ,  residues mod p. 
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 Let q = pn .  Then the general linear group, GL(2,q) is defined as  

 

  GL(2,q) = 
a b

: a,b,c,d, # GF(q), ad - bc 0 . 
c d

- ./ 0
12 34 5

6 78 9
 

 

The centre of GL(2,q), denoted by Z(GL(2,q)), is 

 

  
a o

: a o
o a

- ./ 0
12 34 5

6 78 9
 

 

and we define the projective general linear group, PGL (2,q), as 

 

  PGL(2,q) = GL(2,q) /Z(GL(2,q)). 

 

We define the special linear group, SL(2,q), as 

 

  SL(2,q) = 
a b

# GL(2,q)  :  ad - bc 1
c d

- ./ 0
)2 34 5

6 78 9
 

And the projective special linear group, PSL(2,q), is then 

  

  SL(2,q)/Z(SL(2,q)). 

 

Z(SL(2,q)) is 
1 0 1 0

 if p  2 and  if p = 2
0 1 0 1
:/ 0 / 0

14 5 4 5:6 7 6 7
.  The order of PSL(2,q) is q(q-1) 

(q+1)/2 if p 1 2 and q(q-1) (q+1) if p = 2. 
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 Under the natural homomorphism from SL(2,q) onto PSL(2,q). a matrix 
a b
c d
/ 0
4 5
6 7

 in 

SL(2,q) induces a unique element in PSL(2,q), namely the coset 
a b
c d
/ 0
4 5
6 7

1 0
0 1
:/ 0
4 5:6 7

.  

Without ambiguity we can represent an element of PSL(2,q) by either of the two matrices 

in SL(2,q) which induce it. 

 The trace of a matrix 
a b
c d
/ 0
4 5
6 7

 in GL (2,q) and (a+d) and it is easy to show the 

following:- 

 

(i) matrices in SL(2,q) which induce an element of order 2 in PSL(2,q) have trace 0 

 

(ii) matrices in SL(2,q) which induce an element of roder 3 in PSL(2,q) have trace 0 

 

(iii) matrices in SL(2,q) which induce an element of order 7 in PSL(2,q) have trace ; , 

where ; 3 + ; 2 - 2;  - 1 = 0. 

 

2) We now state Macbeath’s result. 

 

Theorem 2.7.   PSL(2,q) is a Hurwitz group if and only if  

 

(i) q = p p prime ,  1: (mod 7) 

 

(ii) q = p3 p prime ,  0, 1:  (mod 7) 

 

(i) q = 7 

 

In case (i) there are three distinct orientable Klein surfaces upon which the group acts as a 

Hurwitz group.  In cases (ii) and (iii) there is only one such Klein surface. 

 



 39

 The two smallest Hurwitz groups are PSL(2,7) and PSL(2,8) which act on 

orientable surfaces of genus g = 3, g = 7 respectively.  Singerman [24] has shown that 

PSL(2,7) is not an H* - group but PSL(2,8) is an H* - group and this will follow from our 

results aswell.  Thus the smallest value of the genus for which a non-orientable Klein 

surface admits 84(g –2) automorphisms is g = 8.  Our problem is to establish a general 

result to determine when PSL 

(2,q) is an H* - group given that it is a Hurwitz group.  (Since every H* - group is a 

Hurwitz group when looking for H* - groups we need only look amongst Hurwitz groups). 

 

 Macbeath has shown that all the groups listed above are Hurwitz groups i.e. that 

there always exist generators X,Y such that  

 

  X2 = Y2 = (XY)7 = 1. 

 

If X #  PSL(2,q) with order 2 then trace X = 0, so by con-jugation we can always assume 

that  

 

  X = 
0 1
1 0

/ 0
4 5*6 7

 

 

Let Y = 
x y
z w
/ 0
4 5
6 7

 #  PSL(2,q).  If X and Y generate PSL(2,q) then the quadratic form             

Q = '($Q , defined by 

 

  2 2 2Q(),*,+)  )  + *  + +  + '*+ + (+) + ) <;=  

is non-singular, where >= trace X, ? = trace Y, < = trace XY (see [16]). 

 

 Now Q( , ,; = @ ) is non-singular if and only if 
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1 / 2 / 2

det / 2 1 / 2  0
/ 2 / 2 1

< ?/ 0
4 5< > 14 5
4 5? >6 7

 

 

But  trace X  0> ) )  

  = trace Y = x+w?  

  = trace XY = z-y.<  

So we can deduce that if X and Y generate PSL(2,q) then 

 

  X2 + y2 + z2 + w2 1 2. 

5). We know from corollary 2.6 that if PSL(2,q) is a Hurwitz group generated by X 

and Y such that 

 

  X2 = Y3 = (XY)7 = 1 

 

Then it is an H* - group if and only if there exists Z A  PSL(2,q) such that 

 

  Z2 = (ZX)2 = (ZY)2 = 1. 

 

It is left oly for us to determine when such an element Z exists. 

 

Lemma 2.8.  Suppose that PSL(2,q) is generated by X,Y where 

 

   
0 1 x y

X = ,    Y = 
1 0 z w

/ 0 / 0
4 5 4 5*6 7 6 7

. 

 

Then there always Z A  PGL(2,q) such that 

 

  Z2 = (ZX)2 = (ZY)2 = 1 

 

Proof. 
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 Let Z =   PGL(2,q).
> ?/ 0

A4 5< B6 7
 

 

We want Z2 = 1, so we require trace Z = 0 i.e. 

 

   = -B >  

 

(Note:  It is easy to shwo that a matrix in GL(2,q) which induces an element of order two 

in PGL(2,q) must have trace 0). 

 We also wan (ZX)2 = 1, so we require trace ZX = 0 i.e. 

 

    = < ?  

 

Now 

 

 
x y x z y w

ZY =   = 
z w x z y w

> ? > #? > #?/ 0 / 0 / 0
4 5 4 5 4 5? *> ? *> ? *>6 7 6 7 6 7

 

 

so that 

 

 trace ZY = (x w) + (y+z)> * ?  

 

and since (ZY)2 = 1 we must have trace ZY = 0 i.e. 

 

 (x w) = - (y+z).> * ?  

 

Hence given any value for ?we can always find a value for >  such that Z satisfies the 

required relations (if x = w, put ?  = 0 and then >  can take any value).  But we must 

ensure that Z A PGL(2,q) i.e. that det Z 1  0. 
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 Now det Z = - (> 2+? 2) and we know that 

    > (x-w)  = -? (y+z). 

 

If we square both sides of this equation and add ? 2 (x-w)2 to both sides we get   

 

  > 2(x-w)2 + ? 2(x-w)2 = ? 2(y+z)2 + ? 2(x-w)2. 

 

From which, since xw-yz = 1 (because Y A  PSL(2,q)), we can deduce that 

 

  
2 2

2 2 2 2 2 2

(x-w)  =  
(x +y +z +w -2

?
> #?

 

 

Put 

 

  
2

2 2 2 2

(x w) .
(x y z w 2)

*
# # # *

 

 

For X and Y to generate PSL(2,q), 2 2 2 2x y z w 2,# # # 1  so T always exists. 

 

 If x = w, T=0 which implies that ? = 0 and > can take any value except zero, so 

  

  det Z = (> 2+? 2) 1 0. 

 

 If X 1  w, since T 1  0, we can write 

 

  2 2(1 T) 12  =    -  1 .
T T

? ?* - .> ) 2 3
8 9
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Now 1 1  0 and so  - 1  -1
T T

1 1  which implies that 2 2 -> 1 ? and hence again det Z 1  0. 

 

Therefore there always exists an element Z A  PGL(2,q) such that 

 

 Z2 = (ZX)2  = (ZY)2 = 1. 

 

Theorem 2.9. If PSL(2,q) is a Hurwitz group generated by X,Y such that X2 = Y3 = 

(XY)7 = 1 then it is an H* - group if and only if (3 - ; 2) is a square in GF(q), where ;  = 

trace XY. 

 

Proof. 

 As X,Y generate PSL(2,q) we can assume that 

   X = 
0 1
1 0

/ 0
4 5*6 7

 

 

and 

 

   Y = 
x y

,
z w
/ 0
4 5
6 7

 

 

xw – yz = 1, 2 2 2 2x y z w 2.# # # 1   Since the order of Y is three and the order of XY is 

seven we know that 

 

  x + w = trace Y = : 1 

 

and if 

 

  z – y = trace XY = ;  
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then ;  is a solution of the equation 3 2 2 1 0; # ; * ; * )  in GF(q). By the proof of lemma 

2.8 there exists an element Z A  PGL(2,q) of the form 

 

  2 2Z =  ,  +   0
> ?/ 0

> ? 14 5? *>6 7
 

 

satisfying the relations 

 

  2 2 2Z   (ZX) (ZY) 1) ) )  

 

and  

 

  2 2 2 2 2 2 2 2 (x +xy +z +w -2) = ( + ) (x-w) (*)? > ? K  

By corollary 2.6 PSL (2,q) is an H* - group if and only if Z A  PSL(2,q) i.e. if and only if 

det Z = -( 2 2 )> #?  = 1 (in GF(q)). 

 

We know that x+w = 1 and z-y = ; , so squaring both expressions and using the fact that 

xw – yz = 1 we can deduce that  

 

  2 2 2 2x y z w   2  1# # # ) ; *  

 

substituting this expression in(*) we obtain 

 

  2 2 2 2 2( 3)  ( ) (x w)? ; * ) > #? *  

 

so ( 2 2) 1 if  and only if* > #? )  

 

  
2

2
2

(x-w) 
(3- )

? )
;

 

 



 45

(Note: 2 2 2 23 2  0 sin ce x y z w   2)*; 1 # # # 1  

 This equation has a solution for ? if and only if ( 3 - 2; ) is a square in GF(q).  

Given a value for ?  we can find >  as in the proof of lemma 2.8. 

 

 Hence PSL(2,q) is an H* - group if and only if ( 3 - 2; ) is a square in GF(q). 

 

 We now now the conditions under which PSL(2,q) is an H* - group.  We can, in 

fact, directly relate the condition imposed on ; to properties of GF(q). 

 If the equation 

   

  3 2 2 1 0; # ; * ; * )  

 

has three roots 1 2 3 1C # C # C ) *  

 

  1 2 1 3 2 3 2C C # C C # C C ) *  

 

  1 2 3 1C C C )  

 

so if –1 is a square in GF(q) then either (3 - 2
iC ) is a square for all i (i = 1,2,3) or it is a 

square for one value of i only.  If –1 is not a square in GF(q) then either (3 - 2
iC ) is never a 

square or it is a square for two values of i. 

 

 In GF(q) (q = pn, p prime), if q = 1(mod 4) or p=2 then –1 is a square, otherwise 

(i.e. if q = (i.e if q ,  3 (mod4)) –1 is not a square.  Thus we can tell immediately for how 

many values of i (=1,2,3) it is possible for (3 - 2
iC ) to be a square in GF(q). 

 Let us consider the three cases in theorem 2.7 seperately. 

 

(i) q = p, prime p ,  : 1(mod 7).  In this case there are three distinct traces 

1 2 3,  , C C C  yielding elements of PSL(2,q) of order seven.  As Macbeath [16] has shown that 
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in this cse there are three distinct orientable Klein surfaces on which PSL(2,q) acts as a 

Hurwitz group it is clear that the number of values of I(=1,2,3) for which (3 - 2
iC ) is a 

square in GF(q) corresponds to the number od distinct non-orientable Klein surfaces on 

which PSL(2,p) acts and an H* - group, for if two Klein surfaces have non-conformally 

equivalent orientable two-sheeted covers then they themselves must be distinct. 

 

(ii) q = p3, p prime p ,  : 2 or : 3(mod 7).  In this case the three traces 

1 2 3,  , C C C  are conjugate under the automorphism group of GF(p3) which induces 

automorphisms of PSL(2,p3)  (see [16]).  Since automorphisms preserve squares ( 3 - 2
iC ) 

is either a square for all values of I or (3 - 2
iC ) is never a square.  In the latter case which 

occurs when p ,  3(mod 4) PSL(2,p3) is clearly not and H* - group.  In the former case 

which occurs when either p = 2 or p ,  1(mod 4) PSL (2,p3) is an H* - group acting on one 

non-orientable Klein surface only because it acts only on one orientable Klein surface, S 

say as a Hurwitz group (as shown by Macbeath [16]).  So if it acted as an H* - group on 

more than one non-orientable Klein surface, say on K1 and K2, they would have the same 

orientable two-sheeted covering surface S and there would exist anti-conformal 

involutions ci, I = 1,2, of S such that 

 

   i
i

SK )
D

 

 

where iD  denotes the group generated by iD .   

 From lemma 1.32 we see that D 1, D 2 must oth commute with every element of 

PSL(2,p3) and since D 1D 2 –1 A  PSL (2,p3) which has a trivial centre, D 1 = D 2 and hence 

K1 ,  K2. 

(Note: PSL (2.8) is now a special case and clearly from the above is and H* - group acting 

on one non-orientable Klein surface because 8 = 23.) 
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(iii) q = 7.  The fact that PSL(2,7) is not an H* - group follows directly now since the 

only solution of 3 2 2 1 0; # ; * ; * )  in GF(q) is ; = 2, and (3 – 22) = -1 is not a square in 

GF(7) because 7 ,  3(mod 4).  

 

Now  p ,  : 1(mod 7) and p ,  1(mod 4) if and only if p ,  1 or 13(mod 28), 

 p ,  : 1(mod 7) and p ,  3(mod 4) if and only if p ,  1 or –13(mod 28), 

 p ,  : 2(mod 7) and p ,  1(mod 4) if and only if p ,  5 or 9 (mod 28), 

 p ,  : 3(mod 7) and p ,1 (mod 4) if and only if p ,  -3 or –11(mod 28) 

 

and we have proved the following. 

 

Theorem 2.10. 

(i) If q = p prime and p ,  1 or 13(mod 28) then PSL(2,q) is an H* - group acting on 

one or three distinct non-orientable Klein surfaces.   If q = p prime and p ,  -1 or –13(mod 

28) then PSL(2,q) is an H* - group acting on two distinct non-orientale Klein surfaces if (3 

- 2
iC ) is a square for two values of i and is not and H* - group if (3 - 2

iC ) is never a square, 

where 1 2 3,  , C C C  are three roots of the equation 3 2 2 1 0 in GF(q); # ; * ; * ) .  Otherwise 

PSL(2,p) is not an H* - group. 

 

(ii) If q = p3, prime then PSL(2,q) is an H* - group if and only if p = 2 or p ,  5, 9, -3 

or –11(mod28).  In this case ther eis only one non-orientable surface on which the group 

acts as an H* - group. 

 

 By Dirichlet’s theorem on primes in an arithmetic progression there are an infintie 

number of compact non-orientable Klein surfaces for which the upper bound for the order 

of the automorphism group is attained.  The result shows also that there exist and infinite 

number os simpe H* - groups. 

 

Example 2.11.  q = p = 13 
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By theorem 2.10, PSL(2,13) is an H* - group.  Does it act on one or three non-orientable 

surfaces? 

 GF(13) ,  residues mod 13.  Let 1 2 3,  , C C C  be the roots of 

3 2 2 1 0 in GF(13); # ; * ; * ) .  So 

 

 1 2 37,   = 8,  = 10C ) C C  

 

Now  (3 - 2
iC ) ,  6(mod 13), which is not a square in GF(13), 

 (3 - 2
2C ) ,  4(mod 13), which is a square in GF(13), 

 

 (3 - 2
3C ) ,  7(mod 13), which is not a square in GF(13). 

(Note: 6.4.7.) ,  -1(mod 13).) 

So PSL (2,13) is an H* - group acting on only one non-orientable Klein surface of genus 

15. 

 

6). For each prime p ,  : 1(mod 7) a computer program was run which solved the 

equation 3 2 2 1 0 in GF(p); # ; * ; * ) giving the roots 1 2 3,  , C C C  and then determined 

when (3 2
iC ) was a square in GF(p).  The following results were obtained. 

 

    p   ,  1(mod 4) 

 

(a) (3 - 2
iC ) square   (b)  (3 - 2

iC ) square for  

 for one value of I    all three values of I 

  p = 13      p = 181 

   29       293 

   41 

   97 

   113 

   197 
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   281 

   337 

   349 

   421 

   433 

   449 

   461 

 

       p ,  3(mod 4) 

 

(c) (3 - 2
iC ) square   (d) (3 - 2

iC ) never 

 for two values of I     square  

 

  P =  43      P =  167 

    71        239  

    83        251 

    127       379 

    139       491 

    211 

    223 

 307 

 419 

 463 

  503 

 

 In (a) PSL(2,p) is an H* - group acting on one non-orientable Klein surface.  In 

(b) PSL(2,p) is an H* - group acting on three distinct-non-orientable Klein surfaces.  In 

(c) PSL (2,p) is an H* - group acting on two distinct non-orientable Klein surfaces.  In (d) 

PSL(2,p) is not an H* - group. 
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CHAPTER 3 

 

Cyclic groups of automorphisms of compact 

Non-orientable Klein surfaces without boundary 

  

 

1). In this chapter we are going toc consider the problem of when cyclic group acts as a 

group of automorphisms of a compact non-orientable Klein surface.  The problem for + 

automorphisms of compact Riemann surfaces has been solved by Harvey [7].  His results are 

stated below. 

 

 In [22] May has shown that the order of a cyclic group of automorphisms of a compact 

Klein surface S with boundary of algebraic genus (as defined in chapter 2) 2! "  cannot be 

larger than 2 2! # if S is orientable and !  is even;  otherwise the order cannot be larger than 

2 ! .  It is shown that for all values of the algebraic genus 2! "  there are both orientable and 

non-orientable surface with a cyclic automorphism group of maximum possible order. 

 

 In this chapter, as in chapter 2, we shall be considering non-orientable Klein surfaces 

without boundary and it is interesting to note that in this case the maximum order for a cyclic 

group of automorphisms of such a surface again depends on whether the genus of the surface 

is even or odd. 

 

2). We now state Harvey’s results.  All surfaces from now on are assumed to be without 

boundary. 

 

Theorem 3.1. ([7])  Let $ be a Fuchsian group with signature ( 1 kg;  m , , m )K  and let m be 

the 1.c.m. of { 1 km ,  , m }K .  There is a surface-kernel homomorphism n:  Z% $&  (cyclic 

group of order n) if and only if the following conditions are satisfied. 

 

(i) µ
i1 k1.c.m. {m ,  ,m ,  , m } = m, K K for all i, where µim denotes the omission of im  
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(ii) m divides n and if g = 0, m = n, 

(iii) k  1, and if g = 0, k  3,' "  

(iv) if 2!m, the number of periods divisible by the maximum power of 2 dividing m is 

even.  

(Note:  If  ker( ) % and the above conditions are satisifed then nZ acts as a group of 

orientation preserving automorphisms of U /* ). 

 

Theorem 3.2 ([7]).  The maximum order for a + automorphism of an orientable Klein surface 

of genus g is 2(2g + 1).  This maximum order is attained for each g and hence 4g 2Z #  is a + 

automorphism group for some surface of genus g, for every value of g  2" . 

 

 Our problem is to find an attainable upper bound for the order of an automorphism of 

a non-orientable Klein surface. 

 

Lemma 3.3. An upper bound for the order of an automorphism of a non-orientable 

Klein surface, S, of genus g is 2(2g-1). 

 

Proof. 

 By corollary 1.31 every group of automorphisms of S is isomorphic to a group of + 

automorphisms of S%, the orientable two-sheeted covering surface of S.  If S has genus g then 

S% has genus  = g - 1! .  So if Zn is an automorphism group of S then it is an automoprhism 

group of S% and by theorem 3.2 n 2(2  + 1) = 2(2g - 1)+ ! . 

 

 Thus we have an upper bound for the order of an automorphism of a non-orientable 

Klein surface, but is this bound actually attained?  The answer to this question is in the 

negative as we see in the following theorem. 

 

Theorem 3.4. The maximum order for an automorphism of a non-orientable Klein surface 

of genus g "  3 is 
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  2g,   if g is odd, 

  2(g  - 1),   if g is even. 

 

The maximum order is attained for every g, hence 2gZ is an automorphism group of some non-

orientable Klein surface of odd genus g "  3. 

 

Proof. 

 

 By theorem 1.30 if Zn is an automorphism of a non-orientable Klein surface, S, of 

genus g "  3 then there exists a proper NEC group $ and a homomorphism n:  Z% & such that 

ker % is a surface group and % ( #$ ) = Zn. #$  must satisfy the conditions of theorem 3.1. 

 

 Let ker %  = * , then *  will be a non-orientable surface group (with orbit-genus g),  S 

= U /*  and 

  nZ  /$ *; . 

 

Hence 

 

  ( ) 2 (g - 2)n = /  =  
( ) ( )

, * -
$ *

, $ , $
 

  

 For g odd,  if n "  2g then 

  

  2 (g 2)( )   < 
2g

- .
, $ + -  

 

and for g even, if n "  2(g –1) then again ( ), $  < - , so in both cases 

 

  0 < ( )#, $  = 2 ( ), $  < 2- . 
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Since #$ is a Fuchsian group it will have signature of the form  

 

  ( 1 k;  m , , m! K ) 

 

in which case 

 

  
k

i 1 i

1( ) = 2 (2  - 2 + (1  ))
m

#

)

, $ - ! ./  

 

and so we wish to consider only those signatures which satisfy the condition 

 

  
k

i 1 i

10 < 2  - 2 + (1  ) < 1.
m)

! ./  

 

This implies that   1! + .  If ! = 1 then k = 1 and if !  = 0 then k +  5.  However for #$  to 

satisfy the condition fo theorem 3.1, k  1' .  Hence !  = 0 and k "  3 and it is easy to see 

from condition (iv) that k < 5.  Also we note if k = 3 then 
i

1
m/  <  1 and k = 4 

i

1
m/  < 2. 

 

 Let us therefore consider NEC groups $ such that #$  has signature of the form (0; 

m1,m2,m3) or (0; m1,m2,m3,m4).  If #$  has signature (0; m1,m2,m3) then by theorem 1.18 there 

are two possibilities for the signature of $ namely 

 

(1) (0, +, [ ], {(m1,m2,m3)}) = 1$ say, 

(2) if m1 = m2, (0, +, [m1], {m3)}) = 2$  say. 

 

 If #$ has signature (0; m1,m2,m3,m4) then again by theorem 1.18 there are four 

possibilities for the signature of $ namely 
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(3) 1 2 3 4 3(0, +, [ ], {m ,m ,m ,m )}) =  say,$  

(4) if 1 2 1 3 4 4m , = m ,  (0, +, [m ], {(m ,m )}) =  say,$  

(5) if 1 2 3 4 1 3 5m  = m ,  m  = m , (0, +, [m , m ], {( )}) =  say,$  

(6) if 1 2 3 4 1 3 6m  = m , m  = m ,  (1, -, [m ,m ], { }) =  say$  

 

 We wish to consider surface-kernel homomorphisms %  from $ onto nZ such that 

% ( #$ ) = nZ  such that % ( #$ )  = nZ , so to satisfy theorem 3.2 since ! (the orbit-genus of #$ ) 

= 0 in all cases, we must have n = m = 1.c.m. 1 4{m , ,m }K .  The following lemma shows that 

a surface-kernel homomorphism onto nZ  for n> 2 does not exist in the first four of the above 

six cases. 

 

Lemma 3.5. There does not exists a surface-kernel homomorphism i n:   Z% $ &  for n > 

2 and I = 1,2,3, or 4. 

 

Proof. 

 

  1 3 and $ $  have presentations 

 

 2 2 2 m1 m2 m3
1 2 3 1 2 3 1 2 2 3 1 3{c ,c ,c ;c   c   c (c c )  (c c ) (c c ) 1}) ) ) ) ) )  

 

and  

 

 2 2 2 2 m1 3 m2 m3 m4
1 2 3 4 1 2 3 4 1 2 2 3 4 1 4{c ,c ,c ,c ;  c  = c  = c  = c  = (c c )  = (c c )  = (c c )  = (c c )  = 1}  

 

respectively, and are thus generated by elements of order two.  So no homomorphism 

i n:   Z% $ &  exists for n > 2, for I = 1 or 3. 

 

 2$  
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  2 m1 -1 m3{c, x;  c  = x  = (xcx c)  = 1 

 

and since nZ  is abelian any homomorphism 2 n:    Z% $ & must have 

 

  1(xcx c)  1.% )  

 

and hence % cannot be surface-kernel. 

 

 4$  has presentation 

  
m1 2 2 m3 -1 m4

1 2 1 2 1 2 2 1{x,c ,c ;  x  = c  = c  = (c c )  = (c xc x )  = 1}. 

 

If nZ  has an element of order two then it is unique and so for any homomorphism 

4 n:    Z% $ & we must have 

 

 2
1 2 1(c c ) = ( (c ))  = 1% %  

 

and again % cannot be surface-kernel, which completes the proof of the lemma. 

 

 The following lemma shows that there does exist a surface-kernel homomorphism 

5 m 1 3:    Z , where m = 1.c.m.{m ,m },% $ &  under certain conditions. 

 

Lema 3.6. Let $ be a proper NEC group with signature 

 

 (0,  +, [k, ],  {( )}).l  

 

If either K and l are both even or have opposite parity then there exists a surface-kernel 

hoomorphism m:  Z , where m = 1.c.m.(k, )% $ & l , such that ( ( )#% $  = Zm . 
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(Note:  #$  has signature (0; k,k, l , l ) and satisfies all the conditions of theorem 3.1) 

 

Proof. 

 

  $ has presentation 

 

 { 2 k -1
1 2 1 2 1 2 1 2c, x , x ;  c  = x  = x  = x x c(x x ) c =1}l . 

 

  2 m-1 mZm = 1,z,z , ,z ,z  = 1K  

 

The condition that either k and l  are both even or have opposite parity implies that m is even.  

Clearly without this condition we could not define a homomorphism m:    Z ,% $ & since $  

contains an element of order two an dif m was odd Zm would not contain an element of order 

two. 

 

 If we let t = g.c.d.(k, l ),  so m = k l /t, then we can define a homomorphism 

m:    Z ,% $ &  by 

 

  

/ t

k/t

m/2

(x1) z ,  which has order exactly k

(x2) = z , which has order exactly ,

(c)  = z , which has order exactly 2.

% )

%

%

l

l  

  

 % is onto because l /t and k/t are relatively prime, so there exists p,q, 0  Z (the set 

of integers) such that 

 

  kp  + q  = 1.
t t
l  
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Therefore 

 

  p q
1 2(x x ) = z%  

 

and z generates  Zm . 

 Every element of finite order in $ is mapped to an element of the same finite order 

by %  and so %  is a surface-kernel homomorphism (by lemma 1.34) onto Zm. We also have 

% ( #$ ) = Zm because +
1 2x , x   0 $ , hence the lemma is proved. 

 

 Applying lemma 3.6 to 5$  we see that, provided m(=1.c.m.{m1,m3}) is even, we 

can define a surface-kernel homomorphism 5 m:    Z% $ &  such that m m( ) Z .  So Z#% $ )  acts 

as a group of automorphisms of the Klein surface U /* = ker %  and we know that 

 

  
5 1 3

2 (g - 2) g - 2m  =  ,
( ) (1 - 1/m  - 1/m ) 

-
)

, $
 

 

 

where g is the orbit-genus  of * . 

 

 The following lemma shows us how to maximise m in terms of g. 

 

Lemma 3.7. Given any two integers r,s such that  

 

  1 2 1 1r,s  (1 -  - ) b
r s

)  

 

where b is a fixed integer and [r,s] = 1.c.m.(r,s) then 

 

  1 2 2b + 4,  if b is odd,
r,s   

2b + 2,  if b is even,
3

+ 4
5
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Proof. 

 

 The equation 

  

  1 1[r,s](1 -  - ) = b
r s

 

 

is always satisfied because if b is odd put r = 2, s = b + 2 and if b is even put r = 2, s = 2b + 2. 

 Now suppose [r,s] > 2b + 4.  Then, since b 1< ,
2b 4 2#

 the equation 

  1 2 1 1r,s  (1 -  - ) = b
r s

 

 

implies that 

 

  1 1 1 +  >  .
r s 2

 

 

This inequality is satisfied by only a few integer values of r and s namely (assuming without 

loss of generality that r +  s) 

 

  r = 2,   s arbitrary, 

  r = 3,   s = 3,4 or 5 
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and in each case we can obtain a contradiction. 

 

(1) r  = 3, s = 3 implies [r,s] = 3, b =1, so [r,s] < 2b + 4. 

 

(2) r = 3, s = 4 implies [r,s] = 12, b = 5, so [r,s] < 2b + 4. 

 

(3) r = 3, s = 5 implies [r,s] = 15, b = 7, so [r,s] < 2b + 4. 

 

(4) r = 2, s odd implies [r,s] = 2s, b = 2 – 2, so [r,s] = 2b + 4. 

 

(5) r = 2, s even implies [r,s] = s, b = s
2

 - 1, so [r,s] < 2b + 4. 

 

Therefore for any value of b, [r,s] +  2b+ 4.  Clearly 2b + 4 is the least upper bound for 

b odd since [r,s] = 2b + 4 when  r = 2 and s = b + 2.  We now wish to show that if b is 

even then [r,s] +  2b + 2. 

 

 Suppose b is even and [r,s] > 2b + 2, then again since b 1< 
2b 2 2,#

 the equation 

 

    1 2 1 1r,s  (1 -  - ) = b
r s

 

 

implies that 

 

    1 1 1 +  < 
r s 2

 , 

 

so we have the same cases as before for integer values of r and s.  Now only one of 

these cases, namely case (5), gives us  a value of b which could be even, i.e. when r = 

2, s is even, [r,s] = s and b = s
2

 - 1.  But then [r,s] = 2b + 2 and so if b is even we must 



 60

always have [r,s] +  2b + 2, the upper bound being attained when r = 2 and s = 2b + 2.  

This completes the proof of the lemma. 

 

 If we put r = m1, s = m3 and b = g – 2 in lemma 3.7 then [r,s] = m and we have 

 

   
2g,  if g is odd,

m  
2(g - 1), if g is even.
3

+ 4
5

 

 

since 

 

  6 5
1 3

1 1( ) = 2 (1 -  -  ) = ( )
m m

, $ - , $  

 

we would obtain no larger values for m using 6$ . 

 If ( )  , then, $ " -  

 

  2 (g - 2)n =   2(g - 2)
( )

-
+

, $
. 

 

Since we have considered all cases with ( )  , $ 6 -  we have proved that the maximum order 

for an automorphism of a non-orientable Klein surface of genus g "  3 is  

 

  2g,  if g is odd, 

  2(g – 1), if g is even. 

 

The maximum order is attained for each g since the NEC group with signature (0, +, [2,g],    

{( )}) admits a surface-kernel homomorphism onto Z2g when g is odd by lemma 3.6 and by 

the same lemma the NEC group with signature (0, +, [2,2(g – 1)], {( )} admits a surface-

kernel homomorphism onto 2(g 1)Z .  when g is even. 
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CHAPTER 4 

 

Covering of Klein surfaces. 

 

 

1). In chapter 1 we saw that every nonconstant morphism between two compact Klein 

surfaces is an n-sheeted covering for some n, possibly ramified.  If a morphism f: T &   

S of Klein surfaces is a ramified n-sheeted covering then s 0  S has a neighbourhood V such 

that f-1(V) has n components each of which is mapped homeomorphically onto V by f except 

where the covering is ramified or folded. 

 

 If T is ramified over s 0  S ( we say a point t 0  T is over a point s 0  S if f(t) = s) then 

at each point in the set f-1(s) severla sheets of the covering surface T hang together, the 

number of sheets at one point being the ramification index e of f at the point.  Over such 

points, locally, the covering map f looks lie z &  ze.  If S has non-empty boundary and T has 

no boundary component over one ( or more) boundary components of S then the covering is 

folded over that boundary component of S.  for all points t 0  T over 7 S at which folding 

occurs df(t) = 2, where df(t) is the relative degree of f(t) as described in chapter 1.  The 

following is an example of a folded covering. 

 

Example 4.1 Let S be an orientable Klein surface with r "  1 boundary components and 

genus g.  Let S* be a surface homeomorphic to S and let h: S &  S* be the homeomorphism. 

 

  If i i i I(U , z ) 08 )  is an analytic atlas of S we can define an analytic atlas  

8 * and S* by putting 8 * equal to the set of charts i i i I(h(U ), z ) 0  where 

 

  z(h(p)) z(p),  for all p  S.) 0  

 

It is easily seen that 8 * is an analytic atlas. 
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 Now form a new Klein surface T as follows.  Consider the space SUS* and  

‘glue’ the borders together by identifying, for p 0  7 S, p and h(p).  An analytic atlas 8 T  is 

defined on T by 8 T = 8 1 U8 2 , where 8 1 consists of all charts (U, z) on S such that 

U9 7 S = : , together all charts (h(U), z ) on S* and 8 2 is the set of all charts (Uuh(U),w), 

for all U such that U9 7 S '  :  and  

 

  w(p) = z(p)    

    for all p 0  S 

  w(h(p)) = z(p)  

 

 This definition is consisent on 7 S is mapped to the real line.  It is trivial to show that 

this defines an analytic atlas for all charts in 8 1.  We use the reflection principle, which says 

that if V is an open set in £  symmetric ab out the real line and if g is an analytic funciton 

defined on V and g( V)9 ;¡ ¡ ) then g(z) = g(z) , to shwo that the co-ordination 

transformations associated with 8 2 are analytic. 

 

 The Klein surface (T, 8 T) obtained in this way is orientable with genus 2g + r – 1 and 

no boundary.  This surface is the ‘classical’ double of an orientable Klein surface with 

boundary as described by Schiffer and Spencer [23]. 

 

 Note that the homeomorphism h now acts as an anti-conformal involution on T. 

 

 The covering map f: T &  S is the identity on all points of T except those which are on 

the union of the boundary of S and S* which is closed curve in T.  So f maps points T in pairs 

onto the interior of S except the points on the union of the two boundaries, a neighbourhood 

of such a point being mapped onto a neighbourhood of a point on the boundary of S, i.e. onto 

a half-closed disc.  Hence over the boundary of S the covering map locally has the form of the 

folding map  ( (x + iy) = x + i y ).: :  
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2). We shall begin by considering 2-sheeted coverings of Klein surfaces.  These are 

otherwise known as double covers. 

 In[2] Alling and Greenleaf define a double cover as follows. 

 

Definition 4.2. A morphism f: T&  S of Klein surfaces is a double cover  if each s 0  S has 

a neighbourhood V such that f-1 (V) has two components, each of which is mapped 

homeomorphically onto V by f; of f-1(s) = {t} and there exist dianalytic charts (Ut,zt) and 

(Us,zs) of t and s respectively such that zt(t) = 0 = zs(s), f(Ut) ;Us and 

 

 t

2
s t

2
t

(i)
z     if s  S and t  T,

(ii)        z f Ut   =   z    if s  S and t T,

z      if s  S
(iii)

< 0 7 0 73
=
< 0 7 0 74
= 0 75

 

  

<  being the folding map; f is unramified if (ii) and (iii) never occur. 

 

 This is clearly compatible with definition 1.26 with n = 2.  Alling and Greenleaf 

proceed to show the existence and uniqueness of three special double covers, the first of 

which is described in the following theorem. 

 

Theorem 4.3  ([2]).  Let S be a Klein surface.  There exists a double cover f: Sc &  S of S by 

an orientable Klein surface without boundary Sc (here we allow Sc to be disconnected) such 

that Sc has an anti-conformal involution >  with f>  = f.  If (S’c f’, > ) is any other such triple, 

then there is a unique conformal homeomorphism ? : S’c &  Sc such that f’?  = f. 

 

 Further, f is unramified, >  is the only anti-conformal sutomorphism of Sc such that f>  

= f and Sc is disconnected if and only if S is orientable and 7 S = < . 
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 The triple (Sc, f, > ) is called the complex double of S and is usually just denoted by Sc 

.  It corresponds to the ‘classical’ double of a Klein surface described in [23], where it is hwon 

that if S is orientable with genus g and r "  1 boundary components then Sc has genus 2g + r – 

1 and if S is non-orientable with genus g and r boundary components then Sc has genus g + r – 

1.  If S is orientable then the complex double is the same as the double described in example 

4.1 

 

 Sc can be constructed as follows (see[2]).  Let (Uj,zj)j0 J be a dianalytic atlas of S.  For 

each j 0  J, let jU@  A  Uj A  jU@@ , and z’j = zj, zj, z”j = z j.  Let 8  be the disjoint union of the 

jU@ s and make identifications of the following two types. 

 

(1) If W is a component of Uj9Uk and if zjzk-1 is conformal (respectively anti-conformal) 

on zk(W), then identify its image in jU@  with its image in kU@  (respectively its image in 

jU@  with its image in kU@@ ) and its image in jU@@  with its image in kU@@  (respectively its 

image in jU@@  with its image in kU@ ). 

 

(2) Let Bj = 7 S9Uj and identify its image in jU@  with its image in jU@@  . 

 

Let Sc be the quotient space of 8 , with all the above identifications.  Let jÛ be the 

image of jU@ j U@@B . 

 

Let Sc be the quotient space of 8 , with all the above identificaitons.  Let jÛ  be the 

image of jU@ j U@@B  in Sc and let jẑ  map jÛ  into £  as follows: 

j j j j j jˆ ˆz u  = z  and z  U  = z .  @ @ @@ @@   It is easily seen that jẑ  is a homeomorphism .  Using the 

reflection principle, we can see that -1
k jˆ ˆz  z   is analytic on j j j j j J

ˆ ˆˆ ˆz (U ) :  thus (U , z ) 0  is 

an anlytic atlas of Sc.  Let f: Sc &  S be induced by the identity maps jU@ &  Uj and 

jU@@ &  Uj. 
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 The two points p and p̂  of Sc which lie over the same point s 0  S are called 

conjugate points .  If p corresponds to a boundary point of S the p = p̂ .  The 

correspondence between conjugate points of Sc defines a one-one anti-conformal 

mapping, > , of Sc onto itself.  Clearly > 2 = 1 and f>  = f. 

 

 If S = U /$ , where $  is either a non-orientable surface group or a 

bordered surface group, then U / #$  is the uniquely defined two-sheeted orientable 

covering surface without boundary of S.  So, as Sc is unique. 

 

  Sc = U / #$  

 

This will be discussed in more detail in section 5 of this chapter.   

 

 We describe the other two special doubles in a less formal way as they will 

not be used in any formal proofs. 

 

 If we construct 8  in exactly the same way as above but employ only 

identifications of the first type we obtain an orientable Klein surface with boundary 

which is an unramified double cover of S.  This double cover, called the orienting 

double by Alling and Greenleaf and denoted by So, is disconnected if and only if S is 

orientable.  If S has r boundary components then So has 2r boundary components.  If 

o cS  then S  = S7 ) < . 

 

Examples 4.4. If S is a Mobius strip then So is an annulus and Sc is a torus.  If S is 

a Klein bottle with a hole then So is a torus with two holes and Sc is a sphere with two 

handles attached (see example 4.14). 

 

 The third double cover is also unramified ad is called the Schottky double .  

It is obtained by modifying the procedure to construct the complex double so that 
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identifications always occur between jU@  and kU@  (and jU@@  and kU@@ ) or more directly 

we can take two copies of S with opposite orientations and glue them together on the 

boundary.  We denote the Schottky double of S by Ss.  If S is orientable then Ss = Sc.  

If S is non-orientable then so is Ss and Ss is disconnected if and only if 7 S = < . 

 

Example 4.5.   If S as a Klein bottle with one hole then Ss is a sphere with four cross-

caps attached.  If S is the projective plane with two holes then Ss is again a sphere with 

four cross-caps. 

 

3) 

Definition 4.6 Let F: T &  S be a covering of Klein surfaces.  The fibre of a point  

s 0  S is the set of points f-1(s) in T.  A homeomorphism g: T &  T is called a covering 

transformation if g takes each fibre to itself, i.e. fg = f.  Elarly the set of covering 

transformations forms a group under composition of maps. 

 

 Let 1$  be an NEC group so U/ 1$  is a Klein surface and let 2$  be a 

subgroup of 1$  of index n.  Then 2$  is a NEC group and U/ 2$  is a Klein surface 

which is an n-sheeted covering surface of U/ 1$ , possibly ramified. 

 

 If i : U U /$- & $  is the natural projection and we put i i(z) [z]$ $- )  then 

the covering map is the natural map f: U/ 2$  &  U/ 1$  defined by 

 

  F([z] 2$ ) = [z] 1$ . 

 

Since 2 1f = $ $- -  and i$- , I = 1,2, is a morphism f is itself a morphism of Klein 

surfaces. 

 

Definition 4.7.  The covering f: U/ 2$  &  1$  is called a normal covering if 2 1 $ $< . 
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 This definition is just an extension of the idea of a normal covering of a 

Riemann surfac as defined in [1]. 

 

 If f: U/ 2$  &  U/ 1$  is a normal covering then the group G 1$ / 2$  acts as a 

group of covering transformations and it is easy to show that G acts transitively on 

each fibre i.e. if  x1, x2 0  U/ 2$  and are in the same fibre then there exits g 0  G such 

that g(x1) = x2..  

 

 If %  is a homorphism from 1$  onto a group G of order n, then ker %  is a 

normal subgroup of 1$  of index n.  Every subgroup of 1$  can be found in this way.  

So we can find every n-sheeted normal covering of U/ 1$  by looking at all possile 

homomorphisms from 1$  onto all possible groups of order n. 

 

 If 1$  is a surface group or a bordered surface group then any subgroup 2$  

or 1$  will be a surface group, possibly bordered and U/ 2$  will be an unramified 

covering surface of U/ 1$ . 

 

4). For n = 2 the problem of finding all subgroups of index n in 1$  is greatly 

simplified since there is (up to isomorphism) only one group of order two, namel Z2, 

the cyclic group of order two with presentaiton {z: z2 = 1} and any subgroup of index 

two must be a normal subgroup.  Therefore by looking at all homeomorphism from 1$  

onto Z2 and considering the kernel of each one we can find all 2-sheeted coverings of 

U/ 1$  of the form U/ 2$  where 2$  ;  1$  with index two, every one of which will be 

normal. 

 

 If S is a Klein surface such that S = U/ 1$  where 1$  is a bordered surface 

group, and we consider a homomorphism % : 1$  &  Z2 then U/ker %  will be a 

connected unramified normal double cover of S.  The question we ask is:  can every 
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connected unramified double cover of S be represented as the orbit sapce of a 

subgroup of index two in 1$  with the natural covering map? 

 

 To answer this questionw e need first to establish a more general fact, that 

is to show that an automorphism of a Klein surface is induced by an automorphism of 

the upper hal-plane even if the Klein surface has boundary.  This result has also been 

obtained by May [21] but by a different though analogous method. 

 

Proposition 4.8. Let S be a Klein surface such that S = U/$  where $  is a surface 

group , possibly bordered, and let g: S &  S be an automorphism of S.  Then there 

exists a homeomorphism C  0  g, such that 1 = .C$C $ , which induces g. 

 

Proof. 

Case (i):  If S = ,7 <  then we use ordinary covering space theory as in chapter 1 to 

show C  exists. 

 

Case (ii)  If S = ,7 <  let (Sc, f, > ) be the complex double of S .  As 7 S is non-empty, 

Sc is connected.  Cosnider the map gf: Sc &  S. 

 

 gf ( ) g(f ) gf   (by theorem 4.3).> ) > )  

 

So (Sc, gf, > ) is another triple representing the complex double of S.  Therefore by 

theorem 4.3 there exists a unique conformal homeomorphism 

c c:  S   S  such that gf = f? & ? . 

 

Sc is an orientable Klein surface without bounday so there exists a homeomorphism 
+  g (infact   g ) which induces C 0 C 0 ?  as described in chapter 1.  If 

+
c:  U  U/  = S#$

- & $  is the natural projection, we have the following commutative 

diagram. 
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+ +

+
c c

               
      U                     U

                          
                
      S                     S      = U/
  f                               f
                g
       S    

!

"# "#
$

#

                S       = U/#

 

 
 
Let f" %#

 = q, then, as S = U/# , 
 
  
 q(z) = " # (z) = [z] # . 
 
 
Now gq = q!  and so for z &  U 
 

 g[z] #  = [!(z)] #  . 

 

Let '  &  # , then 

 

 [ (z)]  = [ ( z)  = g[z]  = [ (z)] .# # # #!' ! ' !  

 

Therefore there exists ( & #  such that ( ! ' (z) = !(z) and so (because of the 

discreteness of  #  and the continuity of !) 

 

 1  =   )!'! ( & #  

 

which implies that 

 

 1  = .)!#! #  
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Proposition 4.9. Let f: T*S be a connected unramified double cover of Klein surfaces 

such that T = U/# , where #  is a surface group, possibly bordered.  Then there exists a 

surface group + , possibly bordered, such that S = U/#  and # <  +  with index two. 

 

Proof.  

 If f: T *  S is a double cover then there exists an automorphism , : T 

*T such that 2, = 1 ( ,  is the correspondence between point(s) in the same fibre).   If T 

= U/#  then by proposition 4.8 there exixts a homeomorphism !  &  g which induces ,  

such that 1  = .)!#! #  and since 2,  = 1, 2!  &  # . 

 

 Let +  be the group generated by #  and ! , i.e. 

 

  +  = #  = ! # . 

 

Then  # <  +  with index two and  

 

  U/S =  = U/#
+

+#
 

 

Clearly f can now be defined by f ([z] ) = [z]# + . 

 

 From this proposition we can deduce that all double covers of S = U/ 1# , where 

 1#  is a bordered surface group, are of the form U/ 2# , where 2# <  1#  with index 

two, and that by looking at U/ker -  for all homomorphisms -  from 1#  onto 2Z we can 

determine all possible connected unramified double covers of S. 

 

Lemma 4.10. Let 1# be a bordered surface group with orbit-genus g and r boundary 

components.  Then there are a2  - 1 homomorphisms -  from 1#  onto 
2Z  where 
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1 

1

2g + 2r - 1, if is orientable
a = 

g + 2r -1,  if  is non-orientable.
#.

/ #0
 

Proof.  We define -  on the canonical generators of 1#  and then the proof is a simple 

process of counting all such homomorphisms.  We divide the proof into two cases. 

 

(i) When 1#  is an orientable bordered surface group.  Then 1#  has signature 

 

    r(g,  + , [ ] , {( ) )} 

 

and generators 

 

    
i i

i

i

a , b i = 1,  ,g
    e i = 1,  ,r
    c         i = 1,  ,r

K
K
K

 

 

with relations 

 

    

2
i

1
i i i i

-1 -1 -1 -1
1 2 r 1 1 1 1 g g g g

c  = 1

            e c e  = c

    e e   e a b a b   a b a b  = 1.

)

K K

 

 

 Since 2Z  is abelian of order two, all the relations in 1#  will be preserved 

automatically by -  except we must ensure that 

 

   - (e1) - (e2) … - (er) = 1. 

 

So we can choose - (ai) and - (bi) in each of two ways for each i = 1, … g, - (ci) in each 

of two ways for each i = 1, … r, - (ei) in each of two ways for each i = 1, … r-1 and then 
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- (er) is uniquely determined by the relation - (e1) - (2) … - (er) = 1.  For -  to be onto 

it cannot map everything to the identity of Z2 .  Thus the number of homomorphisms from 

1#  onto Z2 is 

 

   g g r r 1 2g+2r-12 2 2 2 1 = 2 1) ) )  

 

(ii) When 1#  is a non-orientable bordered surface group.  Then 1#  has signature 

 

  (g, -, [ ], {( )r}) 

 

and generators   

 

    
i

i

i

    a i = 1,  ,g
    e i = 1,  ,r
    c         i = 1,  ,r

K
K
K

 

 

with relations 

 

    

2
i

1
i i i i

2 2
1 2 r 1 g

c  = 1

            e c e  = c

    e e   e a   a = 1.

)

K K

 

 

We thus have the same situation as in the orientable case except that there are no bi’s 

giving us that the number of homomorphisms in this case is 

 

    g 2r 12 1% ) )  

 

 Since there are 2a – 1 homomorphisms 1 2 1:  Z ,  - # * # has 2a – 1 subgroups, ker 

- , of index two.  Some of these subgroups will be isomorphic but as they come from 

different homomorphisms each subgroup corresponds to a different 2-sheeted covering of 
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U/ 1# .  By proposition 4.9 every connected double cover of U/ 1#  can be found in this 

way.  We have thus proved the following. 

 

Theorem 4.11. Let S be a Klein surface of genus g with r boundary components such 

that S = U/#where #  is a bordered surface group.  Then there are 2a – 1 connected 

unramified double covers of S, where 

 

  
2g + 2r -1 , if S is orientable

a = 
g + 2r - 1, if S is non-orientable
.
/
0

 

 

(Note we specify that S has non-empty boundary because this theorem does not hold for r 

= 0 as, from the proof of lemma 4.10, it is easy to see that if r = 0 the number of 

homomorphisms is 2g2 -1 or g2  - 1 and not 2g 12 )  - 1 or g 12 ) - 1.  We are more interested 

in the case when r > 0 because then the complex double and the Schottky double are 

always connected). 

 

 The result in theorem 4.11 agrees with the number of connected unramified 

double covers of a Klein surface with boundary found by Alling and Greenleaf from their 

topological approach ([2]). 

 

 If we can in some way determine ker - from the construction of the 

homomorphism - : 1#  *  Z2, defined on the canonical generators of 1# , we can identify 

the surface U/ker  -  and hence classify all connected double covers of U/ 1# . 

 If 1#  has orbit-genus g and r boundary components then it has signature 

 

    (g, 1 , [ ], {( )r}) 

 

and generators 
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1 1

i i i

i i

i i

2 2
i i

1
i i i

(A) if   is orientable (B)   if  is non-orientable 
a , b   i = 1,  g a   i = 1,  g

     c   i = 1,  r   c   i = 1,  r
    e    i = 1,  r e   i = 1,  r

with relations

(A) c  = 1 (B) c  = 1

   e c e c)

# #

2

K K
K K
K K

1
i i i i i

1 1 2 2 2
1 2 r 1 1 1 1 1 2 r 1 2 g

-1 -1
g g g g

   e c e c

e e e a b a b e e e a a a 1

            ..a b a b  =1.

)

) )

2

2K K K K

 

  

 In presentation (A) the orientation preserving generators are the ai’s, bi’s and ei’s 

(all hyperbolic), the only orientation reversing generators are the reflections, ci.  The only 

difference in presentation (B) is that the ai’s are orientation reversing (glide reflections). 
 
 A subgroup, 2# , of index two in 1#  will have signature of the form. 
 
  

 
 s(h,  , [ ], {( ) }).1  

 

The Riemann-Hurwitz formula gives us that 

 

 2 1( ) = 2 ( )3 # 3 #  

 

from which we can determine h if we know s and the orientability of 2# . 

 

Theorem 4.12. Let 1#  be a bordered surface group with orbit-genus g and r boundary 

components.  Let - : 1#  *  Z2 be a homomorphism defined on the canonical generators 

of 1#  (described above) and let ker -  = 2# .  Define a map -,  from {c1,c2, … cr} (the set 

of generating reflections) to {0,1,2) such that 
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i i 2

i 2 2

i 2

2  if c ,e   
(ci)  = 1  if c   ,ei  ,    for all i = 1 ... r

0  if c ,  
-

& #.
4, & # & #/
4 & #0  

Then 
 
(i) the number of boundary components of  2#  is 
 

r

i
i 1

s  (c ),-
2

2 ,5  

 
 

(ii) if  1#  is orientable then 2#  is non-orientable if and only if 1# \ 2#  contains both 

orientation reversing and orientation preserving generators of 1# . 

 

(iii) if 1# is non-orientable then 2#  is non-orientable if and only if  1# \ 2#  contains 

both orientation reversing and orientation preserving generators of 1#  or 2#  

contains any of the glide reflection generators of 1# . 

 

Proof. 

(i) If two reflections are conjugate in an NEC group # , then they represent the same 

boundary component in U/# .  We are considering a bordered surface group 1#  with r 

boundary components, so all reflections in 1#  will be conjugate to one of the generating 

reflections c1, ... cr.  Our aim is to count the number of conjugacy classes of reflections in 

2# .  

 
 We define a reflection c’ &  2#  to be induced by the reflection ci in 1# if c’ is 
conjugate to ci in 1# .  Let g & 1# \ 2#  so that 1# = 2#  + g 2#  then, by lemma 1.15, if ci &  

1#  is also in 2# , c’ is either conjugate to ci or 1
igc g) in 2# .  If ci &  2#  then it induces no 

reflections in 2# .  If ci &  2#  then it induces 1 or 2 conjugacy classes of reflections in 2#  
depending on whether ci is conjugate to 1

igc g) in 2#  or not. 
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 If 1
igc g)  is conjugate to ci in 2#  then there exists h &  2#  such that  

 

    1 1
i ih(gc g )h c .) ) 2  

 

This implies that hg is in the centralizer of ci in 1#  which, from theorem 1.16 is i ic , e .  So h = 

xg-1 , for some x &  i ic , e .   

 

 If ei & 2# , put x = ei &  i ic , e , so h = eig-1.  Since 1 -1
i 2 i 2e ,g  ,  e g   ) & # & # and  

 

  1 1 1 1 1 1
i i i i i i i ih(gc g )h  = e g gc g ge  = e c e  = c .) ) ) ) ) )  

 

so 1
igc g) is conjugate to ci in 2# . 

 

 If ei &  2# , then i ic , e  6  2# .  So if x &  i ic , e  then x & 2#  and, since g-1 &  

2# , h = xg-1 &  2# .  Therefore there does not exist h &  2#  such that 1
igc g)  is conjugate 

to ci in 2# . 

 

 Hence if ci &  2# , ci is conjugate to 1
igc g)  in 2#  if and only if ei &  2# .  So we 

can define a map i r:  {c ,  c }  {0,1,2}-, *K  such that 

 

  

i i 2

i i 2 i 2

i 2

2    if c ,e   
(c ) = 1    if c  , e  ,     for all i = 1 r

0    if c   
-

& #.
4, & # & #/
4 & #0

K  

 

and the number of boundary components of 2#  is  

 



 78

  
r

i
i 1

s = (c )-
2

,5  

 

(iii) 1#  is orientable and will have generators (A) as described above. 

 

Let 1# \ 2# contain both orientation reversing and orientation preserving generators of 1# .  

Let us assume that 1# \ 2#  contains ci (orientation reversing) for some i = 1, … 4 and aj 

(orientation preserving) for some j = 1, …. g.  Without loss of generality we can choose 

{1,ci} as coset representative so that  

 

  1#  = 2#  + c1 2# . 

 

 Throughout the proof (ii) and (iii) let F be the canonical fundamental region for 

1#  associated with the canonical generators of 1#  and using the notation developed in 

chapter 1 denote by , , ,7 8 ' &  the sides across which F is mapped by the transformations 

a,b,c,e.  As, in this case, 1#  is orientable the surface symbol for 1#  is 

 

  1 1 1 2 2 2 r r r 1 1 1 1 g g g g' '  ' ' '  ' '.& ' & & ' & & ' & 7 8 7 8 7 8 7 8K K  

 

Also, as 1#  = 2#  + ci 2# ,  F UciF is a fundamental region for 2# .  We need to look at 

how the sides of F UciF are identified under 2# , remembering that ci is orientation 

reversing.  The following is a diagram showing the structure of F UciF. 
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If F, under 1# , 

 

  aj(aj’) = 7 j.  

 

So  

 

  Ciaj(7 j’) = ci7 j. 

 

 Now aj &  2#  but ci aj &  2#  because ci, aj &  2#  and ciaj is orientation reversing.  

Therefore in FUciF the side 7 j’ is a congruent to the side ci7 j by an orientation reversing 

transformation in 2# .  Hence when the fundamental region FUCiF is folded up to form 

the surface U/ 2# , the sides 7 j’ and ci7 j will be identified as shown by the arrows in the 

following diagram. 

 

 

 If we draw a strip from 7 j’ to ci7 j’ then when the fundamental region is folded 

up this strip will become a Mobius band.  Therefore we can embed a Mobius band in the 

surface U/ 2#  and so U/ 2#  must be a non-orientable surface, i.e. 2#  must be non-

orientable.  From this proof it is clear that whatever mixture of orientation reversing and 

orientation preserving transformation 1# \ 2#  contains, 2#  must be non-orientable. 

 

 Conversely, let 2#  be non-orientable.  Let g &  1# \ 2#  be one of the generators of 

1# .  Then FUgF is a fundamental region for 2# .  As 2#  is non-orientable there must be at 

least one pair of sides of FUgF which are congruent by an orientation reversing 

transformation, x say. 
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 The sides of F are congruent in pairs by the generators of 1#  unless they are sides 

fixed by one of the generating reflections in which case they are fixed pointwise and are 

congruent to no other side of F.  So if 9  is a side of F then there exists a side of F, 9 , 

congruent to F by h &  1#  such that h ˆ( )9  = 9 , where h is one of the generators of 1#  or 

the inverse of one of the generators.  (If  9  is a side fixed by a reflection then 9̂  = 9).  

So in gF, g 9̂  and g 9̂  are congruent by 1ghg)  &  1# . 

 

Now 9 , 9̂ , g9  and g 9̂  are sides of FUgF  and all sides of FUgF can be found if this 

way.  If h & 2#  then 9̂  is congruent to 9  under 2# by h and g 9̂  is congruent to g9under 

2#  by ghg-1.  If h & 2#  then gh,hg-1 &  2#  and g 9̂  is congruent to 9  under 2#  by hg-1 

and 9̂ is congruent to g9  under 2#  by gh.  Therefore x &  2#  and is of the form h, ghg-1, 

gh or hg-1 where h is one of the generators of 1#  or the inverse of one of the generators. 

 

 However x is orientation reversing.  So if x = h or x = ghg-1, for some h, then 

since 1#  contains no glide reflection generators x must be a reflection.  But then the sides 

congruent by h, 9  and 9̂ , must coincide 9  = 9̂  = '  say, so that g9  = g 9̂  = g '  and x 

fixes either '  or g '  pointwise.  Therefore, as we require the sides congruent by x to be 

distinct, x = hg-1 or x = gh, for some h &  2# , and since x is orientation reversing one of g 

and h must be orientation reversing and the other orientation preserving.  Since h &  2#  

and g &  2# , 1# \ 2#  contains a mixture of orientation reversing and orientation 

preserving generators of 1# . 

 

(iii) 1#  is non-orientable and will have generators and relations (B) as described 

above.  In this case the surface symbol associated with the canonical generators of 1#  is 

 

  1 1 1 2 2 2 r r r 1 1 g g *  *.: : :& ' & & ' & & ' & 7 7 7 7K K  
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If 1# \ 2#  contains both orientation preserving and orientation reversing generators of 1#  

then the proof that 2#  is non-orientable is exactly the same as in the case when 1#  is 

orientable (except that in this case the only orientation preserving generators are e1, … 

er). 

 

Clearly if 2#  contains any of the glide reflection generators of 1#  then 2#  is non-

orientable.  For if two sides of F are congruent by a glide reflection generator of 1#  

which is also in 2#  then these two sides will also be congruent in FUgF, where  g &  

1# \ 2# , by the same (orientation reversing) generator.  Since FUgF is a fundamental 

region for 2#  this means that we can again embed a Mobius band in the surface U/ 2#  

and hence 2#  is non-orientable. 

 

 Conversely let 2#  be non-orientable and suppose 2#  does not contain any of the 

glide reflection generators of 1# .  Then, as in the case when 1#  is orientable, if g &  

1# \ 2#  is a generator of 1# , FUgF is a fundamental region for 2#  and there exists an x &  

2#  which is orientation reversing and maps one side of FUgF to another.  As before x 

must be of the form hg-1 or gh, where h &  1# \ 2#  is one of the generators of 1# or the 

inverse of one of the generators, because 2#  contains none of the glide reflection 

generators of 1#  so if x is to be orientation reversing but not a reflection it cannot be of 

the form h or ghg-1. 

 

 Again for  x to be orientation reversing one of g and h must be orientation 

reversing and the other orientation preserving and hence 1# \ 2#  contains a mixture of 

orientation reversing and orientation preserving generators of 1# . 

 

 If however 2#  is non-orientable but 1# \ 2#  does not contain a mixture of 

orientation preserving and orientation reversing generators of 1#  then either 
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(a) 1# \ 2#  contains only orientation preserving generators of 1#  
 
or 
 
(b) 1# \ 2#  contains only orientation reversing generators of 1#  
 

We must show that in both cases 2#  must contain at least one of the glide 

reflection generators of 1# . 

 

In case (a) as 1# \ 2#  contains only orientation preserving generators, 2#  must 

contain the glide reflection generators of 1# .  (Here we note that as 1#  is non-orientable 

it cannot have zero genus and hence must have glide reflection generators.) 

 

In case (b) let us assume 1# \ 2# contains all the glide reflection generators of 1#  

so 2#  contains none but will contain all the orientation preserving generators and 

possibly some of the reflection generators.  Let where  g &  1# \ 2# be one of the generators of 

1# , then g must be orientation reversing and FUgF is a fundamental region for 2# . 

 

As described in the proof of (ii) above all sides of FUgF are of the form 9or g9  

where 9  is a side of F and the sides to which they are congruent under 1# , 9̂  or g 9̂ .  Let 

h be the generator of 1#  (or the inverse of a generator of 1# ) such that h ( 9̂) = 9 , so ghg-

1(g 9̂) = g9 . 

 

If h is a reflection then 9  = 9̂  = '  say and g9  = g 9̂  = '  and g9  = g 9̂  = g ' .  If 

h &  2#  then '  and g '  are fixed pointwise by h and ghg-1 and are congruent to no other 

sides of FUgF.  If h &  2#  then ghg-1 &  2#  but hg-1, gh &  2#  and g 9̂  is congruent to 9  

under 2#  by an orientation preserving transformation and 9̂  is congruent to g9  under 2#  

similarly by an orientation preserving transformation. 
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If h is a glide reflection then h, ghg-1 & 2#  because we are assuming that 2#  

contains none of the glide reflection generators of 1# .  But hg-1, gh & 2# , both of which 

are orientation preserving and we have the same situation as when h is a reflection no in 

2# . 

 

If h is hyperbolic then h,ghg-1 & 2#  because 1# \ 2#  contains only orientation 

reversing generators.  So 9̂  is congruent to 9  under 2#  by an orientation preserving 

transformation and similarly g 9̂  is congruent to g9  under 2#  by an orientation 

preserving transformation. 

 

 Thus the sides of FUgF, except for the sides fixed by reflections, are 

congruent in pairs under 2#  by orientation preserving transformations.  So 2#  must be 

orientable, which is a contradiction. 

 

 Therefore at least one of the glide reflection generators of 1#  must be in 

2#  for 2#  to be non-orientable when 1# \ 2#  contains only orientation reversing 

generators. 

 

 We have thus shown that if 2#  is non-orientable then either 1# \ 2#  must 

contain a mixture of orientation preserving and orientation reversing generators of 1#  or 

2#  must contain at least one of the glide reflection generators of 1#  (or both) and this 

completes the proof of the theorem. 

 

(It is easy to verify that if 1#  contains elliptic generators xi, i = 1, … k, with the relations 

im
ix 12 , then theorem 4.12 is still true and if the signature of 1#  has non-empty period 

cycles then the conditions determining the orientability of the subgroup 2#  remain 

unaltered.  In these cases the double cover f: U/ 2#  *  U/ 1#  may be ramified.) 

 We now give some examples to show how theorem 4.12 can be used. 
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Example 4.13.  Let S be an orientable Klein surface with genus g = 1 and r = 1 

boundary components (i.e. a torus with one hole), then S = U/ 1# , where 1#  is and 

orientable bordered surface group with signature 

 

   (1, +, [ ], {( )}). 

 

1#  will have generators a, b, c, e with relations 

 

   

2

-1

-1 -1

          c  = 1
      ece  = c
eaba b  = 1

 

 

 
If 2#  is a subgroup of index two in 1#  then it will have signature of the form 

 
   (h, 1 , [ ],  {( )s})  

 

and all possible numerical pairs of values for h and s can be found from the Riemann-

Hurwitz formula 

 

   2 1( ) 2 ( )3 # 2 3 #  

 

But using theorem 4.12 we can determine which pairs of values actually occur and the 

orientability of 2#  in each case. 

 

Let - be a homomorphism from 1#  onto Z2 = 1, z  defined on the canonical generators 

of  1# .  By lemma 4.10 (with g = 1, r = 1 1#  orientable) there seven such 

homomorphisms which will give us seven double covers of S of the form U/ 2#  where 2#  
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= ker - .  By proposition 4.9 any connected unramified double cover of S will be 

isomorphic to one of these. 

 

 We now list the homomorphisms.  From the proof of lemma 4.10 we see that we 

must have in all cases - (e) = 1.  For brevity we shall use the abbreviation o.p.g. for 

orientation preserving generator and o.r.g. for orientation reversing generator. 

 

(1) - (c) = z, - (a) = - (b) = - (e) = 1,  here c &  2# , 1# \ 2#  contains 

                                                                                    only o.r.g.’s of 1#  

 

(2)  (a) = (b) = z, (c) = (e) = 1
(3)  (a) = z, (b) = (c) = (e) = 1
(4)  (b) = z, (a) = (c) (e) = 1
                                                      

(5)  (c) = (a) = z, (b) = 

- - - - ;
4- - - - 4
<- - - 2 - 4
4=

- - - -(e) = 1
(6)  (c) = (b) = z, (a) = (e) = 1
(7)  (c) = (a) = (b) = z, (e) = 1

;
4- - - - <
4- - - - =

 

 

 By applying theorem 4.12 in each case we obtain the number of boundary 

components of 2#  and its orientability.  Then we use the Riemann-Hurwitz formula to 

determine the orbit-genus, h. 

 

e.g. in (1), theorem 4.12 implies that 2#  is orientable and has no boundary components (s 

= 0) so 

 

  1( ) = 2 (2g - 2 + r) = 23 # " "  

 

So from the Riemann-Hurwitz formula we deduce that h – 2. 

 

 We can now list the signatures of  2#  in each of the above cases. 

here c,e &  2# , 1# \ 2#  
Only o.p.g. ‘s of 1#  

Here c 2 ,& # 1# \ 2#  contains a  
Mixture of o.p.g. ‘s and o.r.g’s of 1#  
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(1)   (2, +, [ ], { } ) 

 

2

(2)
(3) (1, ,[],{() })
(4)

(5)
(6) (4, ,[],{}).
(7)

;
4 %<
4
=

;
4 )<
4
=

 

 
 In (1) the Klein surface U/ 2#  is orientable with genus 2 and no boundary.  (2), (3) 

and (4) represent different double covers of S because they come from different 

homomorphisms but in each case U/ 2#  is orientable with genus 1 and 2 boundary 

components (i.e. a torus with 2 holes).  In (5), (6) and (7) U/ 2#  is non-orientable with 

genus 4 and no boundary, each case representing a different double cover of S. 

 

Example 4.14  Let S be a non-orientable Klein surface with genus g = 2 and r = 1 

boundary components (i.e. a Klein bottle with one hole).  Then S = U/ 1# , where 1#  is 

non-orientable bordered surface group with signature 
 
   (2, - , [ ], {( )}). 
 
 

 

1#  will have generators a1, a2, c, e with relations  

 

 

2

-1

2 2
1 2

          c  = 1
      ece  = c
  ea a  = 1
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As in example 4.13 if 2#  is a subgroup of index two in 1#  then it will have signature of 

the form 

 (h, 1 , [ ], {( )s}) 

 

and 

 

 2 1( ) = 2 ( ).3 # 3 #  

 

By lemma 4.10 the number of homomorphism 1 2:    Z- # *  is seven, again we must 

have - (e) = 1 in each case.  Let ker -  = 2# .  For brevity we abbreviate glide reflection 

generator to g.f.g.. The homomorphisms are 

 

> ? > ? > ? > ?i 2

1 2

1 2

2 1

1 2

1 2

(1) c  a  = a  = z, e  = 1,  

(2) (a ) (a ) z,  (c) = (e) = 1,  

(3) (a ) z,  (a ) (c) = (e) = 1
(4) (a ) z,  (a ) (c) = (e) = 1 

(5) (c) = z, (a )  (a ) (e) = 1
(6) (c) = (a ) z,  (a

- 2 - - -

- 2 - 2 - -

- 2 - 2 - - ;
<- 2 - 2 - - =

- - 2 - 2 -
- - 2 -

2 1

) = (e) = 1
(7) (c) = (a ) = z, (a ) (e) = 1

;
4- <
4- - - 2 - =

 

here c 2 ,& # 1# \ 2#  contains 
only o.r.g.’s of 1#  

here c,e &  2# , 1# \ 2#  contains  
only o.r.g. ‘s of  1#  

here c,e &  2# , 1# \ 2#  contains 
only o.r.g.’s of 1#  but 2#  contains a 
g.f.g. of 1#  

here c 2 ,& # 1# \ 2#  contains  
only o.r.g. ‘s of 1#  but 2#   
contains g.f.g’(s) of 1# . 
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 Applying theorem 4.12 and the Riemann-Hurwitz formula in each case we 

obtain the signature of 2#  to be 

 

2

2

2

(1) (2,  +, [ ], { })

(2) (1, +, [ ], {( ) })

(3)
(2, , [ ], {( ) })

(4)

(5)
(6) (4, , [ ], {( ) }).
(7)

;
)<

=

;
4 )<
4
=

 

 As before different homomorphisms giving the same signature for 2#  

represent different double covers of S.  Any connected unramified double cover of S will 

be isomorphic to one of the seven Klein surfaces, U/ 2# , represented above. 

 

Example 4.15. Let S be an orientable Klein surface with genus g = 1 and r = 2 boundary 

components (i.e. a torus with two holes).  Then S = U/ 1#  where 1#  is an orientable 

bordered surface group with signature. 

 

 (1,  +, [ ], {( )2}). 

 

1#  will have generators a, b, c1, c2, e1, e2 with relations 
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2 2
1 2
-1 -1

1 1 1 1 2 2 2 2
-1 -1

1 2

c c 1

      e c e  = c ,    e c e  = c

          e e aba b  = 1.

2 2

 

 

If 2#  is a subgroup of index two in 1# then it will have signature of the form 

 

 (h, 1 , [ ], {( )8}) 

 

and  

 

 2 1( ) = 2 ( ).3 # 3 #  

 

 By lemma 4.10 the number of homomorphisms 1 2:    Z- # *  is 31, we must have 

1 2(e ) (e ) 1- - 2  in each case.  Let ker -  = 2# .  The homomorphisms are 
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1 2 1 2

1 2 1 2

2 1 1 2

1 2

(1)    (c ) = (c ) = z, (a) = (b) = (e ) = (e ) = 1,

(2)    (c ) = z, (c ) = (a) = (b) = (e ) = (e ) = 1,
(3)    (c ) = z, (c ) = (a) = (b) = (e ) = (e ) = 1,
(4)    (e ) = (e ) = z, 

! ! ! ! ! !

! ! ! ! ! !
! ! ! ! ! !
! ! 1 2

1 2 1 2

1 2 1 2

1 2 1 2

(c ) = (c ) = (a) = (b) = 1,
(5)    (e ) = (e ) = (a) = z, (c ) = (c ) = (b) = 1,
(6)    (e ) = (e ) = (b) = z, (c ) = (c ) = (a) = 1,
(7)    (e ) = (e ) = (a) = (b) = z, (c ) = (c

! ! ! !
! ! ! ! ! !
! ! ! ! ! !
! ! ! ! ! !

1 2 1 2

1 2 1 2

1 2 1 2

1 2

) = 1,
(8)    (a) = (b) = z, (c ) = (c ) = (e ) = (e ) = 1,
(9)    (a) = z, (b) = (c ) = (c ) = (e ) = (e ) = 1,
(10)  (b) = z, (a) = (c ) = (c ) = (e ) = (e ) = 1,

(11)  (c ) = (c ) =

! ! ! ! ! !
! ! ! ! ! !
! ! ! ! ! !

! ! 1 2

1 2 1 2

1 2 1 2

1 2 1 2

 (a) =  (b) = z,  (e ) = (e ) = 1,
(12)  (c ) = (c ) = (a) = z,  (b) =  (e ) = (e ) = 1,
(13)  (c ) = (c ) = (b) = z,  (a) =  (e ) = (e ) = 1,
(14)  (c ) = (c ) = (e ) = (e ) = z,  (a) =

! ! ! !
! ! ! ! ! !
! ! ! ! ! !
! ! ! ! !

1 2 1 2

1 2 1 2

1 2 1 2

1 1

(b)  = 1,
(15)  (c ) = (c ) = (e ) = (e ) = (a) = z, (b)  = 1,
(16)  (c ) = (c ) = (e ) = (e ) = (b) = z, (a)   = 1,
(17)  (c ) = (c ) = (e ) = (e ) = (a) =  (b) = z,

(18)  (c ) = (e

!
! ! ! ! ! !
! ! ! ! ! !
! ! ! ! ! !

! ! 2 2

2 1 2 1

1 1 2 2

2 1 2

) = (e ) = z,  (c ) = (a)  = (b)  = 1,
(19)  (c ) = (e ) = (e ) = z,  (c ) = (a)  = (b)  = 1,
(20)  (c ) = (e ) = (e ) = (a) = z, (c )   = (b)  = 1,
(21)  (c ) = (e ) = (e ) = (a) = z, 

! ! ! !
! ! ! ! ! !
! ! ! ! ! !
! ! ! ! 1

1 1 2 2

2 1 2 1

1 1 2 2

(c )   = (b)  = 1,
(22)  (c ) = (e ) = (e ) = (b) = z, (c )   = (a)  = 1,
(23)  (c ) = (e ) = (e ) = (b) = z, (c )   = (a)  = 1,
(24)  (c ) = (e ) = (e ) = (a) = (b)  = z, (c )   = 1,

! !
! ! ! ! ! !
! ! ! ! ! !
! ! ! ! ! !

2 1 2 1

1 2 1 2

2 1 1 2

1

(25)  (c ) = (e ) = (e ) = (a) = (b)  = z, (c )   = 1,

(26)  (c ) = (a) = z, (c ) = (b) = (e ) = (e ) = 1,
(27)  (c ) = (a) = z, (c ) = (b) = (e ) = (e ) = 1,
(28)  (c ) = (b) = z, (

! ! ! ! ! !

! ! ! ! ! !
! ! ! ! ! !
! ! ! 2 1 2

2 1 1 2

1 2 1 2

2 1 1 2

c ) = (a) = (e ) = (e ) = 1,
(29)  (c ) = (b) = z, (c ) = (a) = (e ) = (e ) = 1,
(30)  (c ) = (a) = (b) = z, (c ) = (e ) = (e ) = 1,
(31)  (c ) = (a) = (b) = z, (c ) = (e ) = (e ) = 

! ! !
! ! ! ! ! !
! ! ! ! ! !
! ! ! ! ! ! 1.
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 Applying theorem 4.12 and the Riemann-Hurwitz formula in each case we 

deduce that the signature of 2"  is  

 

2

4

(1) (3,  +, [ ], { })

(2)
 

(2, +, [ ], {( ) })
 
(7)

(8)

(9)
(1, +, [ ], {( ) })

(10)

(11)
 

(6, -, [ ], { })
 
(17)

(18)
 

(5, -, [ ], {( )})
 
(25)

(26)
 

(4, -, [ ], {( )
 
(31)

#
$
$
%
$
$&

#
$
$
$
%
$
$
$
&

#
$
$
%
$
$&

#
$
$
%
$
$&

#
$
$
%
$
$&

g
g

g
g

g
g

g
g

2}).
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 As before homomorphisms giving the same signature for 2"  represent 

different double covers of S.  Any connected unramified double cover of S will be 

isomorphic to one of the 31 Klein surfaces, U/ 2" , represented above. 

 

5) Let S be a Klein surface with genus g and r boundary components such 

that S – U/"  where "  is either a non-orientable surface group or a bordered surface 

group.  Let ( cS , f ,  ' ) be the complex double of S.  Sc is orientable without boundary and 

because S has boundary if it is orientable, Sc is connected.  It follows immediately from 

theorem 4.12 that the only way to form an orientable subgroup without boundary of index 

two in "  is to take the kernel of the homomorphism which maps all the orientation 

reversing generators to the element of order two in Z2 and all the orientation preserving 

generators to the identity.  But the canonical Fuchsian group, ("  of "  is the subgroup of 

index two in "  consisting of all elements which preserve orientation.  Thus, as 

mentioned before, 

 

  Sc = U/ ("  

 

F is the map 

 

  f ([z] ) = [z]( ""
 

 

and if +  ) * " "\  then '  is defined by 
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  ([z] ) [ z] .( (" "
' + )  

 

(If we choose another element + +,
-1 +'    then  '   so [ z]  = [ 'z]

" "
) * " " ) ) * " ) )+\  which shows 

that '  is well-defined.) ("  has signature (2g + r – 1, +, [ ], { }) if S is orientable and (g + 

r – 1, +, [ ], { }) if S is non-orientable. 

 

 In each of the examples 4.13, 4.14 and 4.15 the kernel of homomorphism 

(1) gives (" . 

 

 Since Sc is a Riemann surface the algebraic genus of Sc (the non-negative 

integer that makes the algebraic version of the Riemann-Roch theorem work) is equal to 

the topological genus.  If E and F are the fields of meromorphic functions on S and Sc 

respectively then F = E(I) (see [2]) and by a well-known classical result ([4]) the 

algebraic genus of S is equal to the algebraic genus of Sc, i.e. to the topological genus of 

Sc = U/ (" . 

 

 If S is a non-orientable Klein surface with genus g and r boundary 

components such that S = U/"  where "  is a non-orientable bordered surface group, then 

the orienting double of S, So, is a connected orientable Klein surface with 2r boundary 

components. 

 

 Again it follows immediately from theorem 4.12 that the only way to form 

an orientable subgroup of index two in "  with 2r boundary components, which we shall 
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denote by o" , is to take the kernel of the homomorphism which maps all the glide 

reflection generators of " to z *  Z2  and all the hyperbolic and reflection generators of "  

to the identity.  In example 4.14 this is a homomorphism (2).  So = U/ o"  and from the 

Riemann-Hurwitz formula we see that the genus of o"  is g – 1 so o"  has signature 

 

  (g – 1, +, [ ], {( )2r}). 

 

 If we take the same non-orientable surface S with boundary then the 

Schottky double of S, Ss, is a connected non-orientable Klein surface without boundary.  

If s"  is the non-orientable subgroup of index two in "  such that Ss  = U/ s" then from the 

Riemann – Hurwitz formula we see that the genus of s"  is 2g + 2r – 2, so s"  has 

signature 

 

  (2g + 2r – 2, - 1, [ ], { }). 

 

However from example 4.14 we see that there is not a unique homomorphism whose 

kernel has the signature of s"  because in this example homomorphisms (5), (6) and (7) 

each have such a kernel. 

 

 Clearly from theorem 4.12 the homomorphism whose kernel is s"  must 

map all the reflection generators of "  to the element of order two in Z2. 
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 As  Ss is constructed by taking two copies of S and ‘gluing’ them together 

along their boundaries it should be clear that the homomorphism whose kernel of s" is 

the one which maps all the generators of "  to the identity except the reflections.  In 

example 4.14 this is homomorphism (5). 

 

6) Let us now consider normal n-sheeted coverings of Klein surfaces when n 

> 2. 

 

If n is even it is clear from theorem 4.12 that the situation could be quite 

complex.  However when n is odd we can obtain some general results. 

 

Firstly when n = p prime, the only group of order p ( upto isomorphism) is 

the cyclic group Zp with presentation {z: zp = 1}l.  If 1"  is a bordered surface group we 

can extend the proof of part (i) of theorem 4.12 to ascertain the number of boundary 

components of a normal subgroup, 2" , of index p in 1" , i.e. the number of boundary 

components of U/ 2" , a p-sheeted normal covering surface of U/ 1" . 

 

Theorem 4.16. Let 1"  be a bordered surface group with orbit-genus g and r boundary 

components.  Let 1 p:  Z ,! " ,  for prime ; > 2, be defined on the canonical generators of 

1"  (as described before theorem 4.12) so that ! , = 2" , is a normal subgroup of index p 

in 1" .  Define a map !-  from {e1, … er} (the set of generators of 1"  commuting with the 

generating reflections) to {1,p} such that  
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  i 2
i

i 2

p if e   
(e )         for all i = 1, ... r.

1 if e   !

* ".
- + / * "0

 

 

Then the number of boundary components of 2"  is  

 

  
r

i
i 1

s  (e ).!
+

+ -1  

Proof. 

 Let g be one of the generators of 1"  such that g *  1 2" "\ .  Because every 

element of Zp which is not the identity generates the whole group it is easy to see that 

whichever generator of 1"  in 1 2" "\  we choose for g we can write 

 

 1"  = 2"  + 2"
g2 + … + 2"

gp-1. 

 

 All reflections in 1"  are conjugate to one of the generating reflections C1, 

… Cr.  As in the proof of theorem 4.12 part (i) our aim is to count the number of 

conjugacy classes of reflections in 2" . 

 

 As before we define a reflection c’ *  2"  to be induced by the reflection ci 

in 1" .  By lemma 1.15 if ci *  1"  is also in 2" , c’ is conujugate to gmcig-m in 2" for some 

m = 1,1,2, … p-1.  As Zp  (p 2  2) contains no element of order two, ci *  2"  for all i = 1, 

… r.  Therefore every ci must induce one or more conjugacy classes of reflections in 2" .  

To determine the number of conjugacy classes of reflections in 2"  induced by ci we only 

have to establish when gmcig-m is conjugate to gncig-n in 2" , m 2  n, m,n *  {0,1, … p-1}. 
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 If gmcig-m is conjugate to gncig-n in 2" , m 2  n, then there exists h *  2"  

such that 

 

  H (gmcig-m)h-1 = gncig-n, 

 

Which implies that g-nhgm is an element of the centralizer of ci in 1" , i.e. 

 

  g-nhgm *  i ic , e  

 

by theorem 1.16.  So we can put 

 

  h = gnxg-m 

 

for some x *  i ic , e . 

 

If ei *  2"  then i ic , e  3  2"  which implies x * 2" , i.e. ! (x) = 1.  As Zp is abelian 

 

 
n -m n-m n-m(h) (g xg ) = ( (g) (x) = ( (g)) .! + ! ! ! !  

Since g *  1" , (g)  1, also n - m  o or p and so! 2 2  

 

 (0 (g)) n-m 2  1. 

 

This implies that ! (h) 2  1 so h *  2" .  Therefore gmcig-m cannot be conjugate to gncig-n 

in 2"  if m 2  n. 

 

 If ei *  2" , we can choose g = ei.  Then, since eiciei
-1 = ci, 

 

  gmcig-m = ei
mciei

-m = cI 
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and similarly  gncig-n = ci. 

 

So gmcig-m = gncig-n and are therefore trivially conjugate in 2" .   

 

 Therefore if ei *  2" , gmcig-m is never conjugate to gncig-n in 2"  for n 2  m 

and if ei *  2" , gmcig-m is conjugate to gncig-n in 2"  for all m,n.  So the number of 

conjugacy classes of reflections in 2"  induced by ci is 1 or p depending on whether ei  

is in 2"  or no.  We can define a map 1 r:{e ,...e }  {l,p} such that!- ,  

 

i 2
i

i 2

p if e   
(e ) =       for all i = 1, ... r.

1 if e   !

* ".
- / * "0

 

 

and the number of boundary components of 2"  is  

 

   
r

i
i 1

s = (e ).!
+

-1  

 
Secondly when n is odd general results concerning the orientability of a subgroup of 

index n in an NEC group can be obtained. 

 

Theorem 4.17. Let 1" be an orientable NEC group with signature 

 

 (g, + , [m1, . . . mk], {(n11, . . . n s11 ), . . . (nr1, . . . n rrs )}) and let ! : 1"  ,  G, 

where G is any finite group with odd order n, be a homomorphism defined on the 

canonical generators of 1"  such that ker ! , = 2" , is a subgroup of index n in 1" .  Then 

2"  must be orientable. 
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Proof. 

 1"  will have generators and relations as in (1.6).  The generators ai, bi, xi, ei are 

all orientation preserving and the generators cij are reflections, i.e. orientation reversing. 

 

 The result is obvious if 1"  does not contain reflections as it is then a Fuchsian 

group.  So we suppose that 1"  contains reflections. 

 

 Since G has odd order it has no element of order two, so for ! (cij) = 1, for all i = 

1, … r, j = 0,1, … si. 

 

 As 2"  is a normal subgroup of index n in 1"  there exist coset representatives 

g1,g2, … gn in 1"  such that  

 

   1"  = 2" g1 + 2" g2 + . . . 2" gn 

    

Without loss of generality we can assume that g1, . . .  gn are orientation preserving 

because we can replace any coset 2" g by 2" (cg), where c * 2"  is a reflection, if 

necessary.  Also without loss of generality we can assume g1 = 1. 

 

 Let F be the canonical fundamental region for 1"  associated with the canonical 

generators.  Then 

 

  F’ = FUg2FU . . . UgnF 

 

Is a fundamental region for 2" . 

 

 The sides of F’ are images of sides of F and fall into pairs congruent by 

transformations of 2"  (except the sides of reflection which are fixed by reflection 

generators and their conjugates) 
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 If we can show that all pairs of congruent sides of F’ are congruent by orientation 

preserving transformations then we shall have shown that U/ 2"  is orientable, i.e. that 2"  

is an orientable group.  So let us assume that there is one pair of sides of F’ which are 

congruent by an orientation reversing transformation in 2" , x say, and try to reach a 

contradiction. 

 

 Let the two sides congruent by x be p and q, where p is a side of giF and q is a 

side of gjF, I,j = 1,2, . . . n.  Then  

 

  p = gi4 ,   where 4  is a side of F 

    q = gj5 ,  where 5  is a side of F. 

 

( If 4  and 5  then i 2  j so that p and q are distinct.) so 

 

 x(gi4) = gj5  

 

which implies that  

 

 (gj –1xgi) 4=5 . 

 

 Thus 4  and 5  are congruent by gj
-1xgi *  1" .  But 4  and 5  are sides of F, the 

canonical fundamental region for 1"  associated with the canonical generators of 1"  and 

so if 4  and 5  are congruent by a transformation in 1"  that transformation must be one of 

the canonical generators of 1"  and is unique (upto inverse).  Hence 

 
  gj

-1xgi = t, say 
 
where t is one of the generators of 1"  (or the inverse of one of the generators) and thus is 

either orientation preserving or a reflection.  However gi and gj have been chosen so that 
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they are both orientation preserving so for x to be orientation reversing t must be 

orientation reversing and therefore a reflection. 

 

 But if t is a reflection we have the following situation. 

 

Since 4  and 5  are congruent by t in F, 4  = 5  = 6  say and  

 

  p = gi6  

   q = gj6  

 

As t is one of the reflection generators of 1" , t *  2" .  Therefore gitgi
-1, gjtgj

-1 *  2"  

because 2"  <  1" .  Now gi6  is fixed pointwise by the reflection gitgi
-1 and gj6  is fixed 

by the reflection gjtgj
-1.  Also x(gi6 ) = gj6 , x * 2" . 

 

 Consider any point on the N.E. line gi6 .  Because of the continuity of elements in 

G, we can always find a small enough neighbourhood, V say, of this point such that a 

point p *  iV g FI  is mapped just outside giF by gitgi
-1.  The transformation x will map 

this point to a point just outside gjF within a small neighbourhood of some point on the 

N.E. line gj6 .  This point just outside gjF will be mapped by gjtgj
-1 just inside gjF.  

Therefore our original point p has been mapped by transformation in 2"  from just inside 

giF to a point just inside gjF as illustrated in the following diagram. 

 

So we have two points in the same 2" -orbit in the interior of a fundamental region for 

2"  which is a contradiction. 

 

 Hence t cannot be a reflection and so 2"  must be orientable. 

 

Theorem 4.18.  Let 1"  be a non-orientable NEC group with signature 
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 (g, - , [m1, . . . mk], {(n11, . . . n s11 ), . . . (nr1, . . . n rrs )}) 

 

and let ! : 1"  ,  G where G is any finite group with odd order n, be a homomorphism 

defined of the canonical generators of 1"  such that ker ! , = 2" , is a normal subgroup of 

index n in 1" .  Then 2"  must be non-orientable. 

 

Proof.   

 1"  will have generators and relations as in (1.7.)  The generators xi, ei are all 

orientation preserving, the cij’s are reflection and the ai’s glide reflection (orientation 

reversing).   

 

 Since G has odd order it has no element of order two, so for !  to be a 

homomorphism ! (cij) = 1, for all i = 1, . . . r,  j = 0,1 . . . si.  We choose coset 

representatives g1, . . . gn in 1"  such that 

 

 1"  = 2" g1 + 2" g2 + . . . + 2" gn. 

 

Without loss of generality we can choose g1 = 1. 

 

 Let F be the canonical fundamental region for 1"  associated with the canonical 

generators.  Then 

 

  F’ = FUg2FU . . . UgnF 

 

Is a fundamental region for 2" . 

 

 Let us consider any one of the glide reflection generators in 1" , i.e. in the set  

{a1, . . . 1g}.  Call it a.  Denote by 7  the side across which F is mapped by a and denote 

by 7 * the side congruent to 7  in F by a, so 
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  a(7 *) = 7  

 

 Now if a *  2" , a 2  gi for i = 1, . . . n and the two sides congruent by an in F (7  

and 7 *) are still congruent in F’ by a, which is orientation reversing.  Thus we can 

embed a Mobius band in the surface U/ 2"  and hence 2"  is non-orientable. 

(Note:  We can always choose coset representatives such that  

 

  giFngjF = 8 , i,j = 1, . . . n, i 2  j, 

 

so 7  and 7 * are sides of F’ and not interior to it.) 

 

 If a *  2" then let the order of ! (a) in G be m.  So 2 < m *  n.  Then we can 

choose gi = ai-1 for i = 1, . . . m, so 

 

 F’ = FUaFUa2FU . . . Uam-1Fugm+1FU . . . UgnF. 

  

 Now ! (am) = (! (a))m = 1 in G, i.e. am *  2"  and since the order of ! (a) must 

divide n which is odd, m must be odd and hence am must be orientation reversing.  Also 

 

  am(7 *) = am-1(a7 *) = am-1(7 ). 

 

Am-1(7 ) is a side of am-1F and therefore a side of F’. 7 * is a side of F and so also is a 

side of F’.  Thus we have two sides of connected component of F’ congruent by an 

orientation reversing transformation in 2"  and again 2"  must be non-orientable.  (Note:  

When a * 2"  let FU aFU . . . Uam-1F = Fa.  Fa is connected but 7* and am-17  are not 

sides of intersection with Fa.  Because 2 1 " "< it is always possible to find elements 

1 m 1 ,  ) ) * "K , where m’ = n/m – 1, such that the set 

 



 104

2 m-1

2 m 1
1 1 1 1

2 m-1
m'' m' m' m'

1,  a, a ,  a
, a, a ,  a

 
a, a ,  a

9

. #
$ $
) ) ) )$ $
/ %
$ $
$ $) ) ) )0 &

K
K

M M M K M
K

 

 

 

 F’ = FaU ) 1FaU . . . U ) m,Fa 

 

Where ) iFa = ) iFU ) iaFU . . . U ) iam-1F. We can always choose the elements such that 

Fa I ) iFa = 8 , i = 1, . . . m’ and ) iFa I ) jFa  =8 , i = 1, . . . m’ and 

i a j aF F ,  i  j, i,j = 1, . . . m'.) ) + 8 2I   So we can always choose a fundamental region for 

2"  such that  7 * and am-17  are sides of F’ and not interior to it.) 

 

 In theorems 4.17 and 4.18 U/ 2"  is a normal n-sheeted covering surface of U/ 1" , 

possibly ramified.  We have thus proved the following. 

 

Theorem 4.19. Let S be a Klein surface such that S = U/ 1" , where 1"  is an orientable 

(respectively non-orientable) NEC group.  Then an n-sheeted covering surface of S of the 

form U/ 2" , where 2"  <  1" , must be orientable (respectively non-orientable), provided 

m is odd. 
 
7) To end this chapter we shall take a brief look at non-normal n-sheeted 

coverings.  I.e. n-sheeted coverings of Klein surface U/ 1"  ( 1"  and NEC group) of the 

form U/ 2" , where 2" 3 1"  is a non-normal subgroup of index n in 1" . 

 
 To find non-normal subgroups of index n in an NEC group 1"  we look at 

homomorphisms ! : 1"  ,  G, where G is a finite permutation group transitive on n 

points.  If G’ 3  G is the stabilizer of a point then 2"  = ! -1(G’) is a subgroup of index n 
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in 1" .  The case when 2"  <  1"  is just a special case of this with G = 1" / 2"  acting in its 

right regular representation and ! : 1"  ,  G the natural homomorphism. 

 

 The following example shows that we cannot extend theorem 4.17 to non-

normal subgroups, in other words there exist non-normal odd-sheeted coverings of 

orientable surfaces which are non-orientable. 

 

Example 4.20 Let 1"  be an orientable bordered surface group with orbit-genus g – 1 and 

r = 1 boundary components.  So 1"  has signature  

 

  (1, +, [ ], {( )}) 

 

with generators a, b, c, e and relations 

 

  c2 = 1 

        ece-1 = c 

                         eaba-1b-1 = 1. 

 

We define !  on the generators of 1"  so that !  is a homomorphism onto a permutation 

group transitive on three points.  Let 

 

  ! (a) = (1 2 3) 

  ! (b) = (1) (2) (3) 

  ! (c) = (1 2) (3) 

  ! (e) = (1) (2) (3). 

  

!  is easily verified to be a homomorphism.  Let 2"  = ! -1 (Stab(1)), so [ 1" : 2" ] = 3 and 

e,b *  2" , c,a * 2" .  Choose coset representatives 1, a, a2 so 
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  1"  = 2"  + 2" a + 2" a2. 

   

Let F be the canonical fundamental region for 1"  associated with the canonical 

generators.  Then 

 

  F’ = FUaFUa2F 

 

is a fundamental region for 2" . 

 

 Denote by ,  , , 7 : ) *  the sides across which F is mapped by the 

transformations a, b, c, e.  Then the canonical surface symbol for 1"  is ' ' '.*)* 7:7 :  

 

 Now ! (ca-1) = ! (c) (! (a)) –1 = (1) (2 3) so (ca-1) *  Stab(1) and ca-1 *  

2" .  Also a )  is a side of aF, )  is a side of F and  

 

 Ca-1(a ) ) = ) . 

 

Therefore two sides of F’ are congruent by an orientation reversing transformations in 

2" .  So we can embed a Mobius band in the surface U/ 2"  and 2"  must be non-

orientable. 

 

 We can also count the number of conjugacy classes of reflections induced 

in 2"  by the generating reflection c *  1" .  For 

 

 ! (ac) = ! (a) ! (c) = (1)(2 3) 

 

so ac *  2"  and 2"  = 2" ac.  Since c has order two 2" c = 2" a and as 

 1"  = 1" c = 2" c + 2" ac + 2" a2c 
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we must have 

 

 2" a2c = 2" a2, 

 

i.e.  a2ca-2 *  2" .  Now suppose there exists g *  1"  such that gcg-1 *  2" .  This implies 

that 2" gc = 2" g, i.e. 2" g = 2" a2 and g = ) a2 where )  *  2" .  Then 

 

 gcg-1 = ) a2ca-2 ) -1 

 

which implies that gcg-1 conjugate to a2ca-2 in 2" , Thus, as c *  2" , there is only one 

conjugacy class of reflections in 2" , i.e. 2"  has only one boundary component. 

 

 We can now use the Riemann-Hurwitz formula to deduce that the genus of 

2"  is 2 and that 2"  has signature 

 

  

  (2, -, [ ], {( )}). 
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