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�E, �E(�r, t), electric field vector
�E(i, j, n)

Ex, Ey, Ez components of the electric field vector
�H, �H(�r, t) magnetic field vector
�H(i, j, n)

Hx, Hy, Hz components of the magnetic field vector

P (i, j) polinomial

Z0 impedance of vacuum, Z0 =
√

µ0/ε0 = 376.73V/A

Section 2.3.2

× cross product

∂ partial derivative symbol

(i, j) point of the discrete space, grid point

(i, j, n) point of the discrete space/time

θ angle of scattering

∆s space grid step

∆t time step

Γ line

dγ line integral

n time-step index

n′ retarded time-step index

n̂ unit inward normal to the surface of integration

p a point in space p =
(
i0, jp+

1

2

)

�r position vector in the Euclidean space

�r0 arbitrary point in space

r0 magnitude of �r0

r̂0 unit vector of �r0

t time

t′ retarded time

C scalar constant
�E, �E(�r), electric field vector

xv



�E(�r, t), �E(n, θ)
�E(ω, θ)
�E1(ω, θ) contribution to electric field from first sampling window
�E2(ω, θ) contribution to electric field from second sampling win-

dow

Ex, Ez components of the electric field vector
�H, �H(�r, t), magnetic field vector

Hy components of the magnetic field vector

Z0 impedance of vacuum, Z0 =
√

µ0/ε0 = 376.73V/A

Appendix A

Section A.1

δij Kronecker symbol

ε(�r) dielectric function

µ(Ω) volume of primitive cell

η �G Fourier coefficient of the inverse dielectric function

ω angular frequency

Ω primitive cell

�a1, �a2, �a3 basis vectors of primitive lattice cell
�b1, �b2, �b3 basis vectors of Brillouin zone

c speed of light in vacuum, c = 3 · 108m/s

i imaginary unit i =
√−1

j integer index
�k wave vector in the periodic structure

l1, l2, l3 integers

�r position vector in the Euclidean space

�u�k(�r, ω) periodic vector field function with three-dimensional
domain, Bloch state

�u�k, �G′ Fourier coefficient of a Bloch state
�G, �G′, �G′′ reciprocal lattice vectors
�H�k(�r, ω) magnetic field vector plane wave with wave vector �k
�R lattice vector in Euclidean space

Section A.2

ε(z) dielectric function

ε1, ε2 dielectric constants

xvi



ηG, ηl Fourier coefficient of the inverse dielectric function

ω angular frequency

a period of a one-dimensional lattice

c speed of light in vacuum, c = 3 · 108m/s

f filling fraction

g(z) scalar top-hat function

i imaginary unit i =
√−1

�k wave vector in the periodic structure

kx, kz components of wave vector �k

l, l′, l′′ integers

�u�k,l Fourier coefficient of a Bloch state

u�k,l,x, u�k,l,y, components of �u�k,l

u�k,l,z
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�Ejγ, �Ejγ(�r, t) either forward or backward travelling electric field vec-
tor in the jth material in the stack

Ejγx, Ejγy, Ejγz components of �Ejγ

�Hjγ either forward or backward travelling magnetic field
vector in jth material of the stack

Mjp characteristic matrix of the jth layer in the stack for p
polarisation

Nj complex index of refraction of jth material in the stack

Pj propagation matrix of the jth layer in the stack

Rp reflected fraction of the power (reflectance) incident on
a multilayer stack

Tp transmitted fraction of the power (transmittance) inci-
dent on a multilayer stack

Z0 impedance of vacuum, Z0 =
√

µ0/ε0 = 376.73V/A

xx



List of Acronyms

AR, ARC antireflective coating

BBO beta barium borate

BS-SEM backscattered electrons scanning electron microscopy

ECR electron cyclotron resonance

FD finite difference

FDTD finite-difference time-domain

FEM finite element method

FWHM full width at half maximum

GT Glan-Taylor polariser

IPA isopropyl alcohol

IR infrared

KKR Korringa-Kohn-Rostocker

KTP potassium titanil phosphate

MST multiple-scattering theory

NFFFT near-field to far-field transformation

PC, PCs photonic crystal, photonic crystals

PCF, PCFs photonic crystal fibre, photonic crystal fibres

PECVD plasma-enhanced chemical vapour deposition

PML perfectly matched layer

PMMA Polymethyl methacrylate

PWM plane wave method

RCWT rigorous coupled wave technique

RF radio frequency

RIE reactive ion etching

RMM rigorous modal method

SC supecontinuum

SEM scanning electron microscopy

xxi



ST scalar thory

TE transverse electric

TEM transmission electron microscopy

TM transverse magnetic

TMM transfer matrix method

TTV total thickness variation
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